| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <limits.h> |
| #include <assert.h> |
| #include <math.h> |
| |
| #include "vp9/common/vp9_alloccommon.h" |
| #include "vp9/common/vp9_common.h" |
| #include "vp9/encoder/vp9_ratectrl.h" |
| #include "vp9/common/vp9_entropymode.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "vp9/common/vp9_systemdependent.h" |
| #include "vp9/encoder/vp9_encodemv.h" |
| #include "vp9/common/vp9_quant_common.h" |
| #include "vp9/common/vp9_seg_common.h" |
| |
| #define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1 |
| |
| #define MIN_BPB_FACTOR 0.005 |
| #define MAX_BPB_FACTOR 50 |
| |
| // Bits Per MB at different Q (Multiplied by 512) |
| #define BPER_MB_NORMBITS 9 |
| |
| // Tables relating active max Q to active min Q |
| static int kf_low_motion_minq[QINDEX_RANGE]; |
| static int kf_high_motion_minq[QINDEX_RANGE]; |
| static int gf_low_motion_minq[QINDEX_RANGE]; |
| static int gf_high_motion_minq[QINDEX_RANGE]; |
| static int inter_minq[QINDEX_RANGE]; |
| static int afq_low_motion_minq[QINDEX_RANGE]; |
| static int afq_high_motion_minq[QINDEX_RANGE]; |
| static int gf_high = 2000; |
| static int gf_low = 400; |
| static int kf_high = 5000; |
| static int kf_low = 400; |
| |
| // Functions to compute the active minq lookup table entries based on a |
| // formulaic approach to facilitate easier adjustment of the Q tables. |
| // The formulae were derived from computing a 3rd order polynomial best |
| // fit to the original data (after plotting real maxq vs minq (not q index)) |
| static int calculate_minq_index(double maxq, |
| double x3, double x2, double x1, double c) { |
| int i; |
| const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq + c, |
| maxq); |
| |
| // Special case handling to deal with the step from q2.0 |
| // down to lossless mode represented by q 1.0. |
| if (minqtarget <= 2.0) |
| return 0; |
| |
| for (i = 0; i < QINDEX_RANGE; i++) { |
| if (minqtarget <= vp9_convert_qindex_to_q(i)) |
| return i; |
| } |
| |
| return QINDEX_RANGE - 1; |
| } |
| |
| void vp9_rc_init_minq_luts(void) { |
| int i; |
| |
| for (i = 0; i < QINDEX_RANGE; i++) { |
| const double maxq = vp9_convert_qindex_to_q(i); |
| |
| |
| kf_low_motion_minq[i] = calculate_minq_index(maxq, |
| 0.000001, |
| -0.0004, |
| 0.15, |
| 0.0); |
| kf_high_motion_minq[i] = calculate_minq_index(maxq, |
| 0.000002, |
| -0.0012, |
| 0.50, |
| 0.0); |
| |
| gf_low_motion_minq[i] = calculate_minq_index(maxq, |
| 0.0000015, |
| -0.0009, |
| 0.32, |
| 0.0); |
| gf_high_motion_minq[i] = calculate_minq_index(maxq, |
| 0.0000021, |
| -0.00125, |
| 0.50, |
| 0.0); |
| afq_low_motion_minq[i] = calculate_minq_index(maxq, |
| 0.0000015, |
| -0.0009, |
| 0.33, |
| 0.0); |
| afq_high_motion_minq[i] = calculate_minq_index(maxq, |
| 0.0000021, |
| -0.00125, |
| 0.55, |
| 0.0); |
| inter_minq[i] = calculate_minq_index(maxq, |
| 0.00000271, |
| -0.00113, |
| 0.75, |
| 0.0); |
| } |
| } |
| |
| // These functions use formulaic calculations to make playing with the |
| // quantizer tables easier. If necessary they can be replaced by lookup |
| // tables if and when things settle down in the experimental bitstream |
| double vp9_convert_qindex_to_q(int qindex) { |
| // Convert the index to a real Q value (scaled down to match old Q values) |
| return vp9_ac_quant(qindex, 0) / 4.0; |
| } |
| |
| int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex, |
| double correction_factor) { |
| const double q = vp9_convert_qindex_to_q(qindex); |
| int enumerator = frame_type == KEY_FRAME ? 3300000 : 2250000; |
| |
| // q based adjustment to baseline enumerator |
| enumerator += (int)(enumerator * q) >> 12; |
| return (int)(0.5 + (enumerator * correction_factor / q)); |
| } |
| |
| void vp9_save_coding_context(VP9_COMP *cpi) { |
| CODING_CONTEXT *const cc = &cpi->coding_context; |
| VP9_COMMON *cm = &cpi->common; |
| |
| // Stores a snapshot of key state variables which can subsequently be |
| // restored with a call to vp9_restore_coding_context. These functions are |
| // intended for use in a re-code loop in vp9_compress_frame where the |
| // quantizer value is adjusted between loop iterations. |
| vp9_copy(cc->nmvjointcost, cpi->mb.nmvjointcost); |
| vp9_copy(cc->nmvcosts, cpi->mb.nmvcosts); |
| vp9_copy(cc->nmvcosts_hp, cpi->mb.nmvcosts_hp); |
| |
| vp9_copy(cc->segment_pred_probs, cm->seg.pred_probs); |
| |
| vpx_memcpy(cpi->coding_context.last_frame_seg_map_copy, |
| cm->last_frame_seg_map, (cm->mi_rows * cm->mi_cols)); |
| |
| vp9_copy(cc->last_ref_lf_deltas, cm->lf.last_ref_deltas); |
| vp9_copy(cc->last_mode_lf_deltas, cm->lf.last_mode_deltas); |
| |
| cc->fc = cm->fc; |
| } |
| |
| void vp9_restore_coding_context(VP9_COMP *cpi) { |
| CODING_CONTEXT *const cc = &cpi->coding_context; |
| VP9_COMMON *cm = &cpi->common; |
| |
| // Restore key state variables to the snapshot state stored in the |
| // previous call to vp9_save_coding_context. |
| vp9_copy(cpi->mb.nmvjointcost, cc->nmvjointcost); |
| vp9_copy(cpi->mb.nmvcosts, cc->nmvcosts); |
| vp9_copy(cpi->mb.nmvcosts_hp, cc->nmvcosts_hp); |
| |
| vp9_copy(cm->seg.pred_probs, cc->segment_pred_probs); |
| |
| vpx_memcpy(cm->last_frame_seg_map, |
| cpi->coding_context.last_frame_seg_map_copy, |
| (cm->mi_rows * cm->mi_cols)); |
| |
| vp9_copy(cm->lf.last_ref_deltas, cc->last_ref_lf_deltas); |
| vp9_copy(cm->lf.last_mode_deltas, cc->last_mode_lf_deltas); |
| |
| cm->fc = cc->fc; |
| } |
| |
| void vp9_setup_key_frame(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| |
| vp9_setup_past_independence(cm); |
| |
| // interval before next GF |
| cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval; |
| /* All buffers are implicitly updated on key frames. */ |
| cpi->refresh_golden_frame = 1; |
| cpi->refresh_alt_ref_frame = 1; |
| } |
| |
| void vp9_setup_inter_frame(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| if (cm->error_resilient_mode || cm->intra_only) |
| vp9_setup_past_independence(cm); |
| |
| assert(cm->frame_context_idx < FRAME_CONTEXTS); |
| cm->fc = cm->frame_contexts[cm->frame_context_idx]; |
| } |
| |
| static int estimate_bits_at_q(int frame_kind, int q, int mbs, |
| double correction_factor) { |
| const int bpm = (int)(vp9_rc_bits_per_mb(frame_kind, q, correction_factor)); |
| |
| // Attempt to retain reasonable accuracy without overflow. The cutoff is |
| // chosen such that the maximum product of Bpm and MBs fits 31 bits. The |
| // largest Bpm takes 20 bits. |
| return (mbs > (1 << 11)) ? (bpm >> BPER_MB_NORMBITS) * mbs |
| : (bpm * mbs) >> BPER_MB_NORMBITS; |
| } |
| |
| |
| static void calc_iframe_target_size(VP9_COMP *cpi) { |
| // boost defaults to half second |
| int target; |
| |
| // Clear down mmx registers to allow floating point in what follows |
| vp9_clear_system_state(); // __asm emms; |
| |
| // New Two pass RC |
| target = cpi->rc.per_frame_bandwidth; |
| |
| // For 1-pass. |
| if (cpi->pass == 0) { |
| if (cpi->common.current_video_frame == 0) { |
| target = cpi->oxcf.starting_buffer_level / 2; |
| } else { |
| // TODO(marpan): Add in adjustment based on Q. |
| // If this keyframe was forced, use a more recent Q estimate. |
| // int Q = (cpi->common.frame_flags & FRAMEFLAGS_KEY) ? |
| // cpi->rc.avg_frame_qindex : cpi->rc.ni_av_qi; |
| int initial_boost = 32; |
| // Boost depends somewhat on frame rate. |
| int kf_boost = MAX(initial_boost, (int)(2 * cpi->output_framerate - 16)); |
| // Adjustment up based on q: need to fix. |
| // kf_boost = kf_boost * kfboost_qadjust(Q) / 100; |
| // Frame separation adjustment (down). |
| if (cpi->rc.frames_since_key < cpi->output_framerate / 2) { |
| kf_boost = (int)(kf_boost * cpi->rc.frames_since_key / |
| (cpi->output_framerate / 2)); |
| } |
| kf_boost = (kf_boost < 16) ? 16 : kf_boost; |
| target = ((16 + kf_boost) * cpi->rc.per_frame_bandwidth) >> 4; |
| } |
| cpi->rc.active_worst_quality = cpi->rc.worst_quality; |
| } |
| |
| if (cpi->oxcf.rc_max_intra_bitrate_pct) { |
| int max_rate = cpi->rc.per_frame_bandwidth |
| * cpi->oxcf.rc_max_intra_bitrate_pct / 100; |
| |
| if (target > max_rate) |
| target = max_rate; |
| } |
| cpi->rc.this_frame_target = target; |
| } |
| |
| // Do the best we can to define the parameters for the next GF based |
| // on what information we have available. |
| // |
| // In this experimental code only two pass is supported |
| // so we just use the interval determined in the two pass code. |
| static void calc_gf_params(VP9_COMP *cpi) { |
| // Set the gf interval |
| cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval; |
| } |
| |
| // Update the buffer level: leaky bucket model. |
| void vp9_update_buffer_level(VP9_COMP *const cpi, int encoded_frame_size) { |
| VP9_COMMON *const cm = &cpi->common; |
| // Non-viewable frames are a special case and are treated as pure overhead. |
| if (!cm->show_frame) { |
| cpi->rc.bits_off_target -= encoded_frame_size; |
| } else { |
| cpi->rc.bits_off_target += cpi->rc.av_per_frame_bandwidth - |
| encoded_frame_size; |
| } |
| // Clip the buffer level to the maximum specified buffer size. |
| if (cpi->rc.bits_off_target > cpi->oxcf.maximum_buffer_size) { |
| cpi->rc.bits_off_target = cpi->oxcf.maximum_buffer_size; |
| } |
| cpi->rc.buffer_level = cpi->rc.bits_off_target; |
| } |
| |
| int vp9_drop_frame(VP9_COMP *const cpi) { |
| if (!cpi->oxcf.drop_frames_water_mark) { |
| return 0; |
| } else { |
| if (cpi->rc.buffer_level < 0) { |
| // Always drop if buffer is below 0. |
| return 1; |
| } else { |
| // If buffer is below drop_mark, for now just drop every other frame |
| // (starting with the next frame) until it increases back over drop_mark. |
| int drop_mark = (int)(cpi->oxcf.drop_frames_water_mark * |
| cpi->oxcf.optimal_buffer_level / 100); |
| if ((cpi->rc.buffer_level > drop_mark) && |
| (cpi->rc.decimation_factor > 0)) { |
| --cpi->rc.decimation_factor; |
| } else if (cpi->rc.buffer_level <= drop_mark && |
| cpi->rc.decimation_factor == 0) { |
| cpi->rc.decimation_factor = 1; |
| } |
| if (cpi->rc.decimation_factor > 0) { |
| if (cpi->rc.decimation_count > 0) { |
| --cpi->rc.decimation_count; |
| return 1; |
| } else { |
| cpi->rc.decimation_count = cpi->rc.decimation_factor; |
| return 0; |
| } |
| } else { |
| cpi->rc.decimation_count = 0; |
| return 0; |
| } |
| } |
| } |
| } |
| |
| // Adjust active_worst_quality level based on buffer level. |
| static int adjust_active_worst_quality_from_buffer_level(const VP9_COMP *cpi) { |
| // Adjust active_worst_quality: If buffer is above the optimal/target level, |
| // bring active_worst_quality down depending on fullness over buffer. |
| // If buffer is below the optimal level, let the active_worst_quality go from |
| // ambient Q (at buffer = optimal level) to worst_quality level |
| // (at buffer = critical level). |
| int active_worst_quality = cpi->rc.active_worst_quality; |
| // Maximum limit for down adjustment, ~20%. |
| int max_adjustment_down = active_worst_quality / 5; |
| // Buffer level below which we push active_worst to worst_quality. |
| int critical_level = cpi->oxcf.optimal_buffer_level >> 2; |
| int adjustment = 0; |
| int buff_lvl_step = 0; |
| if (cpi->rc.buffer_level > cpi->oxcf.optimal_buffer_level) { |
| // Adjust down. |
| if (max_adjustment_down) { |
| buff_lvl_step = (int)((cpi->oxcf.maximum_buffer_size - |
| cpi->oxcf.optimal_buffer_level) / max_adjustment_down); |
| if (buff_lvl_step) { |
| adjustment = (int)((cpi->rc.buffer_level - |
| cpi->oxcf.optimal_buffer_level) / buff_lvl_step); |
| } |
| active_worst_quality -= adjustment; |
| } |
| } else if (cpi->rc.buffer_level > critical_level) { |
| // Adjust up from ambient Q. |
| if (critical_level) { |
| buff_lvl_step = (cpi->oxcf.optimal_buffer_level - critical_level); |
| if (buff_lvl_step) { |
| adjustment = |
| (cpi->rc.worst_quality - cpi->rc.avg_frame_qindex[INTER_FRAME]) * |
| (cpi->oxcf.optimal_buffer_level - cpi->rc.buffer_level) / |
| buff_lvl_step; |
| } |
| active_worst_quality = cpi->rc.avg_frame_qindex[INTER_FRAME] + adjustment; |
| } |
| } else { |
| // Set to worst_quality if buffer is below critical level. |
| active_worst_quality = cpi->rc.worst_quality; |
| } |
| return active_worst_quality; |
| } |
| |
| // Adjust target frame size with respect to the buffering constraints: |
| static int target_size_from_buffer_level(const VP9_COMP *cpi) { |
| int this_frame_target = cpi->rc.this_frame_target; |
| int percent_low = 0; |
| int percent_high = 0; |
| int one_percent_bits = (int)(1 + cpi->oxcf.optimal_buffer_level / 100); |
| if (cpi->rc.buffer_level < cpi->oxcf.optimal_buffer_level) { |
| percent_low = (int)((cpi->oxcf.optimal_buffer_level - cpi->rc.buffer_level) |
| / one_percent_bits); |
| if (percent_low > cpi->oxcf.under_shoot_pct) { |
| percent_low = cpi->oxcf.under_shoot_pct; |
| } else if (percent_low < 0) { |
| percent_low = 0; |
| } |
| // Lower the target bandwidth for this frame. |
| this_frame_target -= (this_frame_target * percent_low) / 200; |
| } else if (cpi->rc.buffer_level > cpi->oxcf.optimal_buffer_level) { |
| percent_high = (int)((cpi->rc.buffer_level - cpi->oxcf.optimal_buffer_level) |
| / one_percent_bits); |
| if (percent_high > cpi->oxcf.over_shoot_pct) { |
| percent_high = cpi->oxcf.over_shoot_pct; |
| } else if (percent_high < 0) { |
| percent_high = 0; |
| } |
| // Increase the target bandwidth for this frame. |
| this_frame_target += (this_frame_target * percent_high) / 200; |
| } |
| return this_frame_target; |
| } |
| |
| static void calc_pframe_target_size(VP9_COMP *const cpi) { |
| int min_frame_target = MAX(cpi->rc.min_frame_bandwidth, |
| cpi->rc.av_per_frame_bandwidth >> 5); |
| if (cpi->refresh_alt_ref_frame) { |
| // Special alt reference frame case |
| // Per frame bit target for the alt ref frame |
| cpi->rc.per_frame_bandwidth = cpi->twopass.gf_bits; |
| cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth; |
| } else { |
| // Normal frames (gf and inter). |
| cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth; |
| // Set target frame size based on buffer level, for 1 pass CBR. |
| if (cpi->pass == 0 && cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { |
| // Need to decide how low min_frame_target should be for 1-pass CBR. |
| // For now, use: cpi->rc.av_per_frame_bandwidth / 16: |
| min_frame_target = MAX(cpi->rc.av_per_frame_bandwidth >> 4, |
| FRAME_OVERHEAD_BITS); |
| cpi->rc.this_frame_target = target_size_from_buffer_level(cpi); |
| // Adjust qp-max based on buffer level. |
| cpi->rc.active_worst_quality = |
| adjust_active_worst_quality_from_buffer_level(cpi); |
| } |
| } |
| |
| // Check that the total sum of adjustments is not above the maximum allowed. |
| // That is, having allowed for the KF and GF penalties, we have not pushed |
| // the current inter-frame target too low. If the adjustment we apply here is |
| // not capable of recovering all the extra bits we have spent in the KF or GF, |
| // then the remainder will have to be recovered over a longer time span via |
| // other buffer / rate control mechanisms. |
| if (cpi->rc.this_frame_target < min_frame_target) { |
| cpi->rc.this_frame_target = min_frame_target; |
| } |
| |
| // Adjust target frame size for Golden Frames: |
| if (cpi->rc.frames_till_gf_update_due == 0 && |
| !(cpi->pass == 0 && cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) { |
| cpi->refresh_golden_frame = 1; |
| calc_gf_params(cpi); |
| // If we are using alternate ref instead of gf then do not apply the boost |
| // It will instead be applied to the altref update |
| // Jims modified boost |
| if (!cpi->rc.source_alt_ref_active) { |
| // The spend on the GF is defined in the two pass code |
| // for two pass encodes |
| cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth; |
| } else { |
| // If there is an active ARF at this location use the minimum |
| // bits on this frame even if it is a constructed arf. |
| // The active maximum quantizer insures that an appropriate |
| // number of bits will be spent if needed for constructed ARFs. |
| cpi->rc.this_frame_target = 0; |
| } |
| } |
| } |
| |
| void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) { |
| const int q = cpi->common.base_qindex; |
| int correction_factor = 100; |
| double rate_correction_factor; |
| double adjustment_limit; |
| |
| int projected_size_based_on_q = 0; |
| |
| // Clear down mmx registers to allow floating point in what follows |
| vp9_clear_system_state(); // __asm emms; |
| |
| if (cpi->common.frame_type == KEY_FRAME) { |
| rate_correction_factor = cpi->rc.key_frame_rate_correction_factor; |
| } else { |
| if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) |
| rate_correction_factor = cpi->rc.gf_rate_correction_factor; |
| else |
| rate_correction_factor = cpi->rc.rate_correction_factor; |
| } |
| |
| // Work out how big we would have expected the frame to be at this Q given |
| // the current correction factor. |
| // Stay in double to avoid int overflow when values are large |
| projected_size_based_on_q = estimate_bits_at_q(cpi->common.frame_type, q, |
| cpi->common.MBs, |
| rate_correction_factor); |
| |
| // Work out a size correction factor. |
| if (projected_size_based_on_q > 0) |
| correction_factor = |
| (100 * cpi->rc.projected_frame_size) / projected_size_based_on_q; |
| |
| // More heavily damped adjustment used if we have been oscillating either side |
| // of target. |
| switch (damp_var) { |
| case 0: |
| adjustment_limit = 0.75; |
| break; |
| case 1: |
| adjustment_limit = 0.375; |
| break; |
| case 2: |
| default: |
| adjustment_limit = 0.25; |
| break; |
| } |
| |
| if (correction_factor > 102) { |
| // We are not already at the worst allowable quality |
| correction_factor = |
| (int)(100 + ((correction_factor - 100) * adjustment_limit)); |
| rate_correction_factor = |
| ((rate_correction_factor * correction_factor) / 100); |
| |
| // Keep rate_correction_factor within limits |
| if (rate_correction_factor > MAX_BPB_FACTOR) |
| rate_correction_factor = MAX_BPB_FACTOR; |
| } else if (correction_factor < 99) { |
| // We are not already at the best allowable quality |
| correction_factor = |
| (int)(100 - ((100 - correction_factor) * adjustment_limit)); |
| rate_correction_factor = |
| ((rate_correction_factor * correction_factor) / 100); |
| |
| // Keep rate_correction_factor within limits |
| if (rate_correction_factor < MIN_BPB_FACTOR) |
| rate_correction_factor = MIN_BPB_FACTOR; |
| } |
| |
| if (cpi->common.frame_type == KEY_FRAME) { |
| cpi->rc.key_frame_rate_correction_factor = rate_correction_factor; |
| } else { |
| if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) |
| cpi->rc.gf_rate_correction_factor = rate_correction_factor; |
| else |
| cpi->rc.rate_correction_factor = rate_correction_factor; |
| } |
| } |
| |
| |
| int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame, |
| int active_best_quality, int active_worst_quality) { |
| int q = active_worst_quality; |
| |
| int i; |
| int last_error = INT_MAX; |
| int target_bits_per_mb; |
| int bits_per_mb_at_this_q; |
| double correction_factor; |
| |
| // Select the appropriate correction factor based upon type of frame. |
| if (cpi->common.frame_type == KEY_FRAME) { |
| correction_factor = cpi->rc.key_frame_rate_correction_factor; |
| } else { |
| if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) |
| correction_factor = cpi->rc.gf_rate_correction_factor; |
| else |
| correction_factor = cpi->rc.rate_correction_factor; |
| } |
| |
| // Calculate required scaling factor based on target frame size and size of |
| // frame produced using previous Q. |
| if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS)) |
| target_bits_per_mb = |
| (target_bits_per_frame / cpi->common.MBs) |
| << BPER_MB_NORMBITS; // Case where we would overflow int |
| else |
| target_bits_per_mb = |
| (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs; |
| |
| i = active_best_quality; |
| |
| do { |
| bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(cpi->common.frame_type, i, |
| correction_factor); |
| |
| if (bits_per_mb_at_this_q <= target_bits_per_mb) { |
| if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error) |
| q = i; |
| else |
| q = i - 1; |
| |
| break; |
| } else { |
| last_error = bits_per_mb_at_this_q - target_bits_per_mb; |
| } |
| } while (++i <= active_worst_quality); |
| |
| return q; |
| } |
| |
| static int get_active_quality(int q, |
| int gfu_boost, |
| int low, |
| int high, |
| int *low_motion_minq, |
| int *high_motion_minq) { |
| int active_best_quality; |
| if (gfu_boost > high) { |
| active_best_quality = low_motion_minq[q]; |
| } else if (gfu_boost < low) { |
| active_best_quality = high_motion_minq[q]; |
| } else { |
| const int gap = high - low; |
| const int offset = high - gfu_boost; |
| const int qdiff = high_motion_minq[q] - low_motion_minq[q]; |
| const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap; |
| active_best_quality = low_motion_minq[q] + adjustment; |
| } |
| return active_best_quality; |
| } |
| |
| int vp9_rc_pick_q_and_adjust_q_bounds(const VP9_COMP *cpi, |
| int *bottom_index, |
| int *top_index) { |
| const VP9_COMMON *const cm = &cpi->common; |
| int active_best_quality; |
| int active_worst_quality = cpi->rc.active_worst_quality; |
| int q; |
| |
| if (frame_is_intra_only(cm)) { |
| active_best_quality = cpi->rc.best_quality; |
| #if !CONFIG_MULTIPLE_ARF |
| // Handle the special case for key frames forced when we have75 reached |
| // the maximum key frame interval. Here force the Q to a range |
| // based on the ambient Q to reduce the risk of popping. |
| if (cpi->rc.this_key_frame_forced) { |
| int delta_qindex; |
| int qindex = cpi->rc.last_boosted_qindex; |
| double last_boosted_q = vp9_convert_qindex_to_q(qindex); |
| |
| delta_qindex = vp9_compute_qdelta(cpi, last_boosted_q, |
| (last_boosted_q * 0.75)); |
| active_best_quality = MAX(qindex + delta_qindex, |
| cpi->rc.best_quality); |
| } else if (!(cpi->pass == 0 && cpi->common.current_video_frame == 0)) { |
| // not first frame of one pass |
| double q_adj_factor = 1.0; |
| double q_val; |
| |
| // Baseline value derived from cpi->active_worst_quality and kf boost |
| active_best_quality = get_active_quality(active_worst_quality, |
| cpi->rc.kf_boost, |
| kf_low, kf_high, |
| kf_low_motion_minq, |
| kf_high_motion_minq); |
| |
| // Allow somewhat lower kf minq with small image formats. |
| if ((cm->width * cm->height) <= (352 * 288)) { |
| q_adj_factor -= 0.25; |
| } |
| |
| // Make a further adjustment based on the kf zero motion measure. |
| q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct); |
| |
| // Convert the adjustment factor to a qindex delta |
| // on active_best_quality. |
| q_val = vp9_convert_qindex_to_q(active_best_quality); |
| active_best_quality += |
| vp9_compute_qdelta(cpi, q_val, (q_val * q_adj_factor)); |
| } |
| #else |
| double current_q; |
| // Force the KF quantizer to be 30% of the active_worst_quality. |
| current_q = vp9_convert_qindex_to_q(active_worst_quality); |
| active_best_quality = active_worst_quality |
| + vp9_compute_qdelta(cpi, current_q, current_q * 0.3); |
| #endif |
| } else if (!cpi->rc.is_src_frame_alt_ref && |
| (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { |
| |
| // Use the lower of active_worst_quality and recent |
| // average Q as basis for GF/ARF best Q limit unless last frame was |
| // a key frame. |
| if (cpi->rc.frames_since_key > 1 && |
| cpi->rc.avg_frame_qindex[INTER_FRAME] < active_worst_quality) { |
| q = cpi->rc.avg_frame_qindex[INTER_FRAME]; |
| } else { |
| q = active_worst_quality; |
| } |
| // For constrained quality dont allow Q less than the cq level |
| if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { |
| if (q < cpi->cq_target_quality) |
| q = cpi->cq_target_quality; |
| if (cpi->rc.frames_since_key > 1) { |
| active_best_quality = get_active_quality(q, cpi->rc.gfu_boost, |
| gf_low, gf_high, |
| afq_low_motion_minq, |
| afq_high_motion_minq); |
| } else { |
| active_best_quality = get_active_quality(q, cpi->rc.gfu_boost, |
| gf_low, gf_high, |
| gf_low_motion_minq, |
| gf_high_motion_minq); |
| } |
| // Constrained quality use slightly lower active best. |
| active_best_quality = active_best_quality * 15 / 16; |
| |
| } else if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) { |
| if (!cpi->refresh_alt_ref_frame) { |
| active_best_quality = cpi->cq_target_quality; |
| } else { |
| if (cpi->rc.frames_since_key > 1) { |
| active_best_quality = get_active_quality( |
| q, cpi->rc.gfu_boost, gf_low, gf_high, |
| afq_low_motion_minq, afq_high_motion_minq); |
| } else { |
| active_best_quality = get_active_quality( |
| q, cpi->rc.gfu_boost, gf_low, gf_high, |
| gf_low_motion_minq, gf_high_motion_minq); |
| } |
| } |
| } else { |
| active_best_quality = get_active_quality( |
| q, cpi->rc.gfu_boost, gf_low, gf_high, |
| gf_low_motion_minq, gf_high_motion_minq); |
| } |
| } else { |
| if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) { |
| active_best_quality = cpi->cq_target_quality; |
| } else { |
| if (cpi->pass == 0 && |
| cpi->rc.avg_frame_qindex[INTER_FRAME] < active_worst_quality) |
| // 1-pass: for now, use the average Q for the active_best, if its lower |
| // than active_worst. |
| active_best_quality = inter_minq[cpi->rc.avg_frame_qindex[INTER_FRAME]]; |
| else |
| active_best_quality = inter_minq[active_worst_quality]; |
| |
| // For the constrained quality mode we don't want |
| // q to fall below the cq level. |
| if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && |
| (active_best_quality < cpi->cq_target_quality)) { |
| // If we are strongly undershooting the target rate in the last |
| // frames then use the user passed in cq value not the auto |
| // cq value. |
| if (cpi->rc.rolling_actual_bits < cpi->rc.min_frame_bandwidth) |
| active_best_quality = cpi->oxcf.cq_level; |
| else |
| active_best_quality = cpi->cq_target_quality; |
| } |
| } |
| } |
| |
| // Clip the active best and worst quality values to limits |
| if (active_worst_quality > cpi->rc.worst_quality) |
| active_worst_quality = cpi->rc.worst_quality; |
| |
| if (active_best_quality < cpi->rc.best_quality) |
| active_best_quality = cpi->rc.best_quality; |
| |
| if (active_best_quality > cpi->rc.worst_quality) |
| active_best_quality = cpi->rc.worst_quality; |
| |
| if (active_worst_quality < active_best_quality) |
| active_worst_quality = active_best_quality; |
| |
| *top_index = active_worst_quality; |
| *bottom_index = active_best_quality; |
| |
| #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY |
| // Limit Q range for the adaptive loop. |
| if (cm->frame_type == KEY_FRAME && !cpi->rc.this_key_frame_forced) { |
| if (!(cpi->pass == 0 && cpi->common.current_video_frame == 0)) { |
| *top_index = active_worst_quality; |
| *top_index = |
| (active_worst_quality + active_best_quality * 3) / 4; |
| } |
| } else if (!cpi->rc.is_src_frame_alt_ref && |
| (cpi->oxcf.end_usage != USAGE_STREAM_FROM_SERVER) && |
| (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { |
| *top_index = |
| (active_worst_quality + active_best_quality) / 2; |
| } |
| #endif |
| |
| if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) { |
| q = active_best_quality; |
| // Special case code to try and match quality with forced key frames |
| } else if ((cm->frame_type == KEY_FRAME) && cpi->rc.this_key_frame_forced) { |
| q = cpi->rc.last_boosted_qindex; |
| } else { |
| q = vp9_rc_regulate_q(cpi, cpi->rc.this_frame_target, |
| active_best_quality, active_worst_quality); |
| if (q > *top_index) |
| q = *top_index; |
| } |
| #if CONFIG_MULTIPLE_ARF |
| // Force the quantizer determined by the coding order pattern. |
| if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) && |
| cpi->oxcf.end_usage != USAGE_CONSTANT_QUALITY) { |
| double new_q; |
| double current_q = vp9_convert_qindex_to_q(active_worst_quality); |
| int level = cpi->this_frame_weight; |
| assert(level >= 0); |
| new_q = current_q * (1.0 - (0.2 * (cpi->max_arf_level - level))); |
| q = active_worst_quality + |
| vp9_compute_qdelta(cpi, current_q, new_q); |
| |
| *bottom_index = q; |
| *top_index = q; |
| printf("frame:%d q:%d\n", cm->current_video_frame, q); |
| } |
| #endif |
| return q; |
| } |
| |
| void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi, |
| int this_frame_target, |
| int *frame_under_shoot_limit, |
| int *frame_over_shoot_limit) { |
| // Set-up bounds on acceptable frame size: |
| if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) { |
| *frame_under_shoot_limit = 0; |
| *frame_over_shoot_limit = INT_MAX; |
| } else { |
| if (cpi->common.frame_type == KEY_FRAME) { |
| *frame_over_shoot_limit = this_frame_target * 9 / 8; |
| *frame_under_shoot_limit = this_frame_target * 7 / 8; |
| } else { |
| if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) { |
| *frame_over_shoot_limit = this_frame_target * 9 / 8; |
| *frame_under_shoot_limit = this_frame_target * 7 / 8; |
| } else { |
| // Stron overshoot limit for constrained quality |
| if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { |
| *frame_over_shoot_limit = this_frame_target * 11 / 8; |
| *frame_under_shoot_limit = this_frame_target * 2 / 8; |
| } else { |
| *frame_over_shoot_limit = this_frame_target * 11 / 8; |
| *frame_under_shoot_limit = this_frame_target * 5 / 8; |
| } |
| } |
| } |
| |
| // For very small rate targets where the fractional adjustment |
| // (eg * 7/8) may be tiny make sure there is at least a minimum |
| // range. |
| *frame_over_shoot_limit += 200; |
| *frame_under_shoot_limit -= 200; |
| if (*frame_under_shoot_limit < 0) |
| *frame_under_shoot_limit = 0; |
| } |
| } |
| |
| // return of 0 means drop frame |
| int vp9_rc_pick_frame_size_target(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| |
| if (cm->frame_type == KEY_FRAME) |
| calc_iframe_target_size(cpi); |
| else |
| calc_pframe_target_size(cpi); |
| |
| // Target rate per SB64 (including partial SB64s. |
| cpi->rc.sb64_target_rate = ((int64_t)cpi->rc.this_frame_target * 64 * 64) / |
| (cpi->common.width * cpi->common.height); |
| return 1; |
| } |
| |
| void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) { |
| VP9_COMMON *const cm = &cpi->common; |
| // Update rate control heuristics |
| cpi->rc.projected_frame_size = (bytes_used << 3); |
| |
| // Post encode loop adjustment of Q prediction. |
| vp9_rc_update_rate_correction_factors( |
| cpi, (cpi->sf.recode_loop || |
| cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) ? 2 : 0); |
| |
| // Keep a record of last Q and ambient average Q. |
| if (cm->frame_type == KEY_FRAME) { |
| cpi->rc.last_q[KEY_FRAME] = cm->base_qindex; |
| cpi->rc.avg_frame_qindex[KEY_FRAME] = |
| (2 + 3 * cpi->rc.avg_frame_qindex[KEY_FRAME] + cm->base_qindex) >> 2; |
| } else if (!cpi->rc.is_src_frame_alt_ref && |
| (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { |
| cpi->rc.last_q[2] = cm->base_qindex; |
| cpi->rc.avg_frame_qindex[2] = |
| (2 + 3 * cpi->rc.avg_frame_qindex[2] + cm->base_qindex) >> 2; |
| } else { |
| cpi->rc.last_q[INTER_FRAME] = cm->base_qindex; |
| cpi->rc.avg_frame_qindex[INTER_FRAME] = |
| (2 + 3 * cpi->rc.avg_frame_qindex[INTER_FRAME] + |
| cm->base_qindex) >> 2; |
| cpi->rc.ni_frames++; |
| cpi->rc.tot_q += vp9_convert_qindex_to_q(cm->base_qindex); |
| cpi->rc.avg_q = cpi->rc.tot_q / (double)cpi->rc.ni_frames; |
| |
| // Calculate the average Q for normal inter frames (not key or GFU frames). |
| cpi->rc.ni_tot_qi += cm->base_qindex; |
| cpi->rc.ni_av_qi = cpi->rc.ni_tot_qi / cpi->rc.ni_frames; |
| } |
| |
| // Keep record of last boosted (KF/KF/ARF) Q value. |
| // If the current frame is coded at a lower Q then we also update it. |
| // If all mbs in this group are skipped only update if the Q value is |
| // better than that already stored. |
| // This is used to help set quality in forced key frames to reduce popping |
| if ((cm->base_qindex < cpi->rc.last_boosted_qindex) || |
| ((cpi->static_mb_pct < 100) && |
| ((cm->frame_type == KEY_FRAME) || cpi->refresh_alt_ref_frame || |
| (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)))) { |
| cpi->rc.last_boosted_qindex = cm->base_qindex; |
| } |
| |
| vp9_update_buffer_level(cpi, cpi->rc.projected_frame_size); |
| |
| // Rolling monitors of whether we are over or underspending used to help |
| // regulate min and Max Q in two pass. |
| if (cm->frame_type != KEY_FRAME) { |
| cpi->rc.rolling_target_bits = |
| ((cpi->rc.rolling_target_bits * 3) + |
| cpi->rc.this_frame_target + 2) / 4; |
| cpi->rc.rolling_actual_bits = |
| ((cpi->rc.rolling_actual_bits * 3) + |
| cpi->rc.projected_frame_size + 2) / 4; |
| cpi->rc.long_rolling_target_bits = |
| ((cpi->rc.long_rolling_target_bits * 31) + |
| cpi->rc.this_frame_target + 16) / 32; |
| cpi->rc.long_rolling_actual_bits = |
| ((cpi->rc.long_rolling_actual_bits * 31) + |
| cpi->rc.projected_frame_size + 16) / 32; |
| } |
| |
| // Actual bits spent |
| cpi->rc.total_actual_bits += cpi->rc.projected_frame_size; |
| |
| // Debug stats |
| cpi->rc.total_target_vs_actual += (cpi->rc.this_frame_target - |
| cpi->rc.projected_frame_size); |
| |
| #ifndef DISABLE_RC_LONG_TERM_MEM |
| // Update bits left to the kf and gf groups to account for overshoot or |
| // undershoot on these frames |
| if (cm->frame_type == KEY_FRAME) { |
| cpi->twopass.kf_group_bits += cpi->rc.this_frame_target - |
| cpi->rc.projected_frame_size; |
| |
| cpi->twopass.kf_group_bits = MAX(cpi->twopass.kf_group_bits, 0); |
| } else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) { |
| cpi->twopass.gf_group_bits += cpi->rc.this_frame_target - |
| cpi->rc.projected_frame_size; |
| |
| cpi->twopass.gf_group_bits = MAX(cpi->twopass.gf_group_bits, 0); |
| } |
| #endif |
| } |