blob: 89d17d13c4e4ff3d50d6b213e3d55fcbb3ad9592 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <memory.h>
#include <math.h>
#include <time.h>
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
#include <assert.h>
#include "aom_dsp/flow_estimation/ransac.h"
#include "aom_dsp/mathutils.h"
#include "aom_mem/aom_mem.h"
// TODO(rachelbarker): Remove dependence on code in av1/encoder/
#include "av1/common/mv.h"
#include "av1/encoder/random.h"
#define MAX_MINPTS 4
#define MINPTS_MULTIPLIER 5
#define INLIER_THRESHOLD 1.25
#define INLIER_THRESHOLD_SQUARED (INLIER_THRESHOLD * INLIER_THRESHOLD)
// Number of initial models to generate
#define NUM_TRIALS 20
// Number of times to refine the best model found
#define NUM_REFINES 5
// Flag to enable functions for finding TRANSLATION type models.
//
// These modes are not considered currently due to a spec bug (see comments
// in gm_get_motion_vector() in av1/common/mv.h). Thus we don't need to compile
// the corresponding search functions, but it is nice to keep the source around
// but disabled, for completeness.
#define ALLOW_TRANSLATION_MODELS 0
typedef struct {
int num_inliers;
double sse; // Sum of squared errors of inliers
int *inlier_indices;
} RANSAC_MOTION;
////////////////////////////////////////////////////////////////////////////////
// ransac
typedef bool (*FindTransformationFunc)(const Correspondence *points,
const int *indices, int num_indices,
double *params);
typedef bool (*FindTransformationQuantizeFunc)(const Correspondence *points,
const int *indices,
int num_indices,
int32_t *params);
typedef void (*ScoreModelFunc)(const double *mat, const Correspondence *points,
int num_points, RANSAC_MOTION *model);
// vtable-like structure which stores all of the information needed by RANSAC
// for a particular model type
typedef struct {
FindTransformationFunc find_transformation;
FindTransformationQuantizeFunc find_transformation_quantize;
ScoreModelFunc score_model;
// The minimum number of points which can be passed to find_transformation
// to generate a model.
//
// This should be set as small as possible. This is due to an observation
// from section 4 of "Optimal Ransac" by A. Hast, J. Nysjö and
// A. Marchetti (https://dspace5.zcu.cz/bitstream/11025/6869/1/Hast.pdf):
// using the minimum possible number of points in the initial model maximizes
// the chance that all of the selected points are inliers.
//
// That paper proposes a method which can deal with models which are
// contaminated by outliers, which helps in cases where the inlier fraction
// is low. However, for our purposes, global motion only gives significant
// gains when the inlier fraction is high.
//
// So we do not use the method from this paper, but we do find that
// minimizing the number of points used for initial model fitting helps
// make the best use of the limited number of models we consider.
int minpts;
} RansacModelInfo;
#if ALLOW_TRANSLATION_MODELS
static void score_translation(const double *mat, const Correspondence *points,
int num_points, RANSAC_MOTION *model) {
model->num_inliers = 0;
model->sse = 0.0;
for (int i = 0; i < num_points; ++i) {
const double x1 = points[i].x;
const double y1 = points[i].y;
const double x2 = points[i].rx;
const double y2 = points[i].ry;
const double proj_x = x1 + mat[0];
const double proj_y = y1 + mat[1];
const double dx = proj_x - x2;
const double dy = proj_y - y2;
const double sse = dx * dx + dy * dy;
if (sse < INLIER_THRESHOLD_SQUARED) {
model->inlier_indices[model->num_inliers++] = i;
model->sse += sse;
}
}
}
#endif // ALLOW_TRANSLATION_MODELS
static void score_affine(const double *mat, const Correspondence *points,
int num_points, RANSAC_MOTION *model) {
model->num_inliers = 0;
model->sse = 0.0;
for (int i = 0; i < num_points; ++i) {
const double x1 = points[i].x;
const double y1 = points[i].y;
const double x2 = points[i].rx;
const double y2 = points[i].ry;
const double proj_x = mat[2] * x1 + mat[3] * y1 + mat[0];
const double proj_y = mat[4] * x1 + mat[5] * y1 + mat[1];
const double dx = proj_x - x2;
const double dy = proj_y - y2;
const double sse = dx * dx + dy * dy;
if (sse < INLIER_THRESHOLD_SQUARED) {
model->inlier_indices[model->num_inliers++] = i;
model->sse += sse;
}
}
}
#if ALLOW_TRANSLATION_MODELS
static bool find_translation(const Correspondence *points, const int *indices,
int num_indices, double *params) {
double sumx = 0;
double sumy = 0;
for (int i = 0; i < num_indices; ++i) {
int index = indices[i];
const double sx = points[index].x;
const double sy = points[index].y;
const double dx = points[index].rx;
const double dy = points[index].ry;
sumx += dx - sx;
sumy += dy - sy;
}
params[0] = sumx / np;
params[1] = sumy / np;
params[2] = 1;
params[3] = 0;
params[4] = 0;
params[5] = 1;
return true;
}
static bool find_translation_quantize(const Correspondence *points,
const int *indices, int num_indices,
int32_t *params) {
double sumx = 0;
double sumy = 0;
for (int i = 0; i < num_indices; ++i) {
int index = indices[i];
const double sx = points[index].x;
const double sy = points[index].y;
const double dx = points[index].rx;
const double dy = points[index].ry;
sumx += dx - sx;
sumy += dy - sy;
}
const double tx = sumx / np;
const double ty = sumy / np;
params[0] =
clamp((int)rint(tx * (1 << GM_TRANS_ONLY_PREC_BITS)),
-(1 << GM_ABS_TRANS_ONLY_BITS), (1 << GM_ABS_TRANS_ONLY_BITS)) *
(1 << GM_TRANS_ONLY_PREC_DIFF);
params[1] =
clamp((int)rint(ty * (1 << GM_TRANS_ONLY_PREC_BITS)),
-(1 << GM_ABS_TRANS_ONLY_BITS), (1 << GM_ABS_TRANS_ONLY_BITS)) *
(1 << GM_TRANS_ONLY_PREC_DIFF);
params[2] = 1 << WARPEDMODEL_PREC_BITS;
params[3] = 0;
params[4] = 0;
params[5] = 1 << WARPEDMODEL_PREC_BITS;
return true;
}
#endif // ALLOW_TRANSLATION_MODELS
static bool find_rotzoom(const Correspondence *points, const int *indices,
int num_indices, double *params) {
const int n = 4; // Size of least-squares problem
double mat[4 * 4]; // Accumulator for A'A
double y[4]; // Accumulator for A'b
double a[4]; // Single row of A
double b; // Single element of b
least_squares_init(mat, y, n);
for (int i = 0; i < num_indices; ++i) {
int index = indices[i];
const double sx = points[index].x;
const double sy = points[index].y;
const double dx = points[index].rx;
const double dy = points[index].ry;
a[0] = 1;
a[1] = 0;
a[2] = sx;
a[3] = sy;
b = dx;
least_squares_accumulate(mat, y, a, b, n);
a[0] = 0;
a[1] = 1;
a[2] = sy;
a[3] = -sx;
b = dy;
least_squares_accumulate(mat, y, a, b, n);
}
// Fill in params[0] .. params[3] with output model
if (!least_squares_solve(mat, mat, y, params, n)) {
return false;
}
// Fill in remaining parameters
params[4] = -params[3];
params[5] = params[2];
return true;
}
static bool find_rotzoom_quantize(const Correspondence *points,
const int *indices, int num_indices,
int32_t *params) {
const int n = 4; // Size of least-squares problem
double mat[4 * 4]; // Accumulator for A'A
double y[4]; // Accumulator for A'b
double a[4]; // Single row of A
double b; // Single element of b
least_squares_init(mat, y, n);
for (int i = 0; i < num_indices; ++i) {
int index = indices[i];
const double sx = points[index].x;
const double sy = points[index].y;
const double dx = points[index].rx;
const double dy = points[index].ry;
a[0] = 1;
a[1] = 0;
a[2] = sx;
a[3] = sy;
b = dx;
least_squares_accumulate(mat, y, a, b, n);
a[0] = 0;
a[1] = 1;
a[2] = sy;
a[3] = -sx;
b = dy;
least_squares_accumulate(mat, y, a, b, n);
}
// Fill in params[0] .. params[3] with output model
double prec[4] = { 1 << GM_TRANS_PREC_BITS, 1 << GM_TRANS_PREC_BITS,
1 << GM_ALPHA_PREC_BITS, 1 << GM_ALPHA_PREC_BITS };
int32_t min[4] = { GM_TRANS_MIN, GM_TRANS_MIN,
(1 << GM_ALPHA_PREC_BITS) + GM_ALPHA_MIN, GM_ALPHA_MIN };
int32_t max[4] = { GM_TRANS_MAX, GM_TRANS_MAX,
(1 << GM_ALPHA_PREC_BITS) + GM_ALPHA_MAX, GM_ALPHA_MAX };
int32_t scale[4] = { 1 << GM_TRANS_PREC_DIFF, 1 << GM_TRANS_PREC_DIFF,
1 << GM_ALPHA_PREC_DIFF, 1 << GM_ALPHA_PREC_DIFF };
if (!least_squares_solve_quant(mat, mat, y, y, params, n, prec, min, max,
scale)) {
return false;
}
// Fill in remaining parameters
params[4] = -params[3];
params[5] = params[2];
return true;
}
static bool find_affine(const Correspondence *points, const int *indices,
int num_indices, double *params) {
// Note: The least squares problem for affine models is 6-dimensional,
// but it splits into two independent 3-dimensional subproblems.
// Solving these two subproblems separately and recombining at the end
// results in less total computation than solving the 6-dimensional
// problem directly.
//
// The two subproblems correspond to all the parameters which contribute
// to the x output of the model, and all the parameters which contribute
// to the y output, respectively.
const int n = 3; // Size of each least-squares problem
double mat[2][3 * 3]; // Accumulator for A'A
double y[2][3]; // Accumulator for A'b
double x[2][3]; // Output vector
double a[2][3]; // Single row of A
double b[2]; // Single element of b
least_squares_init(mat[0], y[0], n);
least_squares_init(mat[1], y[1], n);
for (int i = 0; i < num_indices; ++i) {
int index = indices[i];
const double sx = points[index].x;
const double sy = points[index].y;
const double dx = points[index].rx;
const double dy = points[index].ry;
a[0][0] = 1;
a[0][1] = sx;
a[0][2] = sy;
b[0] = dx;
least_squares_accumulate(mat[0], y[0], a[0], b[0], n);
a[1][0] = 1;
a[1][1] = sx;
a[1][2] = sy;
b[1] = dy;
least_squares_accumulate(mat[1], y[1], a[1], b[1], n);
}
// Each of the two models produces 1 translational + 2 non-translational
// params
if (!least_squares_solve(mat[0], mat[0], y[0], x[0], n)) {
return false;
}
if (!least_squares_solve(mat[1], mat[1], y[1], x[1], n)) {
return false;
}
// Rearrange least squares result to form output model
params[0] = x[0][0];
params[1] = x[1][0];
params[2] = x[0][1];
params[3] = x[0][2];
params[4] = x[1][1];
params[5] = x[1][2];
return true;
}
static bool find_affine_quantize(const Correspondence *points,
const int *indices, int num_indices,
int32_t *params) {
// Note: The least squares problem for affine models is 6-dimensional,
// but it splits into two independent 3-dimensional subproblems.
// Solving these two subproblems separately and recombining at the end
// results in less total computation than solving the 6-dimensional
// problem directly.
//
// The two subproblems correspond to all the parameters which contribute
// to the x output of the model, and all the parameters which contribute
// to the y output, respectively.
const int n = 3; // Size of each least-squares problem
double mat[2][3 * 3]; // Accumulator for A'A
double y[2][3]; // Accumulator for A'b
int32_t x[2][3]; // Output vector
double a[2][3]; // Single row of A
double b[2]; // Single element of b
least_squares_init(mat[0], y[0], n);
least_squares_init(mat[1], y[1], n);
for (int i = 0; i < num_indices; ++i) {
int index = indices[i];
const double sx = points[index].x;
const double sy = points[index].y;
const double dx = points[index].rx;
const double dy = points[index].ry;
a[0][0] = 1;
a[0][1] = sx;
a[0][2] = sy;
b[0] = dx;
least_squares_accumulate(mat[0], y[0], a[0], b[0], n);
a[1][0] = 1;
a[1][1] = sx;
a[1][2] = sy;
b[1] = dy;
least_squares_accumulate(mat[1], y[1], a[1], b[1], n);
}
// Each of the two least squares problems produces 1 translational +
// 2 non-translational params
double prec[3] = { 1 << GM_TRANS_PREC_BITS, 1 << GM_ALPHA_PREC_BITS,
1 << GM_ALPHA_PREC_BITS };
int32_t min[2][3] = {
{ GM_TRANS_MIN, (1 << GM_ALPHA_PREC_BITS) + GM_ALPHA_MIN, GM_ALPHA_MIN },
{ GM_TRANS_MIN, GM_ALPHA_MIN, (1 << GM_ALPHA_PREC_BITS) + GM_ALPHA_MIN }
};
int32_t max[2][3] = {
{ GM_TRANS_MAX, (1 << GM_ALPHA_PREC_BITS) + GM_ALPHA_MAX, GM_ALPHA_MAX },
{ GM_TRANS_MAX, GM_ALPHA_MAX, (1 << GM_ALPHA_PREC_BITS) + GM_ALPHA_MAX }
};
int32_t scale[3] = { 1 << GM_TRANS_PREC_DIFF, 1 << GM_ALPHA_PREC_DIFF,
1 << GM_ALPHA_PREC_DIFF };
if (!least_squares_solve_quant(mat[0], mat[0], y[0], y[0], x[0], n, prec,
min[0], max[0], scale)) {
return false;
}
if (!least_squares_solve_quant(mat[1], mat[1], y[1], y[1], x[1], n, prec,
min[1], max[1], scale)) {
return false;
}
// Rearrange least squares result to form output model
params[0] = x[0][0];
params[1] = x[1][0];
params[2] = x[0][1];
params[3] = x[0][2];
params[4] = x[1][1];
params[5] = x[1][2];
return true;
}
// Return -1 if 'a' is a better motion, 1 if 'b' is better, 0 otherwise.
static int compare_motions(const void *arg_a, const void *arg_b) {
const RANSAC_MOTION *motion_a = (RANSAC_MOTION *)arg_a;
const RANSAC_MOTION *motion_b = (RANSAC_MOTION *)arg_b;
if (motion_a->num_inliers > motion_b->num_inliers) return -1;
if (motion_a->num_inliers < motion_b->num_inliers) return 1;
if (motion_a->sse < motion_b->sse) return -1;
if (motion_a->sse > motion_b->sse) return 1;
return 0;
}
static bool is_better_motion(const RANSAC_MOTION *motion_a,
const RANSAC_MOTION *motion_b) {
return compare_motions(motion_a, motion_b) < 0;
}
// Returns true on success, false on error
static bool ransac_internal(const Correspondence *matched_points, int npoints,
MotionModel *motion_models, int num_desired_motions,
const RansacModelInfo *model_info,
bool *mem_alloc_failed) {
assert(npoints >= 0);
int i = 0;
int minpts = model_info->minpts;
bool ret_val = true;
unsigned int seed = (unsigned int)npoints;
int indices[MAX_MINPTS] = { 0 };
// Store information for the num_desired_motions best transformations found
// and the worst motion among them, as well as the motion currently under
// consideration.
RANSAC_MOTION *motions, *worst_kept_motion = NULL;
RANSAC_MOTION current_motion;
// Store the parameters and the indices of the inlier points for the motion
// currently under consideration.
double params_this_motion[MAX_PARAMDIM];
// Initialize output models, as a fallback in case we can't find a model
for (i = 0; i < num_desired_motions; i++) {
memcpy(motion_models[i].params, kIdentityParams,
MAX_PARAMDIM * sizeof(*(motion_models[i].params)));
motion_models[i].num_inliers = 0;
}
if (npoints < minpts * MINPTS_MULTIPLIER || npoints == 0) {
return false;
}
int min_inliers = AOMMAX((int)(MIN_INLIER_PROB * npoints), minpts);
motions =
(RANSAC_MOTION *)aom_calloc(num_desired_motions, sizeof(RANSAC_MOTION));
// Allocate one large buffer which will be carved up to store the inlier
// indices for the current motion plus the num_desired_motions many
// output models
// This allows us to keep the allocation/deallocation logic simple, without
// having to (for example) check that `motions` is non-null before allocating
// the inlier arrays
int *inlier_buffer = (int *)aom_malloc(sizeof(*inlier_buffer) * npoints *
(num_desired_motions + 1));
if (!(motions && inlier_buffer)) {
ret_val = false;
*mem_alloc_failed = true;
goto finish_ransac;
}
// Once all our allocations are known-good, we can fill in our structures
worst_kept_motion = motions;
for (i = 0; i < num_desired_motions; ++i) {
motions[i].inlier_indices = inlier_buffer + i * npoints;
}
memset(&current_motion, 0, sizeof(current_motion));
current_motion.inlier_indices = inlier_buffer + num_desired_motions * npoints;
for (int trial_count = 0; trial_count < NUM_TRIALS; trial_count++) {
lcg_pick(npoints, minpts, indices, &seed);
if (!model_info->find_transformation(matched_points, indices, minpts,
params_this_motion)) {
continue;
}
model_info->score_model(params_this_motion, matched_points, npoints,
&current_motion);
if (current_motion.num_inliers < min_inliers) {
// Reject models with too few inliers
continue;
}
if (is_better_motion(&current_motion, worst_kept_motion)) {
// This motion is better than the worst currently kept motion. Remember
// the inlier points and sse. The parameters for each kept motion
// will be recomputed later using only the inliers.
worst_kept_motion->num_inliers = current_motion.num_inliers;
worst_kept_motion->sse = current_motion.sse;
// Rather than copying the (potentially many) inlier indices from
// current_motion.inlier_indices to worst_kept_motion->inlier_indices,
// we can swap the underlying pointers.
//
// This is okay because the next time current_motion.inlier_indices
// is used will be in the next trial, where we ignore its previous
// contents anyway. And both arrays will be deallocated together at the
// end of this function, so there are no lifetime issues.
int *tmp = worst_kept_motion->inlier_indices;
worst_kept_motion->inlier_indices = current_motion.inlier_indices;
current_motion.inlier_indices = tmp;
// Determine the new worst kept motion and its num_inliers and sse.
for (i = 0; i < num_desired_motions; ++i) {
if (is_better_motion(worst_kept_motion, &motions[i])) {
worst_kept_motion = &motions[i];
}
}
}
}
// Sort the motions, best first.
qsort(motions, num_desired_motions, sizeof(RANSAC_MOTION), compare_motions);
// Refine each of the best N models using iterative estimation.
//
// The idea here is loosely based on the iterative method from
// "Locally Optimized RANSAC" by O. Chum, J. Matas and Josef Kittler:
// https://cmp.felk.cvut.cz/ftp/articles/matas/chum-dagm03.pdf
//
// However, we implement a simpler version than their proposal, and simply
// refit the model repeatedly until the number of inliers stops increasing,
// with a cap on the number of iterations to defend against edge cases which
// only improve very slowly.
for (i = 0; i < num_desired_motions; ++i) {
if (motions[i].num_inliers <= 0) {
// Output model has already been initialized to the identity model,
// so just skip setup
continue;
}
bool bad_model = false;
for (int refine_count = 0; refine_count < NUM_REFINES; refine_count++) {
int num_inliers = motions[i].num_inliers;
assert(num_inliers >= min_inliers);
if (!model_info->find_transformation(matched_points,
motions[i].inlier_indices,
num_inliers, params_this_motion)) {
// In the unlikely event that this model fitting fails, we don't have a
// good fallback. So leave this model set to the identity model
bad_model = true;
break;
}
// Score the newly generated model
model_info->score_model(params_this_motion, matched_points, npoints,
&current_motion);
// At this point, there are three possibilities:
// 1) If we found more inliers, keep refining.
// 2) If we found the same number of inliers but a lower SSE, we want to
// keep the new model, but further refinement is unlikely to gain much.
// So commit to this new model
// 3) It is possible, but very unlikely, that the new model will have
// fewer inliers. If it does happen, we probably just lost a few
// borderline inliers. So treat the same as case (2).
if (current_motion.num_inliers > motions[i].num_inliers) {
motions[i].num_inliers = current_motion.num_inliers;
motions[i].sse = current_motion.sse;
int *tmp = motions[i].inlier_indices;
motions[i].inlier_indices = current_motion.inlier_indices;
current_motion.inlier_indices = tmp;
} else {
// Refined model is no better, so stop
// This shouldn't be significantly worse than the previous model,
// so it's fine to use the parameters in params_this_motion.
// This saves us from having to cache the previous iteration's params.
break;
}
}
if (bad_model) continue;
// Generate a final model, taking into account the quantization of the
// parameters
if (!model_info->find_transformation_quantize(
matched_points, motions[i].inlier_indices, motions[i].num_inliers,
motion_models[i].params)) {
// This fit shouldn't fail; if it does, give up and return the identity
continue;
}
// Fill in remaining output fields
for (int j = 0; j < motions[i].num_inliers; j++) {
int index = motions[i].inlier_indices[j];
const Correspondence *corr = &matched_points[index];
motion_models[i].inliers[2 * j + 0] = (int)rint(corr->x);
motion_models[i].inliers[2 * j + 1] = (int)rint(corr->y);
}
motion_models[i].num_inliers = motions[i].num_inliers;
}
finish_ransac:
aom_free(inlier_buffer);
aom_free(motions);
return ret_val;
}
static const RansacModelInfo ransac_model_info[TRANS_TYPES] = {
// IDENTITY
{ NULL, NULL, NULL, 0 },
// TRANSLATION
#if ALLOW_TRANSLATION_MODELS
{ find_translation, find_translation_quantize, score_translation, 1 },
#else
{ NULL, NULL, NULL, 0 },
#endif
// ROTZOOM
{ find_rotzoom, find_rotzoom_quantize, score_affine, 2 },
// AFFINE
{ find_affine, find_affine_quantize, score_affine, 3 },
};
// Returns true on success, false on error
bool ransac(const Correspondence *matched_points, int npoints,
TransformationType type, MotionModel *motion_models,
int num_desired_motions, bool *mem_alloc_failed) {
#if ALLOW_TRANSLATION_MODELS
assert(type > IDENTITY && type < TRANS_TYPES);
#else
assert(type > TRANSLATION && type < TRANS_TYPES);
#endif // ALLOW_TRANSLATION_MODELS
return ransac_internal(matched_points, npoints, motion_models,
num_desired_motions, &ransac_model_info[type],
mem_alloc_failed);
}