blob: 1fb1661d6c82ea13d2ddfb300036bb6b4e921289 [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include "aom/aom_codec.h"
#include "aom_ports/system_state.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/common_data.h"
#include "av1/common/enums.h"
#include "av1/common/reconintra.h"
#include "av1/encoder/aq_complexity.h"
#include "av1/encoder/aq_variance.h"
#include "av1/encoder/block.h"
#include "av1/encoder/context_tree.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encodeframe_utils.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/motion_search_facade.h"
#include "av1/encoder/partition_search.h"
#include "av1/encoder/partition_strategy.h"
#include "av1/encoder/reconinter_enc.h"
#include "av1/encoder/tokenize.h"
#if CONFIG_ADAPTIVE_MVD
#include "av1/common/reconinter.h"
#endif // CONFIG_ADAPTIVE_MVD
#if CONFIG_EXT_RECUR_PARTITIONS
#include "av1/encoder/erp_tflite.h"
#endif // CONFIG_EXT_RECUR_PARTITIONS
#include "aom_util/debug_util.h"
#if CONFIG_TUNE_VMAF
#include "av1/encoder/tune_vmaf.h"
#endif
#if CONFIG_NEW_TX_PARTITION
static void update_partition_cdfs_and_counts(MACROBLOCKD *xd, int blk_col,
int blk_row, TX_SIZE max_tx_size,
int allow_update_cdf,
FRAME_COUNTS *counts) {
(void)counts;
MB_MODE_INFO *mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
const int is_inter = is_inter_block(mbmi, xd->tree_type);
const int txb_size_index =
is_inter ? av1_get_txb_size_index(bsize, blk_row, blk_col) : 0;
const int is_rect = is_rect_tx(max_tx_size);
const TX_PARTITION_TYPE partition = mbmi->tx_partition_type[txb_size_index];
const int allow_horz = allow_tx_horz_split(max_tx_size);
const int allow_vert = allow_tx_vert_split(max_tx_size);
if (allow_horz && allow_vert) {
const TX_PARTITION_TYPE split4_partition = get_split4_partition(partition);
const int split4_ctx =
is_inter ? txfm_partition_split4_inter_context(
xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, bsize, max_tx_size)
: get_tx_size_context(xd);
aom_cdf_prob *split4_cdf =
is_inter
? xd->tile_ctx->inter_4way_txfm_partition_cdf[is_rect][split4_ctx]
: xd->tile_ctx->intra_4way_txfm_partition_cdf[is_rect][split4_ctx];
if (allow_update_cdf) {
update_cdf(split4_cdf, split4_partition, 4);
}
#if CONFIG_ENTROPY_STATS
if (is_inter)
++counts
->inter_4way_txfm_partition[is_rect][split4_ctx][split4_partition];
else
++counts
->intra_4way_txfm_partition[is_rect][split4_ctx][split4_partition];
#endif // CONFIG_ENTROPY_STATS
} else if (allow_horz || allow_vert) {
const int has_first_split = partition != TX_PARTITION_NONE;
if (allow_update_cdf) {
aom_cdf_prob *split2_cdf =
is_inter ? xd->tile_ctx->inter_2way_txfm_partition_cdf
: xd->tile_ctx->intra_2way_txfm_partition_cdf;
update_cdf(split2_cdf, has_first_split, 2);
}
#if CONFIG_ENTROPY_STATS
if (is_inter)
++counts->inter_2way_txfm_partition[has_first_split];
else
++counts->intra_2way_txfm_partition[has_first_split];
#endif // CONFIG_ENTROPY_STATS
} else {
assert(!allow_horz && !allow_vert);
assert(partition == PARTITION_NONE);
}
}
#endif // CONFIG_NEW_TX_PARTITION
static void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd,
FRAME_COUNTS *counts, TX_SIZE tx_size, int depth,
int blk_row, int blk_col,
uint8_t allow_update_cdf) {
MB_MODE_INFO *mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
const int max_blocks_high = max_block_high(xd, bsize, 0);
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
assert(tx_size > TX_4X4);
#if CONFIG_NEW_TX_PARTITION
(void)depth;
TX_SIZE sub_txs[MAX_TX_PARTITIONS] = { 0 };
get_tx_partition_sizes(mbmi->tx_partition_type[txb_size_index], tx_size,
sub_txs);
// TODO(sarahparker) This assumes all of the tx sizes in the partition scheme
// are the same size. This will need to be adjusted to deal with the case
// where they can be different.
TX_SIZE this_size = sub_txs[0];
assert(mbmi->inter_tx_size[txb_size_index] == this_size);
if (mbmi->tx_partition_type[txb_size_index] != TX_PARTITION_NONE)
++x->txfm_search_info.txb_split_count;
update_partition_cdfs_and_counts(xd, blk_col, blk_row, tx_size,
allow_update_cdf, counts);
mbmi->tx_size = this_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, this_size, tx_size);
#else // CONFIG_NEW_TX_PARTITION
int ctx = txfm_partition_context(
xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row,
mbmi->sb_type[xd->tree_type == CHROMA_PART], tx_size);
const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index];
if (depth == MAX_VARTX_DEPTH) {
// Don't add to counts in this case
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
return;
}
if (tx_size == plane_tx_size) {
#if CONFIG_ENTROPY_STATS
++counts->txfm_partition[ctx][0];
#endif
if (allow_update_cdf)
update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 0, 2);
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
#if CONFIG_ENTROPY_STATS
++counts->txfm_partition[ctx][1];
#endif
if (allow_update_cdf)
update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 1, 2);
++x->txfm_search_info.txb_split_count;
if (sub_txs == TX_4X4) {
mbmi->inter_tx_size[txb_size_index] = TX_4X4;
mbmi->tx_size = TX_4X4;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, TX_4X4, tx_size);
return;
}
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
int offsetr = row;
int offsetc = col;
update_txfm_count(x, xd, counts, sub_txs, depth + 1, blk_row + offsetr,
blk_col + offsetc, allow_update_cdf);
}
}
}
#endif // CONFIG_NEW_TX_PARTITION
}
static void tx_partition_count_update(const AV1_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE plane_bsize,
FRAME_COUNTS *td_counts,
uint8_t allow_update_cdf) {
MACROBLOCKD *xd = &x->e_mbd;
const int mi_width = mi_size_wide[plane_bsize];
const int mi_height = mi_size_high[plane_bsize];
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0);
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
xd->above_txfm_context =
cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK);
for (int idy = 0; idy < mi_height; idy += bh) {
for (int idx = 0; idx < mi_width; idx += bw) {
update_txfm_count(x, xd, td_counts, max_tx_size, 0, idy, idx,
allow_update_cdf);
}
}
}
static void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size, int blk_row,
int blk_col) {
MB_MODE_INFO *mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
const int max_blocks_high = max_block_high(xd, bsize, 0);
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col);
const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index];
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
if (tx_size == plane_tx_size) {
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
} else {
#if CONFIG_NEW_TX_PARTITION
TX_SIZE sub_txs[MAX_TX_PARTITIONS] = { 0 };
const int index = av1_get_txb_size_index(bsize, blk_row, blk_col);
get_tx_partition_sizes(mbmi->tx_partition_type[index], tx_size, sub_txs);
int cur_partition = 0;
int bsw = 0, bsh = 0;
for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) {
for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw) {
const TX_SIZE sub_tx = sub_txs[cur_partition];
bsw = tx_size_wide_unit[sub_tx];
bsh = tx_size_high_unit[sub_tx];
const int offsetr = blk_row + r;
const int offsetc = blk_col + c;
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
mbmi->tx_size = sub_tx;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, sub_tx, sub_tx);
cur_partition++;
}
}
#else
if (tx_size == TX_8X8) {
mbmi->inter_tx_size[txb_size_index] = TX_4X4;
mbmi->tx_size = TX_4X4;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, TX_4X4, tx_size);
return;
}
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
const int offsetr = blk_row + row;
const int offsetc = blk_col + col;
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
set_txfm_context(xd, sub_txs, offsetr, offsetc);
}
}
#endif // CONFIG_NEW_TX_PARTITION
}
}
static void tx_partition_set_contexts(const AV1_COMMON *const cm,
MACROBLOCKD *xd, BLOCK_SIZE plane_bsize) {
const int mi_width = mi_size_wide[plane_bsize];
const int mi_height = mi_size_high[plane_bsize];
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0);
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
xd->above_txfm_context =
cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK);
for (int idy = 0; idy < mi_height; idy += bh) {
for (int idx = 0; idx < mi_width; idx += bw) {
set_txfm_context(xd, max_tx_size, idy, idx);
}
}
}
static void encode_superblock(const AV1_COMP *const cpi, TileDataEnc *tile_data,
ThreadData *td, TokenExtra **t, RUN_TYPE dry_run,
BLOCK_SIZE bsize, int plane_start, int plane_end,
int *rate) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO **mi_4x4 = xd->mi;
MB_MODE_INFO *mbmi = mi_4x4[0];
const int seg_skip =
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP);
const int mis = cm->mi_params.mi_stride;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
const int is_inter = is_inter_block(mbmi, xd->tree_type);
// Initialize tx_mode and tx_size_search_method
TxfmSearchParams *txfm_params = &x->txfm_search_params;
set_tx_size_search_method(
cm, &cpi->winner_mode_params, txfm_params,
cpi->sf.winner_mode_sf.enable_winner_mode_for_tx_size_srch, 1
#if CONFIG_EXT_RECUR_PARTITIONS
,
x, cpi->sf.tx_sf.use_largest_tx_size_for_small_bsize
#endif // CONFIG_EXT_RECUR_PARTITIONS
);
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
if (!is_inter) {
if (xd->tree_type != LUMA_PART) {
xd->cfl.store_y = store_cfl_required(cm, xd);
}
mbmi->skip_txfm[xd->tree_type == CHROMA_PART] = 1;
for (int plane = plane_start; plane < plane_end; ++plane) {
#if CONFIG_CROSS_CHROMA_TX
if (plane == AOM_PLANE_Y || !is_cctx_allowed(cm, xd))
av1_encode_intra_block_plane(cpi, x, bsize, plane, dry_run,
cpi->optimize_seg_arr[mbmi->segment_id]);
else if (plane == AOM_PLANE_U)
av1_encode_intra_block_joint_uv(
cpi, x, bsize, dry_run, cpi->optimize_seg_arr[mbmi->segment_id]);
#else
av1_encode_intra_block_plane(cpi, x, bsize, plane, dry_run,
cpi->optimize_seg_arr[mbmi->segment_id]);
#endif // CONFIG_CROSS_CHROMA_TX
}
// If there is at least one lossless segment, force the skip for intra
// block to be 0, in order to avoid the segment_id to be changed by in
// write_segment_id().
if (!cpi->common.seg.segid_preskip && cpi->common.seg.update_map &&
cpi->enc_seg.has_lossless_segment)
mbmi->skip_txfm[xd->tree_type == CHROMA_PART] = 0;
xd->cfl.store_y = 0;
if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
for (int plane = plane_start; plane < AOMMIN(2, plane_end); ++plane) {
if (mbmi->palette_mode_info.palette_size[plane] > 0) {
if (!dry_run) {
av1_tokenize_color_map(x, plane, t, bsize, mbmi->tx_size,
PALETTE_MAP, tile_data->allow_update_cdf,
td->counts);
} else if (dry_run == DRY_RUN_COSTCOEFFS) {
rate +=
av1_cost_color_map(x, plane, bsize, mbmi->tx_size, PALETTE_MAP);
}
}
}
}
av1_update_intra_mb_txb_context(cpi, td, dry_run, bsize,
tile_data->allow_update_cdf);
} else {
int ref;
const int is_compound = has_second_ref(mbmi);
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
for (ref = 0; ref < 1 + is_compound; ++ref) {
const YV12_BUFFER_CONFIG *cfg =
get_ref_frame_yv12_buf(cm, mbmi->ref_frame[ref]);
assert(IMPLIES(!is_intrabc_block(mbmi, xd->tree_type), cfg));
av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
xd->block_ref_scale_factors[ref], num_planes,
&mbmi->chroma_ref_info);
}
int start_plane = 0;
#if CONFIG_BAWP
struct macroblockd_plane *p = xd->plane;
const BUFFER_SET orig_dst = {
{ p[0].dst.buf, p[1].dst.buf, p[2].dst.buf },
{ p[0].dst.stride, p[1].dst.stride, p[2].dst.stride },
};
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, &orig_dst, bsize,
#else
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
#endif
start_plane, av1_num_planes(cm) - 1);
if (mbmi->motion_mode == OBMC_CAUSAL) {
#if CONFIG_EXTENDED_WARP_PREDICTION
assert(cm->features.enabled_motion_modes & (1 << OBMC_CAUSAL));
#else
assert(cpi->oxcf.motion_mode_cfg.enable_obmc);
#endif
av1_build_obmc_inter_predictors_sb(cm, xd);
}
#if CONFIG_MISMATCH_DEBUG
if (dry_run == OUTPUT_ENABLED) {
for (int plane = plane_start; plane < plane_end; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
int pixel_c, pixel_r;
if (plane && !xd->is_chroma_ref) continue;
if (plane) {
mi_to_pixel_loc(&pixel_c, &pixel_r,
mbmi->chroma_ref_info.mi_col_chroma_base,
mbmi->chroma_ref_info.mi_row_chroma_base, 0, 0,
pd->subsampling_x, pd->subsampling_y);
} else {
mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0,
pd->subsampling_x, pd->subsampling_y);
}
mismatch_record_block_pre(pd->dst.buf, pd->dst.stride,
cm->current_frame.order_hint, plane, pixel_c,
pixel_r, pd->width, pd->height);
}
}
#else
(void)num_planes;
#endif // CONFIG_MISMATCH_DEBUG
av1_encode_sb(cpi, x, bsize, dry_run, plane_start, plane_end);
av1_tokenize_sb_vartx(cpi, td, dry_run, bsize, rate,
tile_data->allow_update_cdf, plane_start, plane_end);
}
if (!dry_run) {
if (av1_allow_intrabc(cm) && is_intrabc_block(mbmi, xd->tree_type))
td->intrabc_used = 1;
if (txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
!xd->lossless[mbmi->segment_id] &&
mbmi->sb_type[xd->tree_type == CHROMA_PART] > BLOCK_4X4 &&
!(is_inter &&
(mbmi->skip_txfm[xd->tree_type == CHROMA_PART] || seg_skip))) {
if (is_inter) {
tx_partition_count_update(cm, x, bsize, td->counts,
tile_data->allow_update_cdf);
} else {
if (mbmi->tx_size != max_txsize_rect_lookup[bsize] &&
xd->tree_type != CHROMA_PART)
++x->txfm_search_info.txb_split_count;
if (block_signals_txsize(bsize) && xd->tree_type != CHROMA_PART) {
#if CONFIG_NEW_TX_PARTITION
const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
update_partition_cdfs_and_counts(
xd, 0, 0, max_tx_size, tile_data->allow_update_cdf, td->counts);
#else // CONFIG_NEW_TX_PARTITION
const int tx_size_ctx = get_tx_size_context(xd);
const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
const int depth = tx_size_to_depth(mbmi->tx_size, bsize);
const int max_depths = bsize_to_max_depth(bsize);
if (tile_data->allow_update_cdf)
update_cdf(xd->tile_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx],
depth, max_depths + 1);
#if CONFIG_ENTROPY_STATS
++td->counts->intra_tx_size[tx_size_cat][tx_size_ctx][depth];
#endif
#endif // CONFIG_NEW_TX_PARTITION
}
}
if (xd->tree_type != CHROMA_PART)
assert(
IMPLIES(is_rect_tx(mbmi->tx_size), is_rect_tx_allowed(xd, mbmi)));
} else {
int i, j;
TX_SIZE intra_tx_size;
// The new intra coding scheme requires no change of transform size
if (is_inter) {
if (xd->lossless[mbmi->segment_id]) {
intra_tx_size = TX_4X4;
} else {
intra_tx_size =
tx_size_from_tx_mode(bsize, txfm_params->tx_mode_search_type);
}
} else {
intra_tx_size = mbmi->tx_size;
}
for (j = 0; j < mi_height; j++)
for (i = 0; i < mi_width; i++)
if (mi_col + i < cm->mi_params.mi_cols &&
mi_row + j < cm->mi_params.mi_rows)
mi_4x4[mis * j + i]->tx_size = intra_tx_size;
if (intra_tx_size != max_txsize_rect_lookup[bsize])
++x->txfm_search_info.txb_split_count;
}
#if CONFIG_REF_MV_BANK && !CONFIG_C043_MVP_IMPROVEMENTS
#if CONFIG_IBC_SR_EXT && !CONFIG_BVP_IMPROVEMENT
if (cm->seq_params.enable_refmvbank && is_inter &&
!is_intrabc_block(mbmi, xd->tree_type))
#else
if (cm->seq_params.enable_refmvbank && is_inter)
#endif // CONFIG_IBC_SR_EXT && !CONFIG_BVP_IMPROVEMENT
av1_update_ref_mv_bank(cm, xd, mbmi);
#endif // CONFIG_REF_MV_BANK && !CONFIG_C043_MVP_IMPROVEMENTS
#if CONFIG_WARP_REF_LIST && !WARP_CU_BANK
if (is_inter) av1_update_warp_param_bank(cm, xd, mbmi);
#endif // CONFIG_WARP_REF_LIST && !WARP_CU_BANK
}
if (txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
block_signals_txsize(mbmi->sb_type[xd->tree_type == CHROMA_PART]) &&
is_inter &&
!(mbmi->skip_txfm[xd->tree_type == CHROMA_PART] || seg_skip) &&
!xd->lossless[mbmi->segment_id]) {
if (dry_run) tx_partition_set_contexts(cm, xd, bsize);
} else {
TX_SIZE tx_size = mbmi->tx_size;
// The new intra coding scheme requires no change of transform size
if (is_inter) {
if (xd->lossless[mbmi->segment_id]) {
tx_size = TX_4X4;
} else {
tx_size = tx_size_from_tx_mode(bsize, txfm_params->tx_mode_search_type);
}
} else {
tx_size = (bsize > BLOCK_4X4) ? tx_size : TX_4X4;
}
mbmi->tx_size = tx_size;
set_txfm_ctxs(tx_size, xd->width, xd->height,
(mbmi->skip_txfm[xd->tree_type == CHROMA_PART] || seg_skip) &&
is_inter_block(mbmi, xd->tree_type),
xd);
}
if (is_inter_block(mbmi, xd->tree_type) && !xd->is_chroma_ref &&
is_cfl_allowed(xd)) {
#if CONFIG_ADAPTIVE_DS_FILTER
cfl_store_block(xd, mbmi->sb_type[xd->tree_type == CHROMA_PART],
mbmi->tx_size,
#if DS_FRAME_LEVEL
cm->features.ds_filter_type);
#else
cm->seq_params.enable_cfl_ds_filter);
#endif // DS_FRAME_LEVEL
#else
cfl_store_block(xd, mbmi->sb_type[xd->tree_type == CHROMA_PART],
mbmi->tx_size);
#endif // CONFIG_ADAPTIVE_DS_FILTER
}
if (xd->tree_type == LUMA_PART) {
const CommonModeInfoParams *const mi_params = &cm->mi_params;
for (int y = 0; y < mi_height; y++) {
for (int x_idx = 0; x_idx < mi_width; x_idx++) {
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
(xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
if (y == 0 && x_idx == 0) continue;
const int mi_idx =
get_alloc_mi_idx(mi_params, mi_row + y, mi_col + x_idx);
xd->mi[x_idx + y * mis] = &mi_params->mi_alloc[mi_idx];
xd->mi[x_idx + y * mis]->skip_txfm[PLANE_TYPE_Y] =
xd->mi[0]->skip_txfm[PLANE_TYPE_Y];
}
}
}
}
av1_mark_block_as_coded(xd, bsize, cm->seq_params.sb_size);
}
void setup_block_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
int mi_row, int mi_col, BLOCK_SIZE bsize,
AQ_MODE aq_mode, MB_MODE_INFO *mbmi) {
x->rdmult = cpi->rd.RDMULT;
MACROBLOCKD *const xd = &x->e_mbd;
if (aq_mode != NO_AQ && xd->tree_type == SHARED_PART) {
assert(mbmi != NULL);
if (aq_mode == VARIANCE_AQ) {
if (cpi->vaq_refresh) {
const int energy = bsize <= BLOCK_16X16
? x->mb_energy
: av1_log_block_var(cpi, x, bsize);
mbmi->segment_id = energy;
}
x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
} else if (aq_mode == COMPLEXITY_AQ) {
x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
} else if (aq_mode == CYCLIC_REFRESH_AQ) {
// If segment is boosted, use rdmult for that segment.
if (cyclic_refresh_segment_id_boosted(mbmi->segment_id))
x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
}
}
const AV1_COMMON *const cm = &cpi->common;
if (cm->delta_q_info.delta_q_present_flag) {
x->rdmult =
av1_get_hier_tpl_rdmult(cpi, x, bsize, mi_row, mi_col, x->rdmult);
}
if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIM) {
av1_set_ssim_rdmult(cpi, &x->mv_costs, bsize, mi_row, mi_col, &x->rdmult);
}
#if CONFIG_TUNE_VMAF
if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_WITHOUT_PREPROCESSING ||
cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_MAX_GAIN ||
cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_NEG_MAX_GAIN) {
av1_set_vmaf_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult);
}
#endif
}
void av1_set_offsets_without_segment_id(
const AV1_COMP *const cpi, const TileInfo *const tile, MACROBLOCK *const x,
int mi_row, int mi_col, BLOCK_SIZE bsize,
const CHROMA_REF_INFO *chroma_ref_info) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
assert(bsize < BLOCK_SIZES_ALL);
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd,
mi_row, mi_col
#if CONFIG_C071_SUBBLK_WARPMV
,
mi_width, mi_height
#endif // CONFIG_C071_SUBBLK_WARPMV
);
set_entropy_context(xd, mi_row, mi_col, num_planes, chroma_ref_info);
xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
// Set up destination pointers.
av1_setup_dst_planes(xd->plane, &cm->cur_frame->buf, mi_row, mi_col, 0,
num_planes, chroma_ref_info);
// Set up limit values for MV components.
// Mv beyond the range do not produce new/different prediction block.
av1_set_mv_limits(&cm->mi_params, &x->mv_limits, mi_row, mi_col, mi_height,
mi_width, cpi->oxcf.border_in_pixels);
set_plane_n4(xd, mi_width, mi_height, num_planes, chroma_ref_info);
// Set up distance of MB to edge of frame in 1/8th pel units.
#if !CONFIG_EXT_RECUR_PARTITIONS
assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
#endif // !CONFIG_EXT_RECUR_PARTITIONS
set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width,
cm->mi_params.mi_rows, cm->mi_params.mi_cols, chroma_ref_info);
// Set up source buffers.
av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes,
chroma_ref_info);
// required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs()
xd->tile = *tile;
}
void av1_set_offsets(const AV1_COMP *const cpi, const TileInfo *const tile,
MACROBLOCK *const x, int mi_row, int mi_col,
BLOCK_SIZE bsize, const CHROMA_REF_INFO *chroma_ref_info) {
const AV1_COMMON *const cm = &cpi->common;
const struct segmentation *const seg = &cm->seg;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize,
chroma_ref_info);
// Setup segment ID.
mbmi = xd->mi[0];
mbmi->segment_id = 0;
if (seg->enabled) {
if (seg->enabled && !cpi->vaq_refresh) {
const uint8_t *const map =
seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map;
mbmi->segment_id =
map ? get_segment_id(&cm->mi_params, map, bsize, mi_row, mi_col) : 0;
}
av1_init_plane_quantizers(cpi, x, mbmi->segment_id);
}
}
/*!\brief Interface for AV1 mode search for an individual coding block
*
* \ingroup partition_search
* \callgraph
* \callergraph
* Searches prediction modes, transform, and coefficient coding modes for an
* individual coding block. This function is the top-level interface that
* directs the encoder to the proper mode search function, among these
* implemented for inter/intra + rd/non-rd + non-skip segment/skip segment.
*
* \param[in] cpi Top-level encoder structure
* \param[in] tile_data Pointer to struct holding adaptive
* data/contexts/models for the tile during
* encoding
* \param[in] x Pointer to structure holding all the data for
* the current macroblock
* \param[in] mi_row Row coordinate of the block in a step size of
* MI_SIZE
* \param[in] mi_col Column coordinate of the block in a step size of
* MI_SIZE
* \param[in] rd_cost Pointer to structure holding rate and distortion
* stats for the current block
* \param[in] partition Partition mode of the parent block
* \param[in] bsize Current block size
* \param[in] ctx Pointer to structure holding coding contexts and
* chosen modes for the current block
* \param[in] best_rd Upper bound of rd cost of a valid partition
*
* Nothing is returned. Instead, the chosen modes and contexts necessary
* for reconstruction are stored in ctx, the rate-distortion stats are stored in
* rd_cost. If no valid mode leading to rd_cost <= best_rd, the status will be
* signalled by an INT64_MAX rd_cost->rdcost.
*/
static void pick_sb_modes(AV1_COMP *const cpi, TileDataEnc *tile_data,
MACROBLOCK *const x, int mi_row, int mi_col,
RD_STATS *rd_cost, PARTITION_TYPE partition,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
RD_STATS best_rd) {
if (best_rd.rdcost < 0) {
ctx->rd_stats.rdcost = INT64_MAX;
ctx->rd_stats.skip_txfm = 0;
av1_invalid_rd_stats(rd_cost);
return;
}
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
int plane_type = (xd->tree_type == CHROMA_PART);
assert(is_bsize_geq(bsize, cpi->common.mi_params.mi_alloc_bsize));
assert(ctx != NULL);
av1_set_offsets(cpi, &tile_data->tile_info, x, mi_row, mi_col, bsize,
&ctx->chroma_ref_info);
if (ctx->rd_mode_is_ready) {
assert(ctx->mic.sb_type[plane_type] == bsize);
assert(ctx->mic.partition == partition);
rd_cost->rate = ctx->rd_stats.rate;
rd_cost->dist = ctx->rd_stats.dist;
rd_cost->rdcost = ctx->rd_stats.rdcost;
#if CONFIG_C043_MVP_IMPROVEMENTS
const int is_inter = is_inter_block(&ctx->mic, xd->tree_type);
#if CONFIG_IBC_SR_EXT && !CONFIG_BVP_IMPROVEMENT
if (cm->seq_params.enable_refmvbank && is_inter &&
!is_intrabc_block(&ctx->mic, xd->tree_type))
#else
if (cm->seq_params.enable_refmvbank && is_inter)
#endif // CONFIG_IBC_SR_EXT && !CONFIG_BVP_IMPROVEMENT
av1_update_ref_mv_bank(cm, xd, &ctx->mic);
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
if (is_inter) av1_update_warp_param_bank(cm, xd, &ctx->mic);
#endif // WARP_CU_BANK
return;
}
MB_MODE_INFO *mbmi;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
const AQ_MODE aq_mode = cpi->oxcf.q_cfg.aq_mode;
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
int i;
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, rd_pick_sb_modes_time);
#endif
aom_clear_system_state();
mbmi = xd->mi[0];
mbmi->sb_type[plane_type] = bsize;
if (xd->tree_type == SHARED_PART) mbmi->sb_type[PLANE_TYPE_UV] = bsize;
mbmi->partition = partition;
mbmi->chroma_ref_info = ctx->chroma_ref_info;
#if CONFIG_RD_DEBUG
mbmi->mi_row = mi_row;
mbmi->mi_col = mi_col;
#endif
// Sets up the tx_type_map buffer in MACROBLOCKD.
xd->blk_skip = txfm_info->blk_skip;
xd->blk_skip_stride = mi_size_wide[bsize];
xd->tx_type_map = txfm_info->tx_type_map_;
xd->tx_type_map_stride = mi_size_wide[bsize];
#if CONFIG_CROSS_CHROMA_TX
xd->cctx_type_map = txfm_info->cctx_type_map_;
xd->cctx_type_map_stride = mi_size_wide[bsize];
#endif // CONFIG_CROSS_CHROMA_TX
for (i = 0; i < num_planes; ++i) {
p[i].coeff = ctx->coeff[i];
p[i].qcoeff = ctx->qcoeff[i];
p[i].dqcoeff = ctx->dqcoeff[i];
p[i].eobs = ctx->eobs[i];
p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
}
for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
ctx->skippable = 0;
// Set to zero to make sure we do not use the previous encoded frame stats
mbmi->skip_txfm[xd->tree_type == CHROMA_PART] = 0;
// Reset skip mode flag.
mbmi->skip_mode = 0;
x->source_variance =
av1_high_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize, xd->bd);
// Initialize default mode evaluation params
set_mode_eval_params(cpi, x, DEFAULT_EVAL);
// Save rdmult before it might be changed, so it can be restored later.
const int orig_rdmult = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode, mbmi);
// Set error per bit for current rdmult
av1_set_error_per_bit(&x->mv_costs, x->rdmult);
av1_rd_cost_update(x->rdmult, &best_rd);
// Find best coding mode & reconstruct the MB so it is available
// as a predictor for MBs that follow in the SB
if (frame_is_intra_only(cm)) {
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, av1_rd_pick_intra_mode_sb_time);
#endif
av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd.rdcost);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, av1_rd_pick_intra_mode_sb_time);
#endif
} else {
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, av1_rd_pick_inter_mode_sb_time);
#endif
if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col,
rd_cost, bsize, ctx, best_rd.rdcost);
} else {
av1_rd_pick_inter_mode_sb(cpi, tile_data, x, rd_cost, bsize, ctx,
best_rd.rdcost);
}
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, av1_rd_pick_inter_mode_sb_time);
#endif
}
#if CONFIG_C043_MVP_IMPROVEMENTS
const int is_inter = is_inter_block(mbmi, xd->tree_type);
#if CONFIG_IBC_SR_EXT && !CONFIG_BVP_IMPROVEMENT
if (cm->seq_params.enable_refmvbank && is_inter &&
!is_intrabc_block(mbmi, xd->tree_type))
#else
if (cm->seq_params.enable_refmvbank && is_inter)
#endif // CONFIG_IBC_SR_EXT && !CONFIG_BVP_IMPROVEMENT
av1_update_ref_mv_bank(cm, xd, mbmi);
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
if (is_inter) av1_update_warp_param_bank(cm, xd, mbmi);
#endif // WARP_CU_BANK
// Examine the resulting rate and for AQ mode 2 make a segment choice.
if (rd_cost->rate != INT_MAX && aq_mode == COMPLEXITY_AQ &&
bsize >= BLOCK_16X16) {
av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
}
x->rdmult = orig_rdmult;
// TODO(jingning) The rate-distortion optimization flow needs to be
// refactored to provide proper exit/return handle.
if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX;
ctx->rd_stats.rate = rd_cost->rate;
ctx->rd_stats.dist = rd_cost->dist;
ctx->rd_stats.rdcost = rd_cost->rdcost;
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, rd_pick_sb_modes_time);
#endif
}
static void use_sb_modes(AV1_COMP *const cpi, TileDataEnc *tile_data,
MACROBLOCK *const x, int mi_row, int mi_col,
RD_STATS *rd_cost, PARTITION_TYPE partition,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
RD_STATS best_rd) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
int plane_type = (xd->tree_type == CHROMA_PART);
assert(is_bsize_geq(bsize, cpi->common.mi_params.mi_alloc_bsize));
av1_set_offsets(cpi, &tile_data->tile_info, x, mi_row, mi_col, bsize,
&ctx->chroma_ref_info);
if (ctx->rd_mode_is_ready) {
assert(ctx->mic.sb_type[plane_type] == bsize);
assert(ctx->mic.partition == partition);
rd_cost->rate = ctx->rd_stats.rate;
rd_cost->dist = ctx->rd_stats.dist;
rd_cost->rdcost = ctx->rd_stats.rdcost;
#if CONFIG_C043_MVP_IMPROVEMENTS
const int is_inter = is_inter_block(&ctx->mic, xd->tree_type);
#if CONFIG_IBC_SR_EXT && !CONFIG_BVP_IMPROVEMENT
if (cm->seq_params.enable_refmvbank && is_inter &&
!is_intrabc_block(&ctx->mic, xd->tree_type))
#else
if (cm->seq_params.enable_refmvbank && is_inter)
#endif // CONFIG_IBC_SR_EXT && !CONFIG_BVP_IMPROVEMENT
av1_update_ref_mv_bank(cm, xd, &ctx->mic);
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
if (is_inter) av1_update_warp_param_bank(cm, xd, &ctx->mic);
#endif // WARP_CU_BANK
return;
}
MB_MODE_INFO *mbmi;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
const AQ_MODE aq_mode = cpi->oxcf.q_cfg.aq_mode;
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
int i;
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, rd_pick_sb_modes_time);
#endif
aom_clear_system_state();
mbmi = xd->mi[0];
mbmi->sb_type[plane_type] = bsize;
if (xd->tree_type == SHARED_PART) mbmi->sb_type[PLANE_TYPE_UV] = bsize;
mbmi->partition = partition;
mbmi->chroma_ref_info = ctx->chroma_ref_info;
#if CONFIG_RD_DEBUG
mbmi->mi_row = mi_row;
mbmi->mi_col = mi_col;
#endif
// Sets up the tx_type_map buffer in MACROBLOCKD.
xd->blk_skip = txfm_info->blk_skip;
xd->blk_skip_stride = mi_size_wide[bsize];
xd->tx_type_map = txfm_info->tx_type_map_;
xd->tx_type_map_stride = mi_size_wide[bsize];
#if CONFIG_CROSS_CHROMA_TX
xd->cctx_type_map = txfm_info->cctx_type_map_;
xd->cctx_type_map_stride = mi_size_wide[bsize];
#endif // CONFIG_CROSS_CHROMA_TX
for (i = 0; i < num_planes; ++i) {
p[i].coeff = ctx->coeff[i];
p[i].qcoeff = ctx->qcoeff[i];
p[i].dqcoeff = ctx->dqcoeff[i];
p[i].eobs = ctx->eobs[i];
p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
}
for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
ctx->skippable = 0;
// Set to zero to make sure we do not use the previous encoded frame stats
mbmi->skip_txfm[xd->tree_type == CHROMA_PART] = 0;
// Reset skip mode flag.
mbmi->skip_mode = 0;
x->source_variance =
av1_high_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize, xd->bd);
// Initialize default mode evaluation params
set_mode_eval_params(cpi, x, DEFAULT_EVAL);
// Save rdmult before it might be changed, so it can be restored later.
const int orig_rdmult = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode, mbmi);
// Set error per bit for current rdmult
av1_set_error_per_bit(&x->mv_costs, x->rdmult);
av1_rd_cost_update(x->rdmult, &best_rd);
ctx->mic =
cpi->frd->mi_params
.mi_grid_base[mi_row * cpi->frd->mi_params.mi_stride + mi_col][0];
const int mi_ext_idx =
get_mi_ext_idx(mi_row, mi_col, cpi->frd->mi_params.mi_alloc_bsize,
cpi->frd->mi_ext_params.stride);
ctx->mbmi_ext_best = cpi->frd->mi_ext_params.frame_base[mi_ext_idx];
*mbmi = ctx->mic;
ctx->rd_stats.skip_txfm = mbmi->skip_txfm[xd->tree_type == CHROMA_PART];
#if CONFIG_C071_SUBBLK_WARPMV
const int x_inside_boundary =
AOMMIN(mi_size_wide[bsize], cpi->frd->mi_params.mi_cols - mi_col);
const int y_inside_boundary =
AOMMIN(mi_size_high[bsize], cpi->frd->mi_params.mi_rows - mi_row);
for (int iy = 0; iy < y_inside_boundary; iy++) {
for (int ix = 0; ix < x_inside_boundary; ix++) {
ctx->submic[iy * MAX_MIB_SIZE + ix] =
cpi->frd->mi_params
.submi_grid_base[(mi_row + iy) * cpi->frd->mi_params.mi_stride +
mi_col + ix][0];
}
}
#endif // CONFIG_C071_SUBBLK_WARPMV
if (xd->tree_type != CHROMA_PART) {
// If not dry_run, copy the transform type data into the frame level buffer.
// Encoder will fetch tx types when writing bitstream.
xd->blk_skip = ctx->blk_skip;
const int bw = mi_size_wide[mbmi->sb_type[xd->tree_type == CHROMA_PART]];
const int bh = mi_size_high[mbmi->sb_type[xd->tree_type == CHROMA_PART]];
const int grid_idx = get_mi_grid_idx(&cpi->frd->mi_params, mi_row, mi_col);
TX_TYPE *const blk_skip = cpi->frd->mi_params.blk_skip + grid_idx;
const int mi_stride = cpi->frd->mi_params.mi_stride;
for (int blk_row = 0; blk_row < bh; ++blk_row) {
av1_copy_array(xd->blk_skip + blk_row * xd->blk_skip_stride,
blk_skip + blk_row * mi_stride, bw);
}
}
if (xd->tree_type != CHROMA_PART) {
// If not dry_run, copy the transform type data into the frame level buffer.
// Encoder will fetch tx types when writing bitstream.
xd->tx_type_map = ctx->tx_type_map;
const int bw = mi_size_wide[mbmi->sb_type[xd->tree_type == CHROMA_PART]];
const int bh = mi_size_high[mbmi->sb_type[xd->tree_type == CHROMA_PART]];
const int grid_idx = get_mi_grid_idx(&cpi->frd->mi_params, mi_row, mi_col);
TX_TYPE *const tx_type_map = cpi->frd->mi_params.tx_type_map + grid_idx;
const int mi_stride = cpi->frd->mi_params.mi_stride;
for (int blk_row = 0; blk_row < bh; ++blk_row) {
av1_copy_array(xd->tx_type_map + blk_row * xd->tx_type_map_stride,
tx_type_map + blk_row * mi_stride, bw);
}
}
#if CONFIG_CROSS_CHROMA_TX
if (xd->tree_type != LUMA_PART && xd->is_chroma_ref &&
is_cctx_allowed(cm, xd)) {
#if CONFIG_EXT_RECUR_PARTITIONS
const BLOCK_SIZE chroma_bsize = get_bsize_base(xd, mbmi, AOM_PLANE_U);
xd->cctx_type_map = ctx->cctx_type_map;
xd->cctx_type_map_stride = mi_size_wide[chroma_bsize];
#else
assert(0);
#endif // CONFIG_EXT_RECUR_PARTITIONS
// If not dry_run, copy the cctx type data into the frame level buffer.
// Encoder will fetch cctx types when writing bitstream.
#if CONFIG_EXT_RECUR_PARTITIONS
const int chroma_bw = mi_size_wide[chroma_bsize];
const int chroma_bh = mi_size_high[chroma_bsize];
const int grid_idx = get_mi_grid_idx(
&cpi->frd->mi_params, mbmi->chroma_ref_info.mi_row_chroma_base,
mbmi->chroma_ref_info.mi_col_chroma_base);
CctxType *const cctx_type_map =
cpi->frd->mi_params.cctx_type_map + grid_idx;
for (int blk_row = 0; blk_row < chroma_bh; ++blk_row) {
memset(&xd->cctx_type_map[blk_row * xd->cctx_type_map_stride],
cctx_type_map[0], chroma_bw * sizeof(cctx_type_map[0]));
}
#else
assert(0);
#endif // CONFIG_EXT_RECUR_PARTITIONS
}
#endif // CONFIG_CROSS_CHROMA_TX
#if CONFIG_C043_MVP_IMPROVEMENTS
const int is_inter = is_inter_block(mbmi, xd->tree_type);
#if CONFIG_IBC_SR_EXT && !CONFIG_BVP_IMPROVEMENT
if (cm->seq_params.enable_refmvbank && is_inter &&
!is_intrabc_block(mbmi, xd->tree_type))
#else
if (cm->seq_params.enable_refmvbank && is_inter)
#endif // CONFIG_IBC_SR_EXT && !CONFIG_BVP_IMPROVEMENT
av1_update_ref_mv_bank(cm, xd, mbmi);
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
if (is_inter) av1_update_warp_param_bank(cm, xd, mbmi);
#endif // WARP_CU_BANK
// Examine the resulting rate and for AQ mode 2 make a segment choice.
if (rd_cost->rate != INT_MAX && aq_mode == COMPLEXITY_AQ &&
bsize >= BLOCK_16X16) {
av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
}
x->rdmult = orig_rdmult;
// TODO(jingning) The rate-distortion optimization flow needs to be
// refactored to provide proper exit/return handle.
if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX;
ctx->rd_stats.rate = rd_cost->rate;
ctx->rd_stats.dist = rd_cost->dist;
ctx->rd_stats.rdcost = rd_cost->rdcost;
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, rd_pick_sb_modes_time);
#endif
}
static void update_drl_index_stats(int max_drl_bits, const int16_t mode_ctx,
FRAME_CONTEXT *fc, FRAME_COUNTS *counts,
const MB_MODE_INFO *mbmi,
const MB_MODE_INFO_EXT *mbmi_ext) {
#if !CONFIG_ENTROPY_STATS
(void)counts;
#endif // !CONFIG_ENTROPY_STATS
assert(have_drl_index(mbmi->mode));
#if CONFIG_WARPMV
assert(IMPLIES(mbmi->mode == WARPMV, 0));
#endif // CONFIG_WARPMV
#if IMPROVED_AMVD
if (mbmi->mode == AMVDNEWMV) max_drl_bits = AOMMIN(max_drl_bits, 1);
#endif // IMPROVED_AMVD
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
assert(mbmi->ref_mv_idx < max_drl_bits + 1);
for (int idx = 0; idx < max_drl_bits; ++idx) {
aom_cdf_prob *drl_cdf =
av1_get_drl_cdf(fc, mbmi_ext->weight[ref_frame_type], mode_ctx, idx);
#if CONFIG_ENTROPY_STATS
int drl_ctx = av1_drl_ctx(mode_ctx);
switch (idx) {
case 0: counts->drl_mode[0][drl_ctx][mbmi->ref_mv_idx != idx]++; break;
case 1: counts->drl_mode[1][drl_ctx][mbmi->ref_mv_idx != idx]++; break;
default: counts->drl_mode[2][drl_ctx][mbmi->ref_mv_idx != idx]++; break;
}
#endif // CONFIG_ENTROPY_STATS
update_cdf(drl_cdf, mbmi->ref_mv_idx != idx, 2);
if (mbmi->ref_mv_idx == idx) break;
}
}
#if CONFIG_BVP_IMPROVEMENT
static void update_intrabc_drl_idx_stats(int max_ref_bv_num, FRAME_CONTEXT *fc,
FRAME_COUNTS *counts,
const MB_MODE_INFO *mbmi) {
#if !CONFIG_ENTROPY_STATS
(void)counts;
#endif // !CONFIG_ENTROPY_STATS
assert(mbmi->intrabc_drl_idx < max_ref_bv_num);
int bit_cnt = 0;
for (int idx = 0; idx < max_ref_bv_num - 1; ++idx) {
#if CONFIG_ENTROPY_STATS
counts->intrabc_drl_idx[bit_cnt][mbmi->intrabc_drl_idx != idx]++;
#endif // CONFIG_ENTROPY_STATS
update_cdf(fc->intrabc_drl_idx_cdf[bit_cnt], mbmi->intrabc_drl_idx != idx,
2);
if (mbmi->intrabc_drl_idx == idx) break;
++bit_cnt;
}
}
#endif // CONFIG_BVP_IMPROVEMENT
#if CONFIG_EXTENDED_WARP_PREDICTION
static void update_warp_delta_param_stats(int index, int value,
#if CONFIG_ENTROPY_STATS
FRAME_COUNTS *counts,
#endif // CONFIG_ENTROPY_STATS
FRAME_CONTEXT *fc) {
assert(2 <= index && index <= 5);
int index_type = (index == 2 || index == 5) ? 0 : 1;
int coded_value = (value / WARP_DELTA_STEP) + WARP_DELTA_CODED_MAX;
assert(0 <= coded_value && coded_value < WARP_DELTA_NUM_SYMBOLS);
update_cdf(fc->warp_delta_param_cdf[index_type], coded_value,
WARP_DELTA_NUM_SYMBOLS);
#if CONFIG_ENTROPY_STATS
counts->warp_delta_param[index_type][coded_value]++;
#endif // CONFIG_ENTROPY_STATS
}
static void update_warp_delta_stats(const AV1_COMMON *cm,
#if !CONFIG_WARP_REF_LIST
const MACROBLOCKD *xd,
#endif //! CONFIG_WARP_REF_LIST
const MB_MODE_INFO *mbmi,
const MB_MODE_INFO_EXT *mbmi_ext,
#if CONFIG_ENTROPY_STATS
FRAME_COUNTS *counts,
#endif // CONFIG_ENTROPY_STATS
FRAME_CONTEXT *fc) {
#if CONFIG_WARP_REF_LIST
if (mbmi->max_num_warp_candidates > 1) {
assert(mbmi->warp_ref_idx < mbmi->max_num_warp_candidates);
int max_idx_bits = mbmi->max_num_warp_candidates - 1;
for (int bit_idx = 0; bit_idx < max_idx_bits; ++bit_idx) {
aom_cdf_prob *warp_ref_idx_cdf = av1_get_warp_ref_idx_cdf(fc, bit_idx);
update_cdf(warp_ref_idx_cdf, mbmi->warp_ref_idx != bit_idx, 2);
if (mbmi->warp_ref_idx == bit_idx) break;
}
}
if (allow_warp_parameter_signaling(mbmi)) {
#endif // CONFIG_WARP_REF_LIST
const WarpedMotionParams *params = &mbmi->wm_params[0];
WarpedMotionParams base_params;
av1_get_warp_base_params(
cm,
#if !CONFIG_WARP_REF_LIST
xd,
#endif //! CONFIG_WARP_REF_LIST
mbmi,
#if !CONFIG_WARP_REF_LIST
mbmi_ext->ref_mv_stack[mbmi->ref_frame[0]],
#endif //! CONFIG_WARP_REF_LIST
&base_params, NULL
#if CONFIG_WARP_REF_LIST
,
mbmi_ext->warp_param_stack[av1_ref_frame_type(mbmi->ref_frame)]
#endif // CONFIG_WARP_REF_LIST
);
// The RDO stage should not give us a model which is not warpable.
// Such models can still be signalled, but are effectively useless
// as we'll just fall back to translational motion
assert(!params->invalid);
// TODO(rachelbarker): Allow signaling warp type?
update_warp_delta_param_stats(2, params->wmmat[2] - base_params.wmmat[2],
#if CONFIG_ENTROPY_STATS
counts,
#endif // CONFIG_ENTROPY_STATS
fc);
update_warp_delta_param_stats(3, params->wmmat[3] - base_params.wmmat[3],
#if CONFIG_ENTROPY_STATS
counts,
#endif // CONFIG_ENTROPY_STATS
fc);
#if CONFIG_WARP_REF_LIST
}
#endif // CONFIG_WARP_REF_LIST
}
#endif // CONFIG_EXTENDED_WARP_PREDICTION
#if CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
static void update_skip_drl_index_stats(int max_drl_bits, FRAME_CONTEXT *fc,
FRAME_COUNTS *counts,
const MB_MODE_INFO *mbmi) {
#if !CONFIG_ENTROPY_STATS
(void)counts;
#endif // !CONFIG_ENTROPY_STATS
assert(have_drl_index(mbmi->mode));
assert(mbmi->ref_mv_idx < max_drl_bits + 1);
for (int idx = 0; idx < max_drl_bits; ++idx) {
aom_cdf_prob *drl_cdf = fc->skip_drl_cdf[AOMMIN(idx, 2)];
#if CONFIG_ENTROPY_STATS
switch (idx) {
case 0: counts->skip_drl_mode[idx][mbmi->ref_mv_idx != idx]++; break;
case 1: counts->skip_drl_mode[idx][mbmi->ref_mv_idx != idx]++; break;
default: counts->skip_drl_mode[2][mbmi->ref_mv_idx != idx]++; break;
}
#endif // CONFIG_ENTROPY_STATS
update_cdf(drl_cdf, mbmi->ref_mv_idx != idx, 2);
if (mbmi->ref_mv_idx == idx) break;
}
}
#endif // CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
static void update_stats(const AV1_COMMON *const cm, ThreadData *td) {
MACROBLOCK *x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const MB_MODE_INFO *const mbmi = xd->mi[0];
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const CurrentFrame *const current_frame = &cm->current_frame;
const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
FRAME_CONTEXT *fc = xd->tile_ctx;
const int seg_ref_active = 0;
if (current_frame->skip_mode_info.skip_mode_flag && !seg_ref_active &&
is_comp_ref_allowed(bsize)) {
const int skip_mode_ctx = av1_get_skip_mode_context(xd);
#if CONFIG_ENTROPY_STATS
td->counts->skip_mode[skip_mode_ctx][mbmi->skip_mode]++;
#endif
update_cdf(fc->skip_mode_cdfs[skip_mode_ctx], mbmi->skip_mode, 2);
}
#if CONFIG_SKIP_MODE_ENHANCEMENT
if (!seg_ref_active) {
#else
if (!mbmi->skip_mode && !seg_ref_active) {
#endif // CONFIG_SKIP_MODE_ENHANCEMENT
const int skip_ctx = av1_get_skip_txfm_context(xd);
#if CONFIG_ENTROPY_STATS
td->counts
->skip_txfm[skip_ctx][mbmi->skip_txfm[xd->tree_type == CHROMA_PART]]++;
#endif
update_cdf(fc->skip_txfm_cdfs[skip_ctx],
mbmi->skip_txfm[xd->tree_type == CHROMA_PART], 2);
}
#if CONFIG_ENTROPY_STATS
// delta quant applies to both intra and inter
const int super_block_upper_left =
((xd->mi_row & (cm->seq_params.mib_size - 1)) == 0) &&
((xd->mi_col & (cm->seq_params.mib_size - 1)) == 0);
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
if (delta_q_info->delta_q_present_flag &&
(bsize != cm->seq_params.sb_size ||
!mbmi->skip_txfm[xd->tree_type == CHROMA_PART]) &&
super_block_upper_left) {
const int dq = (mbmi->current_qindex - xd->current_base_qindex) /
delta_q_info->delta_q_res;
const int absdq = abs(dq);
for (int i = 0; i < AOMMIN(absdq, DELTA_Q_SMALL); ++i) {
td->counts->delta_q[i][1]++;
}
if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++;
if (delta_q_info->delta_lf_present_flag) {
if (delta_q_info->delta_lf_multi) {
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
const int delta_lf = (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) /
delta_q_info->delta_lf_res;
const int abs_delta_lf = abs(delta_lf);
for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) {
td->counts->delta_lf_multi[lf_id][i][1]++;
}
if (abs_delta_lf < DELTA_LF_SMALL)
td->counts->delta_lf_multi[lf_id][abs_delta_lf][0]++;
}
} else {
const int delta_lf =
(mbmi->delta_lf_from_base - xd->delta_lf_from_base) /
delta_q_info->delta_lf_res;
const int abs_delta_lf = abs(delta_lf);
for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) {
td->counts->delta_lf[i][1]++;
}
if (abs_delta_lf < DELTA_LF_SMALL)
td->counts->delta_lf[abs_delta_lf][0]++;
}
}
}
#endif
if (!is_inter_block(mbmi, xd->tree_type)) {
av1_sum_intra_stats(cm, td->counts, xd, mbmi);
}
if (av1_allow_intrabc(cm) && xd->tree_type != CHROMA_PART) {
const int use_intrabc = is_intrabc_block(mbmi, xd->tree_type);
#if CONFIG_NEW_CONTEXT_MODELING
const int intrabc_ctx = get_intrabc_ctx(xd);
update_cdf(fc->intrabc_cdf[intrabc_ctx], use_intrabc, 2);
#if CONFIG_ENTROPY_STATS
++td->counts->intrabc[intrabc_ctx][use_intrabc];
#endif // CONFIG_ENTROPY_STATS
#else
update_cdf(fc->intrabc_cdf, use_intrabc, 2);
#if CONFIG_ENTROPY_STATS
++td->counts->intrabc[use_intrabc];
#endif // CONFIG_ENTROPY_STATS
#endif // CONFIG_NEW_CONTEXT_MODELING
#if CONFIG_BVCOST_UPDATE
if (use_intrabc) {
const int_mv ref_mv = mbmi_ext->ref_mv_stack[INTRA_FRAME][0].this_mv;
#if CONFIG_FLEX_MVRES
av1_update_mv_stats(mbmi->mv[0].as_mv, ref_mv.as_mv, &fc->ndvc,
#if CONFIG_ADAPTIVE_MVD
0,
#endif // CONFIG_ADAPTIVE_MVD
MV_PRECISION_ONE_PEL);
}
#else
av1_update_mv_stats(&mbmi->mv[0].as_mv, &ref_mv.as_mv, &fc->ndvc,
#if CONFIG_ADAPTIVE_MVD
0,
#endif // CONFIG_ADAPTIVE_MVD
MV_SUBPEL_NONE);
}
#endif
#endif // CONFIG_BVCOST_UPDATE
#if CONFIG_BVP_IMPROVEMENT
if (use_intrabc) {
update_cdf(fc->intrabc_mode_cdf, mbmi->intrabc_mode, 2);
#if CONFIG_ENTROPY_STATS
++td->counts->intrabc_mode[mbmi->intrabc_mode];
#endif // CONFIG_ENTROPY_STATS
update_intrabc_drl_idx_stats(MAX_REF_BV_STACK_SIZE, fc, td->counts, mbmi);
}
#endif // CONFIG_BVP_IMPROVEMENT
}
#if CONFIG_SKIP_MODE_ENHANCEMENT
if (mbmi->skip_mode && have_drl_index(mbmi->mode)) {
FRAME_COUNTS *const counts = td->counts;
#if CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
update_skip_drl_index_stats(cm->features.max_drl_bits, fc, counts, mbmi);
#else
const int16_t mode_ctx_pristine =
av1_mode_context_pristine(mbmi_ext->mode_context, mbmi->ref_frame);
update_drl_index_stats(cm->features.max_drl_bits, mode_ctx_pristine, fc,
counts, mbmi, mbmi_ext);
#endif // CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
}
#endif // CONFIG_SKIP_MODE_ENHANCEMENT
if (frame_is_intra_only(cm) || mbmi->skip_mode) return;
FRAME_COUNTS *const counts = td->counts;
const int inter_block = mbmi->ref_frame[0] != INTRA_FRAME;
if (!seg_ref_active) {
#if CONFIG_ENTROPY_STATS && !CONFIG_CONTEXT_DERIVATION
counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++;
#endif // CONFIG_ENTROPY_STATS && !CONFIG_CONTEXT_DERIVATION
#if CONFIG_CONTEXT_DERIVATION
const int skip_txfm = mbmi->skip_txfm[xd->tree_type == CHROMA_PART];
#if CONFIG_ENTROPY_STATS
counts->intra_inter[skip_txfm][av1_get_intra_inter_context(xd)]
[inter_block]++;
#endif // CONFIG_ENTROPY_STATS
update_cdf(fc->intra_inter_cdf[skip_txfm][av1_get_intra_inter_context(xd)],
inter_block, 2);
#else
update_cdf(fc->intra_inter_cdf[av1_get_intra_inter_context(xd)],
inter_block, 2);
#endif // CONFIG_CONTEXT_DERIVATION
// If the segment reference feature is enabled we have only a single
// reference frame allowed for the segment so exclude it from
// the reference frame counts used to work out probabilities.
if (inter_block) {
const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0];
const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1];
#if CONFIG_TIP
if (cm->features.tip_frame_mode &&
#if CONFIG_EXT_RECUR_PARTITIONS
is_tip_allowed_bsize(mbmi)) {
#else // CONFIG_EXT_RECUR_PARTITIONS
is_tip_allowed_bsize(bsize)) {
#endif // CONFIG_EXT_RECUR_PARTITIONS
const int tip_ctx = get_tip_ctx(xd);
update_cdf(fc->tip_cdf[tip_ctx], is_tip_ref_frame(ref0), 2);
#if CONFIG_ENTROPY_STATS
++counts->tip_ref[tip_ctx][is_tip_ref_frame(ref0)];
#endif
}
#endif // CONFIG_TIP
if (current_frame->reference_mode == REFERENCE_MODE_SELECT
#if CONFIG_TIP
&& !is_tip_ref_frame(ref0)
#endif // CONFIG_TIP
) {
if (is_comp_ref_allowed(bsize)) {
#if CONFIG_ENTROPY_STATS
counts->comp_inter[av1_get_reference_mode_context(cm, xd)]
[has_second_ref(mbmi)]++;
#endif // CONFIG_ENTROPY_STATS
update_cdf(av1_get_reference_mode_cdf(cm, xd), has_second_ref(mbmi),
2);
}
}
if (has_second_ref(mbmi)) {
const int n_refs = cm->ref_frames_info.num_total_refs;
int n_bits = 0;
#if CONFIG_ALLOW_SAME_REF_COMPOUND
assert(ref0 <= ref1);
for (int i = 0; i < n_refs - 1 && n_bits < 2; i++) {
const int bit =
((n_bits == 0) && (ref0 == i)) || ((n_bits == 1) && (ref1 == i));
#else
assert(ref0 < ref1);
for (int i = 0; i < n_refs + n_bits - 2 && n_bits < 2; i++) {
const int bit = ref0 == i || ref1 == i;
#endif // CONFIG_ALLOW_SAME_REF_COMPOUND
const int bit_type = n_bits == 0 ? -1
: av1_get_compound_ref_bit_type(
&cm->ref_frames_info, ref0, i);
if (n_bits > 0 || i < RANKED_REF0_TO_PRUNE - 1)
update_cdf(
av1_get_pred_cdf_compound_ref(xd, i, n_bits, bit_type, n_refs),
bit, 2);
#if CONFIG_ENTROPY_STATS
if (n_bits == 0) {
if (i < RANKED_REF0_TO_PRUNE - 1)
counts->comp_ref0[av1_get_ref_pred_context(xd, i, n_refs)][i]
[bit]++;
} else {
counts->comp_ref1[av1_get_ref_pred_context(xd, i, n_refs)][bit_type]
[i - 1][bit]++;
}
#endif // CONFIG_ENTROPY_STATS
n_bits += bit;
#if CONFIG_ALLOW_SAME_REF_COMPOUND
if (i < cm->ref_frames_info.num_same_ref_compound) i -= bit;
#endif // CONFIG_ALLOW_SAME_REF_COMPOUND
}
#if CONFIG_TIP
} else if (!is_tip_ref_frame(ref0)) {
#else
} else {
#endif // CONFIG_TIP
const int n_refs = cm->ref_frames_info.num_total_refs;
const MV_REFERENCE_FRAME ref0_nrs = mbmi->ref_frame[0];
for (int i = 0; i < n_refs - 1; i++) {
const int bit = ref0_nrs == i;
update_cdf(av1_get_pred_cdf_single_ref(xd, i, n_refs), bit, 2);
#if CONFIG_ENTROPY_STATS
counts->single_ref[av1_get_ref_pred_context(xd, i, n_refs)][i][bit]++;
#endif // CONFIG_ENTROPY_STATS
if (bit) break;
}
}
#if CONFIG_BAWP
if (cm->features.enable_bawp &&
av1_allow_bawp(mbmi, xd->mi_row, xd->mi_col)) {
update_cdf(fc->bawp_cdf, mbmi->bawp_flag == 1, 2);
#if CONFIG_ENTROPY_STATS
counts->bawp[mbmi->bawp_flag == 1]++;
#endif // CONFIG_ENTROPY_STATS
}
#endif // CONFIG_BAWP
#if CONFIG_EXTENDED_WARP_PREDICTION
const int allowed_motion_modes = motion_mode_allowed(
cm, xd, mbmi_ext->ref_mv_stack[mbmi->ref_frame[0]], mbmi);
MOTION_MODE motion_mode = mbmi->motion_mode;
#if CONFIG_WARPMV
if (mbmi->mode == WARPMV) {
if (allowed_motion_modes & (1 << WARPED_CAUSAL)) {
update_cdf(fc->warped_causal_warpmv_cdf[bsize],
motion_mode == WARPED_CAUSAL, 2);
}
}
#endif // CONFIG_WARPMV
bool continue_motion_mode_signaling =
#if CONFIG_WARPMV
(mbmi->mode == WARPMV) ? false :
#endif // CONFIG_WARPMV
true;
#if CONFIG_WARPMV
assert(IMPLIES(mbmi->mode == WARPMV,
mbmi->motion_mode == WARP_DELTA ||
mbmi->motion_mode == WARPED_CAUSAL));
#endif // CONFIG_WARPMV
if (continue_motion_mode_signaling &&
(allowed_motion_modes & (1 << INTERINTRA))) {
const int bsize_group = size_group_lookup[bsize];
#if CONFIG_ENTROPY_STATS
counts->interintra[bsize_group][motion_mode == INTERINTRA]++;
#endif
update_cdf(fc->interintra_cdf[bsize_group], motion_mode == INTERINTRA,
2);
if (motion_mode == INTERINTRA) {
#if CONFIG_ENTROPY_STATS
counts->interintra_mode[bsize_group][mbmi->interintra_mode]++;
#endif
update_cdf(fc->interintra_mode_cdf[bsize_group],
mbmi->interintra_mode, INTERINTRA_MODES);
if (av1_is_wedge_used(bsize)) {
#if CONFIG_ENTROPY_STATS
counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++;
#endif
update_cdf(fc->wedge_interintra_cdf[bsize],
mbmi->use_wedge_interintra, 2);
if (mbmi->use_wedge_interintra) {
#if CONFIG_WEDGE_MOD_EXT
update_wedge_mode_cdf(fc, bsize, mbmi->interintra_wedge_index
#if CONFIG_ENTROPY_STATS
,
counts
#endif // CONFIG_ENTROPY_STATS
);
#else
#if CONFIG_ENTROPY_STATS
counts->wedge_idx[bsize][mbmi->interintra_wedge_index]++;
#endif
update_cdf(fc->wedge_idx_cdf[bsize], mbmi->interintra_wedge_index,
16);
#endif // CONFIG_WEDGE_MOD_EXT
}
}
continue_motion_mode_signaling = false;
}
}
if (continue_motion_mode_signaling &&
(allowed_motion_modes & (1 << OBMC_CAUSAL))) {
#if CONFIG_ENTROPY_STATS
counts->obmc[bsize][motion_mode == OBMC_CAUSAL]++;
#endif
update_cdf(fc->obmc_cdf[bsize], motion_mode == OBMC_CAUSAL, 2);
if (motion_mode == OBMC_CAUSAL) {
continue_motion_mode_signaling = false;
}
}
if (continue_motion_mode_signaling &&
allowed_motion_modes & (1 << WARP_EXTEND)) {
const int ctx1 = av1_get_warp_extend_ctx1(xd, mbmi);
const int ctx2 = av1_get_warp_extend_ctx2(xd, mbmi);
#if CONFIG_ENTROPY_STATS
counts->warp_extend[ctx1][ctx2][mbmi->motion_mode == WARP_EXTEND]++;
#endif
update_cdf(fc->warp_extend_cdf[ctx1][ctx2],
mbmi->motion_mode == WARP_EXTEND, 2);
if (motion_mode == WARP_EXTEND) {
continue_motion_mode_signaling = false;
}
}
if (continue_motion_mode_signaling &&
(allowed_motion_modes & (1 << WARPED_CAUSAL))) {
#if CONFIG_ENTROPY_STATS
counts->warped_causal[bsize][motion_mode == WARPED_CAUSAL]++;
#endif
update_cdf(fc->warped_causal_cdf[bsize], motion_mode == WARPED_CAUSAL,
2);
if (motion_mode == WARPED_CAUSAL) {
continue_motion_mode_signaling = false;
}
}
if (continue_motion_mode_signaling &&
(allowed_motion_modes & (1 << WARP_DELTA))) {
#if CONFIG_ENTROPY_STATS
counts->warp_delta[bsize][motion_mode == WARP_DELTA]++;
#endif
update_cdf(fc->warp_delta_cdf[bsize], motion_mode == WARP_DELTA, 2);
}
if (motion_mode == WARP_DELTA
#if CONFIG_WARPMV
|| (motion_mode == WARPED_CAUSAL && mbmi->mode == WARPMV)
#endif // CONFIG_WARPMV
) {
update_warp_delta_stats(cm,
#if !CONFIG_WARP_REF_LIST
xd,
#endif //! CONFIG_WARP_REF_LIST
mbmi, mbmi_ext,
#if CONFIG_ENTROPY_STATS
counts,
#endif // CONFIG_ENTROPY_STATS
fc);
// The following line is commented out to remove a spurious
// static analysis warning. Uncomment when adding a new motion mode
// continue_motion_mode_signaling = false;
}
#else
if (cm->seq_params.enable_interintra_compound &&
is_interintra_allowed(mbmi)) {
const int bsize_group = size_group_lookup[bsize];
if (mbmi->ref_frame[1] == INTRA_FRAME) {
#if CONFIG_ENTROPY_STATS
counts->interintra[bsize_group][1]++;
#endif
update_cdf(fc->interintra_cdf[bsize_group], 1, 2);
#if CONFIG_ENTROPY_STATS
counts->interintra_mode[bsize_group][mbmi->interintra_mode]++;
#endif
update_cdf(fc->interintra_mode_cdf[bsize_group],
mbmi->interintra_mode, INTERINTRA_MODES);
if (av1_is_wedge_used(bsize)) {
#if CONFIG_ENTROPY_STATS
counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++;
#endif
update_cdf(fc->wedge_interintra_cdf[bsize],
mbmi->use_wedge_interintra, 2);
if (mbmi->use_wedge_interintra) {
#if CONFIG_WEDGE_MOD_EXT
update_wedge_mode_cdf(fc, bsize, mbmi->interintra_wedge_index
#if CONFIG_ENTROPY_STATS
,
counts
#endif // CONFIG_ENTROPY_STATS
);
#else
#if CONFIG_ENTROPY_STATS
counts->wedge_idx[bsize][mbmi->interintra_wedge_index]++;
#endif
update_cdf(fc->wedge_idx_cdf[bsize], mbmi->interintra_wedge_index,
16);
#endif // CONFIG_WEDGE_MOD_EXT
}
}
} else {
#if CONFIG_ENTROPY_STATS
counts->interintra[bsize_group][0]++;
#endif
update_cdf(fc->interintra_cdf[bsize_group], 0, 2);
}
}
const MOTION_MODE motion_allowed = motion_mode_allowed(cm, xd, mbmi);
if (mbmi->ref_frame[1] != INTRA_FRAME) {
if (motion_allowed == WARPED_CAUSAL) {
#if CONFIG_ENTROPY_STATS
counts->motion_mode[bsize][mbmi->motion_mode]++;
#endif
update_cdf(fc->motion_mode_cdf[bsize], mbmi->motion_mode,
MOTION_MODES);
} else if (motion_allowed == OBMC_CAUSAL) {
#if CONFIG_ENTROPY_STATS
counts->obmc[bsize][mbmi->motion_mode == OBMC_CAUSAL]++;
#endif
update_cdf(fc->obmc_cdf[bsize], mbmi->motion_mode == OBMC_CAUSAL, 2);
}
}
#endif // CONFIG_EXTENDED_WARP_PREDICTION
if (has_second_ref(mbmi)
#if CONFIG_OPTFLOW_REFINEMENT
&& mbmi->mode < NEAR_NEARMV_OPTFLOW
#endif // CONFIG_OPTFLOW_REFINEMENT
#if IMPROVED_AMVD && CONFIG_JOINT_MVD
&& !is_joint_amvd_coding_mode(mbmi->mode)
#endif // IMPROVED_AMVD && CONFIG_JOINT_MVD
) {
assert(current_frame->reference_mode != SINGLE_REFERENCE &&
is_inter_compound_mode(mbmi->mode) &&
mbmi->motion_mode == SIMPLE_TRANSLATION);
const int masked_compound_used = is_any_masked_compound_used(bsize) &&
cm->seq_params.enable_masked_compound;
if (masked_compound_used) {
const int comp_group_idx_ctx = get_comp_group_idx_context(cm, xd);
#if CONFIG_ENTROPY_STATS
++counts->comp_group_idx[comp_group_idx_ctx][mbmi->comp_group_idx];
#endif
update_cdf(fc->comp_group_idx_cdf[comp_group_idx_ctx],
mbmi->comp_group_idx, 2);
}
if (mbmi->comp_group_idx == 1) {
assert(masked_compound_used);
if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) {
#if CONFIG_ENTROPY_STATS
++counts->compound_type[bsize][mbmi->interinter_comp.type -
COMPOUND_WEDGE];
#endif
update_cdf(fc->compound_type_cdf[bsize],
mbmi->interinter_comp.type - COMPOUND_WEDGE,
MASKED_COMPOUND_TYPES);
}
}
}
if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) {
#if CONFIG_WEDGE_MOD_EXT
update_wedge_mode_cdf(fc, bsize, mbmi->interinter_comp.wedge_index
#if CONFIG_ENTROPY_STATS
,
counts
#endif // CONFIG_ENTROPY_STATS
);
#else
#if CONFIG_ENTROPY_STATS
counts->wedge_idx[bsize][mbmi->interinter_comp.wedge_index]++;
#endif
update_cdf(fc->wedge_idx_cdf[bsize],
mbmi->interinter_comp.wedge_index, 16);
#endif // CONFIG_WEDGE_MOD_EXT
}
}
}
}
if (inter_block && cm->features.interp_filter == SWITCHABLE &&
!is_warp_mode(mbmi->motion_mode) &&
!is_nontrans_global_motion(xd, mbmi)) {
update_filter_type_cdf(xd, mbmi);
}
if (inter_block &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
const PREDICTION_MODE mode = mbmi->mode;
const int16_t mode_ctx =
av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame);
if (has_second_ref(mbmi)) {
#if CONFIG_OPTFLOW_REFINEMENT
if (cm->features.opfl_refine_type == REFINE_SWITCHABLE &&
is_opfl_refine_allowed(cm, mbmi)) {
const int use_optical_flow = mode >= NEAR_NEARMV_OPTFLOW;
#if CONFIG_ENTROPY_STATS
++counts->use_optflow[mode_ctx][use_optical_flow];
#endif
update_cdf(fc->use_optflow_cdf[mode_ctx], use_optical_flow, 2);
}
const int comp_mode_idx = opfl_get_comp_idx(mode);
#if CONFIG_ENTROPY_STATS
++counts->inter_compound_mode[mode_ctx][comp_mode_idx];
#endif
update_cdf(fc->inter_compound_mode_cdf[mode_ctx], comp_mode_idx,
INTER_COMPOUND_REF_TYPES);
#else
#if CONFIG_ENTROPY_STATS
++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)];
#endif
update_cdf(fc->inter_compound_mode_cdf[mode_ctx],
INTER_COMPOUND_OFFSET(mode), INTER_COMPOUND_MODES);
#endif // CONFIG_OPTFLOW_REFINEMENT
#if CONFIG_IMPROVED_JMVD && CONFIG_JOINT_MVD
if (is_joint_mvd_coding_mode(mbmi->mode)) {
#if CONFIG_ADAPTIVE_MVD
const int is_joint_amvd_mode = is_joint_amvd_coding_mode(mbmi->mode);
aom_cdf_prob *jmvd_scale_mode_cdf = is_joint_amvd_mode
? fc->jmvd_amvd_scale_mode_cdf
: fc->jmvd_scale_mode_cdf;
const int jmvd_scale_cnt = is_joint_amvd_mode
? JOINT_AMVD_SCALE_FACTOR_CNT
: JOINT_NEWMV_SCALE_FACTOR_CNT;
update_cdf(jmvd_scale_mode_cdf, mbmi->jmvd_scale_mode, jmvd_scale_cnt);
#else
update_cdf(fc->jmvd_scale_mode_cdf, mbmi->jmvd_scale_mode,
JOINT_NEWMV_SCALE_FACTOR_CNT);
#endif // CONFIG_ADAPTIVE_MVD
}
#endif // CONFIG_IMPROVED_JMVD && CONFIG_JOINT_MVD
} else {
av1_update_inter_mode_stats(fc, counts, mode, mode_ctx
#if CONFIG_WARPMV
,
cm, xd, mbmi, bsize
#endif // CONFIG_WARPMV
);
}
const int new_mv = have_newmv_in_each_reference(mbmi->mode);
#if CONFIG_JOINT_MVD
const int jmvd_base_ref_list = is_joint_mvd_coding_mode(mbmi->mode)
? get_joint_mvd_base_ref_list(cm, mbmi)
: 0;
#endif // CONFIG_JOINT_MVD
#if CONFIG_ADAPTIVE_MVD
const int is_adaptive_mvd = enable_adaptive_mvd_resolution(cm, mbmi);
#endif // CONFIG_ADAPTIVE_MVD
if (have_drl_index(mbmi->mode)) {
const int16_t mode_ctx_pristine =
av1_mode_context_pristine(mbmi_ext->mode_context, mbmi->ref_frame);
update_drl_index_stats(cm->features.max_drl_bits, mode_ctx_pristine, fc,
counts, mbmi, mbmi_ext);
}
if (have_newmv_in_inter_mode(mbmi->mode) && xd->tree_type != CHROMA_PART) {
#if CONFIG_FLEX_MVRES
const int pb_mv_precision = mbmi->pb_mv_precision;
assert(IMPLIES(cm->features.cur_frame_force_integer_mv,
pb_mv_precision == MV_PRECISION_ONE_PEL));
#else
const int allow_hp = cm->features.cur_frame_force_integer_mv
? MV_SUBPEL_NONE
: cm->features.allow_high_precision_mv;
#endif
#if CONFIG_FLEX_MVRES
if (is_pb_mv_precision_active(cm, mbmi, bsize)) {
#if CONFIG_ADAPTIVE_MVD
assert(!is_adaptive_mvd);
#endif
assert(mbmi->most_probable_pb_mv_precision <= mbmi->max_mv_precision);
const int mpp_flag_context = av1_get_mpp_flag_context(cm, xd);
const int mpp_flag =
(mbmi->pb_mv_precision == mbmi->most_probable_pb_mv_precision);
update_cdf(fc->pb_mv_mpp_flag_cdf[mpp_flag_context], mpp_flag, 2);
if (!mpp_flag) {
const PRECISION_SET *precision_def =
&av1_mv_precision_sets[mbmi->mb_precision_set];
int down = av1_get_pb_mv_precision_index(mbmi);
int nsymbs = precision_def->num_precisions - 1;
const int down_ctx = av1_get_pb_mv_precision_down_context(cm, xd);
update_cdf(fc->pb_mv_precision_cdf[down_ctx][mbmi->max_mv_precision -
MV_PRECISION_HALF_PEL],
down, nsymbs);
}
}
#endif // CONFIG_FLEX_MVRES
if (new_mv) {
for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
const int_mv ref_mv = av1_get_ref_mv(x, ref);
#if CONFIG_FLEX_MVRES
av1_update_mv_stats(mbmi->mv[ref].as_mv, ref_mv.as_mv, &fc->nmvc,
#if CONFIG_ADAPTIVE_MVD
is_adaptive_mvd,
#endif // CONFIG_ADAPTIVE_MVD
pb_mv_precision);
#else
av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc,
#if CONFIG_ADAPTIVE_MVD
is_adaptive_mvd,
#endif // CONFIG_ADAPTIVE_MVD
allow_hp);
#endif
}
} else if (have_nearmv_newmv_in_inter_mode(mbmi->mode)) {
const int ref =
#if CONFIG_OPTFLOW_REFINEMENT
mbmi->mode == NEAR_NEWMV_OPTFLOW ||
#endif // CONFIG_OPTFLOW_REFINEMENT
#if CONFIG_JOINT_MVD
jmvd_base_ref_list ||
#endif // CONFIG_JOINT_MVD
mbmi->mode == NEAR_NEWMV;
const int_mv ref_mv = av1_get_ref_mv(x, ref);
#if CONFIG_FLEX_MVRES
av1_update_mv_stats(mbmi->mv[ref].as_mv, ref_mv.as_mv, &fc->nmvc,
#if CONFIG_ADAPTIVE_MVD
is_adaptive_mvd,
#endif // CONFIG_ADAPTIVE_MVD
pb_mv_precision);
#else
av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc,
#if CONFIG_ADAPTIVE_MVD
is_adaptive_mvd,
#endif // CONFIG_ADAPTIVE_MVD
allow_hp);
#endif
}
}
}
}
/*!\brief Reconstructs an individual coding block
*
* \ingroup partition_search
* Reconstructs an individual coding block by applying the chosen modes stored
* in ctx, also updates mode counts and entropy models.
*
* This function works on planes determined by get_partition_plane_start() and
* get_partition_plane_end() based on xd->tree_type.
*
* \param[in] cpi Top-level encoder structure
* \param[in] tile_data Pointer to struct holding adaptive
* data/contexts/models for the tile during encoding
* \param[in] td Pointer to thread data
* \param[in] tp Pointer to the starting token
* \param[in] mi_row Row coordinate of the block in a step size of MI_SIZE
* \param[in] mi_col Column coordinate of the block in a step size of
* MI_SIZE
* \param[in] dry_run A code indicating whether it is part of the final
* pass for reconstructing the superblock
* \param[in] bsize Current block size
* \param[in] partition Partition mode of the parent block
* \param[in] ctx Pointer to structure holding coding contexts and the
* chosen modes for the current block
* \param[in] rate Pointer to the total rate for the current block
*
* Nothing is returned. Instead, reconstructions (w/o in-loop filters)
* will be updated in the pixel buffers in td->mb.e_mbd. Also, the chosen modes
* will be stored in the MB_MODE_INFO buffer td->mb.e_mbd.mi[0].
*/
static void encode_b(const AV1_COMP *const cpi, TileDataEnc *tile_data,
ThreadData *td, TokenExtra **tp, int mi_row, int mi_col,
RUN_TYPE dry_run, BLOCK_SIZE bsize,
PARTITION_TYPE partition,
const PICK_MODE_CONTEXT *const ctx, int *rate) {
const AV1_COMMON *const cm = &cpi->common;
TileInfo *const tile = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *xd = &x->e_mbd;
av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize,
&ctx->chroma_ref_info);
const int origin_mult = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
MB_MODE_INFO *mbmi = xd->mi[0];
mbmi->partition = partition;
av1_update_state(cpi, td, ctx, mi_row, mi_col, bsize, dry_run);
const int num_planes = av1_num_planes(cm);
const int plane_start = (xd->tree_type == CHROMA_PART);
const int plane_end = (xd->tree_type == LUMA_PART) ? 1 : num_planes;
if (!dry_run) {
for (int plane = plane_start; plane < plane_end; plane++) {
x->mbmi_ext_frame->cb_offset[plane] = x->cb_offset[plane];
assert(x->cb_offset[plane] <
(1 << num_pels_log2_lookup[cpi->common.seq_params.sb_size]));
}
#if CONFIG_PC_WIENER
av1_init_txk_skip_array(&cpi->common, mi_row, mi_col, bsize, 0,
xd->tree_type, &mbmi->chroma_ref_info, plane_start,
plane_end);
#endif // CONFIG_PC_WIENER
}
encode_superblock(cpi, tile_data, td, tp, dry_run, bsize, plane_start,
plane_end, rate);
if (!dry_run) {
for (int plane = plane_start; plane < plane_end; ++plane) {
if (plane == 0) {
x->cb_offset[plane] += block_size_wide[bsize] * block_size_high[bsize];
} else if (xd->is_chroma_ref) {
const BLOCK_SIZE bsize_base = mbmi->chroma_ref_info.bsize_base;
x->cb_offset[plane] +=
block_size_wide[bsize_base] * block_size_high[bsize_base];
}
}
if (bsize == cpi->common.seq_params.sb_size &&
mbmi->skip_txfm[xd->tree_type == CHROMA_PART] == 1 &&
cm->delta_q_info.delta_lf_present_flag) {
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id];
mbmi->delta_lf_from_base = xd->delta_lf_from_base;
}
if (has_second_ref(mbmi)) {
if (mbmi->interinter_comp.type == COMPOUND_AVERAGE)
mbmi->comp_group_idx = 0;
else
mbmi->comp_group_idx = 1;
}
// delta quant applies to both intra and inter
const int super_block_upper_left =
((mi_row & (cm->seq_params.mib_size - 1)) == 0) &&
((mi_col & (cm->seq_params.mib_size - 1)) == 0);
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
if (delta_q_info->delta_q_present_flag &&
(bsize != cm->seq_params.sb_size ||
!mbmi->skip_txfm[xd->tree_type == CHROMA_PART]) &&
super_block_upper_left) {
xd->current_base_qindex = mbmi->current_qindex;
if (delta_q_info->delta_lf_present_flag) {
if (delta_q_info->delta_lf_multi) {
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
}
} else {
xd->delta_lf_from_base = mbmi->delta_lf_from_base;
}
}
}
RD_COUNTS *rdc = &td->rd_counts;
if (mbmi->skip_mode) {
assert(!frame_is_intra_only(cm));
rdc->skip_mode_used_flag = 1;
if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
#if !CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
assert(has_second_ref(mbmi));
#endif // !CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
rdc->compound_ref_used_flag = 1;
}
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
} else {
const int seg_ref_active = 0;
if (!seg_ref_active) {
// If the segment reference feature is enabled we have only a single
// reference frame allowed for the segment so exclude it from
// the reference frame counts used to work out probabilities.
if (is_inter_block(mbmi, xd->tree_type)) {
av1_collect_neighbors_ref_counts(xd);
if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
if (has_second_ref(mbmi)) {
// This flag is also updated for 4x4 blocks
rdc->compound_ref_used_flag = 1;
}
}
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
}
}
}
if (tile_data->allow_update_cdf) update_stats(&cpi->common, td);
// Gather obmc and warped motion count to update the probability.
if ((!cpi->sf.inter_sf.disable_obmc &&
cpi->sf.inter_sf.prune_obmc_prob_thresh > 0) ||
#if CONFIG_EXTENDED_WARP_PREDICTION
cpi->sf.inter_sf.prune_warped_prob_thresh > 0) {
#else
(cm->features.allow_warped_motion &&
cpi->sf.inter_sf.prune_warped_prob_thresh > 0)) {
#endif // CONFIG_EXTENDED_WARP_PREDICTION
const int inter_block = is_inter_block(mbmi, xd->tree_type);
const int seg_ref_active = 0;
if (!seg_ref_active && inter_block) {
#if CONFIG_EXTENDED_WARP_PREDICTION
const int allowed_motion_modes = motion_mode_allowed(
cm, xd, x->mbmi_ext->ref_mv_stack[mbmi->ref_frame[0]], mbmi);
if (mbmi->motion_mode != INTERINTRA) {
if (allowed_motion_modes & (1 << OBMC_CAUSAL)) {
td->rd_counts.obmc_used[bsize][mbmi->motion_mode == OBMC_CAUSAL]++;
}
if (allowed_motion_modes & (1 << WARPED_CAUSAL)) {
td->rd_counts.warped_used[mbmi->motion_mode == WARPED_CAUSAL]++;
}
// TODO(rachelbarker): Add counts and pruning for WARP_DELTA and
// WARP_EXTEND
}
#else
const MOTION_MODE motion_allowed = motion_mode_allowed(cm, xd, mbmi);
if (mbmi->ref_frame[1] != INTRA_FRAME) {
if (motion_allowed >= OBMC_CAUSAL) {
td->rd_counts.obmc_used[bsize][mbmi->motion_mode == OBMC_CAUSAL]++;
}
if (motion_allowed == WARPED_CAUSAL) {
td->rd_counts.warped_used[mbmi->motion_mode == WARPED_CAUSAL]++;
}
}
#endif // CONFIG_EXTENDED_WARP_PREDICTION
}
}
}
// TODO(Ravi/Remya): Move this copy function to a better logical place
// This function will copy the best mode information from block
// level (x->mbmi_ext) to frame level (cpi->mbmi_ext_info.frame_base). This
// frame level buffer (cpi->mbmi_ext_info.frame_base) will be used during
// bitstream preparation.
if (xd->tree_type != CHROMA_PART)
#if CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
{
if (mbmi->skip_mode) {
const SkipModeInfo *const skip_mode_info =
&cpi->common.current_frame.skip_mode_info;
MV_REFERENCE_FRAME rf[2];
rf[0] = skip_mode_info->ref_frame_idx_0;
rf[1] = skip_mode_info->ref_frame_idx_1;
MV_REFERENCE_FRAME ref_frame_type = av1_ref_frame_type(rf);
av1_find_mv_refs(&cpi->common, xd, mbmi, ref_frame_type,
x->mbmi_ext->ref_mv_count, xd->ref_mv_stack, xd->weight,
NULL, NULL
#if !CONFIG_C076_INTER_MOD_CTX
,
NULL
#endif //! CONFIG_C076_INTER_MOD_CTX
#if CONFIG_WARP_REF_LIST
,
NULL, 0, NULL
#endif // CONFIG_WARP_REF_LIST
);
// TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and
// mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs.
av1_copy_usable_ref_mv_stack_and_weight(xd, x->mbmi_ext, ref_frame_type);
}
#endif // CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
av1_copy_mbmi_ext_to_mbmi_ext_frame(
x->mbmi_ext_frame, x->mbmi_ext,
#if CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
mbmi->skip_mode,
#endif // CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
av1_ref_frame_type(xd->mi[0]->ref_frame));
#if CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
}
#endif // CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
x->rdmult = origin_mult;
}
static void update_partition_stats(MACROBLOCKD *const xd,
#if CONFIG_ENTROPY_STATS
FRAME_COUNTS *counts,
#endif // CONFIG_ENTROPY_STATS
int allow_update_cdf,
const CommonModeInfoParams *const mi_params,
#if CONFIG_EXT_RECUR_PARTITIONS
int disable_ext_part,
#if !CONFIG_H_PARTITION
PARTITION_TREE const *ptree,
#endif // !CONFIG_H_PARTITION
PARTITION_TREE const *ptree_luma,
const CHROMA_REF_INFO *chroma_ref_info,
#endif // CONFIG_EXT_RECUR_PARTITIONS
PARTITION_TYPE partition, const int mi_row,
const int mi_col, BLOCK_SIZE bsize,
const int ctx) {
const int plane_index = xd->tree_type == CHROMA_PART;
#if CONFIG_EXT_RECUR_PARTITIONS
const int ss_x = xd->plane[1].subsampling_x;
const int ss_y = xd->plane[1].subsampling_y;
if (is_luma_chroma_share_same_partition(xd->tree_type, ptree_luma, bsize)) {
PARTITION_TYPE derived_partition_mode =
sdp_chroma_part_from_luma(bsize, ptree_luma->partition, ss_x, ss_y);
assert(partition == derived_partition_mode &&
"Chroma partition does not match the derived mode.");
(void)derived_partition_mode;
return;
}
PARTITION_TYPE implied_partition;
const bool is_part_implied = is_partition_implied_at_boundary(
mi_params, xd->tree_type, ss_x, ss_y, mi_row, mi_col, bsize,
chroma_ref_info, &implied_partition);
if (is_part_implied) {
assert(partition == implied_partition &&
"Partition doesn't match the implied partition at boundary.");
return;
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
FRAME_CONTEXT *fc = xd->tile_ctx;
#if CONFIG_EXT_RECUR_PARTITIONS
#if !CONFIG_H_PARTITION
const PARTITION_TYPE parent_partition =
ptree->parent ? ptree->parent->partition : PARTITION_INVALID;
const bool is_middle_block = (parent_partition == PARTITION_HORZ_3 ||
parent_partition == PARTITION_VERT_3) &&
ptree->index == 1;
const bool limit_rect_split = is_middle_block &&
is_bsize_geq(bsize, BLOCK_8X8) &&
is_bsize_geq(BLOCK_64X64, bsize);
#endif // !CONFIG_H_PARTITION
if (is_square_block(bsize)) {
if (disable_ext_part) {
#if !CONFIG_H_PARTITION
if (limit_rect_split) {
const int dir_idx = (parent_partition == PARTITION_HORZ_3) ? 0 : 1;
const int symbol = get_symbol_from_limited_partition_noext(
partition, parent_partition);
if (allow_update_cdf) {
update_cdf(fc->limited_partition_noext_cdf[plane_index][dir_idx][ctx],
symbol, LIMITED_PARTITION_TYPES);
}
} else {
#endif // !CONFIG_H_PARTITION
if (allow_update_cdf) {
update_cdf(fc->partition_noext_cdf[plane_index][ctx], partition,
PARTITION_TYPES);
}
#if !CONFIG_H_PARTITION
}
#endif // !CONFIG_H_PARTITION
} else {
#if !CONFIG_H_PARTITION
if (limit_rect_split) {
const int dir_idx = (parent_partition == PARTITION_HORZ_3) ? 0 : 1;
const int symbol =
get_symbol_from_limited_partition(partition, parent_partition);
#if CONFIG_ENTROPY_STATS
counts->limited_partition[plane_index][dir_idx][ctx][symbol]++;
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf) {
update_cdf(fc->limited_partition_cdf[plane_index][dir_idx][ctx],
symbol, limited_partition_cdf_length(bsize));
}
} else {
#endif // !CONFIG_H_PARTITION
#if CONFIG_ENTROPY_STATS
counts->partition[plane_index][ctx][partition]++;
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf) {
update_cdf(fc->partition_cdf[plane_index][ctx], partition,
partition_cdf_length(bsize));
}
#if !CONFIG_H_PARTITION
}
#endif // !CONFIG_H_PARTITION
}
} else { // Rectangular blocks
if (disable_ext_part) {
#if !CONFIG_H_PARTITION
if (limit_rect_split) {
const PARTITION_TYPE_REC p_rec =
get_symbol_from_limited_partition_noext(partition,
parent_partition);
if (allow_update_cdf) {
update_cdf(fc->partition_middle_noext_rec_cdf[ctx], p_rec,
partition_middle_noext_rec_cdf_length(bsize));
}
} else {
#endif // !CONFIG_H_PARTITION
const PARTITION_TYPE_REC p_rec =
get_symbol_from_partition_noext_rec_block(bsize, partition);
if (allow_update_cdf) {
update_cdf(fc->partition_noext_rec_cdf[ctx], p_rec,
partition_noext_rec_cdf_length(bsize));
}
#if !CONFIG_H_PARTITION
}
#endif // !CONFIG_H_PARTITION
} else {
const PARTITION_TYPE_REC p_rec =
get_symbol_from_partition_rec_block(bsize, partition);
#if !CONFIG_H_PARTITION
if (limit_rect_split) {
#if CONFIG_ENTROPY_STATS
counts->partition_middle_rec[ctx][p_rec]++;
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf) {
update_cdf(fc->partition_middle_rec_cdf[ctx], p_rec,
partition_middle_rec_cdf_length(bsize));
}
} else {
#endif // !CONFIG_H_PARTITION
#if CONFIG_ENTROPY_STATS
counts->partition_rec[ctx][p_rec]++;
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf) {
update_cdf(fc->partition_rec_cdf[ctx], p_rec,
partition_rec_cdf_length(bsize));
}
#if !CONFIG_H_PARTITION
}
#endif // !CONFIG_H_PARTITION
}
}
#else // CONFIG_EXT_RECUR_PARTITIONS
const int hbs_w = mi_size_wide[bsize] / 2;
const int hbs_h = mi_size_high[bsize] / 2;
const int has_rows = (mi_row + hbs_h) < mi_params->mi_rows;
const int has_cols = (mi_col + hbs_w) < mi_params->mi_cols;
if (has_rows && has_cols) {
int luma_split_flag = 0;
int parent_block_width = block_size_wide[bsize];
if (xd->tree_type == CHROMA_PART &&
parent_block_width >= SHARED_PART_SIZE) {
luma_split_flag = get_luma_split_flag(bsize, mi_params, mi_row, mi_col);
}
if (luma_split_flag <= 3) {
#if CONFIG_ENTROPY_STATS
counts->partition[plane_index][ctx][partition]++;
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf) {
update_cdf(fc->partition_cdf[plane_index][ctx], partition,
partition_cdf_length(bsize));
}
} else {
// if luma blocks uses smaller blocks, then chroma will also split
assert(partition == PARTITION_SPLIT);
}
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
}
#if CONFIG_EXT_RECUR_PARTITIONS
/*!\brief Reconstructs a partition (may contain multiple coding blocks)
*
* \ingroup partition_search
* Reconstructs a sub-partition of the superblock by applying the chosen modes
* and partition trees stored in pc_tree.
*
* \param[in] cpi Top-level encoder structure
* \param[in] td Pointer to thread data
* \param[in] tile_data Pointer to struct holding adaptive
* data/contexts/models for the tile during encoding
* \param[in] tp Pointer to the starting token
* \param[in] mi_row Row coordinate of the block in a step size of
* MI_SIZE
* \param[in] mi_col Column coordinate of the block in a step size of
* MI_SIZE
* \param[in] dry_run A code indicating whether it is part of the final
* pass for reconstructing the superblock
* \param[in] bsize Current block size
* \param[in] pc_tree Pointer to the PC_TREE node storing the picked
* partitions and mode info for the current block
* \param[in] ptree Pointer to the PARTITION_TREE node holding the
* partition info for the current node and all of its
* descendants.
* \param[in] ptree_luma Pointer to the luma partition tree so that the
* encoder to estimate the
* partition type for chroma.
* \param[in] rate Pointer to the total rate for the current block
*
* \remark Nothing is returned. Instead, reconstructions (w/o in-loop filters)
* will be updated in the pixel buffers in td->mb.e_mbd.
*/
static void encode_sb(const AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TokenExtra **tp, int mi_row,
int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize,
const PC_TREE *pc_tree, PARTITION_TREE *ptree,
PARTITION_TREE *ptree_luma, int *rate) {
#else
/*!\brief Reconstructs a partition (may contain multiple coding blocks)
*
* \ingroup partition_search
* Reconstructs a sub-partition of the superblock by applying the chosen modes
* and partition trees stored in pc_tree.
*
* This function works on planes determined by get_partition_plane_start() and
* get_partition_plane_end() based on xd->tree_type.
*
* \param[in] cpi Top-level encoder structure
* \param[in] td Pointer to thread data
* \param[in] tile_data Pointer to struct holding adaptive
* data/contexts/models for the tile during encoding
* \param[in] tp Pointer to the starting token
* \param[in] mi_row Row coordinate of the block in a step size of MI_SIZE
* \param[in] mi_col Column coordinate of the block in a step size of
* MI_SIZE
* \param[in] dry_run A code indicating whether it is part of the final
* pass for reconstructing the superblock
* \param[in] bsize Current block size
* \param[in] pc_tree Pointer to the PC_TREE node storing the picked
* partitions and mode info for the current block
* \param[in] ptree Pointer to the PARTITION_TREE node holding the
* partition info for the current node and all of its
* descendants.
* \param[in] rate Pointer to the total rate for the current block
*
* \remark Nothing is returned. Instead, reconstructions (w/o in-loop filters)
* will be updated in the pixel buffers in td->mb.e_mbd.
*/
static void encode_sb(const AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TokenExtra **tp, int mi_row,
int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize,
const PC_TREE *pc_tree, PARTITION_TREE *ptree,
int *rate) {
#endif // CONFIG_EXT_RECUR_PARTITIONS
assert(bsize < BLOCK_SIZES_ALL);
const AV1_COMMON *const cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
assert(bsize < BLOCK_SIZES_ALL);
const int hbs_w = mi_size_wide[bsize] / 2;
const int hbs_h = mi_size_high[bsize] / 2;
#if !CONFIG_H_PARTITION
const int qbs_w = mi_size_wide[bsize] / 4;
const int qbs_h = mi_size_high[bsize] / 4;
#endif // !CONFIG_H_PARTITION
const int is_partition_root = is_partition_point(bsize);
const int ctx = is_partition_root
? partition_plane_context(xd, mi_row, mi_col, bsize)
: -1;
const PARTITION_TYPE partition = pc_tree->partitioning;
const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
#if CONFIG_EXT_RECUR_PARTITIONS
const bool disable_ext_part = !cm->seq_params.enable_ext_partitions;
#else
const BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
#endif // CONFIG_EXT_RECUR_PARTITIONS
if (subsize == BLOCK_INVALID) return;
#if CONFIG_EXT_RECUR_PARTITIONS
assert(partition != PARTITION_SPLIT);
#endif // CONFIG_EXT_RECUR_PARTITIONS
if (!dry_run && ctx >= 0)
update_partition_stats(xd,
#if CONFIG_ENTROPY_STATS
td->counts,
#endif // CONFIG_ENTROPY_STATS
tile_data->allow_update_cdf, mi_params,
#if CONFIG_EXT_RECUR_PARTITIONS
disable_ext_part,
#if !CONFIG_H_PARTITION
ptree,
#endif // !CONFIG_H_PARTITION
ptree_luma, &pc_tree->chroma_ref_info,
#endif // CONFIG_EXT_RECUR_PARTITIONS
partition, mi_row, mi_col, bsize, ctx);
PARTITION_TREE *sub_tree[4] = { NULL, NULL, NULL, NULL };
#if CONFIG_EXT_RECUR_PARTITIONS
// If two pass partition tree is enable, then store the partition types in
// ptree even if it's dry run.
if (!dry_run || (cpi->sf.part_sf.two_pass_partition_search && ptree)) {
#else
if (!dry_run) {
#endif // CONFIG_EXT_RECUR_PARTITIONS
assert(ptree);
ptree->partition = partition;
ptree->bsize = bsize;
ptree->mi_row = mi_row;
ptree->mi_col = mi_col;
PARTITION_TREE *parent = ptree->parent;
const int ss_x = xd->plane[1].subsampling_x;
const int ss_y = xd->plane[1].subsampling_y;
set_chroma_ref_info(
mi_row, mi_col, ptree->index, bsize, &ptree->chroma_ref_info,
parent ? &parent->chroma_ref_info : NULL,
parent ? parent->bsize : BLOCK_INVALID,
parent ? parent->partition : PARTITION_NONE, ss_x, ss_y);
switch (partition) {
case PARTITION_SPLIT:
ptree->sub_tree[0] = av1_alloc_ptree_node(ptree, 0);
ptree->sub_tree[1] = av1_alloc_ptree_node(ptree, 1);
ptree->sub_tree[2] = av1_alloc_ptree_node(ptree, 2);
ptree->sub_tree[3] = av1_alloc_ptree_node(ptree, 3);
break;
#if CONFIG_EXT_RECUR_PARTITIONS
case PARTITION_HORZ:
case PARTITION_VERT:
ptree->sub_tree[0] = av1_alloc_ptree_node(ptree, 0);
ptree->sub_tree[1] = av1_alloc_ptree_node(ptree, 1);
break;
case PARTITION_HORZ_3:
case PARTITION_VERT_3:
ptree->sub_tree[0] = av1_alloc_ptree_node(ptree, 0);
ptree->sub_tree[1] = av1_alloc_ptree_node(ptree, 1);
ptree->sub_tree[2] = av1_alloc_ptree_node(ptree, 2);
#if CONFIG_H_PARTITION
ptree->sub_tree[3] = av1_alloc_ptree_node(ptree, 3);
#endif // CONFIG_H_PARTITION
break;
#endif // CONFIG_EXT_RECUR_PARTITIONS
default: break;
}
for (int i = 0; i < 4; ++i) sub_tree[i] = ptree->sub_tree[i];
}
#if CONFIG_EXT_RECUR_PARTITIONS
const int track_ptree_luma =
is_luma_chroma_share_same_partition(xd->tree_type, ptree_luma, bsize);
if (track_ptree_luma && partition != PARTITION_NONE) {
assert(ptree_luma);
assert(ptree_luma->sub_tree);
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
switch (partition) {
case PARTITION_NONE:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, pc_tree->none, rate);
break;
case PARTITION_VERT:
#if CONFIG_EXT_RECUR_PARTITIONS
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize,
pc_tree->vertical[0], sub_tree[0],
track_ptree_luma ? ptree_luma->sub_tree[0] : NULL, rate);
if (mi_col + hbs_w < cm->mi_params.mi_cols) {
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + hbs_w, dry_run,
subsize, pc_tree->vertical[1], sub_tree[1],
track_ptree_luma ? ptree_luma->sub_tree[1] : NULL, rate);
}
#else // CONFIG_EXT_RECUR_PARTITIONS
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, pc_tree->vertical[0], rate);
if (mi_col + hbs_w < mi_params->mi_cols) {
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs_w, dry_run,
subsize, partition, pc_tree->vertical[1], rate);
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
break;
case PARTITION_HORZ:
#if CONFIG_EXT_RECUR_PARTITIONS
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize,
pc_tree->horizontal[0], sub_tree[0],
track_ptree_luma ? ptree_luma->sub_tree[0] : NULL, rate);
if (mi_row + hbs_h < cm->mi_params.mi_rows) {
encode_sb(cpi, td, tile_data, tp, mi_row + hbs_h, mi_col, dry_run,
subsize, pc_tree->horizontal[1], sub_tree[1],
track_ptree_luma ? ptree_luma->sub_tree[1] : NULL, rate);
}
#else // CONFIG_EXT_RECUR_PARTITIONS
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, pc_tree->horizontal[0], rate);
if (mi_row + hbs_h < mi_params->mi_rows) {
encode_b(cpi, tile_data, td, tp, mi_row + hbs_h, mi_col, dry_run,
subsize, partition, pc_tree->horizontal[1], rate);
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
break;
#if CONFIG_EXT_RECUR_PARTITIONS
#if CONFIG_H_PARTITION
case PARTITION_HORZ_3:
case PARTITION_VERT_3: {
for (int i = 0; i < 4; ++i) {
const BLOCK_SIZE this_bsize =
get_h_partition_subsize(bsize, i, partition);
const int offset_r = get_h_partition_offset_mi_row(bsize, i, partition);
const int offset_c = get_h_partition_offset_mi_col(bsize, i, partition);
const int this_mi_row = mi_row + offset_r;
const int this_mi_col = mi_col + offset_c;
PC_TREE *this_pc_tree = partition == PARTITION_HORZ_3
? pc_tree->horizontal3[i]
: pc_tree->vertical3[i];
if (partition == PARTITION_HORZ_3) {
if (this_mi_row >= cm->mi_params.mi_rows) break;
} else {
if (this_mi_col >= cm->mi_params.mi_cols) break;
}
encode_sb(cpi, td, tile_data, tp, this_mi_row, this_mi_col, dry_run,
this_bsize, this_pc_tree, sub_tree[i],
track_ptree_luma ? ptree_luma->sub_tree[i] : NULL, rate);
}
break;
}
#else
case PARTITION_HORZ_3: {
const BLOCK_SIZE bsize3 = get_partition_subsize(bsize, PARTITION_HORZ);
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize,
pc_tree->horizontal3[0], sub_tree[0],
track_ptree_luma ? ptree_luma->sub_tree[0] : NULL, rate);
if (mi_row + qbs_h >= cm->mi_params.mi_rows) break;
encode_sb(cpi, td, tile_data, tp, mi_row + qbs_h, mi_col, dry_run, bsize3,
pc_tree->horizontal3[1], sub_tree[1],
track_ptree_luma ? ptree_luma->sub_tree[1] : NULL, rate);
if (mi_row + 3 * qbs_h >= cm->mi_params.mi_rows) break;
encode_sb(cpi, td, tile_data, tp, mi_row + 3 * qbs_h, mi_col, dry_run,
subsize, pc_tree->horizontal3[2], sub_tree[2],
track_ptree_luma ? ptree_luma->sub_tree[2] : NULL, rate);
break;
}
case PARTITION_VERT_3: {
const BLOCK_SIZE bsize3 = get_partition_subsize(bsize, PARTITION_VERT);
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize,
pc_tree->vertical3[0], sub_tree[0],
track_ptree_luma ? ptree_luma->sub_tree[0] : NULL, rate);
if (mi_col + qbs_w >= cm->mi_params.mi_cols) break;
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + qbs_w, dry_run, bsize3,
pc_tree->vertical3[1], sub_tree[1],
track_ptree_luma ? ptree_luma->sub_tree[1] : NULL, rate);
if (mi_col + 3 * qbs_w >= cm->mi_params.mi_cols) break;
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + 3 * qbs_w, dry_run,
subsize, pc_tree->vertical3[2], sub_tree[2],
track_ptree_luma ? ptree_luma->sub_tree[2] : NULL, rate);
break;
}
#endif // CONFIG_H_PARTITION
#else // CONFIG_EXT_RECUR_PARTITIONS
case PARTITION_SPLIT:
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize,
pc_tree->split[0], sub_tree[0], rate);
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + hbs_w, dry_run,
subsize, pc_tree->split[1], sub_tree[1], rate);
encode_sb(cpi, td, tile_data, tp, mi_row + hbs_h, mi_col, dry_run,
subsize, pc_tree->split[2], sub_tree[2], rate);
encode_sb(cpi, td, tile_data, tp, mi_row + hbs_h, mi_col + hbs_w, dry_run,
subsize, pc_tree->split[3], sub_tree[3], rate);
break;
case PARTITION_HORZ_A:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2,
partition, pc_tree->horizontala[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs_w, dry_run, bsize2,
partition, pc_tree->horizontala[1], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs_h, mi_col, dry_run, subsize,
partition, pc_tree->horizontala[2], rate);
break;
case PARTITION_HORZ_B:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, pc_tree->horizontalb[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs_h, mi_col, dry_run, bsize2,
partition, pc_tree->horizontalb[1], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs_h, mi_col + hbs_w, dry_run,
bsize2, partition, pc_tree->horizontalb[2], rate);
break;
case PARTITION_VERT_A:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2,
partition, pc_tree->verticala[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs_h, mi_col, dry_run, bsize2,
partition, pc_tree->verticala[1], rate);
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs_w, dry_run, subsize,
partition, pc_tree->verticala[2], rate);
break;
case PARTITION_VERT_B:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, pc_tree->verticalb[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs_w, dry_run, bsize2,
partition, pc_tree->verticalb[1], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs_h, mi_col + hbs_w, dry_run,
bsize2, partition, pc_tree->verticalb[2], rate);
break;
case PARTITION_HORZ_4:
for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
int this_mi_row = mi_row + i * qbs_h;
if (i > 0 && this_mi_row >= mi_params->mi_rows) break;
encode_b(cpi, tile_data, td, tp, this_mi_row, mi_col, dry_run, subsize,
partition, pc_tree->horizontal4[i], rate);
}
break;
case PARTITION_VERT_4:
for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
int this_mi_col = mi_col + i * qbs_w;
if (i > 0 && this_mi_col >= mi_params->mi_cols) break;
encode_b(cpi, tile_data, td, tp, mi_row, this_mi_col, dry_run, subsize,
partition, pc_tree->vertical4[i], rate);
}
break;
#endif // CONFIG_EXT_RECUR_PARTITIONS
default: assert(0 && "Invalid partition type."); break;
}
if (ptree) ptree->is_settled = 1;
update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
}
#if CONFIG_EXT_RECUR_PARTITIONS
static void build_one_split_tree(AV1_COMMON *const cm, TREE_TYPE tree_type,
int mi_row, int mi_col, BLOCK_SIZE bsize,
BLOCK_SIZE final_bsize,
PARTITION_TREE *ptree) {
assert(block_size_high[bsize] == block_size_wide[bsize]);
if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols)
return;
const int ss_x = cm->seq_params.subsampling_x;
const int ss_y = cm->seq_params.subsampling_y;
PARTITION_TREE *parent = ptree->parent;
set_chroma_ref_info(mi_row, mi_col, ptree->index, bsize,
&ptree->chroma_ref_info,
parent ? &parent->chroma_ref_info : NULL,
parent ? parent->bsize : BLOCK_INVALID,
parent ? parent->partition : PARTITION_NONE, ss_x, ss_y);
if (bsize == BLOCK_4X4) {
ptree->partition = PARTITION_NONE;
return;
}
const CHROMA_REF_INFO *chroma_ref_info = &ptree->chroma_ref_info;
// Handle boundary for first partition.
PARTITION_TYPE implied_first_partition;
const bool is_first_part_implied = is_partition_implied_at_boundary(
&cm->mi_params, tree_type, ss_x, ss_y, mi_row, mi_col, bsize,
chroma_ref_info, &implied_first_partition);
if (!is_first_part_implied &&
(block_size_wide[bsize] <= block_size_wide[final_bsize]) &&
(block_size_high[bsize] <= block_size_high[final_bsize])) {
ptree->partition = PARTITION_NONE;
return;
}
// In general, we simulate SPLIT partition as HORZ followed by VERT partition.
// But in case first partition is implied to be VERT, we are forced to use
// VERT followed by HORZ.
PARTITION_TYPE first_partition = PARTITION_INVALID;
if (is_first_part_implied) {
first_partition = implied_first_partition;
} else if (check_is_chroma_size_valid(tree_type, PARTITION_HORZ, bsize,
mi_row, mi_col, ss_x, ss_y,
chroma_ref_info)) {
first_partition = PARTITION_HORZ;
} else if (check_is_chroma_size_valid(tree_type, PARTITION_VERT, bsize,
mi_row, mi_col, ss_x, ss_y,
chroma_ref_info)) {
first_partition = PARTITION_VERT;
}
assert(first_partition != PARTITION_INVALID);
const PARTITION_TYPE second_partition =
(first_partition == PARTITION_HORZ) ? PARTITION_VERT : PARTITION_HORZ;
const int hbs_w = mi_size_wide[bsize] >> 1;
const int hbs_h = mi_size_high[bsize] >> 1;
const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize];
ptree->partition = first_partition;
ptree->sub_tree[0] = av1_alloc_ptree_node(ptree, 0);
ptree->sub_tree[1] = av1_alloc_ptree_node(ptree, 1);
#ifndef NDEBUG
// Boundary sanity checks for 2nd partitions.
{
PARTITION_TYPE implied_second_first_partition;
const bool is_second_first_part_implied = is_partition_implied_at_boundary(
&cm->mi_params, tree_type, ss_x, ss_y, mi_row, mi_col,
subsize_lookup[first_partition][bsize],
&ptree->sub_tree[0]->chroma_ref_info, &implied_second_first_partition);
assert(IMPLIES(is_second_first_part_implied,
implied_second_first_partition == second_partition));
}
{
const int mi_row_second_second =
(second_partition == PARTITION_HORZ) ? mi_row + hbs_h : mi_row;
const int mi_col_second_second =
(second_partition == PARTITION_VERT) ? mi_col + hbs_w : mi_col;
PARTITION_TYPE implied_second_second_partition;
const bool is_second_second_part_implied = is_partition_implied_at_boundary(
&cm->mi_params, tree_type, ss_x, ss_y, mi_row_second_second,
mi_col_second_second, subsize_lookup[first_partition][bsize],
&ptree->sub_tree[0]->chroma_ref_info, &implied_second_second_partition);
assert(IMPLIES(is_second_second_part_implied,
implied_second_second_partition == second_partition));
}
#endif // NDEBUG
ptree->sub_tree[0]->partition = second_partition;
ptree->sub_tree[0]->sub_tree[0] = av1_alloc_ptree_node(ptree, 0);
ptree->sub_tree[0]->sub_tree[1] = av1_alloc_ptree_node(ptree, 1);
ptree->sub_tree[1]->partition = second_partition;
ptree->sub_tree[1]->sub_tree[0] = av1_alloc_ptree_node(ptree, 0);
ptree->sub_tree[1]->sub_tree[1] = av1_alloc_ptree_node(ptree, 1);
if (first_partition == PARTITION_HORZ) {
assert(second_partition == PARTITION_VERT);
build_one_split_tree(cm, tree_type, mi_row, mi_col, subsize, final_bsize,
ptree->sub_tree[0]->sub_tree[0]);
build_one_split_tree(cm, tree_type, mi_row, mi_col + hbs_w, subsize,
final_bsize, ptree->sub_tree[0]->sub_tree[1]);
build_one_split_tree(cm, tree_type, mi_row + hbs_h, mi_col, subsize,
final_bsize, ptree->sub_tree[1]->sub_tree[0]);
build_one_split_tree(cm, tree_type, mi_row + hbs_h, mi_col + hbs_w, subsize,
final_bsize, ptree->sub_tree[1]->sub_tree[1]);
} else {
assert(first_partition == PARTITION_VERT);
assert(second_partition == PARTITION_HORZ);
build_one_split_tree(cm, tree_type, mi_row, mi_col, subsize, final_bsize,
ptree->sub_tree[0]->sub_tree[0]);
build_one_split_tree(cm, tree_type, mi_row + hbs_h, mi_col, subsize,
final_bsize, ptree->sub_tree[0]->sub_tree[1]);
build_one_split_tree(cm, tree_type, mi_row, mi_col + hbs_w, subsize,
final_bsize, ptree->sub_tree[1]->sub_tree[0]);
build_one_split_tree(cm, tree_type, mi_row + hbs_h, mi_col + hbs_w, subsize,
final_bsize, ptree->sub_tree[1]->sub_tree[1]);
}
}
void av1_build_partition_tree_fixed_partitioning(AV1_COMMON *const cm,
TREE_TYPE tree_type,
int mi_row, int mi_col,
BLOCK_SIZE bsize,
PARTITION_TREE *ptree) {
const BLOCK_SIZE sb_size = cm->seq_params.sb_size;
build_one_split_tree(cm, tree_type, mi_row, mi_col, sb_size, bsize, ptree);
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
static PARTITION_TYPE get_preset_partition(const AV1_COMMON *cm,
TREE_TYPE tree_type, int mi_row,
int mi_col, BLOCK_SIZE bsize,
PARTITION_TREE *ptree) {
if (ptree) {
#ifndef NDEBUG
#if CONFIG_EXT_RECUR_PARTITIONS
const bool ssx = cm->cur_frame->buf.subsampling_x;
const bool ssy = cm->cur_frame->buf.subsampling_y;
PARTITION_TYPE implied_partition;
const bool is_part_implied = is_partition_implied_at_boundary(
&cm->mi_params, tree_type, ssx, ssy, mi_row, mi_col, bsize,
&ptree->chroma_ref_info, &implied_partition);
assert(IMPLIES(is_part_implied, ptree->partition == implied_partition));
#endif // CONFIG_EXT_RECUR_PARTITIONS
#endif // NDEBUG
return ptree->partition;
}
if (bsize >= BLOCK_8X8) {
const int plane_type = (tree_type == CHROMA_PART);
return get_partition(cm, plane_type, mi_row, mi_col, bsize);
}
return PARTITION_NONE;
}
/*!\brief AV1 block partition search (partition estimation and partial search).
*
* \ingroup partition_search
* Encode the block by applying pre-calculated partition patterns that are
* represented by coding block sizes stored in the mbmi array. Minor partition
* adjustments are tested and applied if they lead to lower rd costs. The
* partition types are limited to a basic set: none, horz, vert, and split.
*
* \param[in] cpi Top-level encoder structure
* \param[in] td Pointer to thread data
* \param[in] tile_data Pointer to struct holding adaptive
data/contexts/models for the tile during encoding
* \param[in] mib Array representing MB_MODE_INFO pointers for mi
blocks starting from the first pixel of the current
block
* \param[in] tp Pointer to the starting token
* \param[in] mi_row Row coordinate of the block in a step size of
MI_SIZE
* \param[in] mi_col Column coordinate of the block in a step size of
MI_SIZE
* \param[in] bsize Current block size
* \param[in] rate Pointer to the final rate for encoding the current
block
* \param[in] dist Pointer to the final distortion of the current block
* \param[in] do_recon Whether the reconstruction function needs to be run,
either for finalizing a superblock or providing
reference for future sub-partitions
* \param[in] ptree Pointer to the PARTITION_TREE node holding the
pre-calculated partition tree (if any) for the current block
* \param[in] pc_tree Pointer to the PC_TREE node holding the picked
partitions and mode info for the current block
*
* Nothing is returned. The pc_tree struct is modified to store the
* picked partition and modes. The rate and dist are also updated with those
* corresponding to the best partition found.
*/
void av1_rd_use_partition(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data,
MB_MODE_INFO **mib, TokenExtra **tp, int mi_row,
int mi_col, BLOCK_SIZE bsize, int *rate,
int64_t *dist, int do_recon, PARTITION_TREE *ptree,
PC_TREE *pc_tree) {
AV1_COMMON *const cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int num_planes = av1_num_planes(cm);
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int ss_x = xd->plane[1].subsampling_x;
const int ss_y = xd->plane[1].subsampling_y;
const ModeCosts *mode_costs = &x->mode_costs;
assert(bsize < BLOCK_SIZES_ALL);
const int hbs_w = mi_size_wide[bsize] / 2;
const int hbs_h = mi_size_high[bsize] / 2;
const int pl = (bsize >= BLOCK_8X8)
? partition_plane_context(xd, mi_row, mi_col, bsize)
: 0;
const int plane_type = (xd->tree_type == CHROMA_PART);
const int plane_start = get_partition_plane_start(xd->tree_type);
const int plane_end = get_partition_plane_end(xd->tree_type, num_planes);
const PARTITION_TYPE partition =
get_preset_partition(cm, plane_type, mi_row, mi_col, bsize, ptree);
const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
RD_STATS last_part_rdc, invalid_rdc;
if (pc_tree->none == NULL) {
pc_tree->none =
av1_alloc_pmc(cm, mi_row, mi_col, bsize, pc_tree, PARTITION_NONE, 0,
ss_x, ss_y, &td->shared_coeff_buf);
}
PICK_MODE_CONTEXT *ctx_none = pc_tree->none;
if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
#if !CONFIG_EXT_RECUR_PARTITIONS
assert(mi_size_wide[bsize] == mi_size_high[bsize]);
#endif // !CONFIG_EXT_RECUR_PARTITIONS
// Set buffers and offsets.
av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize,
&pc_tree->chroma_ref_info);
av1_invalid_rd_stats(&last_part_rdc);
av1_invalid_rd_stats(&invalid_rdc);
pc_tree->partitioning = partition;
xd->above_txfm_context =
cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
if (bsize == BLOCK_16X16 && cpi->vaq_refresh)
x->mb_energy = av1_log_block_var(cpi, x, bsize);
// Save rdmult before it might be changed, so it can be restored later.
const int orig_rdmult = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
#if !CONFIG_EXT_RECUR_PARTITIONS
const BLOCK_SIZE split_subsize =
get_partition_subsize(bsize, PARTITION_SPLIT);
for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
int x_idx = (i & 1) * hbs_w;
int y_idx = (i >> 1) * hbs_h;
pc_tree->split[i] =
av1_alloc_pc_tree_node(mi_row + y_idx, mi_col + x_idx, split_subsize,
pc_tree, PARTITION_SPLIT, i, i == 3, ss_x, ss_y);
}
#endif // !CONFIG_EXT_RECUR_PARTITIONS
switch (partition) {
case PARTITION_NONE:
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
PARTITION_NONE, bsize, ctx_none, invalid_rdc);
break;
case PARTITION_HORZ:
#if CONFIG_EXT_RECUR_PARTITIONS
pc_tree->horizontal[0] = av1_alloc_pc_tree_node(
mi_row, mi_col, subsize, pc_tree, PARTITION_HORZ, 0, 0, ss_x, ss_y);
pc_tree->horizontal[1] =
av1_alloc_pc_tree_node(mi_row + hbs_h, mi_col, subsize, pc_tree,
PARTITION_HORZ, 1, 1, ss_x, ss_y);
av1_rd_use_partition(cpi, td, tile_data, mib, tp, mi_row, mi_col, subsize,
&last_part_rdc.rate, &last_part_rdc.dist, 1,
ptree ? ptree->sub_tree[0] : NULL,
pc_tree->horizontal[0]);
#else // CONFIG_EXT_RECUR_PARTITIONS
for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
if (pc_tree->horizontal[i] == NULL) {
pc_tree->horizontal[i] = av1_alloc_pmc(
cm, mi_row + hbs_h * i, mi_col, subsize, pc_tree, PARTITION_HORZ,
i, ss_x, ss_y, &td->shared_coeff_buf);
}
}
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
PARTITION_HORZ, subsize, pc_tree->horizontal[0],
invalid_rdc);
#endif // CONFIG_EXT_RECUR_PARTITIONS
if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
mi_row + hbs_h < mi_params->mi_rows) {
RD_STATS tmp_rdc;
av1_init_rd_stats(&tmp_rdc);
#if CONFIG_EXT_RECUR_PARTITIONS
av1_rd_use_partition(
cpi, td, tile_data, mib + hbs_h * mi_params->mi_stride, tp,
mi_row + hbs_h, mi_col, subsize, &tmp_rdc.rate, &tmp_rdc.dist, 0,
ptree ? ptree->sub_tree[1] : NULL, pc_tree->horizontal[1]);
#else // CONFIG_EXT_RECUR_PARTITIONS
const PICK_MODE_CONTEXT *const ctx_h = pc_tree->horizontal[0];
av1_update_state(cpi, td, ctx_h, mi_row, mi_col, subsize, 1);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize,
plane_start, plane_end, NULL);
pick_sb_modes(cpi, tile_data, x, mi_row + hbs_h, mi_col, &tmp_rdc,
PARTITION_HORZ, subsize, pc_tree->horizontal[1],
invalid_rdc);
#endif // CONFIG_EXT_RECUR_PARTITIONS
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
last_part_rdc.rdcost += tmp_rdc.rdcost;
}
break;
case PARTITION_VERT:
#if CONFIG_EXT_RECUR_PARTITIONS
pc_tree->vertical[0] = av1_alloc_pc_tree_node(
mi_row, mi_col, subsize, pc_tree, PARTITION_VERT, 0, 0, ss_x, ss_y);
pc_tree->vertical[1] =
av1_alloc_pc_tree_node(mi_row, mi_col + hbs_w, subsize, pc_tree,
PARTITION_VERT, 1, 1, ss_x, ss_y);
av1_rd_use_partition(cpi, td, tile_data, mib, tp, mi_row, mi_col, subsize,
&last_part_rdc.rate, &last_part_rdc.dist, 1,
ptree ? ptree->sub_tree[0] : NULL,
pc_tree->vertical[0]);
#else // CONFIG_EXT_RECUR_PARTITIONS
for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
if (pc_tree->vertical[i] == NULL) {
pc_tree->vertical[i] = av1_alloc_pmc(
cm, mi_row, mi_col + hbs_w * i, subsize, pc_tree, PARTITION_VERT,
i, ss_x, ss_y, &td->shared_coeff_buf);
}
}
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
PARTITION_VERT, subsize, pc_tree->vertical[0], invalid_rdc);
#endif // CONFIG_EXT_RECUR_PARTITIONS
if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
mi_col + hbs_w < mi_params->mi_cols) {
RD_STATS tmp_rdc;
av1_init_rd_stats(&tmp_rdc);
#if CONFIG_EXT_RECUR_PARTITIONS
av1_rd_use_partition(
cpi, td, tile_data, mib + hbs_w, tp, mi_row, mi_col + hbs_w,
subsize, &tmp_rdc.rate, &tmp_rdc.dist, 0,
ptree ? ptree->sub_tree[1] : NULL, pc_tree->vertical[1]);
#else // CONFIG_EXT_RECUR_PARTITIONS
const PICK_MODE_CONTEXT *const ctx_v = pc_tree->vertical[0];
av1_update_state(cpi, td, ctx_v, mi_row, mi_col, subsize, 1);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize,
plane_start, plane_end, NULL);
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs_w, &tmp_rdc,
PARTITION_VERT, subsize,
pc_tree->vertical[bsize > BLOCK_8X8], invalid_rdc);
#endif // CONFIG_EXT_RECUR_PARTITIONS
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
last_part_rdc.rdcost += tmp_rdc.rdcost;
}
break;
#if CONFIG_EXT_RECUR_PARTITIONS
case PARTITION_HORZ_3:
case PARTITION_VERT_3:
last_part_rdc.rate = 0;
last_part_rdc.dist = 0;
last_part_rdc.rdcost = 0;
#if CONFIG_H_PARTITION
const int num_parts = 4;
#else
const int num_parts = 3;
const PARTITION_TYPE partition_2way =
partition == PARTITION_HORZ_3 ? PARTITION_HORZ : PARTITION_VERT;
const BLOCK_SIZE subsize_middle =
get_partition_subsize(bsize, partition_2way);
const int qbh = mi_size_high[bsize] >> 2;
const int qbw = mi_size_wide[bsize] >> 2;
#endif // CONFIG_H_PARTITION
for (int i = 0; i < num_parts; ++i) {
#if CONFIG_H_PARTITION
const BLOCK_SIZE sub_bsize =
get_h_partition_subsize(bsize, i, partition);
const int offset_mr =
get_h_partition_offset_mi_row(bsize, i, partition);
const int offset_mc =
get_h_partition_offset_mi_col(bsize, i, partition);
#else
const BLOCK_SIZE sub_bsize = i == 1 ? subsize_middle : subsize;
const int offset_step = i == 2 ? 3 : i;
const int offset_mr =
partition == PARTITION_VERT_3 ? 0 : offset_step * qbh;
const int offset_mc =
partition == PARTITION_HORZ_3 ? 0 : offset_step * qbw;
#endif // CONFIG_H_PARTITION
PC_TREE *sub_pc_tree;
RD_STATS tmp_rdc;
if ((mi_row + offset_mr >= mi_params->mi_rows) ||
(mi_col + offset_mc >= mi_params->mi_cols))
#if CONFIG_H_PARTITION
if (i != 2)
#endif // CONFIG_H_PARTITION
continue;
if (partition == PARTITION_HORZ_3) {
pc_tree->horizontal3[i] = av1_alloc_pc_tree_node(
mi_row + offset_mr, mi_col + offset_mc, sub_bsize, pc_tree,
partition, i, i == (num_parts - 1), ss_x, ss_y);
sub_pc_tree = pc_tree->horizontal3[i];
} else {
pc_tree->vertical3[i] = av1_alloc_pc_tree_node(
mi_row + offset_mr, mi_col + offset_mc, sub_bsize, pc_tree,
partition, i, i == (num_parts - 1), ss_x, ss_y);
sub_pc_tree = pc_tree->vertical3[i];
}
av1_init_rd_stats(&tmp_rdc);
av1_rd_use_partition(cpi, td, tile_data, mib, tp, mi_row + offset_mr,
mi_col + offset_mc, sub_bsize, &tmp_rdc.rate,
&tmp_rdc.dist, i != (num_parts - 1),
ptree ? ptree->sub_tree[i] : NULL, sub_pc_tree);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
}
break;
#else // CONFIG_EXT_RECUR_PARTITIONS
case PARTITION_SPLIT:
last_part_rdc.rate = 0;
last_part_rdc.dist = 0;
last_part_rdc.rdcost = 0;
for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
int x_idx = (i & 1) * hbs_w;
int y_idx = (i >> 1) * hbs_h;
int jj = i >> 1, ii = i & 0x01;
RD_STATS tmp_rdc;
if ((mi_row + y_idx >= mi_params->mi_rows) ||
(mi_col + x_idx >= mi_params->mi_cols))
continue;
av1_init_rd_stats(&tmp_rdc);
av1_rd_use_partition(
cpi, td, tile_data,
mib + jj * hbs_h * mi_params->mi_stride + ii * hbs_w, tp,
mi_row + y_idx, mi_col + x_idx, subsize, &tmp_rdc.rate,
&tmp_rdc.dist, i != (SUB_PARTITIONS_SPLIT - 1), NULL,
pc_tree->split[i]);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
}
break;
case PARTITION_VERT_A:
case PARTITION_VERT_B:
case PARTITION_HORZ_A:
case PARTITION_HORZ_B:
case PARTITION_HORZ_4:
case PARTITION_VERT_4:
#endif // CONFIG_EXT_RECUR_PARTITIONS
assert(0 && "Cannot handle extended partition types");
default: assert(0); break;
}
if (last_part_rdc.rate < INT_MAX) {
last_part_rdc.rate +=
mode_costs->partition_cost[xd->tree_type == CHROMA_PART][pl][partition];
last_part_rdc.rdcost =
RDCOST(x->rdmult, last_part_rdc.rate, last_part_rdc.dist);
}
// If last_part is better set the partitioning to that.
mib[0]->sb_type[plane_type] = bsize;
if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition;
av1_restore_context(cm, x, &x_ctx, mi_row, mi_col, bsize, num_planes);
// We must have chosen a partitioning and encoding or we'll fail later on.
// No other opportunities for success.
if (bsize == cm->seq_params.sb_size)
assert(last_part_rdc.rate < INT_MAX && last_part_rdc.dist < INT64_MAX);
if (do_recon) {
if (bsize == cm->seq_params.sb_size) {
// NOTE: To get estimate for rate due to the tokens, use:
// int rate_coeffs = 0;
// encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS,
// bsize, pc_tree, &rate_coeffs);
for (int plane = plane_start; plane < plane_end; plane++) {
x->cb_offset[plane] = 0;
}
av1_reset_ptree_in_sbi(xd->sbi, xd->tree_type);
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
pc_tree, xd->sbi->ptree_root[av1_get_sdp_idx(xd->tree_type)],
#if CONFIG_EXT_RECUR_PARTITIONS
NULL,
#endif // CONFIG_EXT_RECUR_PARTITIONS
NULL);
} else {
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
pc_tree, NULL,
#if CONFIG_EXT_RECUR_PARTITIONS
NULL,
#endif // CONFIG_EXT_RECUR_PARTITIONS
NULL);
}
}
*rate = last_part_rdc.rate;
*dist = last_part_rdc.dist;
x->rdmult = orig_rdmult;
}
void av1_use_partition_mi(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data,
MB_MODE_INFO **mib, TokenExtra **tp, int mi_row,
int mi_col, BLOCK_SIZE bsize, int *rate,
int64_t *dist, int do_recon, PARTITION_TREE *ptree,
PC_TREE *pc_tree) {
assert(cpi->sf.hl_sf.superres_reuse_frd == 2 && cpi->frd != NULL);
AV1_COMMON *const cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int num_planes = av1_num_planes(cm);
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int ss_x = xd->plane[1].subsampling_x;
const int ss_y = xd->plane[1].subsampling_y;
const ModeCosts *mode_costs = &x->mode_costs;
assert(bsize < BLOCK_SIZES_ALL);
#if CONFIG_EXT_RECUR_PARTITIONS
const int hbs_h = mi_size_high[bsize] / 2;
const int hbs_w = mi_size_wide[bsize] / 2;
#endif // CONFIG_EXT_RECUR_PARTITIONS
const int pl = (bsize >= BLOCK_8X8)
? partition_plane_context(xd, mi_row, mi_col, bsize)
: 0;
const int plane_type = (xd->tree_type == CHROMA_PART);
const int plane_start = get_partition_plane_start(xd->tree_type);
const int plane_end = get_partition_plane_end(xd->tree_type, num_planes);
const PARTITION_TYPE partition =
get_preset_partition(cm, plane_type, mi_row, mi_col, bsize, ptree);
const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
RD_STATS last_part_rdc, invalid_rdc;
if (pc_tree->none == NULL) {
pc_tree->none =
av1_alloc_pmc(cm, mi_row, mi_col, bsize, pc_tree, PARTITION_NONE, 0,
ss_x, ss_y, &td->shared_coeff_buf);
}
PICK_MODE_CONTEXT *ctx_none = pc_tree->none;
if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
#if !CONFIG_EXT_RECUR_PARTITIONS
assert(mi_size_wide[bsize] == mi_size_high[bsize]);
#endif // !CONFIG_EXT_RECUR_PARTITIONS
// Set buffers and offsets.
av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize,
&pc_tree->chroma_ref_info);
av1_invalid_rd_stats(&last_part_rdc);
av1_invalid_rd_stats(&invalid_rdc);
pc_tree->partitioning = partition;
xd->above_txfm_context =
cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
if (bsize == BLOCK_16X16 && cpi->vaq_refresh)
x->mb_energy = av1_log_block_var(cpi, x, bsize);
// Save rdmult before it might be changed, so it can be restored later.
const int orig_rdmult = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
#if !CONFIG_EXT_RECUR_PARTITIONS
const BLOCK_SIZE split_subsize =
get_partition_subsize(bsize, PARTITION_SPLIT);
for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
int x_idx = (i & 1) * hbs_w;
int y_idx = (i >> 1) * hbs_h;
pc_tree->split[i] =
av1_alloc_pc_tree_node(mi_row + y_idx, mi_col + x_idx, split_subsize,
pc_tree, PARTITION_SPLIT, i, i == 3, ss_x, ss_y);
}
#endif // !CONFIG_EXT_RECUR_PARTITIONS
switch (partition) {
case PARTITION_NONE:
use_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
PARTITION_NONE, bsize, ctx_none, invalid_rdc);
av1_init_rd_stats(&last_part_rdc);
break;
case PARTITION_HORZ:
#if CONFIG_EXT_RECUR_PARTITIONS
pc_tree->horizontal[0] = av1_alloc_pc_tree_node(
mi_row, mi_col, subsize, pc_tree, PARTITION_HORZ, 0, 0, ss_x, ss_y);
pc_tree->horizontal[1] =
av1_alloc_pc_tree_node(mi_row + hbs_h, mi_col, subsize, pc_tree,
PARTITION_HORZ, 1, 1, ss_x, ss_y);
av1_use_partition_mi(cpi, td, tile_data, mib, tp, mi_row, mi_col, subsize,
&last_part_rdc.rate, &last_part_rdc.dist, 1,
ptree ? ptree->sub_tree[0] : NULL,
pc_tree->horizontal[0]);
#else // CONFIG_EXT_RECUR_PARTITIONS
for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
if (pc_tree->horizontal[i] == NULL) {
pc_tree->horizontal[i] = av1_alloc_pmc(
cm, mi_row + hbs_h * i, mi_col, subsize, pc_tree, PARTITION_HORZ,
i, ss_x, ss_y, &td->shared_coeff_buf);
}
}
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
PARTITION_HORZ, subsize, pc_tree->horizontal[0],
invalid_rdc);
av1_init_rd_stats(&last_part_rdc);
#endif // CONFIG_EXT_RECUR_PARTITIONS
if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
mi_row + hbs_h < mi_params->mi_rows) {
RD_STATS tmp_rdc;
av1_init_rd_stats(&tmp_rdc);
#if CONFIG_EXT_RECUR_PARTITIONS
av1_use_partition_mi(
cpi, td, tile_data, mib + hbs_h * mi_params->mi_stride, tp,
mi_row + hbs_h, mi_col, subsize, &tmp_rdc.rate, &tmp_rdc.dist, 0,
ptree ? ptree->sub_tree[1] : NULL, pc_tree->horizontal[1]);
#else // CONFIG_EXT_RECUR_PARTITIONS
const PICK_MODE_CONTEXT *const ctx_h = pc_tree->horizontal[0];
av1_update_state(cpi, td, ctx_h, mi_row, mi_col, subsize, 1);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize,
plane_start, plane_end, NULL);
pick_sb_modes(cpi, tile_data, x, mi_row + hbs_h, mi_col, &tmp_rdc,
PARTITION_HORZ, subsize, pc_tree->horizontal[1],
invalid_rdc);
av1_init_rd_stats(&tmp_rdc);
#endif // CONFIG_EXT_RECUR_PARTITIONS
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
last_part_rdc.rdcost += tmp_rdc.rdcost;
}
break;
case PARTITION_VERT:
#if CONFIG_EXT_RECUR_PARTITIONS
pc_tree->vertical[0] = av1_alloc_pc_tree_node(
mi_row, mi_col, subsize, pc_tree, PARTITION_VERT, 0, 0, ss_x, ss_y);
pc_tree->vertical[1] =
av1_alloc_pc_tree_node(mi_row, mi_col + hbs_w, subsize, pc_tree,
PARTITION_VERT, 1, 1, ss_x, ss_y);
av1_use_partition_mi(cpi, td, tile_data, mib, tp, mi_row, mi_col, subsize,
&last_part_rdc.rate, &last_part_rdc.dist, 1,
ptree ? ptree->sub_tree[0] : NULL,
pc_tree->vertical[0]);
#else // CONFIG_EXT_RECUR_PARTITIONS
for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
if (pc_tree->vertical[i] == NULL) {
pc_tree->vertical[i] = av1_alloc_pmc(
cm, mi_row, mi_col + hbs_w * i, subsize, pc_tree, PARTITION_VERT,
i, ss_x, ss_y, &td->shared_coeff_buf);
}
}
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
PARTITION_VERT, subsize, pc_tree->vertical[0], invalid_rdc);
av1_init_rd_stats(&last_part_rdc);
#endif // CONFIG_EXT_RECUR_PARTITIONS
if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
mi_col + hbs_w < mi_params->mi_cols) {
RD_STATS tmp_rdc;
av1_init_rd_stats(&tmp_rdc);
#if CONFIG_EXT_RECUR_PARTITIONS
av1_use_partition_mi(
cpi, td, tile_data, mib + hbs_w, tp, mi_row, mi_col + hbs_w,
subsize, &tmp_rdc.rate, &tmp_rdc.dist, 0,
ptree ? ptree->sub_tree[1] : NULL, pc_tree->vertical[1]);
#else // CONFIG_EXT_RECUR_PARTITIONS
const PICK_MODE_CONTEXT *const ctx_v = pc_tree->vertical[0];
av1_update_state(cpi, td, ctx_v, mi_row, mi_col, subsize, 1);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize,
plane_start, plane_end, NULL);
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs_w, &tmp_rdc,
PARTITION_VERT, subsize,
pc_tree->vertical[bsize > BLOCK_8X8], invalid_rdc);
av1_init_rd_stats(&tmp_rdc);
#endif // CONFIG_EXT_RECUR_PARTITIONS
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
last_part_rdc.rdcost += tmp_rdc.rdcost;
}
break;
#if CONFIG_EXT_RECUR_PARTITIONS
case PARTITION_HORZ_3:
case PARTITION_VERT_3:
last_part_rdc.rate = 0;
last_part_rdc.dist = 0;
last_part_rdc.rdcost = 0;
#if CONFIG_H_PARTITION
const int num_parts = 4;
#else
const int num_parts = 3;
const PARTITION_TYPE partition_2way =
partition == PARTITION_HORZ_3 ? PARTITION_HORZ : PARTITION_VERT;
const BLOCK_SIZE subsize_middle =
get_partition_subsize(bsize, partition_2way);
const int qbh = mi_size_high[bsize] >> 2;
const int qbw = mi_size_wide[bsize] >> 2;
#endif // CONFIG_H_PARTITION
for (int i = 0; i < num_parts; ++i) {
#if CONFIG_H_PARTITION
const BLOCK_SIZE sub_bsize =
get_h_partition_subsize(bsize, i, partition);
const int offset_mr =
get_h_partition_offset_mi_row(bsize, i, partition);
const int offset_mc =
get_h_partition_offset_mi_col(bsize, i, partition);
#else
const BLOCK_SIZE sub_bsize = i == 1 ? subsize_middle : subsize;
const int offset_step = i == 2 ? 3 : i;
const int offset_mr =
partition == PARTITION_VERT_3 ? 0 : offset_step * qbh;
const int offset_mc =
partition == PARTITION_HORZ_3 ? 0 : offset_step * qbw;
#endif // CONFIG_H_PARTITION
PC_TREE *sub_pc_tree;
RD_STATS tmp_rdc;
if ((mi_row + offset_mr >= mi_params->mi_rows) ||
(mi_col + offset_mc >= mi_params->mi_cols))
#if CONFIG_H_PARTITION
if (i != 2)
#endif // CONFIG_H_PARTITION
continue;
if (partition == PARTITION_HORZ_3) {
pc_tree->horizontal3[i] = av1_alloc_pc_tree_node(
mi_row + offset_mr, mi_col + offset_mc, sub_bsize, pc_tree,
partition, i, i == (num_parts - 1), ss_x, ss_y);
sub_pc_tree = pc_tree->horizontal3[i];
} else {
pc_tree->vertical3[i] = av1_alloc_pc_tree_node(
mi_row + offset_mr, mi_col + offset_mc, sub_bsize, pc_tree,
partition, i, i == (num_parts - 1), ss_x, ss_y);
sub_pc_tree = pc_tree->vertical3[i];
}
av1_init_rd_stats(&tmp_rdc);
av1_use_partition_mi(cpi, td, tile_data, mib, tp, mi_row + offset_mr,
mi_col + offset_mc, sub_bsize, &tmp_rdc.rate,
&tmp_rdc.dist, i != (num_parts - 1),
ptree ? ptree->sub_tree[i] : NULL, sub_pc_tree);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
}
break;
#else // CONFIG_EXT_RECUR_PARTITIONS
case PARTITION_SPLIT:
last_part_rdc.rate = 0;
last_part_rdc.dist = 0;
last_part_rdc.rdcost = 0;
for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
int x_idx = (i & 1) * hbs_w;
int y_idx = (i >> 1) * hbs_h;
int jj = i >> 1, ii = i & 0x01;
RD_STATS tmp_rdc;
if ((mi_row + y_idx >= mi_params->mi_rows) ||
(mi_col + x_idx >= mi_params->mi_cols))
continue;
av1_init_rd_stats(&tmp_rdc);
av1_use_partition_mi(
cpi, td, tile_data,
mib + jj * hbs_h * mi_params->mi_stride + ii * hbs_w, tp,
mi_row + y_idx, mi_col + x_idx, subsize, &tmp_rdc.rate,
&tmp_rdc.dist, i != (SUB_PARTITIONS_SPLIT - 1), NULL,
pc_tree->split[i]);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
}
break;
case PARTITION_VERT_A:
case PARTITION_VERT_B:
case PARTITION_HORZ_A:
case PARTITION_HORZ_B:
case PARTITION_HORZ_4:
case PARTITION_VERT_4:
#endif // CONFIG_EXT_RECUR_PARTITIONS
assert(0 && "Cannot handle extended partition types");
default: assert(0); break;
}
if (last_part_rdc.rate < INT_MAX) {
last_part_rdc.rate +=
mode_costs->partition_cost[xd->tree_type == CHROMA_PART][pl][partition];
last_part_rdc.rdcost =
RDCOST(x->rdmult, last_part_rdc.rate, last_part_rdc.dist);
}
// If last_part is better set the partitioning to that.
mib[0]->sb_type[plane_type] = bsize;
if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition;
av1_restore_context(cm, x, &x_ctx, mi_row, mi_col, bsize, num_planes);
if (do_recon) {
if (bsize == cm->seq_params.sb_size) {
// NOTE: To get estimate for rate due to the tokens, use:
// int rate_coeffs = 0;
// encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS,
// bsize, pc_tree, &rate_coeffs);
for (int plane = plane_start; plane < plane_end; plane++) {
x->cb_offset[plane] = 0;
}
av1_reset_ptree_in_sbi(xd->sbi, xd->tree_type);
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
pc_tree, xd->sbi->ptree_root[av1_get_sdp_idx(xd->tree_type)],
#if CONFIG_EXT_RECUR_PARTITIONS
NULL,
#endif // CONFIG_EXT_RECUR_PARTITIONS
NULL);
} else {
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
pc_tree, NULL,
#if CONFIG_EXT_RECUR_PARTITIONS
NULL,
#endif // CONFIG_EXT_RECUR_PARTITIONS
NULL);
}
}
*rate = last_part_rdc.rate;
*dist = last_part_rdc.dist;
x->rdmult = orig_rdmult;
}
#if !CONFIG_EXT_RECUR_PARTITIONS
// Try searching for an encoding for the given subblock. Returns zero if the
// rdcost is already too high (to tell the caller not to bother searching for
// encodings of further subblocks).
static int rd_try_subblock(AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TokenExtra **tp, int is_last,
int mi_row, int mi_col, BLOCK_SIZE subsize,
RD_STATS best_rdcost, RD_STATS *sum_rdc,
PARTITION_TYPE partition,
PICK_MODE_CONTEXT *this_ctx) {
MACROBLOCK *const x = &td->mb;
const int orig_mult = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, subsize, NO_AQ, NULL);
av1_rd_cost_update(x->rdmult, &best_rdcost);
RD_STATS rdcost_remaining;
av1_rd_stats_subtraction(x->rdmult, &best_rdcost, sum_rdc, &rdcost_remaining);
RD_STATS this_rdc;
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, partition,
subsize, this_ctx, rdcost_remaining);
if (this_rdc.rate == INT_MAX) {
sum_rdc->rdcost = INT64_MAX;
} else {
sum_rdc->rate += this_rdc.rate;
sum_rdc->dist += this_rdc.dist;
av1_rd_cost_update(x->rdmult, sum_rdc);
}
if (sum_rdc->rdcost >= best_rdcost.rdcost) {
x->rdmult = orig_mult;
return 0;
}
MACROBLOCKD *xd = &x->e_mbd;
const AV1_COMMON *const cm = &cpi->common;
const int plane_start = get_partition_plane_start(xd->tree_type);
const int plane_end =
get_partition_plane_end(xd->tree_type, av1_num_planes(cm));
if (!is_last) {
av1_update_state(cpi, td, this_ctx, mi_row, mi_col, subsize, 1);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize,
plane_start, plane_end, NULL);
}
x->rdmult = orig_mult;
return 1;
}
// Tests an AB partition, and updates the encoder status, the pick mode
// contexts, the best rdcost, and the best partition.
static bool rd_test_partition3(AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TokenExtra **tp,
PC_TREE *pc_tree, RD_STATS *best_rdc,
PICK_MODE_CONTEXT *ctxs[SUB_PARTITIONS_AB],
int mi_row, int mi_col, BLOCK_SIZE bsize,
PARTITION_TYPE partition,
const BLOCK_SIZE ab_subsize[SUB_PARTITIONS_AB],
const int ab_mi_pos[SUB_PARTITIONS_AB][2]
#if CONFIG_C043_MVP_IMPROVEMENTS
,
REF_MV_BANK *best_level_bank
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
,
WARP_PARAM_BANK *best_level_warp_bank
#endif // WARP_CU_BANK
) {
const MACROBLOCK *const x = &td->mb;
const MACROBLOCKD *const xd = &x->e_mbd;
const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
RD_STATS sum_rdc;
av1_init_rd_stats(&sum_rdc);
sum_rdc.rate =
x->mode_costs.partition_cost[xd->tree_type == CHROMA_PART][pl][partition];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
// Loop over sub-partitions in AB partition type.
for (int i = 0; i < SUB_PARTITIONS_AB; i++) {
assert(ab_subsize[i] != BLOCK_INVALID);
if (!rd_try_subblock(cpi, td, tile_data, tp, i == SUB_PARTITIONS_AB - 1,
ab_mi_pos[i][0], ab_mi_pos[i][1], ab_subsize[i],
*best_rdc, &sum_rdc, partition, ctxs[i]))
return false;
}
av1_rd_cost_update(x->rdmult, &sum_rdc);
if (sum_rdc.rdcost >= best_rdc->rdcost) return false;
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost >= best_rdc->rdcost) return false;
*best_rdc = sum_rdc;
#if CONFIG_C043_MVP_IMPROVEMENTS
*best_level_bank = x->e_mbd.ref_mv_bank;
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
*best_level_warp_bank = x->e_mbd.warp_param_bank;
#endif // WARP_CU_BANK
pc_tree->partitioning = partition;
return true;
}
#endif // !CONFIG_EXT_RECUR_PARTITIONS
#if CONFIG_EXT_RECUR_PARTITIONS
static AOM_INLINE void init_allowed_partitions(
PartitionSearchState *part_search_state, const PartitionCfg *part_cfg,
const CHROMA_REF_INFO *chroma_ref_info,
const CommonModeInfoParams *mi_params, TREE_TYPE tree_type) {
const PartitionBlkParams *blk_params = &part_search_state->part_blk_params;
const int mi_row = blk_params->mi_row;
const int mi_col = blk_params->mi_col;
const BLOCK_SIZE bsize = blk_params->bsize;
const bool has_rows = blk_params->has_rows;
const bool has_cols = blk_params->has_cols;
const bool ss_x = part_search_state->ss_x;
const bool ss_y = part_search_state->ss_y;
part_search_state->do_rectangular_split =
part_cfg->enable_rect_partitions &&
(tree_type != CHROMA_PART || is_bsize_gt(bsize, BLOCK_8X8));
const BLOCK_SIZE horz_subsize = get_partition_subsize(bsize, PARTITION_HORZ);
const BLOCK_SIZE vert_subsize = get_partition_subsize(bsize, PARTITION_VERT);
const int is_horz_size_valid =
is_partition_valid(bsize, PARTITION_HORZ) &&
check_is_chroma_size_valid(tree_type, PARTITION_HORZ, bsize, mi_row,
mi_col, ss_x, ss_y, chroma_ref_info);
const int is_vert_size_valid =
is_partition_valid(bsize, PARTITION_VERT) &&
check_is_chroma_size_valid(tree_type, PARTITION_VERT, bsize, mi_row,
mi_col, ss_x, ss_y, chroma_ref_info);
// Initialize allowed partition types for the partition block.
part_search_state->is_block_splittable = is_partition_point(bsize);
part_search_state->partition_none_allowed =
(tree_type == CHROMA_PART && bsize == BLOCK_8X8) ||
(has_rows && has_cols &&
is_bsize_geq(blk_params->bsize, blk_params->min_partition_size));
part_search_state->partition_rect_allowed[HORZ] =
part_cfg->enable_rect_partitions &&
is_bsize_geq(horz_subsize, blk_params->min_partition_size) &&
is_horz_size_valid;
part_search_state->partition_rect_allowed[VERT] =
part_cfg->enable_rect_partitions &&
is_bsize_geq(vert_subsize, blk_params->min_partition_size) &&
is_vert_size_valid;
// Boundary Handling
PARTITION_TYPE implied_partition;
const bool is_part_implied = is_partition_implied_at_boundary(
mi_params, tree_type, ss_x, ss_y, mi_row, mi_col, bsize, chroma_ref_info,
&implied_partition);
if (is_part_implied) {
part_search_state->partition_none_allowed = false;
if (implied_partition == PARTITION_HORZ) {
part_search_state->partition_rect_allowed[VERT] = false;
} else {
assert(implied_partition == PARTITION_VERT);
part_search_state->partition_rect_allowed[HORZ] = false;
}
}
// Reset the flag indicating whether a partition leading to a rdcost lower
// than the bound best_rdc has been found.
part_search_state->found_best_partition = false;
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
// Initialize state variables of partition search used in
// av1_rd_pick_partition().
static void init_partition_search_state_params(
MACROBLOCK *x, AV1_COMP *const cpi, PartitionSearchState *part_search_state,
#if CONFIG_EXT_RECUR_PARTITIONS
PC_TREE *pc_tree,
#endif // CONFIG_EXT_RECUR_PARTITIONS
int mi_row, int mi_col, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
const AV1_COMMON *const cm = &cpi->common;
PartitionBlkParams *blk_params = &part_search_state->part_blk_params;
const CommonModeInfoParams *const mi_params = &cpi->common.mi_params;
assert(bsize < BLOCK_SIZES_ALL);
// Initialization of block size related parameters.
blk_params->mi_step = mi_size_wide[bsize] / 2;
#if CONFIG_EXT_RECUR_PARTITIONS
blk_params->mi_step_h = mi_size_high[bsize] / 2;
blk_params->mi_step_w = mi_size_wide[bsize] / 2;
#endif // CONFIG_EXT_RECUR_PARTITIONS
blk_params->mi_row = mi_row;
blk_params->mi_col = mi_col;
#if CONFIG_EXT_RECUR_PARTITIONS
blk_params->mi_row_edge = mi_row + blk_params->mi_step_h;
blk_params->mi_col_edge = mi_col + blk_params->mi_step_w;
#else // CONFIG_EXT_RECUR_PARTITIONS
blk_params->mi_row_edge = mi_row + blk_params->mi_step;
blk_params->mi_col_edge = mi_col + blk_params->mi_step;
#endif // CONFIG_EXT_RECUR_PARTITIONS
blk_params->width = block_size_wide[bsize];
#if CONFIG_EXT_RECUR_PARTITIONS
blk_params->min_partition_size = x->sb_enc.min_partition_size;
#else
blk_params->min_partition_size_1d =
block_size_wide[x->sb_enc.min_partition_size];
#endif // CONFIG_EXT_RECUR_PARTITIONS
blk_params->subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
blk_params->split_bsize2 = blk_params->subsize;
#if !CONFIG_EXT_RECUR_PARTITIONS
blk_params->bsize_at_least_8x8 = (bsize >= BLOCK_8X8);
#endif // !CONFIG_EXT_RECUR_PARTITIONS
blk_params->bsize = bsize;
// Check if the partition corresponds to edge block.
blk_params->has_rows = (blk_params->mi_row_edge < mi_params->mi_rows);
blk_params->has_cols = (blk_params->mi_col_edge < mi_params->mi_cols);
// Update intra partitioning related info.
part_search_state->intra_part_info = &x->part_search_info;
// Prepare for segmentation CNN-based partitioning for intra-frame.
if (frame_is_intra_only(cm) && bsize == BLOCK_64X64) {
part_search_state->intra_part_info->quad_tree_idx = 0;
part_search_state->intra_part_info->cnn_output_valid = 0;
}
// Set partition plane context index.
part_search_state->pl_ctx_idx =
#if CONFIG_EXT_RECUR_PARTITIONS
is_partition_point(bsize)
#else
blk_params->bsize_at_least_8x8
#endif // CONFIG_EXT_RECUR_PARTITIONS
? partition_plane_context(xd, mi_row, mi_col, bsize)
: 0;
// Partition cost buffer update
ModeCosts *mode_costs = &x->mode_costs;
#if CONFIG_EXT_RECUR_PARTITIONS
#if !CONFIG_H_PARTITION
const bool is_middle_block =
pc_tree->parent && (pc_tree->parent->horizontal3[1] == pc_tree ||
pc_tree->parent->vertical3[1] == pc_tree);
const bool limit_rect_split = is_middle_block &&
is_bsize_geq(bsize, BLOCK_8X8) &&
is_bsize_geq(BLOCK_64X64, bsize);
#endif // !CONFIG_H_PARTITION
const bool disable_ext_part = !cm->seq_params.enable_ext_partitions;
const int pl = part_search_state->pl_ctx_idx;
const int plane_index = xd->tree_type == CHROMA_PART;
if (is_square_block(bsize)) {
if (disable_ext_part) {
#if !CONFIG_H_PARTITION
if (limit_rect_split) {
const PARTITION_TYPE parent_part =
(pc_tree->parent->horizontal3[1] == pc_tree) ? PARTITION_HORZ_3
: PARTITION_VERT_3;
const int dir = (parent_part == PARTITION_HORZ_3) ? 0 : 1;
for (PARTITION_TYPE p = PARTITION_NONE; p < EXT_PARTITION_TYPES; ++p) {
const int symbol =
get_symbol_from_limited_partition_noext(p, parent_part);
if (symbol == PARTITION_INVALID_REC) {
part_search_state->partition_cost_table[p] = INT_MAX;
} else {
part_search_state->partition_cost_table[p] =
mode_costs->limited_partition_noext_cost[plane_index][dir][pl]
[symbol];
}
part_search_state->partition_cost =
part_search_state->partition_cost_table;
}
} else {
#endif // !CONFIG_H_PARTITION
part_search_state->partition_cost =
mode_costs->partition_noext_cost[plane_index][pl];
#if !CONFIG_H_PARTITION
}
#endif // !CONFIG_H_PARTITION
} else {
#if !CONFIG_H_PARTITION
if (limit_rect_split) {
const PARTITION_TYPE parent_part =
(pc_tree->parent->horizontal3[1] == pc_tree) ? PARTITION_HORZ_3
: PARTITION_VERT_3;
const int dir = (parent_part == PARTITION_HORZ_3) ? 0 : 1;
for (PARTITION_TYPE p = PARTITION_NONE; p < EXT_PARTITION_TYPES; ++p) {
const int symbol = get_symbol_from_limited_partition(p, parent_part);
if (symbol == PARTITION_INVALID_REC) {
part_search_state->partition_cost_table[p] = INT_MAX;
} else {
part_search_state->partition_cost_table[p] =
mode_costs
->limited_partition_cost[plane_index][dir][pl][symbol];
}
part_search_state->partition_cost =
part_search_state->partition_cost_table;
}
} else {
#endif // !CONFIG_H_PARTITION
part_search_state->partition_cost =
mode_costs->partition_cost[plane_index][pl];
#if !CONFIG_H_PARTITION
}
#endif // !CONFIG_H_PARTITION
}
} else {
for (PARTITION_TYPE p = PARTITION_NONE; p < EXT_PARTITION_TYPES; ++p) {
PARTITION_TYPE_REC p_rec = PARTITION_INVALID_REC;
if (disable_ext_part) {
#if !CONFIG_H_PARTITION
if (limit_rect_split) {
const PARTITION_TYPE parent_part =
(pc_tree->parent->horizontal3[1] == pc_tree) ? PARTITION_HORZ_3
: PARTITION_VERT_3;
p_rec = get_symbol_from_limited_partition_noext(p, parent_part);
} else {
#endif // !CONFIG_H_PARTITION
p_rec = get_symbol_from_partition_noext_rec_block(bsize, p);
#if !CONFIG_H_PARTITION
}
#endif // !CONFIG_H_PARTITION
} else {
p_rec = get_symbol_from_partition_rec_block(bsize, p);
#if !CONFIG_H_PARTITION
if (limit_rect_split) {
if ((pc_tree->parent->horizontal3[1] == pc_tree &&
p == PARTITION_HORZ) ||
(pc_tree->parent->vertical3[1] == pc_tree &&
p == PARTITION_VERT)) {
p_rec = PARTITION_INVALID_REC;
}
}
#endif // !CONFIG_H_PARTITION
}
if (p_rec != PARTITION_INVALID_REC) {
if (disable_ext_part) {
#if !CONFIG_H_PARTITION
if (limit_rect_split) {
part_search_state->partition_cost_table[p] =
mode_costs->partition_middle_noext_rec_cost[pl][p_rec];
} else {
#endif // !CONFIG_H_PARTITION
part_search_state->partition_cost_table[p] =
mode_costs->partition_noext_rec_cost[pl][p_rec];
#if !CONFIG_H_PARTITION
}
#endif // !CONFIG_H_PARTITION
} else {
#if !CONFIG_H_PARTITION
if (limit_rect_split) {
part_search_state->partition_cost_table[p] =
mode_costs->partition_middle_rec_cost[pl][p_rec];
} else {
#endif // !CONFIG_H_PARTITION
part_search_state->partition_cost_table[p] =
mode_costs->partition_rec_cost[pl][p_rec];
#if !CONFIG_H_PARTITION
}
#endif // !CONFIG_H_PARTITION
}
} else {
part_search_state->partition_cost_table[p] = INT_MAX;
}
}
part_search_state->partition_cost = part_search_state->partition_cost_table;
}
#else
part_search_state->partition_cost =
mode_costs->partition_cost[xd->tree_type == CHROMA_PART]
[part_search_state->pl_ctx_idx];
#endif // CONFIG_EXT_RECUR_PARTITIONS
// Initialize HORZ and VERT win flags as true for all split partitions.
for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
part_search_state->split_part_rect_win[i].rect_part_win[HORZ] = true;
part_search_state->split_part_rect_win[i].rect_part_win[VERT] = true;
}
// Initialize the rd cost.
av1_init_rd_stats(&part_search_state->this_rdc);
// Initialize RD costs for partition types to 0.
part_search_state->none_rd = 0;
av1_zero(part_search_state->split_rd);
av1_zero(part_search_state->rect_part_rd);
// Initialize SPLIT partition to be not ready.
av1_zero(part_search_state->is_split_ctx_is_ready);
// Initialize HORZ and VERT partitions to be not ready.
av1_zero(part_search_state->is_rect_ctx_is_ready);
// Chroma subsampling.
part_search_state->ss_x = x->e_mbd.plane[1].subsampling_x;
part_search_state->ss_y = x->e_mbd.plane[1].subsampling_y;
// Initialize partition search flags to defaults.
part_search_state->terminate_partition_search = 0;
av1_zero(part_search_state->prune_rect_part);
#if CONFIG_EXT_RECUR_PARTITIONS
init_allowed_partitions(part_search_state, &cpi->oxcf.part_cfg,
&pc_tree->chroma_ref_info, &cm->mi_params,
xd->tree_type);
#else
part_search_state->do_square_split =
blk_params->bsize_at_least_8x8 &&
(xd->tree_type != CHROMA_PART || bsize > BLOCK_8X8);
part_search_state->do_rectangular_split =
cpi->oxcf.part_cfg.enable_rect_partitions &&
(xd->tree_type != CHROMA_PART || bsize > BLOCK_8X8);
const BLOCK_SIZE horz_subsize = get_partition_subsize(bsize, PARTITION_HORZ);
const BLOCK_SIZE vert_subsize = get_partition_subsize(bsize, PARTITION_VERT);
const int is_horz_size_valid =
horz_subsize != BLOCK_INVALID &&
get_plane_block_size(horz_subsize, part_search_state->ss_x,
part_search_state->ss_y) != BLOCK_INVALID;
const int is_vert_size_valid =
vert_subsize != BLOCK_INVALID &&
get_plane_block_size(vert_subsize, part_search_state->ss_x,
part_search_state->ss_y) != BLOCK_INVALID;
const bool no_sub_16_chroma_part =
xd->tree_type != CHROMA_PART ||
(block_size_wide[bsize] > 8 && block_size_high[bsize] > 8);
// Initialize allowed partition types for the partition block.
part_search_state->is_block_splittable = is_partition_point(bsize);
part_search_state->partition_none_allowed =
blk_params->has_rows && blk_params->has_cols;
part_search_state->partition_rect_allowed[HORZ] =
blk_params->has_cols && blk_params->bsize_at_least_8x8 &&
no_sub_16_chroma_part && cpi->oxcf.part_cfg.enable_rect_partitions &&
is_horz_size_valid;
part_search_state->partition_rect_allowed[VERT] =
blk_params->has_rows && blk_params->bsize_at_least_8x8 &&
no_sub_16_chroma_part && cpi->oxcf.part_cfg.enable_rect_partitions &&
is_vert_size_valid;
// Reset the flag indicating whether a partition leading to a rdcost lower
// than the bound best_rdc has been found.
part_search_state->found_best_partition = false;
#endif // CONFIG_EXT_RECUR_PARTITIONS
}
// Override partition cost buffer for the edge blocks.
static void set_partition_cost_for_edge_blk(
AV1_COMMON const *cm, MACROBLOCKD *const xd,
#if CONFIG_EXT_RECUR_PARTITIONS
const CHROMA_REF_INFO *chroma_ref_info,
#endif // CONFIG_EXT_RECUR_PARTITIONS
PartitionSearchState *part_search_state) {
#if CONFIG_EXT_RECUR_PARTITIONS
const PartitionBlkParams *blk_params = &part_search_state->part_blk_params;
const bool is_part_implied = is_partition_implied_at_boundary(
&cm->mi_params, xd->tree_type, part_search_state->ss_x,
part_search_state->ss_y, blk_params->mi_row, blk_params->mi_col,
blk_params->bsize, chroma_ref_info, NULL);
if (is_part_implied) {
for (int i = 0; i < PARTITION_TYPES; ++i) {
part_search_state->tmp_partition_cost[i] = 0;
}
part_search_state->partition_cost = part_search_state->tmp_partition_cost;
}
(void)xd;
#else // CONFIG_EXT_RECUR_PARTITIONS
PartitionBlkParams blk_params = part_search_state->part_blk_params;
assert(blk_params.bsize_at_least_8x8 && part_search_state->pl_ctx_idx >= 0);
const int plane = xd->tree_type == CHROMA_PART;
const aom_cdf_prob *partition_cdf =
cm->fc->partition_cdf[plane][part_search_state->pl_ctx_idx];
const int max_cost = av1_cost_symbol(0);
for (PARTITION_TYPE i = 0; i < PARTITION_TYPES; ++i)
part_search_state->tmp_partition_cost[i] = max_cost;
if (blk_params.has_cols) {
// At the bottom, the two possibilities are HORZ and SPLIT.
aom_cdf_prob bot_cdf[2];
partition_gather_vert_alike(bot_cdf, partition_cdf, blk_params.bsize);
static const int bot_inv_map[2] = { PARTITION_HORZ, PARTITION_SPLIT };
av1_cost_tokens_from_cdf(part_search_state->tmp_partition_cost, bot_cdf,
bot_inv_map);
} else if (blk_params.has_rows) {
// At the right, the two possibilities are VERT and SPLIT.
aom_cdf_prob rhs_cdf[2];
partition_gather_horz_alike(rhs_cdf, partition_cdf, blk_params.bsize);
static const int rhs_inv_map[2] = { PARTITION_VERT, PARTITION_SPLIT };
av1_cost_tokens_from_cdf(part_search_state->tmp_partition_cost, rhs_cdf,
rhs_inv_map);
} else {
// At the bottom right, we always split.
part_search_state->tmp_partition_cost[PARTITION_SPLIT] = 0;
}
// Override the partition cost buffer.
part_search_state->partition_cost = part_search_state->tmp_partition_cost;
#endif // CONFIG_EXT_RECUR_PARTITIONS
}
#if !CONFIG_EXT_RECUR_PARTITIONS
// Reset the partition search state flags when
// must_find_valid_partition is equal to 1.
static AOM_INLINE void reset_part_limitations(
AV1_COMP *const cpi, PartitionSearchState *part_search_state) {
PartitionBlkParams blk_params = part_search_state->part_blk_params;
part_search_state->do_square_split =
blk_params.bsize_at_least_8x8 &&
(blk_params.width > blk_params.min_partition_size_1d);
part_search_state->partition_none_allowed =
blk_params.has_rows && blk_params.has_cols &&
(blk_params.width >= blk_params.min_partition_size_1d);
// Initialize allowed partition types for the partition block.
part_search_state->partition_rect_allowed[HORZ] =
blk_params.has_cols &&
is_partition_valid(blk_params.bsize, PARTITION_HORZ) &&
get_plane_block_size(
get_partition_subsize(blk_params.bsize, PARTITION_HORZ),
part_search_state->ss_x, part_search_state->ss_y) != BLOCK_INVALID &&
(blk_params.width > blk_params.min_partition_size_1d) &&
cpi->oxcf.part_cfg.enable_rect_partitions;
part_search_state->partition_rect_allowed[VERT] =
blk_params.has_rows &&
is_partition_valid(blk_params.bsize, PARTITION_VERT) &&
get_plane_block_size(
get_partition_subsize(blk_params.bsize, PARTITION_VERT),
part_search_state->ss_x, part_search_state->ss_y) != BLOCK_INVALID &&
(blk_params.width > blk_params.min_partition_size_1d) &&
cpi->oxcf.part_cfg.enable_rect_partitions;
part_search_state->terminate_partition_search = 0;
}
#endif // !CONFIG_EXT_RECUR_PARTITIONS
static const int rect_partition_type[NUM_RECT_PARTS] = { PARTITION_HORZ,
PARTITION_VERT };
#if !CONFIG_EXT_RECUR_PARTITIONS
// Rectangular partitions evaluation at sub-block level.
static void rd_pick_rect_partition(AV1_COMP *const cpi, TileDataEnc *tile_data,
MACROBLOCK *x,
PICK_MODE_CONTEXT *cur_partition_ctx,
PartitionSearchState *part_search_state,
RD_STATS *best_rdc, const int idx,
int mi_row, int mi_col, BLOCK_SIZE bsize,
PARTITION_TYPE partition_type) {
// Obtain the remainder from the best rd cost
// for further processing of partition.
RD_STATS best_remain_rdcost;
av1_rd_stats_subtraction(x->rdmult, best_rdc, &part_search_state->sum_rdc,
&best_remain_rdcost);
// Obtain the best mode for the partition sub-block.
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &part_search_state->this_rdc,
partition_type, bsize, cur_partition_ctx, best_remain_rdcost);
av1_rd_cost_update(x->rdmult, &part_search_state->this_rdc);
// Update the partition rd cost with the current sub-block rd.
if (part_search_state->this_rdc.rate == INT_MAX) {
part_search_state->sum_rdc.rdcost = INT64_MAX;
} else {
part_search_state->sum_rdc.rate += part_search_state->this_rdc.rate;
part_search_state->sum_rdc.dist += part_search_state->this_rdc.dist;
av1_rd_cost_update(x->rdmult, &part_search_state->sum_rdc);
}
const RECT_PART_TYPE rect_part =
partition_type == PARTITION_HORZ ? HORZ : VERT;
part_search_state->rect_part_rd[rect_part][idx] =
part_search_state->this_rdc.rdcost;
}
#else
static void rd_pick_rect_partition(
AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
TokenExtra **tp, MACROBLOCK *x, PC_TREE *pc_tree,
PartitionSearchState *part_search_state, const RD_STATS *best_rdc,
RECT_PART_TYPE rect_type,
const int mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][2],
BLOCK_SIZE bsize, const int is_not_edge_block[NUM_RECT_PARTS],
SB_MULTI_PASS_MODE multi_pass_mode, const PARTITION_TREE *ptree_luma,
const PARTITION_TREE *template_tree, bool *both_blocks_skippable,
int max_recursion_depth) {
const PARTITION_TYPE partition_type = rect_partition_type[rect_type];
RD_STATS *sum_rdc = &part_search_state->sum_rdc;
sum_rdc->rate = part_search_state->partition_cost[partition_type];
sum_rdc->rdcost = RDCOST(x->rdmult, sum_rdc->rate, 0);
RD_STATS this_rdc;
RD_STATS best_remain_rdcost;
PC_TREE **sub_tree =
(rect_type == HORZ) ? pc_tree->horizontal : pc_tree->vertical;
const int track_ptree_luma =
ptree_luma && ptree_luma->partition == partition_type;
*both_blocks_skippable = true;
av1_rd_stats_subtraction(x->rdmult, best_rdc, sum_rdc, &best_remain_rdcost);
bool partition_found = av1_rd_pick_partition(
cpi, td, tile_data, tp, mi_pos_rect[rect_type][0][0],
mi_pos_rect[rect_type][0][1], bsize, &this_rdc, best_remain_rdcost,
sub_tree[0], track_ptree_luma ? ptree_luma->sub_tree[0] : NULL,
get_partition_subtree_const(template_tree, 0), max_recursion_depth, NULL,
NULL, multi_pass_mode, NULL);
av1_rd_cost_update(x->rdmult, &this_rdc);
if (!partition_found) {
av1_invalid_rd_stats(sum_rdc);
return;
} else {
*both_blocks_skippable &= sub_tree[0]->skippable;
sum_rdc->rate += this_rdc.rate;
sum_rdc->dist += this_rdc.dist;
av1_rd_cost_update(x->rdmult, sum_rdc);
}
part_search_state->rect_part_rd[rect_type][0] = this_rdc.rdcost;
if (sum_rdc->rdcost < best_rdc->rdcost && is_not_edge_block[rect_type]) {
av1_rd_stats_subtraction(x->rdmult, best_rdc, sum_rdc, &best_remain_rdcost);
partition_found = av1_rd_pick_partition(
cpi, td, tile_data, tp, mi_pos_rect[rect_type][1][0],
mi_pos_rect[rect_type][1][1], bsize, &this_rdc, best_remain_rdcost,
sub_tree[1], track_ptree_luma ? ptree_luma->sub_tree[1] : NULL,
get_partition_subtree_const(template_tree, 1), max_recursion_depth,
NULL, NULL, multi_pass_mode, NULL);
av1_rd_cost_update(x->rdmult, &this_rdc);
part_search_state->rect_part_rd[rect_type][1] = this_rdc.rdcost;
if (!partition_found) {
av1_invalid_rd_stats(sum_rdc);
return;
} else {
*both_blocks_skippable &= sub_tree[1]->skippable;
sum_rdc->rate += this_rdc.rate;
sum_rdc->dist += this_rdc.dist;
av1_rd_cost_update(x->rdmult, sum_rdc);
}
}
}
#endif
typedef int (*active_edge_info)(const AV1_COMP *cpi, int mi_col, int mi_step);
#define IS_FORCED_PARTITION_TYPE(cur_partition) \
(forced_partition == PARTITION_INVALID || forced_partition == (cur_partition))
// Checks if HORZ / VERT partition search is allowed.
static AOM_INLINE int is_rect_part_allowed(
const AV1_COMP *cpi, PartitionSearchState *part_search_state,
active_edge_info *active_edge, RECT_PART_TYPE rect_part, const int mi_pos) {
PartitionBlkParams blk_params = part_search_state->part_blk_params;
#if CONFIG_EXT_RECUR_PARTITIONS
const int mi_step =
(rect_part == HORZ) ? blk_params.mi_step_h : blk_params.mi_step_w;
#else
const int mi_step = blk_params.mi_step;
#endif // CONFIG_EXT_RECUR_PARTITIONS
const int is_part_allowed =
(!part_search_state->terminate_partition_search &&
part_search_state->partition_rect_allowed[rect_part] &&
!part_search_state->prune_rect_part[rect_part] &&
#if CONFIG_EXT_RECUR_PARTITIONS
is_partition_valid(blk_params.bsize, rect_partition_type[rect_part]) &&
#endif // CONFIG_EXT_RECUR_PARTITIONS
(part_search_state->do_rectangular_split ||
active_edge[rect_part](cpi, mi_pos, mi_step)));
return is_part_allowed;
}
#if CONFIG_EXT_RECUR_PARTITIONS
static AOM_INLINE PARTITION_TYPE get_forced_partition_type(
const AV1_COMMON *const cm, MACROBLOCK *x, int mi_row, int mi_col,
BLOCK_SIZE bsize, const PARTITION_TREE *template_tree) {
if (template_tree) {
return template_tree->partition;
}
if (should_reuse_mode(x, REUSE_PARTITION_MODE_FLAG)) {
return av1_get_prev_partition(x, mi_row, mi_col, bsize,
cm->seq_params.sb_size);
}
return PARTITION_INVALID;
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
// Rectangular partition types search function.
static void rectangular_partition_search(
AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
TokenExtra **tp, MACROBLOCK *x, PC_TREE *pc_tree,
RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
PartitionSearchState *part_search_state, RD_STATS *best_rdc,
#if CONFIG_EXT_RECUR_PARTITIONS
SB_MULTI_PASS_MODE multi_pass_mode, const PARTITION_TREE *ptree_luma,
const PARTITION_TREE *template_tree, int max_recursion_depth,
#endif // CONFIG_EXT_RECUR_PARTITIONS
RD_RECT_PART_WIN_INFO *rect_part_win_info,
#if CONFIG_C043_MVP_IMPROVEMENTS
REF_MV_BANK *best_level_bank, REF_MV_BANK *curr_level_bank,
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
WARP_PARAM_BANK *best_level_warp_bank,
WARP_PARAM_BANK *curr_level_warp_bank,
#endif // WARP_CU_BANK
int64_t part_none_rd) {
const AV1_COMMON *const cm = &cpi->common;
PartitionBlkParams blk_params = part_search_state->part_blk_params;
RD_STATS *sum_rdc = &part_search_state->sum_rdc;
MACROBLOCKD *xd = &x->e_mbd;
const int plane_start = get_partition_plane_start(xd->tree_type);
const int plane_end =
get_partition_plane_end(xd->tree_type, av1_num_planes(cm));
(void)plane_start;
(void)plane_end;
#if CONFIG_EXT_RECUR_PARTITIONS
const int ss_x = xd->plane[1].subsampling_x;
const int ss_y = xd->plane[1].subsampling_y;
PARTITION_TYPE forced_partition =
get_forced_partition_type(cm, x, blk_params.mi_row, blk_params.mi_col,
blk_params.bsize, template_tree);
#else // !CONFIG_EXT_RECUR_PARTITIONS
(void)part_none_rd;
#endif // CONFIG_EXT_RECUR_PARTITIONS
// mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][0]: mi_row postion of
// HORZ and VERT partition types.
// mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][1]: mi_col postion of
// HORZ and VERT partition types.
const int mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][2] = {
{ { blk_params.mi_row, blk_params.mi_col },
{ blk_params.mi_row_edge, blk_params.mi_col } },
{ { blk_params.mi_row, blk_params.mi_col },
{ blk_params.mi_row, blk_params.mi_col_edge } }
};
// Initialize active edge_type function pointer
// for HOZR and VERT partition types.
active_edge_info active_edge_type[NUM_RECT_PARTS] = { av1_active_h_edge,
av1_active_v_edge };
// Indicates edge blocks for HORZ and VERT partition types.
const int is_not_edge_block[NUM_RECT_PARTS] = { blk_params.has_rows,
blk_params.has_cols };
#if !CONFIG_EXT_RECUR_PARTITIONS
// Initialize pc tree context for HORZ and VERT partition types.
PICK_MODE_CONTEXT **cur_ctx[NUM_RECT_PARTS][SUB_PARTITIONS_RECT] = {
{ &pc_tree->horizontal[0], &pc_tree->horizontal[1] },
{ &pc_tree->vertical[0], &pc_tree->vertical[1] }
};
#endif // !CONFIG_EXT_RECUR_PARTITIONS
#if CONFIG_EXT_RECUR_PARTITIONS
const CommonModeInfoParams *const mi_params = &cpi->common.mi_params;
const BLOCK_SIZE bsize = blk_params.bsize;
const bool is_whole_block_inside =
(blk_params.mi_row + mi_size_high[bsize] < mi_params->mi_rows) &&
(blk_params.mi_col + mi_size_wide[bsize] < mi_params->mi_cols);
const bool try_prune_with_ml =
cpi->sf.part_sf.prune_rect_with_ml && !frame_is_intra_only(cm) &&
forced_partition == PARTITION_INVALID && is_whole_block_inside &&
part_none_rd < INT64_MAX &&
(is_rect_part_allowed(cpi, part_search_state, active_edge_type, HORZ,
mi_pos_rect[HORZ][0][HORZ]) ||
is_rect_part_allowed(cpi, part_search_state, active_edge_type, VERT,
mi_pos_rect[VERT][0][VERT]));
bool prune_horz = false, prune_vert = false;
if (try_prune_with_ml && bsize != BLOCK_4X8 && bsize != BLOCK_8X4 &&
is_partition_point(bsize)) {
float ml_features[19];
av1_gather_erp_rect_features(ml_features, cpi, x, &tile_data->tile_info,
pc_tree, part_search_state, part_none_rd,
mi_pos_rect);
const bool is_hd = AOMMIN(cm->width, cm->height) >= 1080;
av1_erp_prune_rect(bsize, is_hd, ml_features, &prune_horz, &prune_vert);
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
// Loop over rectangular partition types.
for (RECT_PART_TYPE i = HORZ; i < NUM_RECT_PARTS; i++) {
assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions,
!part_search_state->partition_rect_allowed[i]));
// Check if the HORZ / VERT partition search is to be performed.
if (!is_rect_part_allowed(cpi, part_search_state, active_edge_type, i,
mi_pos_rect[i][0][i]))
continue;
#if CONFIG_EXT_RECUR_PARTITIONS
if (pc_tree->parent) {
if ((pc_tree->parent->horizontal3[1] == pc_tree && i == HORZ) ||
(pc_tree->parent->vertical3[1] == pc_tree && i == VERT)) {
continue;
}
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
// Sub-partition idx.
const PARTITION_TYPE partition_type = rect_partition_type[i];
blk_params.subsize =
get_partition_subsize(blk_params.bsize, partition_type);
const int part_hv_rate = part_search_state->partition_cost[partition_type];
if (part_hv_rate == INT_MAX ||
RDCOST(x->rdmult, part_hv_rate, 0) >= best_rdc->rdcost) {
continue;
}
#if !CONFIG_EXT_RECUR_PARTITIONS
assert(blk_params.subsize <= BLOCK_LARGEST);
#endif // !CONFIG_EXT_RECUR_PARTITIONS
av1_init_rd_stats(sum_rdc);
#if CONFIG_EXT_RECUR_PARTITIONS
if (!IS_FORCED_PARTITION_TYPE(partition_type)) {
continue;
}
if (partition_type == PARTITION_HORZ && prune_horz) {
continue;
} else if (partition_type == PARTITION_VERT && prune_vert) {
continue;
}
if (cpi->sf.part_sf.prune_rect_with_none_rd &&
forced_partition == PARTITION_INVALID && !frame_is_intra_only(cm) &&
part_none_rd < INT64_MAX && sum_rdc->rate < INT_MAX &&
is_not_edge_block[i]) {
float discount_factor = 1.1f;
const int q_thresh = 180;
const int q = x->qindex;
if (q < q_thresh) {
discount_factor -= 0.025f;
}
if (AOMMAX(block_size_wide[blk_params.bsize],
block_size_high[blk_params.bsize]) < 16) {
discount_factor -= 0.02f;
}
const int64_t est_rd = (int64_t)(part_none_rd / discount_factor) +
RDCOST(x->rdmult, part_hv_rate, 0);
if (est_rd > part_none_rd) {
continue;
}
}
PC_TREE **sub_tree = (i == HORZ) ? pc_tree->horizontal : pc_tree->vertical;
const int num_planes = av1_num_planes(cm);
for (int idx = 0; idx < SUB_PARTITIONS_RECT; idx++) {
if (sub_tree[idx]) {
av1_free_pc_tree_recursive(sub_tree[idx], num_planes, 0, 0);
sub_tree[idx] = NULL;
}
}
sub_tree[0] = av1_alloc_pc_tree_node(
mi_pos_rect[i][0][0], mi_pos_rect[i][0][1], blk_params.subsize, pc_tree,
partition_type, 0, 0, ss_x, ss_y);
sub_tree[1] = av1_alloc_pc_tree_node(
mi_pos_rect[i][1][0], mi_pos_rect[i][1][1], blk_params.subsize, pc_tree,
partition_type, 1, 1, ss_x, ss_y);
bool both_blocks_skippable = true;
rd_pick_rect_partition(
cpi, td, tile_data, tp, x, pc_tree, part_search_state, best_rdc, i,
mi_pos_rect, blk_params.subsize, is_not_edge_block, multi_pass_mode,
ptree_luma, template_tree, &both_blocks_skippable, max_recursion_depth);
#else
int sub_part_idx = 0;
for (int j = 0; j < SUB_PARTITIONS_RECT; j++) {
assert(cur_ctx[i][j] != NULL);
if (cur_ctx[i][j][0] == NULL) {
cur_ctx[i][j][0] = av1_alloc_pmc(
cm, mi_pos_rect[i][j][0], mi_pos_rect[i][j][1], blk_params.subsize,
pc_tree, partition_type, j, part_search_state->ss_x,
part_search_state->ss_y, &td->shared_coeff_buf);
}
}
sum_rdc->rate = part_search_state->partition_cost[partition_type];
sum_rdc->rdcost = RDCOST(x->rdmult, sum_rdc->rate, 0);
#if CONFIG_COLLECT_PARTITION_STATS
if (best_rdc.rdcost - sum_rdc->rdcost >= 0) {
partition_attempts[partition_type] += 1;
aom_usec_timer_start(&partition_timer);
partition_timer_on = 1;
}
#endif
// First sub-partition evaluation in HORZ / VERT partition type.
rd_pick_rect_partition(
cpi, tile_data, x, cur_ctx[i][sub_part_idx][0], part_search_state,
best_rdc, 0, mi_pos_rect[i][sub_part_idx][0],
mi_pos_rect[i][sub_part_idx][1], blk_params.subsize, partition_type);
// Start of second sub-partition evaluation.
// Evaluate second sub-partition if the first sub-partition cost
// is less than the best cost and if it is not an edge block.
if (sum_rdc->rdcost < best_rdc->rdcost && is_not_edge_block[i]) {
const MB_MODE_INFO *const mbmi = &cur_ctx[i][sub_part_idx][0]->mic;
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
// Neither palette mode nor cfl predicted.
if (pmi->palette_size[PLANE_TYPE_Y] == 0 &&
pmi->palette_size[PLANE_TYPE_UV] == 0) {
if (mbmi->uv_mode != UV_CFL_PRED)
part_search_state->is_rect_ctx_is_ready[i] = 1;
}
av1_update_state(cpi, td, cur_ctx[i][sub_part_idx][0], blk_params.mi_row,
blk_params.mi_col, blk_params.subsize, DRY_RUN_NORMAL);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL,
blk_params.subsize, plane_start, plane_end, NULL);
// Second sub-partition evaluation in HORZ / VERT partition type.
sub_part_idx = 1;
rd_pick_rect_partition(
cpi, tile_data, x, cur_ctx[i][sub_part_idx][0], part_search_state,
best_rdc, 1, mi_pos_rect[i][sub_part_idx][0],
mi_pos_rect[i][sub_part_idx][1], blk_params.subsize, partition_type);
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
#if CONFIG_COLLECT_PARTITION_STATS
if (partition_timer_on) {
aom_usec_timer_mark(&partition_timer);
int64_t time = aom_usec_timer_elapsed(&partition_timer);
partition_times[partition_type] += time;
partition_timer_on = 0;
}
#endif
// Update HORZ / VERT best partition.
if (sum_rdc->rdcost < best_rdc->rdcost) {
sum_rdc->rdcost = RDCOST(x->rdmult, sum_rdc->rate, sum_rdc->dist);
if (sum_rdc->rdcost < best_rdc->rdcost) {
#if CONFIG_EXT_RECUR_PARTITIONS
pc_tree->skippable = both_blocks_skippable;
#endif // CONFIG_EXT_RECUR_PARTITIONS
*best_rdc = *sum_rdc;
#if CONFIG_C043_MVP_IMPROVEMENTS
*best_level_bank = x->e_mbd.ref_mv_bank;
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
*best_level_warp_bank = x->e_mbd.warp_param_bank;
#endif // WARP_CU_BANK
part_search_state->found_best_partition = true;
pc_tree->partitioning = partition_type;
}
} else {
// Update HORZ / VERT win flag.
if (rect_part_win_info != NULL)
rect_part_win_info->rect_part_win[i] = false;
}
#if CONFIG_C043_MVP_IMPROVEMENTS
x->e_mbd.ref_mv_bank = *curr_level_bank;
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
x->e_mbd.warp_param_bank = *curr_level_warp_bank;
#endif // WARP_CU_BANK
av1_restore_context(cm, x, x_ctx, blk_params.mi_row, blk_params.mi_col,
blk_params.bsize, av1_num_planes(cm));
#if CONFIG_EXT_RECUR_PARTITIONS
if (sum_rdc->rdcost < INT64_MAX && both_blocks_skippable &&
!frame_is_intra_only(cm)) {
const int64_t dist_breakout_thr =
(int64_t)(cpi->sf.part_sf.partition_search_breakout_dist_thr / 4) >>
((2 * (MAX_SB_SIZE_LOG2 - 2)) -
(mi_size_wide_log2[bsize] + mi_size_high_log2[bsize]));
const int rate_breakout_thr =
(int64_t)25 * cpi->sf.part_sf.partition_search_breakout_rate_thr *
num_pels_log2_lookup[bsize];
if (sum_rdc->dist < dist_breakout_thr &&
sum_rdc->rate < rate_breakout_thr) {
part_search_state->terminate_partition_search = true;
break;
}
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
}
}
#if !CONFIG_EXT_RECUR_PARTITIONS
// AB partition type evaluation.
static void rd_pick_ab_part(
AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
PC_TREE *pc_tree, PICK_MODE_CONTEXT *dst_ctxs[SUB_PARTITIONS_AB],
PartitionSearchState *part_search_state, RD_STATS *best_rdc,
const BLOCK_SIZE ab_subsize[SUB_PARTITIONS_AB],
const int ab_mi_pos[SUB_PARTITIONS_AB][2], const PARTITION_TYPE part_type
#if CONFIG_C043_MVP_IMPROVEMENTS
,
REF_MV_BANK *best_level_bank
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
,
WARP_PARAM_BANK *best_level_warp_bank
#endif // WARP_CU_BANK
) {
const AV1_COMMON *const cm = &cpi->common;
PartitionBlkParams blk_params = part_search_state->part_blk_params;
const int mi_row = blk_params.mi_row;
const int mi_col = blk_params.mi_col;
const int bsize = blk_params.bsize;
#if CONFIG_COLLECT_PARTITION_STATS
{
RD_STATS tmp_sum_rdc;
av1_init_rd_stats(&tmp_sum_rdc);
tmp_sum_rdc.rate =
x->partition_cost[part_search_state->pl_ctx_idx][part_type];
tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0);
if (best_rdc->rdcost - tmp_sum_rdc.rdcost >= 0) {
partition_attempts[part_type] += 1;
aom_usec_timer_start(&partition_timer);
partition_timer_on = 1;
}
}
#endif
// Test this partition and update the best partition.
part_search_state->found_best_partition |=
rd_test_partition3(cpi, td, tile_data, tp, pc_tree, best_rdc, dst_ctxs,
mi_row, mi_col, bsize, part_type, ab_subsize, ab_mi_pos
#if CONFIG_C043_MVP_IMPROVEMENTS
,
best_level_bank
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
,
best_level_warp_bank
#endif // WARP_CU_BANK
);
#if CONFIG_COLLECT_PARTITION_STATS
if (partition_timer_on) {
aom_usec_timer_mark(&partition_timer);
int64_t time = aom_usec_timer_elapsed(&partition_timer);
partition_times[part_type] += time;
partition_timer_on = 0;
}
#endif
av1_restore_context(cm, x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm));
}
// Check if AB partitions search is allowed.
static AOM_INLINE int is_ab_part_allowed(
PartitionSearchState *part_search_state,
const int ab_partitions_allowed[NUM_AB_PARTS], const int ab_part_type) {
const int is_horz_ab = (ab_part_type >> 1);
const int is_part_allowed =
(!part_search_state->terminate_partition_search &&
part_search_state->partition_rect_allowed[is_horz_ab] &&
ab_partitions_allowed[ab_part_type]);
return is_part_allowed;
}
// Set mode search context.
static AOM_INLINE void set_mode_search_ctx(
PC_TREE *pc_tree, const int is_ctx_ready[NUM_AB_PARTS][2],
PICK_MODE_CONTEXT **mode_srch_ctx[NUM_AB_PARTS][2]) {
mode_srch_ctx[HORZ_B][0] = &pc_tree->horizontal[0];
mode_srch_ctx[VERT_B][0] = &pc_tree->vertical[0];
if (is_ctx_ready[HORZ_A][0])
mode_srch_ctx[HORZ_A][0] = &pc_tree->split[0]->none;
if (is_ctx_ready[VERT_A][0])
mode_srch_ctx[VERT_A][0] = &pc_tree->split[0]->none;
if (is_ctx_ready[HORZ_A][1])
mode_srch_ctx[HORZ_A][1] = &pc_tree->split[1]->none;
}
// AB Partitions type search.
static void ab_partitions_search(
AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
PC_TREE *pc_tree, PartitionSearchState *part_search_state,
RD_STATS *best_rdc, RD_RECT_PART_WIN_INFO *rect_part_win_info,
int pb_source_variance, int ext_partition_allowed
#if CONFIG_C043_MVP_IMPROVEMENTS
,
REF_MV_BANK *best_level_bank, REF_MV_BANK *curr_level_bank
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
,
WARP_PARAM_BANK *best_level_warp_bank, WARP_PARAM_BANK *curr_level_warp_bank
#endif // WARP_CU_BANK
) {
const AV1_COMMON *const cm = &cpi->common;
PartitionBlkParams blk_params = part_search_state->part_blk_params;
const int mi_row = blk_params.mi_row;
const int mi_col = blk_params.mi_col;
const int bsize = blk_params.bsize;
int ab_partitions_allowed[NUM_AB_PARTS] = { 1, 1, 1, 1 };
// Prune AB partitions
av1_prune_ab_partitions(
cpi, x, pc_tree, bsize, pb_source_variance, best_rdc->rdcost,
part_search_state->rect_part_rd, part_search_state->split_rd,
rect_part_win_info, ext_partition_allowed,
part_search_state->partition_rect_allowed[HORZ],
part_search_state->partition_rect_allowed[VERT],
&ab_partitions_allowed[HORZ_A], &ab_partitions_allowed[HORZ_B],
&ab_partitions_allowed[VERT_A], &ab_partitions_allowed[VERT_B]);
// Flags to indicate whether the mode search is done.
const int is_ctx_ready[NUM_AB_PARTS][2] = {
{ part_search_state->is_split_ctx_is_ready[0],
part_search_state->is_split_ctx_is_ready[1] },
{ part_search_state->is_rect_ctx_is_ready[HORZ], 0 },
{ part_search_state->is_split_ctx_is_ready[0], 0 },
{ part_search_state->is_rect_ctx_is_ready[VERT], 0 }
};
// Current partition context.
PICK_MODE_CONTEXT **cur_part_ctxs[NUM_AB_PARTS] = { pc_tree->horizontala,
pc_tree->horizontalb,
pc_tree->verticala,
pc_tree->verticalb };
// Context of already evaluted partition types.
PICK_MODE_CONTEXT **mode_srch_ctx[NUM_AB_PARTS][2];
// Set context of already evaluted partition types.
set_mode_search_ctx(pc_tree, is_ctx_ready, mode_srch_ctx);
// Array of sub-partition size of AB partition types.
const BLOCK_SIZE ab_subsize[NUM_AB_PARTS][SUB_PARTITIONS_AB] = {
{ blk_params.split_bsize2, blk_params.split_bsize2,
get_partition_subsize(bsize, PARTITION_HORZ_A) },
{ get_partition_subsize(bsize, PARTITION_HORZ_B), blk_params.split_bsize2,
blk_params.split_bsize2 },
{ blk_params.split_bsize2, blk_params.split_bsize2,
get_partition_subsize(bsize, PARTITION_VERT_A) },
{ get_partition_subsize(bsize, PARTITION_VERT_B), blk_params.split_bsize2,
blk_params.split_bsize2 }
};
// Array of mi_row, mi_col positions corresponds to each sub-partition in AB
// partition types.
const int ab_mi_pos[NUM_AB_PARTS][SUB_PARTITIONS_AB][2] = {
{ { mi_row, mi_col },
{ mi_row, blk_params.mi_col_edge },
{ blk_params.mi_row_edge, mi_col } },
{ { mi_row, mi_col },
{ blk_params.mi_row_edge, mi_col },
{ blk_params.mi_row_edge, blk_params.mi_col_edge } },
{ { mi_row, mi_col },
{ blk_params.mi_row_edge, mi_col },
{ mi_row, blk_params.mi_col_edge } },
{ { mi_row, mi_col },
{ mi_row, blk_params.mi_col_edge },
{ blk_params.mi_row_edge, blk_params.mi_col_edge } }
};
// Loop over AB partition types.
for (AB_PART_TYPE ab_part_type = 0; ab_part_type < NUM_AB_PARTS;
ab_part_type++) {
const PARTITION_TYPE part_type = ab_part_type + PARTITION_HORZ_A;
// Check if the AB partition search is to be performed.
if (!is_ab_part_allowed(part_search_state, ab_partitions_allowed,
ab_part_type))
continue;
blk_params.subsize = get_partition_subsize(bsize, part_type);
for (int i = 0; i < SUB_PARTITIONS_AB; i++) {
assert(cur_part_ctxs[ab_part_type] != NULL);
// Set AB partition context.
if (cur_part_ctxs[ab_part_type][i] == NULL)
cur_part_ctxs[ab_part_type][i] = av1_alloc_pmc(
cm, ab_mi_pos[ab_part_type][i][0], ab_mi_pos[ab_part_type][i][1],
ab_subsize[ab_part_type][i], pc_tree, part_type, i,
part_search_state->ss_x, part_search_state->ss_y,
&td->shared_coeff_buf);
// Set mode as not ready.
cur_part_ctxs[ab_part_type][i]->rd_mode_is_ready = 0;
}
// Copy of mode search results if the ctx is ready.
if (is_ctx_ready[ab_part_type][0]) {
av1_copy_tree_context(cur_part_ctxs[ab_part_type][0],
mode_srch_ctx[ab_part_type][0][0]);
cur_part_ctxs[ab_part_type][0]->mic.partition = part_type;
cur_part_ctxs[ab_part_type][0]->rd_mode_is_ready = 1;
if (is_ctx_ready[ab_part_type][1]) {
av1_copy_tree_context(cur_part_ctxs[ab_part_type][1],
mode_srch_ctx[ab_part_type][1][0]);
cur_part_ctxs[ab_part_type][1]->mic.partition = part_type;
cur_part_ctxs[ab_part_type][1]->rd_mode_is_ready = 1;
}
}
// Evaluation of AB partition type.
rd_pick_ab_part(cpi, td, tile_data, tp, x, x_ctx, pc_tree,
cur_part_ctxs[ab_part_type], part_search_state, best_rdc,
ab_subsize[ab_part_type], ab_mi_pos[ab_part_type], part_type
#if CONFIG_C043_MVP_IMPROVEMENTS
,
best_level_bank
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
,
best_level_warp_bank
#endif // WARP_CU_BANK
);
#if CONFIG_C043_MVP_IMPROVEMENTS
x->e_mbd.ref_mv_bank = *curr_level_bank;
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
x->e_mbd.warp_param_bank = *curr_level_warp_bank;
#endif // WARP_CU_BANK
}
}
// Set mi positions for HORZ4 / VERT4 sub-block partitions.
static void set_mi_pos_partition4(const int inc_step[NUM_PART4_TYPES],
int mi_pos[SUB_PARTITIONS_PART4][2],
const int mi_row, const int mi_col) {
for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; i++) {
mi_pos[i][0] = mi_row + i * inc_step[HORZ4];
mi_pos[i][1] = mi_col + i * inc_step[VERT4];
}
}
// Set context and RD cost for HORZ4 / VERT4 partition types.
static void set_4_part_ctx_and_rdcost(
MACROBLOCK *x, const AV1_COMMON *const cm, ThreadData *td,
PICK_MODE_CONTEXT *cur_part_ctx[SUB_PARTITIONS_PART4],
PartitionSearchState *part_search_state, PARTITION_TYPE partition_type,
BLOCK_SIZE bsize, int mi_pos[SUB_PARTITIONS_PART4][2], PC_TREE *pc_tree) {
// Initialize sum_rdc RD cost structure.
av1_init_rd_stats(&part_search_state->sum_rdc);
const int subsize = get_partition_subsize(bsize, partition_type);
part_search_state->sum_rdc.rate =
part_search_state->partition_cost[partition_type];
part_search_state->sum_rdc.rdcost =
RDCOST(x->rdmult, part_search_state->sum_rdc.rate, 0);
for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; ++i) {
if (cur_part_ctx[i] == NULL)
cur_part_ctx[i] =
av1_alloc_pmc(cm, mi_pos[i][0], mi_pos[i][1], subsize, pc_tree,
partition_type, i, part_search_state->ss_x,
part_search_state->ss_y, &td->shared_coeff_buf);
}
}
// Partition search of HORZ4 / VERT4 partition types.
static void rd_pick_4partition(
AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
PC_TREE *pc_tree, PICK_MODE_CONTEXT *cur_part_ctx[SUB_PARTITIONS_PART4],
PartitionSearchState *part_search_state, RD_STATS *best_rdc,
const int inc_step[NUM_PART4_TYPES], PARTITION_TYPE partition_type
#if CONFIG_C043_MVP_IMPROVEMENTS
,
REF_MV_BANK *best_level_bank, REF_MV_BANK *curr_level_bank
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
,
WARP_PARAM_BANK *best_level_warp_bank, WARP_PARAM_BANK *curr_level_warp_bank
#endif // WARP_CU_BANK
) {
const AV1_COMMON *const cm = &cpi->common;
PartitionBlkParams blk_params = part_search_state->part_blk_params;
// mi positions needed for HORZ4 and VERT4 partition types.
int mi_pos_check[NUM_PART4_TYPES] = { cm->mi_params.mi_rows,
cm->mi_params.mi_cols };
const PART4_TYPES part4_idx = (partition_type != PARTITION_HORZ_4);
int mi_pos[SUB_PARTITIONS_PART4][2];
blk_params.subsize = get_partition_subsize(blk_params.bsize, partition_type);
// Set mi positions for sub-block sizes.
set_mi_pos_partition4(inc_step, mi_pos, blk_params.mi_row, blk_params.mi_col);
// Set partition context and RD cost.
set_4_part_ctx_and_rdcost(x, cm, td, cur_part_ctx, part_search_state,
partition_type, blk_params.bsize, mi_pos, pc_tree);
#if CONFIG_COLLECT_PARTITION_STATS
if (best_rdc.rdcost - part_search_state->sum_rdc.rdcost >= 0) {
partition_attempts[partition_type] += 1;
aom_usec_timer_start(&partition_timer);
partition_timer_on = 1;
}
#endif
// Loop over sub-block partitions.
for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; ++i) {
if (i > 0 && mi_pos[i][part4_idx] >= mi_pos_check[part4_idx]) break;
// Sub-block evaluation of Horz4 / Vert4 partition type.
cur_part_ctx[i]->rd_mode_is_ready = 0;
if (!rd_try_subblock(
cpi, td, tile_data, tp, (i == SUB_PARTITIONS_PART4 - 1),
mi_pos[i][0], mi_pos[i][1], blk_params.subsize, *best_rdc,
&part_search_state->sum_rdc, partition_type, cur_part_ctx[i])) {
av1_invalid_rd_stats(&part_search_state->sum_rdc);
break;
}
}
// Calculate the total cost and update the best partition.
av1_rd_cost_update(x->rdmult, &part_search_state->sum_rdc);
if (part_search_state->sum_rdc.rdcost < best_rdc->rdcost) {
*best_rdc = part_search_state->sum_rdc;
#if CONFIG_C043_MVP_IMPROVEMENTS
*best_level_bank = x->e_mbd.ref_mv_bank;
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
*best_level_warp_bank = x->e_mbd.warp_param_bank;
#endif // WARP_CU_BANK
part_search_state->found_best_partition = true;
pc_tree->partitioning = partition_type;
}
#if CONFIG_COLLECT_PARTITION_STATS
if (partition_timer_on) {
aom_usec_timer_mark(&partition_timer);
int64_t time = aom_usec_timer_elapsed(&partition_timer);
partition_times[partition_type] += time;
partition_timer_on = 0;
}
#endif
#if CONFIG_C043_MVP_IMPROVEMENTS
x->e_mbd.ref_mv_bank = *curr_level_bank;
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
x->e_mbd.warp_param_bank = *curr_level_warp_bank;
#endif // WARP_CU_BANK
av1_restore_context(cm, x, x_ctx, blk_params.mi_row, blk_params.mi_col,
blk_params.bsize, av1_num_planes(cm));
}
// Prune 4-way partitions based on the number of horz/vert wins
// in the current block and sub-blocks in PARTITION_SPLIT.
static void prune_4_partition_using_split_info(
AV1_COMP *const cpi, MACROBLOCK *x, PartitionSearchState *part_search_state,
int part4_search_allowed[NUM_PART4_TYPES]) {
PART4_TYPES cur_part[NUM_PART4_TYPES] = { HORZ4, VERT4 };
// Count of child blocks in which HORZ or VERT partition has won
int num_child_rect_win[NUM_RECT_PARTS] = { 0, 0 };
// Prune HORZ4/VERT4 partitions based on number of HORZ/VERT winners of
// split partiitons.
// Conservative pruning for high quantizers.
const int num_win_thresh = AOMMIN(3 * (MAXQ - x->qindex) / MAXQ + 1, 3);
for (RECT_PART_TYPE i = HORZ; i < NUM_RECT_PARTS; i++) {
if (!(cpi->sf.part_sf.prune_4_partition_using_split_info &&
part4_search_allowed[cur_part[i]]))
continue;
// Loop over split partitions.
// Get reactnagular partitions winner info of split partitions.
for (int idx = 0; idx < SUB_PARTITIONS_SPLIT; idx++)
num_child_rect_win[i] +=
(part_search_state->split_part_rect_win[idx].rect_part_win[i]) ? 1
: 0;
if (num_child_rect_win[i] < num_win_thresh) {
part4_search_allowed[cur_part[i]] = 0;
}
}
}
// Prune 4-way partition search.
static void prune_4_way_partition_search(
AV1_COMP *const cpi, MACROBLOCK *x, PC_TREE *pc_tree,
PartitionSearchState *part_search_state, RD_STATS *best_rdc,
int pb_source_variance, int ext_partition_allowed,
int part4_search_allowed[NUM_PART4_TYPES]) {
PartitionBlkParams blk_params = part_search_state->part_blk_params;
const int mi_row = blk_params.mi_row;
const int mi_col = blk_params.mi_col;
const int bsize = blk_params.bsize;
PARTITION_TYPE cur_part[NUM_PART4_TYPES] = { PARTITION_HORZ_4,
PARTITION_VERT_4 };
const PartitionCfg *const part_cfg = &cpi->oxcf.part_cfg;
// partition4_allowed is 1 if we can use a PARTITION_HORZ_4 or
// PARTITION_VERT_4 for this block. This is almost the same as
// ext_partition_allowed, except that we don't allow 128x32 or 32x128
// blocks, so we require that bsize is not BLOCK_128X128.
const int partition4_allowed = part_cfg->enable_1to4_partitions &&
ext_partition_allowed &&
bsize != BLOCK_128X128;
for (PART4_TYPES i = HORZ4; i < NUM_PART4_TYPES; i++) {
part4_search_allowed[i] =
partition4_allowed && part_search_state->partition_rect_allowed[i] &&
get_plane_block_size(get_partition_subsize(bsize, cur_part[i]),
part_search_state->ss_x,
part_search_state->ss_y) != BLOCK_INVALID;
}
// Pruning: pruning out 4-way partitions based on the current best
// partition.
if (cpi->sf.part_sf.prune_ext_partition_types_search_level == 2) {
part4_search_allowed[HORZ4] &= (pc_tree->partitioning == PARTITION_HORZ ||
pc_tree->partitioning == PARTITION_HORZ_A ||
pc_tree->partitioning == PARTITION_HORZ_B ||
pc_tree->partitioning == PARTITION_SPLIT ||
pc_tree->partitioning == PARTITION_NONE);
part4_search_allowed[VERT4] &= (pc_tree->partitioning == PARTITION_VERT ||
pc_tree->partitioning == PARTITION_VERT_A ||
pc_tree->partitioning == PARTITION_VERT_B ||
pc_tree->partitioning == PARTITION_SPLIT ||
pc_tree->partitioning == PARTITION_NONE);
}
// Pruning: pruning out some 4-way partitions using a DNN taking rd costs of
// sub-blocks from basic partition types.
if (cpi->sf.part_sf.ml_prune_4_partition && partition4_allowed &&
part_search_state->partition_rect_allowed[HORZ] &&
part_search_state->partition_rect_allowed[VERT]) {
av1_ml_prune_4_partition(
cpi, x, bsize, pc_tree->partitioning, best_rdc->rdcost,
part_search_state->rect_part_rd, part_search_state->split_rd,
&part4_search_allowed[HORZ4], &part4_search_allowed[VERT4],
pb_source_variance, mi_row, mi_col);
}
// Pruning: pruning out 4-way partitions based on the number of horz/vert
// wins in the current block and sub-blocks in PARTITION_SPLIT.
prune_4_partition_using_split_info(cpi, x, part_search_state,
part4_search_allowed);
}
#endif // !CONFIG_EXT_RECUR_PARTITIONS
// Set PARTITION_NONE allowed flag.
static AOM_INLINE void set_part_none_allowed_flag(
const AV1_COMP *const cpi,
#if CONFIG_EXT_RECUR_PARTITIONS
TREE_TYPE tree_type,
#endif // CONFIG_EXT_RECUR_PARTITIONS
PartitionSearchState *part_search_state) {
PartitionBlkParams blk_params = part_search_state->part_blk_params;
#if CONFIG_EXT_RECUR_PARTITIONS
if (tree_type == CHROMA_PART && blk_params.bsize == BLOCK_8X8) {
part_search_state->partition_none_allowed = 1;
return;
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
#if CONFIG_EXT_RECUR_PARTITIONS
if (is_bsize_geq(blk_params.min_partition_size, blk_params.bsize) &&
blk_params.has_rows && blk_params.has_cols)
#else
if ((blk_params.width <= blk_params.min_partition_size_1d) &&
blk_params.has_rows && blk_params.has_cols)
#endif // CONFIG_EXT_RECUR_PARTITIONS
part_search_state->partition_none_allowed = 1;
assert(part_search_state->terminate_partition_search == 0);
if (part_search_state->partition_none_allowed == BLOCK_INVALID) {
part_search_state->partition_none_allowed = 0;
return;
}
// Set PARTITION_NONE for screen content.
if (cpi->is_screen_content_type)
part_search_state->partition_none_allowed =
blk_params.has_rows && blk_params.has_cols;
}
// Set params needed for PARTITION_NONE search.
static void set_none_partition_params(const AV1_COMMON *const cm,
ThreadData *td, MACROBLOCK *x,
PC_TREE *pc_tree,
PartitionSearchState *part_search_state,
RD_STATS *best_remain_rdcost,
RD_STATS *best_rdc, int *pt_cost) {
PartitionBlkParams blk_params = part_search_state->part_blk_params;
RD_STATS partition_rdcost;
// Set PARTITION_NONE context.
if (pc_tree->none == NULL)
pc_tree->none = av1_alloc_pmc(
cm, blk_params.mi_row, blk_params.mi_col, blk_params.bsize, pc_tree,
PARTITION_NONE, 0, part_search_state->ss_x, part_search_state->ss_y,
&td->shared_coeff_buf);
// Set PARTITION_NONE type cost.
if (part_search_state->partition_none_allowed) {
if (part_search_state->is_block_splittable) {
*pt_cost = part_search_state->partition_cost[PARTITION_NONE] < INT_MAX
? part_search_state->partition_cost[PARTITION_NONE]
: 0;
}
// Initialize the RD stats structure.
av1_init_rd_stats(&partition_rdcost);
partition_rdcost.rate = *pt_cost;
av1_rd_cost_update(x->rdmult, &partition_rdcost);
av1_rd_stats_subtraction(x->rdmult, best_rdc, &partition_rdcost,
best_remain_rdcost);
}
}
// Skip other partitions based on PARTITION_NONE rd cost.
static void prune_partitions_after_none(AV1_COMP *const cpi, MACROBLOCK *x,
SIMPLE_MOTION_DATA_TREE *sms_tree,
PICK_MODE_CONTEXT *ctx_none,
PartitionSearchState *part_search_state,
RD_STATS *best_rdc,
unsigned int *pb_source_variance) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
PartitionBlkParams blk_params = part_search_state->part_blk_params;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
RD_STATS *this_rdc = &part_search_state->this_rdc;
const BLOCK_SIZE bsize = blk_params.bsize;
assert(bsize < BLOCK_SIZES_ALL);
#if CONFIG_EXT_RECUR_PARTITIONS
(void)sms_tree;
#endif // !CONFIG_EXT_RECUR_PARTITIONS
if (!frame_is_intra_only(cm) &&
#if CONFIG_EXT_RECUR_PARTITIONS
part_search_state->do_rectangular_split &&
#else
(part_search_state->do_square_split ||
part_search_state->do_rectangular_split) &&
#endif
!x->e_mbd.lossless[xd->mi[0]->segment_id] && ctx_none->skippable) {
const int use_ml_based_breakout =
bsize <= cpi->sf.part_sf.use_square_partition_only_threshold &&
#if CONFIG_EXT_RECUR_PARTITIONS
is_square_block(bsize) &&
#endif // CONFIG_EXT_RECUR_PARTITIONS
bsize > BLOCK_4X4 && xd->bd == 8;
if (use_ml_based_breakout) {
if (av1_ml_predict_breakout(cpi, bsize, x, this_rdc,
*pb_source_variance)) {
#if !CONFIG_EXT_RECUR_PARTITIONS
part_search_state->do_square_split = 0;
#endif
part_search_state->do_rectangular_split = 0;
}
}
// Adjust dist breakout threshold according to the partition size.
const int64_t dist_breakout_thr =
cpi->sf.part_sf.partition_search_breakout_dist_thr >>
((2 * (MAX_SB_SIZE_LOG2 - 2)) -
(mi_size_wide_log2[bsize] + mi_size_high_log2[bsize]));
const int rate_breakout_thr =
cpi->sf.part_sf.partition_search_breakout_rate_thr *
num_pels_log2_lookup[bsize];
// If all y, u, v transform blocks in this partition are skippable,
// and the dist & rate are within the thresholds, the partition
// search is terminated for current branch of the partition search
// tree. The dist & rate thresholds are set to 0 at speed 0 to
// disable the early termination at that speed.
if (best_rdc->dist < dist_breakout_thr &&
best_rdc->rate < rate_breakout_thr) {
#if !CONFIG_EXT_RECUR_PARTITIONS
part_search_state->do_square_split = 0;
#endif
part_search_state->do_rectangular_split = 0;
}
}
// Early termination: using simple_motion_search features and the
// rate, distortion, and rdcost of PARTITION_NONE, a DNN will make a
// decision on early terminating at PARTITION_NONE.
bool is_early_term_allowed =
cpi->sf.part_sf.simple_motion_search_early_term_none &&
!frame_is_intra_only(cm) && bsize >= BLOCK_16X16 &&
blk_params.mi_row_edge < mi_params->mi_rows &&
blk_params.mi_col_edge < mi_params->mi_cols &&
this_rdc->rdcost < INT64_MAX && this_rdc->rdcost >= 0 &&
this_rdc->rate < INT_MAX && this_rdc->rate >= 0;
#if CONFIG_EXT_RECUR_PARTITIONS
is_early_term_allowed &= part_search_state->do_rectangular_split && sms_tree;
#else
is_early_term_allowed &=
cm->show_frame && (part_search_state->do_square_split ||
part_search_state->do_rectangular_split);
#endif // CONFIG_EXT_RECUR_PARTITIONS
if (is_early_term_allowed) {
av1_simple_motion_search_early_term_none(
cpi, x, sms_tree, blk_params.mi_row, blk_params.mi_col, bsize, this_rdc,
&part_search_state->terminate_partition_search);
}
}
#if !CONFIG_EXT_RECUR_PARTITIONS
// Decide early termination and rectangular partition pruning
// based on PARTITION_NONE and PARTITION_SPLIT costs.
static void prune_partitions_after_split(
AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
PartitionSearchState *part_search_state, RD_STATS *best_rdc,
int64_t part_none_rd, int64_t part_split_rd) {
const AV1_COMMON *const cm = &cpi->common;
PartitionBlkParams blk_params = part_search_state->part_blk_params;
const int mi_row = blk_params.mi_row;
const int mi_col = blk_params.mi_col;
const BLOCK_SIZE bsize = blk_params.bsize;
assert(bsize < BLOCK_SIZES_ALL);
#if CONFIG_EXT_RECUR_PARTITIONS
(void)sms_tree;
(void)part_none_rd;
(void)part_split_rd;
#endif // !CONFIG_EXT_RECUR_PARTITIONS
#if !CONFIG_EXT_RECUR_PARTITIONS
// Early termination: using the rd costs of PARTITION_NONE and subblocks
// from PARTITION_SPLIT to determine an early breakout.
if (cpi->sf.part_sf.ml_early_term_after_part_split_level &&
!frame_is_intra_only(cm) &&
!part_search_state->terminate_partition_search &&
part_search_state->do_rectangular_split &&
(part_search_state->partition_rect_allowed[HORZ] ||
part_search_state->partition_rect_allowed[VERT])) {
av1_ml_early_term_after_split(
cpi, x, sms_tree, bsize, best_rdc->rdcost, part_none_rd, part_split_rd,
part_search_state->split_rd, mi_row, mi_col,
&part_search_state->terminate_partition_search);
}
#endif // !CONFIG_EXT_RECUR_PARTITIONS
// Use the rd costs of PARTITION_NONE and subblocks from PARTITION_SPLIT
// to prune out rectangular partitions in some directions.
if (!cpi->sf.part_sf.ml_early_term_after_part_split_level &&
cpi->sf.part_sf.ml_prune_rect_partition && !frame_is_intra_only(cm) &&
(part_search_state->partition_rect_allowed[HORZ] ||
part_search_state->partition_rect_allowed[VERT]) &&
!(part_search_state->prune_rect_part[HORZ] ||
part_search_state->prune_rect_part[VERT]) &&
!part_search_state->terminate_partition_search) {
av1_setup_src_planes(x, cpi->source, mi_row, mi_col, av1_num_planes(cm),
NULL);
av1_ml_prune_rect_partition(
cpi, x, bsize, best_rdc->rdcost, part_search_state->none_rd,
part_search_state->split_rd, &part_search_state->prune_rect_part[HORZ],
&part_search_state->prune_rect_part[VERT]);
}
}
#endif
// PARTITION_NONE search.
static void none_partition_search(
AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, MACROBLOCK *x,
PC_TREE *pc_tree, SIMPLE_MOTION_DATA_TREE *sms_tree,
RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
PartitionSearchState *part_search_state, RD_STATS *best_rdc,
unsigned int *pb_source_variance, int64_t *none_rd, int64_t *part_none_rd
#if CONFIG_C043_MVP_IMPROVEMENTS
,
REF_MV_BANK *best_level_bank
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
,
WARP_PARAM_BANK *best_level_warp_bank
#endif // WARP_CU_BANK
) {
const AV1_COMMON *const cm = &cpi->common;
PartitionBlkParams blk_params = part_search_state->part_blk_params;
RD_STATS *this_rdc = &part_search_state->this_rdc;
const int mi_row = blk_params.mi_row;
const int mi_col = blk_params.mi_col;
const BLOCK_SIZE bsize = blk_params.bsize;
assert(bsize < BLOCK_SIZES_ALL);
// Set PARTITION_NONE allowed flag.
set_part_none_allowed_flag(cpi,
#if CONFIG_EXT_RECUR_PARTITIONS
x->e_mbd.tree_type,
#endif // CONFIG_EXT_RECUR_PARTITIONS
part_search_state);
if (!part_search_state->partition_none_allowed) return;
int pt_cost = 0;
RD_STATS best_remain_rdcost;
// Set PARTITION_NONE context and cost.
set_none_partition_params(cm, td, x, pc_tree, part_search_state,
&best_remain_rdcost, best_rdc, &pt_cost);
#if CONFIG_COLLECT_PARTITION_STATS
// Timer start for partition None.
if (best_remain_rdcost >= 0) {
partition_attempts[PARTITION_NONE] += 1;
aom_usec_timer_start(&partition_timer);
partition_timer_on = 1;
}
#endif
#if CONFIG_EXT_RECUR_PARTITIONS
SimpleMotionData *sms_data = av1_get_sms_data_entry(
x->sms_bufs, mi_row, mi_col, bsize, cm->seq_params.sb_size);
av1_set_best_mode_cache(x, sms_data->mode_cache);
#endif // CONFIG_EXT_RECUR_PARTITIONS
// PARTITION_NONE evaluation and cost update.
pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, this_rdc, PARTITION_NONE,
bsize, pc_tree->none, best_remain_rdcost);
#if CONFIG_EXT_RECUR_PARTITIONS
x->inter_mode_cache = NULL;
if (this_rdc->rate != INT_MAX) {
av1_add_mode_search_context_to_cache(sms_data, pc_tree->none);
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
av1_rd_cost_update(x->rdmult, this_rdc);
#if CONFIG_COLLECT_PARTITION_STATS
// Timer end for partition None.
if (partition_timer_on) {
aom_usec_timer_mark(&partition_timer);
int64_t time = aom_usec_timer_elapsed(&partition_timer);
partition_times[PARTITION_NONE] += time;
partition_timer_on = 0;
}
#endif
*pb_source_variance = x->source_variance;
if (none_rd) *none_rd = this_rdc->rdcost;
part_search_state->none_rd = this_rdc->rdcost;
#if CONFIG_EXT_RECUR_PARTITIONS
pc_tree->none_rd = *this_rdc;
#endif // CONFIG_EXT_RECUR_PARTITIONS
if (this_rdc->rate != INT_MAX) {
#if CONFIG_EXT_RECUR_PARTITIONS
pc_tree->skippable = pc_tree->none->skippable;
#endif // CONFIG_EXT_RECUR_PARTITIONS
// Record picked ref frame to prune ref frames for other partition types.
if (cpi->sf.inter_sf.prune_ref_frame_for_rect_partitions) {
const int ref_type = av1_ref_frame_type(pc_tree->none->mic.ref_frame);
av1_update_picked_ref_frames_mask(
x, ref_type, bsize, cm->seq_params.mib_size, mi_row, mi_col);
}
// Calculate the total cost and update the best partition.
if (part_search_state->is_block_splittable) {
this_rdc->rate += pt_cost;
this_rdc->rdcost = RDCOST(x->rdmult, this_rdc->rate, this_rdc->dist);
}
*part_none_rd = this_rdc->rdcost;
if (this_rdc->rdcost < best_rdc->rdcost) {
*best_rdc = *this_rdc;
#if CONFIG_C043_MVP_IMPROVEMENTS
*best_level_bank = x->e_mbd.ref_mv_bank;
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
*best_level_warp_bank = x->e_mbd.warp_param_bank;
#endif // WARP_CU_BANK
part_search_state->found_best_partition = true;
#if !CONFIG_EXT_RECUR_PARTITIONS
if (blk_params.bsize_at_least_8x8) {
pc_tree->partitioning = PARTITION_NONE;
}
#else
pc_tree->partitioning = PARTITION_NONE;
#endif // !CONFIG_EXT_RECUR_PARTITIONS
// Disable split and rectangular partition search
// based on PARTITION_NONE cost.
prune_partitions_after_none(cpi, x, sms_tree, pc_tree->none,
part_search_state, best_rdc,
pb_source_variance);
}
}
av1_restore_context(cm, x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm));
}
#if !CONFIG_EXT_RECUR_PARTITIONS
// PARTITION_SPLIT search.
static void split_partition_search(
AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
TokenExtra **tp, MACROBLOCK *x, PC_TREE *pc_tree,
SIMPLE_MOTION_DATA_TREE *sms_tree, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
PartitionSearchState *part_search_state, RD_STATS *best_rdc,
SB_MULTI_PASS_MODE multi_pass_mode, int64_t *part_split_rd
#if CONFIG_C043_MVP_IMPROVEMENTS
,
REF_MV_BANK *best_level_bank
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
,
WARP_PARAM_BANK *best_level_warp_bank
#endif // WARP_CU_BANK
) {
const AV1_COMMON *const cm = &cpi->common;
PartitionBlkParams blk_params = part_search_state->part_blk_params;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int mi_row = blk_params.mi_row;
const int mi_col = blk_params.mi_col;
const int bsize = blk_params.bsize;
assert(bsize < BLOCK_SIZES_ALL);
RD_STATS sum_rdc = part_search_state->sum_rdc;
const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
// Check if partition split is allowed.
if (part_search_state->terminate_partition_search ||
!part_search_state->do_square_split)
return;
// Initialization of this partition RD stats.
av1_init_rd_stats(&sum_rdc);
sum_rdc.rate = part_search_state->partition_cost[PARTITION_SPLIT];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
int idx;
#if CONFIG_COLLECT_PARTITION_STATS
if (best_rdc->rdcost - sum_rdc.rdcost >= 0) {
partition_attempts[PARTITION_SPLIT] += 1;
aom_usec_timer_start(&partition_timer);
partition_timer_on = 1;
}
#endif
// Recursive partition search on 4 sub-blocks.
for (idx = 0; idx < SUB_PARTITIONS_SPLIT && sum_rdc.rdcost < best_rdc->rdcost;
++idx) {
const int x_idx = (idx & 1) * blk_params.mi_step;
const int y_idx = (idx >> 1) * blk_params.mi_step;
if (mi_row + y_idx >= mi_params->mi_rows ||
mi_col + x_idx >= mi_params->mi_cols)
continue;
if (pc_tree->split[idx] == NULL) {
pc_tree->split[idx] = av1_alloc_pc_tree_node(
mi_row + y_idx, mi_col + x_idx, subsize, pc_tree, PARTITION_SPLIT,
idx, idx == 3, part_search_state->ss_x, part_search_state->ss_y);
}
int64_t *p_split_rd = &part_search_state->split_rd[idx];
RD_STATS best_remain_rdcost;
av1_rd_stats_subtraction(x->rdmult, best_rdc, &sum_rdc,
&best_remain_rdcost);
int curr_quad_tree_idx = 0;
if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) {
curr_quad_tree_idx = part_search_state->intra_part_info->quad_tree_idx;
part_search_state->intra_part_info->quad_tree_idx =
4 * curr_quad_tree_idx + idx + 1;
}
// Split partition evaluation of corresponding idx.
// If the RD cost exceeds the best cost then do not
// evaluate other split sub-partitions.
if (!av1_rd_pick_partition(
cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize,
&part_search_state->this_rdc, best_remain_rdcost,
pc_tree->split[idx], sms_tree->split[idx], p_split_rd,
multi_pass_mode, &part_search_state->split_part_rect_win[idx])) {
av1_invalid_rd_stats(&sum_rdc);
break;
}
if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) {
part_search_state->intra_part_info->quad_tree_idx = curr_quad_tree_idx;
}
sum_rdc.rate += part_search_state->this_rdc.rate;
sum_rdc.dist += part_search_state->this_rdc.dist;
av1_rd_cost_update(x->rdmult, &sum_rdc);
// Set split ctx as ready for use.
if (idx <= 1 && (bsize <= BLOCK_8X8 ||
pc_tree->split[idx]->partitioning == PARTITION_NONE)) {
const MB_MODE_INFO *const mbmi = &pc_tree->split[idx]->none->mic;
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
// Neither palette mode nor cfl predicted.
if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) {
if (mbmi->uv_mode != UV_CFL_PRED)
part_search_state->is_split_ctx_is_ready[idx] = 1;
}
}
}
#if CONFIG_COLLECT_PARTITION_STATS
if (partition_timer_on) {
aom_usec_timer_mark(&partition_timer);
int64_t time = aom_usec_timer_elapsed(&partition_timer);
partition_times[PARTITION_SPLIT] += time;
partition_timer_on = 0;
}
#endif
const int reached_last_index = (idx == SUB_PARTITIONS_SPLIT);
// Calculate the total cost and update the best partition.
*part_split_rd = sum_rdc.rdcost;
if (reached_last_index && sum_rdc.rdcost < best_rdc->rdcost) {
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost < best_rdc->rdcost) {
*best_rdc = sum_rdc;
#if CONFIG_C043_MVP_IMPROVEMENTS
*best_level_bank = x->e_mbd.ref_mv_bank;
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
*best_level_warp_bank = x->e_mbd.warp_param_bank;
#endif // WARP_CU_BANK
part_search_state->found_best_partition = true;
pc_tree->partitioning = PARTITION_SPLIT;
}
} else if (cpi->sf.part_sf.less_rectangular_check_level > 0) {
// Skip rectangular partition test when partition type none gives better
// rd than partition type split.
if (cpi->sf.part_sf.less_rectangular_check_level == 2 || idx <= 2) {
const int partition_none_valid = part_search_state->none_rd > 0;
const int partition_none_better =
part_search_state->none_rd < sum_rdc.rdcost;
part_search_state->do_rectangular_split &=
!(partition_none_valid && partition_none_better);
}
}
av1_restore_context(cm, x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm));
}
#endif // !CONFIG_EXT_RECUR_PARTITIONS
#if CONFIG_EXT_RECUR_PARTITIONS
/*!\brief Stores some data used by rd_try_subblock_new to do rdopt. */
typedef struct SUBBLOCK_RDO_DATA {
/*!\brief The encoder side partition tree. */
PC_TREE *pc_tree;
/*!\brief The luma partition tree. Used by SDP on chroma planes. */
const PARTITION_TREE *ptree_luma;
/*!\brief A "template" that the function will follow to skip the partition
* selection process. */
const PARTITION_TREE *template_tree;
/*!\brief The row coordinate of current block in units of mi. */
int mi_row;
/*!\brief The col coordinate of current block in units of mi. */
int mi_col;
/*!\brief The block_size of the current block. */
BLOCK_SIZE bsize;
/*!\brief The partition type used to get the current block. */
PARTITION_TYPE partition;
} SUBBLOCK_RDO_DATA;
/*!\brief Whether the current partition node uses horizontal type partitions. */
static AOM_INLINE bool node_uses_horz(const PC_TREE *pc_tree) {
assert(pc_tree);
return pc_tree->partitioning == PARTITION_HORZ ||
pc_tree->partitioning == PARTITION_HORZ_3;
}
/*!\brief Whether the current partition node uses vertical type partitions. */
static AOM_INLINE bool node_uses_vert(const PC_TREE *pc_tree) {
assert(pc_tree);
return pc_tree->partitioning == PARTITION_VERT ||
pc_tree->partitioning == PARTITION_VERT_3;
}
/*!\brief Try searching for an encoding for the given subblock.
*
* Returns zero if the rdcost is already too high (to tell the caller not to
* bother searching for encodings of further subblocks).
* */
static int rd_try_subblock_new(AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TokenExtra **tp,
SUBBLOCK_RDO_DATA *rdo_data,
RD_STATS best_rdcost, RD_STATS *sum_rdc,
SB_MULTI_PASS_MODE multi_pass_mode,
bool *skippable, int max_recursion_depth) {
MACROBLOCK *const x = &td->mb;
const int orig_mult = x->rdmult;
const int mi_row = rdo_data->mi_row;
const int mi_col = rdo_data->mi_col;
const BLOCK_SIZE bsize = rdo_data->bsize;
setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
av1_rd_cost_update(x->rdmult, &best_rdcost);
RD_STATS rdcost_remaining;
av1_rd_stats_subtraction(x->rdmult, &best_rdcost, sum_rdc, &rdcost_remaining);
RD_STATS this_rdc;
if (!av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize,
&this_rdc, rdcost_remaining, rdo_data->pc_tree,
rdo_data->ptree_luma, rdo_data->template_tree,
max_recursion_depth, NULL, NULL, multi_pass_mode,
NULL)) {
av1_invalid_rd_stats(sum_rdc);
return 0;
}
if (this_rdc.rate == INT_MAX) {
*skippable = false;
sum_rdc->rdcost = INT64_MAX;
} else {
*skippable &= rdo_data->pc_tree->skippable;
sum_rdc->rate += this_rdc.rate;
sum_rdc->dist += this_rdc.dist;
av1_rd_cost_update(x->rdmult, sum_rdc);
}
if (sum_rdc->rdcost >= best_rdcost.rdcost) {
x->rdmult = orig_mult;
return 0;
}
x->rdmult = orig_mult;
return 1;
}
/*!\brief Performs rdopt on PARTITION_HORZ_3. */
static INLINE void search_partition_horz_3(
PartitionSearchState *search_state, AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TokenExtra **tp, RD_STATS *best_rdc,
PC_TREE *pc_tree, const PARTITION_TREE *ptree_luma,
const PARTITION_TREE *template_tree, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
#if CONFIG_C043_MVP_IMPROVEMENTS
REF_MV_BANK *best_level_bank,
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
WARP_PARAM_BANK *best_level_warp_bank,
#endif // WARP_CU_BANK
SB_MULTI_PASS_MODE multi_pass_mode, int max_recursion_depth) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
const int num_planes = av1_num_planes(cm);
#if CONFIG_EXT_RECUR_PARTITIONS
MACROBLOCKD *const xd = &x->e_mbd;
const int ss_x = xd->plane[1].subsampling_x;
const int ss_y = xd->plane[1].subsampling_y;
#endif // CONFIG_EXT_RECUR_PARTITIONS
const PartitionBlkParams *blk_params = &search_state->part_blk_params;
const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
const BLOCK_SIZE bsize = blk_params->bsize;
if (search_state->terminate_partition_search || !blk_params->has_rows ||
!is_partition_valid(bsize, PARTITION_HORZ_3) ||
!(search_state->do_rectangular_split ||
av1_active_h_edge(cpi, mi_row, blk_params->mi_step_h))) {
return;
}
#if CONFIG_H_PARTITION
// TODO(yuec): set default partition modes for the edge directly by ruling out
// h partitions from the syntax if the 2nd middle block is not in the frame.
if (mi_col + (mi_size_wide[bsize] >> 1) >= cm->mi_params.mi_cols) return;
#endif // CONFIG_H_PARTITION
const int part_h3_rate = search_state->partition_cost[PARTITION_HORZ_3];
if (part_h3_rate == INT_MAX ||
RDCOST(x->rdmult, part_h3_rate, 0) >= best_rdc->rdcost) {
return;
}
RD_STATS sum_rdc;
av1_init_rd_stats(&sum_rdc);
const int quarter_step = mi_size_high[bsize] / 4;
sum_rdc.rate = search_state->partition_cost[PARTITION_HORZ_3];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
#if CONFIG_H_PARTITION
const BLOCK_SIZE sml_subsize =
get_h_partition_subsize(bsize, 0, PARTITION_HORZ_3);
const BLOCK_SIZE big_subsize =
get_h_partition_subsize(bsize, 1, PARTITION_HORZ_3);
const BLOCK_SIZE subblock_sizes[4] = { sml_subsize, big_subsize, big_subsize,
sml_subsize };
const int offset_mr[4] = { 0, quarter_step, quarter_step, 3 * quarter_step };
const int offset_mc[4] = { 0, 0, mi_size_wide[bsize] / 2, 0 };
for (int idx = 0; idx < 4; idx++) {
if (pc_tree->horizontal3[idx]) {
av1_free_pc_tree_recursive(pc_tree->horizontal3[idx], num_planes, 0, 0);
pc_tree->horizontal3[idx] = NULL;
}
pc_tree->horizontal3[idx] = av1_alloc_pc_tree_node(
mi_row + offset_mr[idx], mi_col + offset_mc[idx], subblock_sizes[idx],
pc_tree, PARTITION_HORZ_3, idx, idx == 3, ss_x, ss_y);
}
#else // CONFIG_H_PARTITION
const BLOCK_SIZE sml_subsize = get_partition_subsize(bsize, PARTITION_HORZ_3);
const BLOCK_SIZE big_subsize = get_partition_subsize(bsize, PARTITION_HORZ);
const int step_multipliers[3] = { 0, 1, 2 };
const BLOCK_SIZE subblock_sizes[3] = { sml_subsize, big_subsize,
sml_subsize };
for (int idx = 0; idx < 3; idx++) {
if (pc_tree->horizontal3[idx]) {
av1_free_pc_tree_recursive(pc_tree->horizontal3[idx], num_planes, 0, 0);
pc_tree->horizontal3[idx] = NULL;
}
}
pc_tree->horizontal3[0] =
av1_alloc_pc_tree_node(mi_row, mi_col, subblock_sizes[0], pc_tree,
PARTITION_HORZ_3, 0, 0, ss_x, ss_y);
pc_tree->horizontal3[1] =
av1_alloc_pc_tree_node(mi_row + quarter_step, mi_col, subblock_sizes[1],
pc_tree, PARTITION_HORZ_3, 1, 0, ss_x, ss_y);
pc_tree->horizontal3[2] = av1_alloc_pc_tree_node(
mi_row + quarter_step * 3, mi_col, subblock_sizes[2], pc_tree,
PARTITION_HORZ_3, 2, 1, ss_x, ss_y);
#endif // CONFIG_H_PARTITION
bool skippable = true;
#if CONFIG_H_PARTITION
for (int i = 0; i < 4; ++i) {
const int this_mi_row = mi_row + offset_mr[i];
const int this_mi_col = mi_col + offset_mc[i];
#else // CONFIG_H_PARTITION
int this_mi_row = mi_row;
for (int i = 0; i < 3; ++i) {
this_mi_row += quarter_step * step_multipliers[i];
#endif // CONFIG_H_PARTITION
if (i > 0 && this_mi_row >= cm->mi_params.mi_rows) break;
SUBBLOCK_RDO_DATA rdo_data = {
pc_tree->horizontal3[i],
get_partition_subtree_const(ptree_luma, i),
get_partition_subtree_const(template_tree, i),
this_mi_row,
#if CONFIG_H_PARTITION
this_mi_col,
#else
mi_col,
#endif // CONFIG_H_PARTITION
subblock_sizes[i],
PARTITION_HORZ_3
};
if (!rd_try_subblock_new(cpi, td, tile_data, tp, &rdo_data, *best_rdc,
&sum_rdc, multi_pass_mode, &skippable,
max_recursion_depth)) {
av1_invalid_rd_stats(&sum_rdc);
break;
}
}
av1_rd_cost_update(x->rdmult, &sum_rdc);
if (sum_rdc.rdcost < best_rdc->rdcost) {
#if CONFIG_C043_MVP_IMPROVEMENTS
*best_level_bank = x->e_mbd.ref_mv_bank;
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
*best_level_warp_bank = x->e_mbd.warp_param_bank;
#endif // WARP_CU_BANK
*best_rdc = sum_rdc;
search_state->found_best_partition = true;
pc_tree->partitioning = PARTITION_HORZ_3;
pc_tree->skippable = skippable;
}
av1_restore_context(cm, x, x_ctx, mi_row, mi_col, bsize, num_planes);
}
/*!\brief Performs rdopt on PARTITION_VERT_3. */
static INLINE void search_partition_vert_3(
PartitionSearchState *search_state, AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TokenExtra **tp, RD_STATS *best_rdc,
PC_TREE *pc_tree, const PARTITION_TREE *ptree_luma,
const PARTITION_TREE *template_tree, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
#if CONFIG_C043_MVP_IMPROVEMENTS
REF_MV_BANK *best_level_bank,
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
WARP_PARAM_BANK *best_level_warp_bank,
#endif // WARP_CU_BANK
SB_MULTI_PASS_MODE multi_pass_mode, int max_recursion_depth) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
const int num_planes = av1_num_planes(cm);
#if CONFIG_EXT_RECUR_PARTITIONS
MACROBLOCKD *const xd = &x->e_mbd;
const int ss_x = xd->plane[1].subsampling_x;
const int ss_y = xd->plane[1].subsampling_y;
#endif // CONFIG_EXT_RECUR_PARTITIONS
const PartitionBlkParams *blk_params = &search_state->part_blk_params;
const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
const BLOCK_SIZE bsize = blk_params->bsize;
if (search_state->terminate_partition_search || !blk_params->has_cols ||
!is_partition_valid(bsize, PARTITION_VERT_3) ||
!(search_state->do_rectangular_split ||
av1_active_v_edge(cpi, mi_col, blk_params->mi_step_w))) {
return;
}
#if CONFIG_H_PARTITION
// TODO(yuec): set default partition modes for the edge directly by ruling out
// h partitions from the syntax if the 2nd middle block is not in the frame.
if (mi_row + (mi_size_high[bsize] >> 1) >= cm->mi_params.mi_rows) return;
#endif // CONFIG_H_PARTITION
const int part_v3_rate = search_state->partition_cost[PARTITION_VERT_3];
if (part_v3_rate == INT_MAX ||
RDCOST(x->rdmult, part_v3_rate, 0) >= best_rdc->rdcost) {
return;
}
RD_STATS sum_rdc;
av1_init_rd_stats(&sum_rdc);
const int quarter_step = mi_size_wide[bsize] / 4;
sum_rdc.rate = search_state->partition_cost[PARTITION_VERT_3];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
#if CONFIG_H_PARTITION
const BLOCK_SIZE sml_subsize =
get_h_partition_subsize(bsize, 0, PARTITION_VERT_3);
const BLOCK_SIZE big_subsize =
get_h_partition_subsize(bsize, 1, PARTITION_VERT_3);
const BLOCK_SIZE subblock_sizes[4] = { sml_subsize, big_subsize, big_subsize,
sml_subsize };
const int offset_mr[4] = { 0, 0, mi_size_high[bsize] / 2, 0 };
const int offset_mc[4] = { 0, quarter_step, quarter_step, 3 * quarter_step };
for (int idx = 0; idx < 4; idx++) {
if (pc_tree->vertical3[idx]) {
av1_free_pc_tree_recursive(pc_tree->vertical3[idx], num_planes, 0, 0);
pc_tree->vertical3[idx] = NULL;
}
pc_tree->vertical3[idx] = av1_alloc_pc_tree_node(
mi_row + offset_mr[idx], mi_col + offset_mc[idx], subblock_sizes[idx],
pc_tree, PARTITION_VERT_3, idx, idx == 3, ss_x, ss_y);
}
#else
const BLOCK_SIZE sml_subsize = get_partition_subsize(bsize, PARTITION_VERT_3);
const BLOCK_SIZE big_subsize = get_partition_subsize(bsize, PARTITION_VERT);
const int step_multipliers[3] = { 0, 1, 2 };
const BLOCK_SIZE subblock_sizes[3] = { sml_subsize, big_subsize,
sml_subsize };
for (int idx = 0; idx < 3; idx++) {
if (pc_tree->vertical3[idx]) {
av1_free_pc_tree_recursive(pc_tree->vertical3[idx], num_planes, 0, 0);
pc_tree->vertical3[idx] = NULL;
}
}
pc_tree->vertical3[0] =
av1_alloc_pc_tree_node(mi_row, mi_col, subblock_sizes[0], pc_tree,
PARTITION_VERT_3, 0, 0, ss_x, ss_y);
pc_tree->vertical3[1] =
av1_alloc_pc_tree_node(mi_row, mi_col + quarter_step, subblock_sizes[1],
pc_tree, PARTITION_VERT_3, 1, 0, ss_x, ss_y);
pc_tree->vertical3[2] = av1_alloc_pc_tree_node(
mi_row, mi_col + quarter_step * 3, subblock_sizes[2], pc_tree,
PARTITION_VERT_3, 2, 1, ss_x, ss_y);
#endif // CONFIG_H_PARTITION
bool skippable = true;
#if CONFIG_H_PARTITION
for (int i = 0; i < 4; ++i) {
const int this_mi_row = mi_row + offset_mr[i];
const int this_mi_col = mi_col + offset_mc[i];
#else
int this_mi_col = mi_col;
for (int i = 0; i < 3; ++i) {
this_mi_col += quarter_step * step_multipliers[i];
#endif // CONFIG_H_PARTITION
if (i > 0 && this_mi_col >= cm->mi_params.mi_cols) break;
SUBBLOCK_RDO_DATA rdo_data = {
pc_tree->vertical3[i],
get_partition_subtree_const(ptree_luma, i),
get_partition_subtree_const(template_tree, i),
#if CONFIG_H_PARTITION
this_mi_row,
#else // CONFIG_H_PARTITION
mi_row,
#endif // CONFIG_H_PARTITION
this_mi_col,
subblock_sizes[i],
PARTITION_VERT_3
};
if (!rd_try_subblock_new(cpi, td, tile_data, tp, &rdo_data, *best_rdc,
&sum_rdc, multi_pass_mode, &skippable,
max_recursion_depth)) {
av1_invalid_rd_stats(&sum_rdc);
break;
}
}
av1_rd_cost_update(x->rdmult, &sum_rdc);
if (sum_rdc.rdcost < best_rdc->rdcost) {
#if CONFIG_C043_MVP_IMPROVEMENTS
*best_level_bank = x->e_mbd.ref_mv_bank;
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
*best_level_warp_bank = x->e_mbd.warp_param_bank;
#endif // WARP_CU_BANK
*best_rdc = sum_rdc;
search_state->found_best_partition = true;
pc_tree->partitioning = PARTITION_VERT_3;
pc_tree->skippable = skippable;
}
av1_restore_context(cm, x, x_ctx, mi_row, mi_col, bsize, num_planes);
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
#if CONFIG_EXT_RECUR_PARTITIONS
/*!\brief AV1 block partition search (full search).
*
* \ingroup partition_search
* \callgraph
* Searches for the best partition pattern for a block based on the
* rate-distortion cost, and returns a bool value to indicate whether a valid
* partition pattern is found. The partition can recursively go down to the
* smallest block size.
*
* \param[in] cpi Top-level encoder structure
* \param[in] td Pointer to thread data
* \param[in] tile_data Pointer to struct holding adaptive
data/contexts/models for the tile during
encoding
* \param[in] tp Pointer to the starting token
* \param[in] mi_row Row coordinate of the block in a step size
of MI_SIZE
* \param[in] mi_col Column coordinate of the block in a step
size of MI_SIZE
* \param[in] bsize Current block size
* \param[in] rd_cost Pointer to the final rd cost of the block
* \param[in] best_rdc Upper bound of rd cost of a valid partition
* \param[in] pc_tree Pointer to the PC_TREE node storing the
picked partitions and mode info for the
current block
* \param[in] ptree_luma Pointer to the luma partition tree so that the
* encoder to estimate the partition type for chroma.
* \param[in] template_tree A partial tree that contains the partition
* structure to be used as a template.
* \param[in] max_recursion_depth The maximum level of recursion allowed
* \param[in] sms_tree Pointer to struct holding simple motion
search data for the current block
* \param[in] none_rd Pointer to the rd cost in the case of not
splitting the current block
* \param[in] multi_pass_mode SB_SINGLE_PASS/SB_DRY_PASS/SB_WET_PASS
* \param[in] rect_part_win_info Pointer to struct storing whether horz/vert
* partition outperforms previously tested partitions
*
* \return A bool value is returned indicating if a valid partition is found.
* The pc_tree struct is modified to store the picked partition and modes.
* The rd_cost struct is also updated with the RD stats corresponding to the
* best partition found.
*/
#else
/*!\brief AV1 block partition search (full search).
*
* \ingroup partition_search
* \callgraph
* Searches for the best partition pattern for a block based on the
* rate-distortion cost, and returns a bool value to indicate whether a valid
* partition pattern is found. The partition can recursively go down to the
* smallest block size.
*
* This function works on planes determined by get_partition_plane_start() and
* get_partition_plane_end() based on xd->tree_type.
*
* \param[in] cpi Top-level encoder structure
* \param[in] td Pointer to thread data
* \param[in] tile_data Pointer to struct holding adaptive
data/contexts/models for the tile during
encoding
* \param[in] tp Pointer to the starting token
* \param[in] mi_row Row coordinate of the block in a step size
of MI_SIZE
* \param[in] mi_col Column coordinate of the block in a step
size of MI_SIZE
* \param[in] bsize Current block size
* \param[in] rd_cost Pointer to the final rd cost of the block
* \param[in] best_rdc Upper bound of rd cost of a valid partition
* \param[in] pc_tree Pointer to the PC_TREE node storing the
picked partitions and mode info for the
current block
* \param[in] sms_tree Pointer to struct holding simple motion
search data for the current block
* \param[in] none_rd Pointer to the rd cost in the case of not
splitting the current block
* \param[in] multi_pass_mode SB_SINGLE_PASS/SB_DRY_PASS/SB_WET_PASS
* \param[in] rect_part_win_info Pointer to struct storing whether horz/vert
partition outperforms previously tested partitions
*
* \return A bool value is returned indicating if a valid partition is found.
* The pc_tree struct is modified to store the picked partition and modes.
* The rd_cost struct is also updated with the RD stats corresponding to the
* best partition found.
*/
#endif // CONFIG_EXT_RECUR_PARTITIONS
bool av1_rd_pick_partition(AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TokenExtra **tp, int mi_row,
int mi_col, BLOCK_SIZE bsize, RD_STATS *rd_cost,
RD_STATS best_rdc, PC_TREE *pc_tree,
#if CONFIG_EXT_RECUR_PARTITIONS
const PARTITION_TREE *ptree_luma,
const PARTITION_TREE *template_tree,
int max_recursion_depth,
#endif // CONFIG_EXT_RECUR_PARTITIONS
SIMPLE_MOTION_DATA_TREE *sms_tree, int64_t *none_rd,
SB_MULTI_PASS_MODE multi_pass_mode,
RD_RECT_PART_WIN_INFO *rect_part_win_info) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
const TokenExtra *const tp_orig = *tp;
PartitionSearchState part_search_state;
// Initialization of state variables used in partition search.
init_partition_search_state_params(x, cpi, &part_search_state,
#if CONFIG_EXT_RECUR_PARTITIONS
pc_tree,
#endif // CONFIG_EXT_RECUR_PARTITIONS
mi_row, mi_col, bsize);
PartitionBlkParams blk_params = part_search_state.part_blk_params;
#if CONFIG_EXT_RECUR_PARTITIONS
PARTITION_TYPE forced_partition =
get_forced_partition_type(cm, x, mi_row, mi_col, bsize, template_tree);
if (sms_tree != NULL)
#endif // CONFIG_EXT_RECUR_PARTITIONS
sms_tree->partitioning = PARTITION_NONE;
if (best_rdc.rdcost < 0) {
av1_invalid_rd_stats(rd_cost);
return part_search_state.found_best_partition;
}
#if CONFIG_EXT_RECUR_PARTITIONS
// Check whether there is a counterpart pc_tree node with the same size
// and the same neighboring context at the same location but from a
// different partition path. If yes directly copy the RDO decision made for
// the counterpart.
PC_TREE *counterpart_block = av1_look_for_counterpart_block(pc_tree);
if (counterpart_block) {
if (counterpart_block->rd_cost.rate != INT_MAX) {
av1_copy_pc_tree_recursive(cm, pc_tree, counterpart_block,
part_search_state.ss_x, part_search_state.ss_y,
&td->shared_coeff_buf, num_planes);
*rd_cost = pc_tree->rd_cost;
#if CONFIG_C043_MVP_IMPROVEMENTS
x->e_mbd.ref_mv_bank = counterpart_block->ref_mv_bank;
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
x->e_mbd.warp_param_bank = counterpart_block->warp_param_bank;
#endif // WARP_CU_BANK
assert(bsize != cm->seq_params.sb_size);
if (bsize == cm->seq_params.sb_size) exit(0);
if (!pc_tree->is_last_subblock) {
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
pc_tree, NULL,
#if CONFIG_EXT_RECUR_PARTITIONS
NULL,
#endif // CONFIG_EXT_RECUR_PARTITIONS
NULL);
}
return true;
} else {
av1_invalid_rd_stats(rd_cost);
return false;
}
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
if (bsize == cm->seq_params.sb_size) x->must_find_valid_partition = 0;
// Override skipping rectangular partition operations for edge blocks.
if (none_rd) *none_rd = 0;
(void)*tp_orig;
#if CONFIG_COLLECT_PARTITION_STATS
int partition_decisions[EXT_PARTITION_TYPES] = { 0 };
int partition_attempts[EXT_PARTITION_TYPES] = { 0 };
int64_t partition_times[EXT_PARTITION_TYPES] = { 0 };
struct aom_usec_timer partition_timer = { 0 };
int partition_timer_on = 0;
#if CONFIG_COLLECT_PARTITION_STATS == 2
PartitionStats *part_stats = &cpi->partition_stats;
#endif
#endif
// Override partition costs at the edges of the frame in the same
// way as in read_partition (see decodeframe.c).
if (!(blk_params.has_rows && blk_params.has_cols))
set_partition_cost_for_edge_blk(cm, xd,
#if CONFIG_EXT_RECUR_PARTITIONS
&pc_tree->chroma_ref_info,
#endif // CONFIG_EXT_RECUR_PARTITIONS
&part_search_state);
// Disable rectangular partitions for inner blocks when the current block is
// forced to only use square partitions.
if (bsize > cpi->sf.part_sf.use_square_partition_only_threshold) {
part_search_state.partition_rect_allowed[HORZ] &= !blk_params.has_rows;
part_search_state.partition_rect_allowed[VERT] &= !blk_params.has_cols;
}
#ifndef NDEBUG
// Nothing should rely on the default value of this array (which is just
// leftover from encoding the previous block. Setting it to fixed pattern
// when debugging.
// bit 0, 1, 2 are blk_skip of each plane
// bit 4, 5, 6 are initialization checking of each plane
memset(x->txfm_search_info.blk_skip, 0x77,
sizeof(x->txfm_search_info.blk_skip));
#endif // NDEBUG
assert(bsize < BLOCK_SIZES_ALL);
#if !CONFIG_EXT_RECUR_PARTITIONS
assert(mi_size_wide[bsize] == mi_size_high[bsize]);
#endif // !CONFIG_EXT_RECUR_PARTITIONS
// Set buffers and offsets.
av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize,
&pc_tree->chroma_ref_info);
// Save rdmult before it might be changed, so it can be restored later.
const int orig_rdmult = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
// Update rd cost of the bound using the current multiplier.
av1_rd_cost_update(x->rdmult, &best_rdc);
if (bsize == BLOCK_16X16 && cpi->vaq_refresh)
x->mb_energy = av1_log_block_var(cpi, x, bsize);
// Set the context.
xd->above_txfm_context =
cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
#if CONFIG_EXT_RECUR_PARTITIONS
{
SimpleMotionData *sms_data = av1_get_sms_data_entry(
x->sms_bufs, mi_row, mi_col, bsize, cm->seq_params.sb_size);
sms_tree = sms_data->old_sms;
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
int *partition_horz_allowed = &part_search_state.partition_rect_allowed[HORZ];
int *partition_vert_allowed = &part_search_state.partition_rect_allowed[VERT];
#if CONFIG_EXT_RECUR_PARTITIONS
if (forced_partition == PARTITION_INVALID &&
is_bsize_gt(bsize, x->sb_enc.min_partition_size)) {
#endif // CONFIG_EXT_RECUR_PARTITIONS
int *prune_horz = &part_search_state.prune_rect_part[HORZ];
int *prune_vert = &part_search_state.prune_rect_part[VERT];
#if CONFIG_EXT_RECUR_PARTITIONS
int do_square_split = true;
int *sqr_split_ptr = &do_square_split;
#else
int *sqr_split_ptr = &part_search_state.do_square_split;
#endif // CONFIG_EXT_RECUR_PARTITIONS
// Pruning: before searching any partition type, using source and simple
// motion search results to prune out unlikely partitions.
av1_prune_partitions_before_search(
cpi, x, mi_row, mi_col, bsize, sms_tree,
&part_search_state.partition_none_allowed, partition_horz_allowed,
partition_vert_allowed, &part_search_state.do_rectangular_split,
sqr_split_ptr, prune_horz, prune_vert, pc_tree);
#if CONFIG_EXT_RECUR_PARTITIONS
forced_partition =
get_forced_partition_type(cm, x, blk_params.mi_row, blk_params.mi_col,
blk_params.bsize, template_tree);
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
// Pruning: eliminating partition types leading to coding block sizes
// outside the min and max bsize limitations set from the encoder.
av1_prune_partitions_by_max_min_bsize(
&x->sb_enc, bsize, blk_params.has_rows && blk_params.has_cols,
&part_search_state.partition_none_allowed, partition_horz_allowed,
#if CONFIG_EXT_RECUR_PARTITIONS
partition_vert_allowed, NULL);
#else
partition_vert_allowed, &part_search_state.do_square_split);
#endif
int luma_split_flag = 0;
#if CONFIG_EXT_RECUR_PARTITIONS
int horz_3_allowed_sdp = 1;
int vert_3_allowed_sdp = 1;
if (is_luma_chroma_share_same_partition(xd->tree_type, ptree_luma, bsize)) {
PARTITION_TYPE derived_partition_mode = sdp_chroma_part_from_luma(
bsize, ptree_luma->partition, part_search_state.ss_x,
part_search_state.ss_y);
if (derived_partition_mode != PARTITION_NONE)
part_search_state.partition_none_allowed = BLOCK_INVALID;
if (derived_partition_mode != PARTITION_HORZ)
part_search_state.partition_rect_allowed[HORZ] = 0;
if (derived_partition_mode != PARTITION_VERT)
part_search_state.partition_rect_allowed[VERT] = 0;
if (derived_partition_mode != PARTITION_HORZ_3) horz_3_allowed_sdp = 0;
if (derived_partition_mode != PARTITION_VERT_3) vert_3_allowed_sdp = 0;
// TODO(yuec): Need to make sure there is at least one valid partition
// mode
}
#else // CONFIG_EXT_RECUR_PARTITIONS
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int parent_block_width = block_size_wide[bsize];
if (xd->tree_type == CHROMA_PART && parent_block_width >= SHARED_PART_SIZE) {
luma_split_flag = get_luma_split_flag(bsize, mi_params, mi_row, mi_col);
}
// if luma blocks uses smaller blocks, then chroma will also split
if (luma_split_flag > 3) {
part_search_state.partition_none_allowed = BLOCK_INVALID;
part_search_state.partition_rect_allowed[HORZ] = 0;
part_search_state.partition_rect_allowed[VERT] = 0;
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
// Partition search
BEGIN_PARTITION_SEARCH:
// If a valid partition is required, usually when the first round cannot
// find a valid one under the cost limit after pruning, reset the
// limitations on partition types.
if (x->must_find_valid_partition) {
#if CONFIG_EXT_RECUR_PARTITIONS
init_allowed_partitions(&part_search_state, &cpi->oxcf.part_cfg,
&pc_tree->chroma_ref_info, &cm->mi_params,
xd->tree_type);
#else
reset_part_limitations(cpi, &part_search_state);
#endif // CONFIG_EXT_RECUR_PARTITIONS
}
// Partition block source pixel variance.
unsigned int pb_source_variance = UINT_MAX;
// PARTITION_NONE search stage.
int64_t part_none_rd = INT64_MAX;
#if CONFIG_C043_MVP_IMPROVEMENTS
REF_MV_BANK curr_level_bank = x->e_mbd.ref_mv_bank;
REF_MV_BANK best_level_bank = x->e_mbd.ref_mv_bank;
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
WARP_PARAM_BANK curr_level_warp_bank = x->e_mbd.warp_param_bank;
WARP_PARAM_BANK best_level_warp_bank = x->e_mbd.warp_param_bank;
#endif // WARP_CU_BANK
#if CONFIG_EXT_RECUR_PARTITIONS
if (IS_FORCED_PARTITION_TYPE(PARTITION_NONE)) {
#endif // CONFIG_EXT_RECUR_PARTITIONS
none_partition_search(cpi, td, tile_data, x, pc_tree, sms_tree, &x_ctx,
&part_search_state, &best_rdc, &pb_source_variance,
none_rd, &part_none_rd
#if CONFIG_C043_MVP_IMPROVEMENTS
,
&best_level_bank
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
,
&best_level_warp_bank
#endif // WARP_CU_BANK
);
#if CONFIG_C043_MVP_IMPROVEMENTS
x->e_mbd.ref_mv_bank = curr_level_bank;
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
x->e_mbd.warp_param_bank = curr_level_warp_bank;
#endif // WARP_CU_BANK
#if CONFIG_EXT_RECUR_PARTITIONS
}
if (cpi->sf.part_sf.end_part_search_after_consec_failures && x->is_whole_sb &&
!frame_is_intra_only(cm) && forced_partition == PARTITION_INVALID &&
pc_tree->parent && pc_tree->parent->parent) {
if (pc_tree->none_rd.rate == INT_MAX &&
pc_tree->parent->none_rd.rate == INT_MAX &&
pc_tree->parent->parent->none_rd.rate == INT_MAX &&
part_search_state.partition_none_allowed &&
best_rdc.rdcost < INT64_MAX) {
part_search_state.terminate_partition_search = 1;
}
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
#if !CONFIG_EXT_RECUR_PARTITIONS
// PARTITION_SPLIT search stage.
int64_t part_split_rd = INT64_MAX;
split_partition_search(cpi, td, tile_data, tp, x, pc_tree, sms_tree, &x_ctx,
&part_search_state, &best_rdc, multi_pass_mode,
&part_split_rd
#if CONFIG_C043_MVP_IMPROVEMENTS
,
&best_level_bank
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
,
&best_level_warp_bank
#endif // WARP_CU_BANK
);
#if CONFIG_C043_MVP_IMPROVEMENTS
x->e_mbd.ref_mv_bank = curr_level_bank;
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
x->e_mbd.warp_param_bank = curr_level_warp_bank;
#endif // WARP_CU_BANK
// Terminate partition search for child partition,
// when NONE and SPLIT partition rd_costs are INT64_MAX.
if (cpi->sf.part_sf.early_term_after_none_split &&
part_none_rd == INT64_MAX && part_split_rd == INT64_MAX &&
!x->must_find_valid_partition && (bsize != cm->seq_params.sb_size)) {
part_search_state.terminate_partition_search = 1;
}
// Prune partitions based on PARTITION_NONE and PARTITION_SPLIT.
prune_partitions_after_split(cpi, x, sms_tree, &part_search_state, &best_rdc,
part_none_rd, part_split_rd);
#endif // !CONFIG_EXT_RECUR_PARTITIONS
// Rectangular partitions search stage.
#if CONFIG_EXT_RECUR_PARTITIONS
if (max_recursion_depth > 0) {
#endif // CONFIG_EXT_RECUR_PARTITIONS
rectangular_partition_search(cpi, td, tile_data, tp, x, pc_tree, &x_ctx,
&part_search_state, &best_rdc,
#if CONFIG_EXT_RECUR_PARTITIONS
multi_pass_mode, ptree_luma, template_tree,
max_recursion_depth - 1,
#endif // CONFIG_EXT_RECUR_PARTITIONS
rect_part_win_info,
#if CONFIG_C043_MVP_IMPROVEMENTS
&best_level_bank, &curr_level_bank,
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
&best_level_warp_bank, &curr_level_warp_bank,
#endif // WARP_CU_BANK
part_none_rd);
#if CONFIG_EXT_RECUR_PARTITIONS
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
if (pb_source_variance == UINT_MAX) {
av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, NULL);
pb_source_variance = av1_high_get_sby_perpixel_variance(
cpi, &x->plane[0].src, bsize, xd->bd);
}
assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions,
!part_search_state.do_rectangular_split));
#if !CONFIG_EXT_RECUR_PARTITIONS
const int ext_partition_allowed =
part_search_state.do_rectangular_split &&
bsize > cpi->sf.part_sf.ext_partition_eval_thresh &&
blk_params.has_rows && blk_params.has_cols && ((luma_split_flag <= 3));
// AB partitions search stage.
ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
&part_search_state, &best_rdc, rect_part_win_info,
pb_source_variance, ext_partition_allowed
#if CONFIG_C043_MVP_IMPROVEMENTS
,
&best_level_bank, &curr_level_bank
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
,
&best_level_warp_bank, &curr_level_warp_bank
#endif // WARP_CU_BANK
);
// 4-way partitions search stage.
int part4_search_allowed[NUM_PART4_TYPES] = { 1, 1 };
// Disable 4-way partition search flags for width less than twice the
// minimum width.
if (blk_params.width < (blk_params.min_partition_size_1d << 2) ||
(xd->tree_type == CHROMA_PART && bsize <= BLOCK_16X16) ||
(luma_split_flag > 3)) {
part4_search_allowed[HORZ4] = 0;
part4_search_allowed[VERT4] = 0;
} else {
// Prune 4-way partition search.
prune_4_way_partition_search(cpi, x, pc_tree, &part_search_state, &best_rdc,
pb_source_variance, ext_partition_allowed,
part4_search_allowed);
}
// PARTITION_HORZ_4
assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions,
!part4_search_allowed[HORZ4]));
if (!part_search_state.terminate_partition_search &&
part4_search_allowed[HORZ4] && blk_params.has_rows &&
(part_search_state.do_rectangular_split ||
av1_active_h_edge(cpi, mi_row, blk_params.mi_step))) {
const int inc_step[NUM_PART4_TYPES] = { mi_size_high[blk_params.bsize] / 4,
0 };
// Evaluation of Horz4 partition type.
rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
pc_tree->horizontal4, &part_search_state, &best_rdc,
inc_step, PARTITION_HORZ_4
#if CONFIG_C043_MVP_IMPROVEMENTS
,
&best_level_bank, &curr_level_bank
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
,
&best_level_warp_bank, &curr_level_warp_bank
#endif // WARP_CU_BANK
);
}
// PARTITION_VERT_4
assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions,
!part4_search_allowed[VERT4]));
if (!part_search_state.terminate_partition_search &&
part4_search_allowed[VERT4] && blk_params.has_cols &&
(part_search_state.do_rectangular_split ||
av1_active_v_edge(cpi, mi_col, blk_params.mi_step))) {
const int inc_step[NUM_PART4_TYPES] = { 0, mi_size_wide[blk_params.bsize] /
4 };
// Evaluation of Vert4 partition type.
rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree,
pc_tree->vertical4, &part_search_state, &best_rdc,
inc_step, PARTITION_VERT_4
#if CONFIG_C043_MVP_IMPROVEMENTS
,
&best_level_bank, &curr_level_bank
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
,
&best_level_warp_bank, &curr_level_warp_bank
#endif // WARP_CU_BANK
);
}
#endif // !CONFIG_EXT_RECUR_PARTITIONS
#if CONFIG_EXT_RECUR_PARTITIONS
const int ext_partition_allowed = !is_partition_implied_at_boundary(
&cm->mi_params, xd->tree_type, part_search_state.ss_x,
part_search_state.ss_y, mi_row, mi_col, bsize, &pc_tree->chroma_ref_info,
NULL);
const int partition_3_allowed =
ext_partition_allowed && bsize != BLOCK_128X128 &&
max_recursion_depth > 0 && cpi->oxcf.part_cfg.enable_ext_partitions;
const int is_wide_block = block_size_wide[bsize] > block_size_high[bsize];
const int is_tall_block = block_size_wide[bsize] < block_size_high[bsize];
const PARTITION_SPEED_FEATURES *part_sf = &cpi->sf.part_sf;
int horz_3_allowed =
partition_3_allowed && !is_wide_block && horz_3_allowed_sdp &&
check_is_chroma_size_valid(xd->tree_type, PARTITION_HORZ_3, bsize, mi_row,
mi_col, part_search_state.ss_x,
part_search_state.ss_y,
&pc_tree->chroma_ref_info) &&
is_bsize_geq(get_partition_subsize(bsize, PARTITION_HORZ_3),
blk_params.min_partition_size);
// Prune horz 3 with speed features
if (horz_3_allowed && !frame_is_intra_only(cm) &&
forced_partition != PARTITION_HORZ_3) {
if (part_sf->prune_part_3_with_part_none &&
pc_tree->partitioning == PARTITION_NONE) {
// Prune if the best partition does not split
horz_3_allowed = 0;
}
if (part_sf->prune_part_3_with_part_rect &&
pc_tree->partitioning == PARTITION_HORZ &&
!node_uses_horz(pc_tree->horizontal[0]) &&
!node_uses_horz(pc_tree->horizontal[1])) {
// Prune if the best partition is horz but horz did not further split in
// horz
horz_3_allowed = 0;
}
}
int vert_3_allowed =
partition_3_allowed && !is_tall_block && vert_3_allowed_sdp &&
check_is_chroma_size_valid(xd->tree_type, PARTITION_VERT_3, bsize, mi_row,
mi_col, part_search_state.ss_x,
part_search_state.ss_y,
&pc_tree->chroma_ref_info) &&
is_bsize_geq(get_partition_subsize(bsize, PARTITION_VERT_3),
blk_params.min_partition_size);
if (vert_3_allowed && !frame_is_intra_only(cm) &&
forced_partition != PARTITION_VERT_3) {
if (part_sf->prune_part_3_with_part_none &&
pc_tree->partitioning == PARTITION_NONE) {
// Prune if the best partition does not split
vert_3_allowed = 0;
}
if (part_sf->prune_part_3_with_part_rect &&
pc_tree->partitioning == PARTITION_VERT &&
!node_uses_vert(pc_tree->vertical[0]) &&
!node_uses_vert(pc_tree->vertical[1])) {
// Prune if the best partition is vert but vert did not further split in
// vert
vert_3_allowed = 0;
}
}
const int ext_recur_depth =
AOMMIN(max_recursion_depth - 1, cpi->sf.part_sf.ext_recur_depth);
// PARTITION_HORZ_3
if (IS_FORCED_PARTITION_TYPE(PARTITION_HORZ_3) && horz_3_allowed) {
search_partition_horz_3(
&part_search_state, cpi, td, tile_data, tp, &best_rdc, pc_tree,
(ptree_luma && ptree_luma->partition == PARTITION_HORZ_3) ? ptree_luma
: NULL,
template_tree, &x_ctx,
#if CONFIG_C043_MVP_IMPROVEMENTS
&best_level_bank,
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
&best_level_warp_bank,
#endif // WARP_CU_BANK
multi_pass_mode, ext_recur_depth);
#if CONFIG_C043_MVP_IMPROVEMENTS
x->e_mbd.ref_mv_bank = curr_level_bank;
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
x->e_mbd.warp_param_bank = curr_level_warp_bank;
#endif // WARP_CU_BANK
}
// PARTITION_VERT_3
if (IS_FORCED_PARTITION_TYPE(PARTITION_VERT_3) && vert_3_allowed) {
search_partition_vert_3(
&part_search_state, cpi, td, tile_data, tp, &best_rdc, pc_tree,
(ptree_luma && ptree_luma->partition == PARTITION_VERT_3) ? ptree_luma
: NULL,
template_tree, &x_ctx,
#if CONFIG_C043_MVP_IMPROVEMENTS
&best_level_bank,
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
&best_level_warp_bank,
#endif // WARP_CU_BANK
multi_pass_mode, ext_recur_depth);
#if CONFIG_C043_MVP_IMPROVEMENTS
x->e_mbd.ref_mv_bank = curr_level_bank;
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
x->e_mbd.warp_param_bank = curr_level_warp_bank;
#endif // WARP_CU_BANK
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
if (bsize == cm->seq_params.sb_size &&
!part_search_state.found_best_partition) {
if (x->must_find_valid_partition) {
aom_internal_error(
&cpi->common.error, AOM_CODEC_ERROR,
"The same superblock is recoded twice. Infinite loop detected?");
}
// Did not find a valid partition, go back and search again, with less
// constraint on which partition types to search.
x->must_find_valid_partition = 1;
#if CONFIG_COLLECT_PARTITION_STATS == 2
part_stats->partition_redo += 1;
#endif
goto BEGIN_PARTITION_SEARCH;
}
#if CONFIG_EXT_RECUR_PARTITIONS && !defined(NDEBUG)
if (template_tree && template_tree->partition != PARTITION_INVALID &&
pc_tree->partitioning != template_tree->partition) {
assert(0);
printf("Mismatch with template at fr: %d, mi: (%d, %d), BLOCK_%dX%d\n",
cm->current_frame.order_hint, mi_row, mi_col, block_size_wide[bsize],
block_size_high[bsize]);
}
#endif // CONFIG_EXT_RECUR_PARTITIONS && !defined(NDEBUG)
// Store the final rd cost
*rd_cost = best_rdc;
#if CONFIG_C043_MVP_IMPROVEMENTS
x->e_mbd.ref_mv_bank = best_level_bank;
#if CONFIG_EXT_RECUR_PARTITIONS
pc_tree->ref_mv_bank = best_level_bank;
#endif // CONFIG_EXT_RECUR_PARTITIONS
#endif // CONFIG_C043_MVP_IMPROVEMENTS
#if WARP_CU_BANK
x->e_mbd.warp_param_bank = best_level_warp_bank;
#if CONFIG_EXT_RECUR_PARTITIONS
pc_tree->warp_param_bank = best_level_warp_bank;
#endif // CONFIG_EXT_RECUR_PARTITIONS
#endif // WARP_CU_BANK
pc_tree->rd_cost = best_rdc;
if (!part_search_state.found_best_partition) {
av1_invalid_rd_stats(&pc_tree->rd_cost);
} else {
#if CONFIG_EXT_RECUR_PARTITIONS
av1_cache_best_partition(x->sms_bufs, mi_row, mi_col, bsize,
cm->seq_params.sb_size, pc_tree->partitioning);
#endif // CONFIG_EXT_RECUR_PARTITIONS
}
// Also record the best partition in simple motion data tree because it is
// necessary for the related speed features.
#if CONFIG_EXT_RECUR_PARTITIONS
if (sms_tree)
#endif // CONFIG_EXT_RECUR_PARTITIONS
sms_tree->partitioning = pc_tree->partitioning;
if (luma_split_flag > 3) {
assert(pc_tree->partitioning == PARTITION_SPLIT);
}
#if CONFIG_COLLECT_PARTITION_STATS
if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX) {
partition_decisions[pc_tree->partitioning] += 1;
}
#endif
#if CONFIG_COLLECT_PARTITION_STATS == 1
// If CONFIG_COLLECT_PARTITION_STATS is 1, then print out the stats for each
// prediction block.
FILE *f = fopen("data.csv", "a");
fprintf(f, "%d,%d,%d,", bsize, cm->show_frame, frame_is_intra_only(cm));
for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
fprintf(f, "%d,", partition_decisions[idx]);
}
for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
fprintf(f, "%d,", partition_attempts[idx]);
}
for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
fprintf(f, "%ld,", partition_times[idx]);
}
fprintf(f, "\n");
fclose(f);
#endif
#if CONFIG_COLLECT_PARTITION_STATS == 2
// If CONFIG_COLLECTION_PARTITION_STATS is 2, then we print out the stats
// for the whole clip. So we need to pass the information upstream to the
// encoder.
const int bsize_idx = av1_get_bsize_idx_for_part_stats(bsize);
int *agg_attempts = part_stats->partition_attempts[bsize_idx];
int *agg_decisions = part_stats->partition_decisions[bsize_idx];
int64_t *agg_times = part_stats->partition_times[bsize_idx];
for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) {
agg_attempts[idx] += partition_attempts[idx];
agg_decisions[idx] += partition_decisions[idx];
agg_times[idx] += partition_times[idx];
}
#endif
// Reset the PC_TREE deallocation flag.
int pc_tree_dealloc = 0;
// If a valid partition is found and reconstruction is required for future
// sub-blocks in the same group.
if (part_search_state.found_best_partition && pc_tree->index != 3) {
#if CONFIG_EXT_RECUR_PARTITIONS
assert(pc_tree->partitioning != PARTITION_SPLIT);
#endif // CONFIG_EXT_RECUR_PARTITIONS
if (bsize == cm->seq_params.sb_size) {
// Encode the superblock.
const int emit_output = multi_pass_mode != SB_DRY_PASS;
const RUN_TYPE run_type = emit_output ? OUTPUT_ENABLED : DRY_RUN_NORMAL;
const int plane_start = (xd->tree_type == CHROMA_PART);
const int plane_end = (xd->tree_type == LUMA_PART) ? 1 : num_planes;
for (int plane = plane_start; plane < plane_end; plane++) {
x->cb_offset[plane] = 0;
}
av1_reset_ptree_in_sbi(xd->sbi, xd->tree_type);
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, run_type, bsize,
pc_tree, xd->sbi->ptree_root[av1_get_sdp_idx(xd->tree_type)],
#if CONFIG_EXT_RECUR_PARTITIONS
xd->tree_type == CHROMA_PART ? xd->sbi->ptree_root[0] : NULL,
#endif // CONFIG_EXT_RECUR_PARTITIONS
NULL);
// Dealloc the whole PC_TREE after a superblock is done.
av1_free_pc_tree_recursive(pc_tree, num_planes, 0, 0);
pc_tree_dealloc = 1;
} else {
// Encode the smaller blocks in DRY_RUN mode.
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
pc_tree, NULL,
#if CONFIG_EXT_RECUR_PARTITIONS
NULL,
#endif // CONFIG_EXT_RECUR_PARTITIONS
NULL);
}
}
int keep_tree = 0;
#if CONFIG_EXT_RECUR_PARTITIONS
keep_tree = should_reuse_mode(x, REUSE_INTER_MODE_IN_INTERFRAME_FLAG |
REUSE_INTRA_MODE_IN_INTERFRAME_FLAG);
#endif // CONFIG_EXT_RECUR_PARTITIONS
// If the tree still exists (non-superblock), dealloc most nodes, only keep
// nodes for the best partition and PARTITION_NONE.
if (!pc_tree_dealloc && !keep_tree) {
av1_free_pc_tree_recursive(pc_tree, num_planes, 1, 1);
}
if (bsize == cm->seq_params.sb_size) {
assert(best_rdc.rate < INT_MAX);
assert(best_rdc.dist < INT64_MAX);
} else {
assert(tp_orig == *tp);
}
// Restore the rd multiplier.
x->rdmult = orig_rdmult;
return part_search_state.found_best_partition;
}