|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <math.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include "third_party/googletest/src/googletest/include/gtest/gtest.h" | 
|  |  | 
|  | #include "./av1_rtcd.h" | 
|  | #include "./aom_config.h" | 
|  | #include "./aom_dsp_rtcd.h" | 
|  | #include "test/acm_random.h" | 
|  | #include "test/clear_system_state.h" | 
|  | #include "test/register_state_check.h" | 
|  | #include "test/util.h" | 
|  | #include "av1/common/entropy.h" | 
|  | #include "aom/aom_codec.h" | 
|  | #include "aom/aom_integer.h" | 
|  | #include "aom_ports/mem.h" | 
|  | #include "aom_ports/msvc.h"  // for round() | 
|  |  | 
|  | using libaom_test::ACMRandom; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | const int kNumCoeffs = 1024; | 
|  | const double kPi = 3.141592653589793238462643383279502884; | 
|  | void reference_32x32_dct_1d(const double in[32], double out[32]) { | 
|  | const double kInvSqrt2 = 0.707106781186547524400844362104; | 
|  | for (int k = 0; k < 32; k++) { | 
|  | out[k] = 0.0; | 
|  | for (int n = 0; n < 32; n++) | 
|  | out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 64.0); | 
|  | if (k == 0) out[k] = out[k] * kInvSqrt2; | 
|  | } | 
|  | } | 
|  |  | 
|  | void reference_32x32_dct_2d(const int16_t input[kNumCoeffs], | 
|  | double output[kNumCoeffs]) { | 
|  | // First transform columns | 
|  | for (int i = 0; i < 32; ++i) { | 
|  | double temp_in[32], temp_out[32]; | 
|  | for (int j = 0; j < 32; ++j) temp_in[j] = input[j * 32 + i]; | 
|  | reference_32x32_dct_1d(temp_in, temp_out); | 
|  | for (int j = 0; j < 32; ++j) output[j * 32 + i] = temp_out[j]; | 
|  | } | 
|  | // Then transform rows | 
|  | for (int i = 0; i < 32; ++i) { | 
|  | double temp_in[32], temp_out[32]; | 
|  | for (int j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32]; | 
|  | reference_32x32_dct_1d(temp_in, temp_out); | 
|  | // Scale by some magic number | 
|  | for (int j = 0; j < 32; ++j) output[j + i * 32] = temp_out[j] / 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | typedef void (*FwdTxfmFunc)(const int16_t *in, tran_low_t *out, int stride); | 
|  | typedef void (*InvTxfmFunc)(const tran_low_t *in, uint8_t *out, int stride); | 
|  |  | 
|  | typedef std::tr1::tuple<FwdTxfmFunc, InvTxfmFunc, int, aom_bit_depth_t> | 
|  | Trans32x32Param; | 
|  |  | 
|  | class Trans32x32Test : public ::testing::TestWithParam<Trans32x32Param> { | 
|  | public: | 
|  | virtual ~Trans32x32Test() {} | 
|  | virtual void SetUp() { | 
|  | fwd_txfm_ = GET_PARAM(0); | 
|  | inv_txfm_ = GET_PARAM(1); | 
|  | version_ = GET_PARAM(2);  // 0: high precision forward transform | 
|  | // 1: low precision version for rd loop | 
|  | bit_depth_ = GET_PARAM(3); | 
|  | mask_ = (1 << bit_depth_) - 1; | 
|  | } | 
|  |  | 
|  | virtual void TearDown() { libaom_test::ClearSystemState(); } | 
|  |  | 
|  | protected: | 
|  | int version_; | 
|  | aom_bit_depth_t bit_depth_; | 
|  | int mask_; | 
|  | FwdTxfmFunc fwd_txfm_; | 
|  | InvTxfmFunc inv_txfm_; | 
|  | }; | 
|  |  | 
|  | TEST_P(Trans32x32Test, AccuracyCheck) { | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  | uint32_t max_error = 0; | 
|  | int64_t total_error = 0; | 
|  | const int count_test_block = 10000; | 
|  | DECLARE_ALIGNED(16, int16_t, test_input_block[kNumCoeffs]); | 
|  | DECLARE_ALIGNED(16, tran_low_t, test_temp_block[kNumCoeffs]); | 
|  | DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); | 
|  | DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]); | 
|  | DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); | 
|  | DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]); | 
|  |  | 
|  | for (int i = 0; i < count_test_block; ++i) { | 
|  | // Initialize a test block with input range [-mask_, mask_]. | 
|  | for (int j = 0; j < kNumCoeffs; ++j) { | 
|  | if (bit_depth_ == AOM_BITS_8) { | 
|  | src[j] = rnd.Rand8(); | 
|  | dst[j] = rnd.Rand8(); | 
|  | test_input_block[j] = src[j] - dst[j]; | 
|  | } else { | 
|  | src16[j] = rnd.Rand16() & mask_; | 
|  | dst16[j] = rnd.Rand16() & mask_; | 
|  | test_input_block[j] = src16[j] - dst16[j]; | 
|  | } | 
|  | } | 
|  |  | 
|  | ASM_REGISTER_STATE_CHECK(fwd_txfm_(test_input_block, test_temp_block, 32)); | 
|  | if (bit_depth_ == AOM_BITS_8) { | 
|  | ASM_REGISTER_STATE_CHECK(inv_txfm_(test_temp_block, dst, 32)); | 
|  | } else { | 
|  | ASM_REGISTER_STATE_CHECK( | 
|  | inv_txfm_(test_temp_block, CONVERT_TO_BYTEPTR(dst16), 32)); | 
|  | } | 
|  |  | 
|  | for (int j = 0; j < kNumCoeffs; ++j) { | 
|  | const int32_t diff = | 
|  | bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; | 
|  | const uint32_t error = diff * diff; | 
|  | if (max_error < error) max_error = error; | 
|  | total_error += error; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (version_ == 1) { | 
|  | max_error /= 2; | 
|  | total_error /= 45; | 
|  | } | 
|  |  | 
|  | EXPECT_GE(1u << 2 * (bit_depth_ - 8), max_error) | 
|  | << "Error: 32x32 FDCT/IDCT has an individual round-trip error > 1"; | 
|  |  | 
|  | EXPECT_GE(count_test_block << 2 * (bit_depth_ - 8), total_error) | 
|  | << "Error: 32x32 FDCT/IDCT has average round-trip error > 1 per block"; | 
|  | } | 
|  |  | 
|  | TEST_P(Trans32x32Test, CoeffCheck) { | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  | const int count_test_block = 1000; | 
|  |  | 
|  | DECLARE_ALIGNED(16, int16_t, input_block[kNumCoeffs]); | 
|  | DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]); | 
|  | DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]); | 
|  |  | 
|  | for (int i = 0; i < count_test_block; ++i) { | 
|  | for (int j = 0; j < kNumCoeffs; ++j) | 
|  | input_block[j] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_); | 
|  |  | 
|  | const int stride = 32; | 
|  | aom_fdct32x32_c(input_block, output_ref_block, stride); | 
|  | ASM_REGISTER_STATE_CHECK(fwd_txfm_(input_block, output_block, stride)); | 
|  |  | 
|  | if (version_ == 0) { | 
|  | for (int j = 0; j < kNumCoeffs; ++j) | 
|  | EXPECT_EQ(output_block[j], output_ref_block[j]) | 
|  | << "Error: 32x32 FDCT versions have mismatched coefficients"; | 
|  | } else { | 
|  | for (int j = 0; j < kNumCoeffs; ++j) | 
|  | EXPECT_GE(6, abs(output_block[j] - output_ref_block[j])) | 
|  | << "Error: 32x32 FDCT rd has mismatched coefficients"; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(Trans32x32Test, MemCheck) { | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  | const int count_test_block = 2000; | 
|  |  | 
|  | DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]); | 
|  | DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]); | 
|  | DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]); | 
|  |  | 
|  | for (int i = 0; i < count_test_block; ++i) { | 
|  | // Initialize a test block with input range [-mask_, mask_]. | 
|  | for (int j = 0; j < kNumCoeffs; ++j) { | 
|  | input_extreme_block[j] = rnd.Rand8() & 1 ? mask_ : -mask_; | 
|  | } | 
|  | if (i == 0) { | 
|  | for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = mask_; | 
|  | } else if (i == 1) { | 
|  | for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -mask_; | 
|  | } | 
|  |  | 
|  | const int stride = 32; | 
|  | aom_fdct32x32_c(input_extreme_block, output_ref_block, stride); | 
|  | ASM_REGISTER_STATE_CHECK( | 
|  | fwd_txfm_(input_extreme_block, output_block, stride)); | 
|  |  | 
|  | // The minimum quant value is 4. | 
|  | for (int j = 0; j < kNumCoeffs; ++j) { | 
|  | if (version_ == 0) { | 
|  | EXPECT_EQ(output_block[j], output_ref_block[j]) | 
|  | << "Error: 32x32 FDCT versions have mismatched coefficients"; | 
|  | } else { | 
|  | EXPECT_GE(6, abs(output_block[j] - output_ref_block[j])) | 
|  | << "Error: 32x32 FDCT rd has mismatched coefficients"; | 
|  | } | 
|  | EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_ref_block[j])) | 
|  | << "Error: 32x32 FDCT C has coefficient larger than 4*DCT_MAX_VALUE"; | 
|  | EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_block[j])) | 
|  | << "Error: 32x32 FDCT has coefficient larger than " | 
|  | << "4*DCT_MAX_VALUE"; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(Trans32x32Test, InverseAccuracy) { | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  | const int count_test_block = 1000; | 
|  | DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]); | 
|  | DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]); | 
|  | DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); | 
|  | DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]); | 
|  | DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); | 
|  | DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]); | 
|  |  | 
|  | for (int i = 0; i < count_test_block; ++i) { | 
|  | double out_r[kNumCoeffs]; | 
|  |  | 
|  | // Initialize a test block with input range [-255, 255] | 
|  | for (int j = 0; j < kNumCoeffs; ++j) { | 
|  | if (bit_depth_ == AOM_BITS_8) { | 
|  | src[j] = rnd.Rand8(); | 
|  | dst[j] = rnd.Rand8(); | 
|  | in[j] = src[j] - dst[j]; | 
|  | } else { | 
|  | src16[j] = rnd.Rand16() & mask_; | 
|  | dst16[j] = rnd.Rand16() & mask_; | 
|  | in[j] = src16[j] - dst16[j]; | 
|  | } | 
|  | } | 
|  |  | 
|  | reference_32x32_dct_2d(in, out_r); | 
|  | for (int j = 0; j < kNumCoeffs; ++j) | 
|  | coeff[j] = static_cast<tran_low_t>(round(out_r[j])); | 
|  | if (bit_depth_ == AOM_BITS_8) { | 
|  | ASM_REGISTER_STATE_CHECK(inv_txfm_(coeff, dst, 32)); | 
|  | } else { | 
|  | ASM_REGISTER_STATE_CHECK(inv_txfm_(coeff, CONVERT_TO_BYTEPTR(dst16), 32)); | 
|  | } | 
|  | for (int j = 0; j < kNumCoeffs; ++j) { | 
|  | const int diff = | 
|  | bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; | 
|  | const int error = diff * diff; | 
|  | EXPECT_GE(1, error) << "Error: 32x32 IDCT has error " << error | 
|  | << " at index " << j; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | class PartialTrans32x32Test | 
|  | : public ::testing::TestWithParam< | 
|  | std::tr1::tuple<FwdTxfmFunc, aom_bit_depth_t> > { | 
|  | public: | 
|  | virtual ~PartialTrans32x32Test() {} | 
|  | virtual void SetUp() { | 
|  | fwd_txfm_ = GET_PARAM(0); | 
|  | bit_depth_ = GET_PARAM(1); | 
|  | } | 
|  |  | 
|  | virtual void TearDown() { libaom_test::ClearSystemState(); } | 
|  |  | 
|  | protected: | 
|  | aom_bit_depth_t bit_depth_; | 
|  | FwdTxfmFunc fwd_txfm_; | 
|  | }; | 
|  |  | 
|  | TEST_P(PartialTrans32x32Test, Extremes) { | 
|  | const int16_t maxval = | 
|  | static_cast<int16_t>(clip_pixel_highbd(1 << 30, bit_depth_)); | 
|  | const int minval = -maxval; | 
|  | DECLARE_ALIGNED(16, int16_t, input[kNumCoeffs]); | 
|  | DECLARE_ALIGNED(16, tran_low_t, output[kNumCoeffs]); | 
|  |  | 
|  | for (int i = 0; i < kNumCoeffs; ++i) input[i] = maxval; | 
|  | output[0] = 0; | 
|  | ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 32)); | 
|  | EXPECT_EQ((maxval * kNumCoeffs) >> 3, output[0]); | 
|  |  | 
|  | for (int i = 0; i < kNumCoeffs; ++i) input[i] = minval; | 
|  | output[0] = 0; | 
|  | ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 32)); | 
|  | EXPECT_EQ((minval * kNumCoeffs) >> 3, output[0]); | 
|  | } | 
|  |  | 
|  | TEST_P(PartialTrans32x32Test, Random) { | 
|  | const int16_t maxval = | 
|  | static_cast<int16_t>(clip_pixel_highbd(1 << 30, bit_depth_)); | 
|  | DECLARE_ALIGNED(16, int16_t, input[kNumCoeffs]); | 
|  | DECLARE_ALIGNED(16, tran_low_t, output[kNumCoeffs]); | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  |  | 
|  | int sum = 0; | 
|  | for (int i = 0; i < kNumCoeffs; ++i) { | 
|  | const int val = (i & 1) ? -rnd(maxval + 1) : rnd(maxval + 1); | 
|  | input[i] = val; | 
|  | sum += val; | 
|  | } | 
|  | output[0] = 0; | 
|  | ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 32)); | 
|  | EXPECT_EQ(sum >> 3, output[0]); | 
|  | } | 
|  |  | 
|  | using std::tr1::make_tuple; | 
|  |  | 
|  | INSTANTIATE_TEST_CASE_P( | 
|  | C, Trans32x32Test, | 
|  | ::testing::Values(make_tuple(&aom_fdct32x32_c, &aom_idct32x32_1024_add_c, 0, | 
|  | AOM_BITS_8), | 
|  | make_tuple(&aom_fdct32x32_rd_c, &aom_idct32x32_1024_add_c, | 
|  | 1, AOM_BITS_8))); | 
|  |  | 
|  | #if HAVE_SSE2 | 
|  | INSTANTIATE_TEST_CASE_P(SSE2, Trans32x32Test, | 
|  | ::testing::Values(make_tuple(&aom_fdct32x32_sse2, | 
|  | &aom_idct32x32_1024_add_c, | 
|  | DCT_DCT, AOM_BITS_8), | 
|  | make_tuple(&aom_fdct32x32_rd_sse2, | 
|  | &aom_idct32x32_1024_add_c, | 
|  | ADST_DCT, AOM_BITS_8))); | 
|  | #endif  // HAVE_SSE2 | 
|  |  | 
|  | #if HAVE_AVX2 | 
|  | INSTANTIATE_TEST_CASE_P( | 
|  | AVX2, Trans32x32Test, | 
|  | ::testing::Values(make_tuple(&aom_fdct32x32_avx2, | 
|  | &aom_idct32x32_1024_add_sse2, DCT_DCT, | 
|  | AOM_BITS_8), | 
|  | make_tuple(&aom_fdct32x32_rd_avx2, | 
|  | &aom_idct32x32_1024_add_sse2, ADST_DCT, | 
|  | AOM_BITS_8))); | 
|  | #endif  // HAVE_AVX2 | 
|  | }  // namespace |