|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include "config/av1_rtcd.h" | 
|  |  | 
|  | #include "av1/common/enums.h" | 
|  | #include "av1/common/av1_txfm.h" | 
|  | #include "av1/common/x86/av1_txfm_sse2.h" | 
|  | #include "av1/common/x86/highbd_txfm_utility_sse4.h" | 
|  | #include "av1/encoder/av1_fwd_txfm1d_cfg.h" | 
|  | #include "av1/encoder/x86/av1_txfm1d_sse4.h" | 
|  | #include "av1/encoder/x86/av1_fwd_txfm_sse2.h" | 
|  |  | 
|  | static INLINE void int16_array_with_stride_to_int32_array_without_stride( | 
|  | const int16_t *input, int stride, int32_t *output, int txfm1d_size) { | 
|  | int r, c; | 
|  | for (r = 0; r < txfm1d_size; r++) { | 
|  | for (c = 0; c < txfm1d_size; c++) { | 
|  | output[r * txfm1d_size + c] = (int32_t)input[r * stride + c]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | typedef void (*TxfmFuncSSE2)(__m128i *input, __m128i *output, | 
|  | const int8_t cos_bit, const int8_t *stage_range); | 
|  |  | 
|  | static void fdct32_sse4_1(__m128i *input, __m128i *output, const int8_t cos_bit, | 
|  | const int8_t *stage_range) { | 
|  | const int txfm_size = 32; | 
|  | const int num_per_128 = 4; | 
|  | int col_num = txfm_size / num_per_128; | 
|  | int col; | 
|  | (void)stage_range; | 
|  | for (col = 0; col < col_num; col++) { | 
|  | av1_fdct32_sse4_1((input + col), (output + col), cos_bit, col_num); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void fdct64_new_sse4_1(__m128i *input, __m128i *output, | 
|  | const int8_t cos_bit, const int8_t *stage_range) { | 
|  | const int txfm_size = 64; | 
|  | const int num_per_128 = 4; | 
|  | int col_num = txfm_size / num_per_128; | 
|  | (void)stage_range; | 
|  | for (int col = 0; col < col_num; col++) { | 
|  | av1_fdct64_sse4_1((input + col), (output + col), cos_bit, col_num, col_num); | 
|  | } | 
|  | } | 
|  | static void idtx32x32_sse4_1(__m128i *input, __m128i *output, | 
|  | const int8_t cos_bit, const int8_t *stage_range) { | 
|  | (void)stage_range; | 
|  |  | 
|  | for (int i = 0; i < 8; i++) { | 
|  | av1_idtx32_sse4_1(&input[i * 32], &output[i * 32], cos_bit, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE TxfmFuncSSE2 fwd_txfm_type_to_func(TXFM_TYPE txfm_type) { | 
|  | switch (txfm_type) { | 
|  | case TXFM_TYPE_DCT32: return fdct32_sse4_1; break; | 
|  | case TXFM_TYPE_DCT64: return fdct64_new_sse4_1; break; | 
|  | case TXFM_TYPE_IDENTITY32: return idtx32x32_sse4_1; break; | 
|  | default: assert(0); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static INLINE void fwd_txfm2d_sse4_1(const int16_t *input, int32_t *output, | 
|  | const int stride, | 
|  | const TXFM_2D_FLIP_CFG *cfg, | 
|  | int32_t *txfm_buf) { | 
|  | // TODO(sarahparker) This does not currently support rectangular transforms | 
|  | // and will break without splitting txfm_size out into row and col size. | 
|  | // Rectangular transforms use c code only, so it should be ok for now. | 
|  | // It will be corrected when there are sse implementations for rectangular | 
|  | // transforms. | 
|  | assert(cfg->tx_size < TX_SIZES); | 
|  | const int txfm_size = tx_size_wide[cfg->tx_size]; | 
|  | const int8_t *shift = cfg->shift; | 
|  | const int8_t *stage_range_col = cfg->stage_range_col; | 
|  | const int8_t *stage_range_row = cfg->stage_range_row; | 
|  | const int8_t cos_bit_col = cfg->cos_bit_col; | 
|  | const int8_t cos_bit_row = cfg->cos_bit_row; | 
|  | const TxfmFuncSSE2 txfm_func_col = fwd_txfm_type_to_func(cfg->txfm_type_col); | 
|  | const TxfmFuncSSE2 txfm_func_row = fwd_txfm_type_to_func(cfg->txfm_type_row); | 
|  |  | 
|  | __m128i *buf_128 = (__m128i *)txfm_buf; | 
|  | __m128i *out_128 = (__m128i *)output; | 
|  | int num_per_128 = 4; | 
|  | int txfm2d_size_128 = txfm_size * txfm_size / num_per_128; | 
|  |  | 
|  | int16_array_with_stride_to_int32_array_without_stride(input, stride, txfm_buf, | 
|  | txfm_size); | 
|  | av1_round_shift_array_32_sse4_1(buf_128, out_128, txfm2d_size_128, -shift[0]); | 
|  | txfm_func_col(out_128, buf_128, cos_bit_col, stage_range_col); | 
|  | av1_round_shift_array_32_sse4_1(buf_128, out_128, txfm2d_size_128, -shift[1]); | 
|  | transpose_32(txfm_size, out_128, buf_128); | 
|  | txfm_func_row(buf_128, out_128, cos_bit_row, stage_range_row); | 
|  | av1_round_shift_array_32_sse4_1(out_128, buf_128, txfm2d_size_128, -shift[2]); | 
|  | transpose_32(txfm_size, buf_128, out_128); | 
|  | } | 
|  |  | 
|  | static INLINE void fwd_txfm2d_64x64_sse4_1(const int16_t *input, | 
|  | int32_t *output, const int stride, | 
|  | const TXFM_2D_FLIP_CFG *cfg, | 
|  | int32_t *txfm_buf) { | 
|  | assert(cfg->tx_size < TX_SIZES); | 
|  | const int txfm_size = tx_size_wide[cfg->tx_size]; | 
|  | const int8_t *shift = cfg->shift; | 
|  | const int8_t *stage_range_col = cfg->stage_range_col; | 
|  | const int8_t cos_bit_col = cfg->cos_bit_col; | 
|  | const int8_t cos_bit_row = cfg->cos_bit_row; | 
|  | const TxfmFuncSSE2 txfm_func_col = fwd_txfm_type_to_func(cfg->txfm_type_col); | 
|  | __m128i *buf_128 = (__m128i *)txfm_buf; | 
|  | __m128i *out_128 = (__m128i *)output; | 
|  |  | 
|  | const int num_per_128 = 4; | 
|  | int txfm2d_size_128 = txfm_size * txfm_size / num_per_128; | 
|  | int col_num = txfm_size / num_per_128; | 
|  |  | 
|  | int16_array_with_stride_to_int32_array_without_stride(input, stride, output, | 
|  | txfm_size); | 
|  | /*col wise transform*/ | 
|  | txfm_func_col(out_128, buf_128, cos_bit_col, stage_range_col); | 
|  | av1_round_shift_array_32_sse4_1(buf_128, out_128, txfm2d_size_128, -shift[1]); | 
|  | transpose_32(txfm_size, out_128, buf_128); | 
|  |  | 
|  | /*row wise transform*/ | 
|  | for (int col = 0; col < (col_num >> 1); col++) { | 
|  | av1_fdct64_sse4_1((buf_128 + col), (out_128 + col), cos_bit_row, col_num, | 
|  | (col_num >> 1)); | 
|  | } | 
|  |  | 
|  | txfm2d_size_128 = (col_num >> 1) * (txfm_size >> 1); | 
|  | av1_round_shift_array_32_sse4_1(out_128, buf_128, txfm2d_size_128, -shift[2]); | 
|  | transpose_8nx8n(buf_128, out_128, 32, 32); | 
|  | } | 
|  |  | 
|  | void av1_fwd_txfm2d_32x32_sse4_1(const int16_t *input, int32_t *output, | 
|  | int stride, TX_TYPE tx_type, int bd) { | 
|  | DECLARE_ALIGNED(16, int32_t, txfm_buf[1024]); | 
|  | TXFM_2D_FLIP_CFG cfg; | 
|  | av1_get_fwd_txfm_cfg(tx_type, TX_32X32, &cfg); | 
|  | (void)bd; | 
|  | fwd_txfm2d_sse4_1(input, output, stride, &cfg, txfm_buf); | 
|  | } | 
|  |  | 
|  | void av1_fwd_txfm2d_64x64_sse4_1(const int16_t *input, int32_t *output, | 
|  | int stride, TX_TYPE tx_type, int bd) { | 
|  | DECLARE_ALIGNED(16, int32_t, txfm_buf[4096]); | 
|  | TXFM_2D_FLIP_CFG cfg; | 
|  | av1_get_fwd_txfm_cfg(tx_type, TX_64X64, &cfg); | 
|  | (void)bd; | 
|  | fwd_txfm2d_64x64_sse4_1(input, output, stride, &cfg, txfm_buf); | 
|  | } | 
|  |  | 
|  | static INLINE void transpose_32_4x4x2(int stride, const __m128i *inputA, | 
|  | const __m128i *inputB, __m128i *output) { | 
|  | __m128i temp0 = _mm_unpacklo_epi32(inputA[0], inputA[2]); | 
|  | __m128i temp1 = _mm_unpackhi_epi32(inputA[0], inputA[2]); | 
|  | __m128i temp2 = _mm_unpacklo_epi32(inputA[1], inputA[3]); | 
|  | __m128i temp3 = _mm_unpackhi_epi32(inputA[1], inputA[3]); | 
|  |  | 
|  | output[0 * stride] = _mm_unpacklo_epi32(temp0, temp2); | 
|  | output[1 * stride] = _mm_unpackhi_epi32(temp0, temp2); | 
|  | output[2 * stride] = _mm_unpacklo_epi32(temp1, temp3); | 
|  | output[3 * stride] = _mm_unpackhi_epi32(temp1, temp3); | 
|  |  | 
|  | temp0 = _mm_unpacklo_epi32(inputB[0], inputB[2]); | 
|  | temp1 = _mm_unpackhi_epi32(inputB[0], inputB[2]); | 
|  | temp2 = _mm_unpacklo_epi32(inputB[1], inputB[3]); | 
|  | temp3 = _mm_unpackhi_epi32(inputB[1], inputB[3]); | 
|  |  | 
|  | output[4 * stride] = _mm_unpacklo_epi32(temp0, temp2); | 
|  | output[5 * stride] = _mm_unpackhi_epi32(temp0, temp2); | 
|  | output[6 * stride] = _mm_unpacklo_epi32(temp1, temp3); | 
|  | output[7 * stride] = _mm_unpackhi_epi32(temp1, temp3); | 
|  | } | 
|  |  | 
|  | static void lowbd_fwd_txfm2d_64x64_sse4_1(const int16_t *input, int32_t *output, | 
|  | int stride, TX_TYPE tx_type, int bd) { | 
|  | (void)bd; | 
|  | (void)tx_type; | 
|  | assert(tx_type == DCT_DCT); | 
|  | const TX_SIZE tx_size = TX_64X64; | 
|  | __m128i buf0[64], buf1[512]; | 
|  | const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size]; | 
|  | const int txw_idx = get_txw_idx(tx_size); | 
|  | const int txh_idx = get_txh_idx(tx_size); | 
|  | const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx]; | 
|  | const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx]; | 
|  | const int width = tx_size_wide[tx_size]; | 
|  | const int height = tx_size_high[tx_size]; | 
|  | const transform_1d_sse2 col_txfm = av1_fdct8x64_new_sse2; | 
|  | const int width_div8 = (width >> 3); | 
|  | const int height_div8 = (height >> 3); | 
|  |  | 
|  | for (int i = 0; i < width_div8; i++) { | 
|  | load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height); | 
|  | round_shift_16bit(buf0, height, shift[0]); | 
|  | col_txfm(buf0, buf0, cos_bit_col); | 
|  | round_shift_16bit(buf0, height, shift[1]); | 
|  | for (int j = 0; j < AOMMIN(4, height_div8); ++j) { | 
|  | transpose_16bit_8x8(buf0 + j * 8, buf1 + j * width + 8 * i); | 
|  | } | 
|  | } | 
|  | for (int i = 0; i < AOMMIN(4, height_div8); i++) { | 
|  | __m128i bufA[64]; | 
|  | __m128i bufB[64]; | 
|  | __m128i *buf = buf1 + width * i; | 
|  | for (int j = 0; j < width; ++j) { | 
|  | bufA[j] = _mm_cvtepi16_epi32(buf[j]); | 
|  | bufB[j] = _mm_cvtepi16_epi32(_mm_unpackhi_epi64(buf[j], buf[j])); | 
|  | } | 
|  | av1_fdct64_sse4_1(bufA, bufA, cos_bit_row, 1, 1); | 
|  | av1_fdct64_sse4_1(bufB, bufB, cos_bit_row, 1, 1); | 
|  | av1_round_shift_array_32_sse4_1(bufA, bufA, 32, -shift[2]); | 
|  | av1_round_shift_array_32_sse4_1(bufB, bufB, 32, -shift[2]); | 
|  |  | 
|  | int32_t *output8 = output + 8 * 32 * i; | 
|  | for (int j = 0; j < width_div8; ++j) { | 
|  | __m128i *out = (__m128i *)(output8 + 4 * j); | 
|  | transpose_32_4x4x2(8, bufA + 4 * j, bufB + 4 * j, out); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void lowbd_fwd_txfm2d_64x32_sse4_1(const int16_t *input, int32_t *output, | 
|  | int stride, TX_TYPE tx_type, int bd) { | 
|  | (void)bd; | 
|  | const TX_SIZE tx_size = TX_64X32; | 
|  | __m128i buf0[64], buf1[256]; | 
|  | const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size]; | 
|  | const int txw_idx = get_txw_idx(tx_size); | 
|  | const int txh_idx = get_txh_idx(tx_size); | 
|  | const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx]; | 
|  | const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx]; | 
|  | const int width = tx_size_wide[tx_size]; | 
|  | const int height = tx_size_high[tx_size]; | 
|  | const transform_1d_sse2 col_txfm = col_txfm8x32_arr[tx_type]; | 
|  | const int width_div8 = (width >> 3); | 
|  | const int height_div8 = (height >> 3); | 
|  |  | 
|  | for (int i = 0; i < width_div8; i++) { | 
|  | load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height); | 
|  | round_shift_16bit(buf0, height, shift[0]); | 
|  | col_txfm(buf0, buf0, cos_bit_col); | 
|  | round_shift_16bit(buf0, height, shift[1]); | 
|  | for (int j = 0; j < AOMMIN(4, height_div8); ++j) { | 
|  | transpose_16bit_8x8(buf0 + j * 8, buf1 + j * width + 8 * i); | 
|  | } | 
|  | } | 
|  | assert(tx_type == DCT_DCT); | 
|  | for (int i = 0; i < AOMMIN(4, height_div8); i++) { | 
|  | __m128i bufA[64]; | 
|  | __m128i bufB[64]; | 
|  | __m128i *buf = buf1 + width * i; | 
|  | for (int j = 0; j < width; ++j) { | 
|  | bufA[j] = _mm_cvtepi16_epi32(buf[j]); | 
|  | bufB[j] = _mm_cvtepi16_epi32(_mm_unpackhi_epi64(buf[j], buf[j])); | 
|  | } | 
|  | av1_fdct64_sse4_1(bufA, bufA, cos_bit_row, 1, 1); | 
|  | av1_fdct64_sse4_1(bufB, bufB, cos_bit_row, 1, 1); | 
|  | av1_round_shift_rect_array_32_sse4_1(bufA, bufA, 32, -shift[2], NewSqrt2); | 
|  | av1_round_shift_rect_array_32_sse4_1(bufB, bufB, 32, -shift[2], NewSqrt2); | 
|  |  | 
|  | int32_t *output8 = output + 8 * 32 * i; | 
|  | for (int j = 0; j < width_div8; ++j) { | 
|  | __m128i *out = (__m128i *)(output8 + 4 * j); | 
|  | transpose_32_4x4x2(8, bufA + 4 * j, bufB + 4 * j, out); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void lowbd_fwd_txfm2d_32x64_sse4_1(const int16_t *input, int32_t *output, | 
|  | int stride, TX_TYPE tx_type, int bd) { | 
|  | (void)bd; | 
|  | (void)tx_type; | 
|  | assert(tx_type == DCT_DCT); | 
|  | const TX_SIZE tx_size = TX_32X64; | 
|  | __m128i buf0[64], buf1[256]; | 
|  | const int8_t *shift = av1_fwd_txfm_shift_ls[tx_size]; | 
|  | const int txw_idx = get_txw_idx(tx_size); | 
|  | const int txh_idx = get_txh_idx(tx_size); | 
|  | const int cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx]; | 
|  | const int cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx]; | 
|  | const int width = tx_size_wide[tx_size]; | 
|  | const int height = tx_size_high[tx_size]; | 
|  | const transform_1d_sse2 col_txfm = av1_fdct8x64_new_sse2; | 
|  | const int width_div8 = (width >> 3); | 
|  | const int height_div8 = (height >> 3); | 
|  |  | 
|  | for (int i = 0; i < width_div8; i++) { | 
|  | load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height); | 
|  | round_shift_16bit(buf0, height, shift[0]); | 
|  | col_txfm(buf0, buf0, cos_bit_col); | 
|  | round_shift_16bit(buf0, height, shift[1]); | 
|  | for (int j = 0; j < AOMMIN(4, height_div8); ++j) { | 
|  | transpose_16bit_8x8(buf0 + j * 8, buf1 + j * width + 8 * i); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < AOMMIN(4, height_div8); i++) { | 
|  | __m128i bufA[32]; | 
|  | __m128i bufB[32]; | 
|  | __m128i *buf = buf1 + width * i; | 
|  | for (int j = 0; j < width; ++j) { | 
|  | bufA[j] = _mm_cvtepi16_epi32(buf[j]); | 
|  | bufB[j] = _mm_cvtepi16_epi32(_mm_unpackhi_epi64(buf[j], buf[j])); | 
|  | } | 
|  | av1_fdct32_sse4_1(bufA, bufA, cos_bit_row, 1); | 
|  | av1_fdct32_sse4_1(bufB, bufB, cos_bit_row, 1); | 
|  | av1_round_shift_rect_array_32_sse4_1(bufA, bufA, 32, -shift[2], NewSqrt2); | 
|  | av1_round_shift_rect_array_32_sse4_1(bufB, bufB, 32, -shift[2], NewSqrt2); | 
|  |  | 
|  | int32_t *output8 = output + 8 * 32 * i; | 
|  | for (int j = 0; j < (32 / 4); ++j) { | 
|  | __m128i *out = (__m128i *)(output8 + 4 * j); | 
|  | transpose_32_4x4x2(8, bufA + 4 * j, bufB + 4 * j, out); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static FwdTxfm2dFunc fwd_txfm2d_func_ls[TX_SIZES_ALL] = { | 
|  | av1_lowbd_fwd_txfm2d_4x4_sse2,    // 4x4 transform | 
|  | av1_lowbd_fwd_txfm2d_8x8_sse2,    // 8x8 transform | 
|  | av1_lowbd_fwd_txfm2d_16x16_sse2,  // 16x16 transform | 
|  | av1_lowbd_fwd_txfm2d_32x32_sse2,  // 32x32 transform | 
|  | lowbd_fwd_txfm2d_64x64_sse4_1,    // 64x64 transform | 
|  | av1_lowbd_fwd_txfm2d_4x8_sse2,    // 4x8 transform | 
|  | av1_lowbd_fwd_txfm2d_8x4_sse2,    // 8x4 transform | 
|  | av1_lowbd_fwd_txfm2d_8x16_sse2,   // 8x16 transform | 
|  | av1_lowbd_fwd_txfm2d_16x8_sse2,   // 16x8 transform | 
|  | av1_lowbd_fwd_txfm2d_16x32_sse2,  // 16x32 transform | 
|  | av1_lowbd_fwd_txfm2d_32x16_sse2,  // 32x16 transform | 
|  | lowbd_fwd_txfm2d_32x64_sse4_1,    // 32x64 transform | 
|  | lowbd_fwd_txfm2d_64x32_sse4_1,    // 64x32 transform | 
|  | av1_lowbd_fwd_txfm2d_4x16_sse2,   // 4x16 transform | 
|  | av1_lowbd_fwd_txfm2d_16x4_sse2,   // 16x4 transform | 
|  | av1_lowbd_fwd_txfm2d_8x32_sse2,   // 8x32 transform | 
|  | av1_lowbd_fwd_txfm2d_32x8_sse2,   // 32x8 transform | 
|  | av1_lowbd_fwd_txfm2d_16x64_sse2,  // 16x64 transform | 
|  | av1_lowbd_fwd_txfm2d_64x16_sse2,  // 64x16 transform | 
|  | }; | 
|  |  | 
|  | void av1_lowbd_fwd_txfm_sse4_1(const int16_t *src_diff, tran_low_t *coeff, | 
|  | int diff_stride, TxfmParam *txfm_param) { | 
|  | FwdTxfm2dFunc fwd_txfm2d_func = fwd_txfm2d_func_ls[txfm_param->tx_size]; | 
|  | if ((fwd_txfm2d_func == NULL) || | 
|  | (txfm_param->lossless && txfm_param->tx_size == TX_4X4)) { | 
|  | av1_lowbd_fwd_txfm_c(src_diff, coeff, diff_stride, txfm_param); | 
|  | } else { | 
|  | fwd_txfm2d_func(src_diff, coeff, diff_stride, txfm_param->tx_type, | 
|  | txfm_param->bd); | 
|  | } | 
|  | } |