| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <assert.h> |
| #include <stdlib.h> // qsort() |
| |
| #include "./vp9_rtcd.h" |
| #include "./vpx_dsp_rtcd.h" |
| #include "./vpx_scale_rtcd.h" |
| |
| #include "vpx_dsp/bitreader_buffer.h" |
| #include "vpx_dsp/bitreader.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "vpx_ports/mem.h" |
| #include "vpx_ports/mem_ops.h" |
| #include "vpx_scale/vpx_scale.h" |
| #include "vpx_util/vpx_thread.h" |
| |
| #include "vp9/common/vp9_alloccommon.h" |
| #include "vp9/common/vp9_common.h" |
| #include "vp9/common/vp9_entropy.h" |
| #include "vp9/common/vp9_entropymode.h" |
| #include "vp9/common/vp9_idct.h" |
| #include "vp9/common/vp9_thread_common.h" |
| #include "vp9/common/vp9_pred_common.h" |
| #include "vp9/common/vp9_quant_common.h" |
| #include "vp9/common/vp9_reconintra.h" |
| #include "vp9/common/vp9_reconinter.h" |
| #include "vp9/common/vp9_seg_common.h" |
| #include "vp9/common/vp9_tile_common.h" |
| |
| #include "vp9/decoder/vp9_decodeframe.h" |
| #include "vp9/decoder/vp9_detokenize.h" |
| #include "vp9/decoder/vp9_decodemv.h" |
| #include "vp9/decoder/vp9_decoder.h" |
| #include "vp9/decoder/vp9_dsubexp.h" |
| |
| #define MAX_VP9_HEADER_SIZE 80 |
| |
| static int is_compound_reference_allowed(const VP9_COMMON *cm) { |
| int i; |
| for (i = 1; i < REFS_PER_FRAME; ++i) |
| if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1]) |
| return 1; |
| |
| return 0; |
| } |
| |
| static void setup_compound_reference_mode(VP9_COMMON *cm) { |
| if (cm->ref_frame_sign_bias[LAST_FRAME] == |
| cm->ref_frame_sign_bias[GOLDEN_FRAME]) { |
| cm->comp_fixed_ref = ALTREF_FRAME; |
| cm->comp_var_ref[0] = LAST_FRAME; |
| cm->comp_var_ref[1] = GOLDEN_FRAME; |
| } else if (cm->ref_frame_sign_bias[LAST_FRAME] == |
| cm->ref_frame_sign_bias[ALTREF_FRAME]) { |
| cm->comp_fixed_ref = GOLDEN_FRAME; |
| cm->comp_var_ref[0] = LAST_FRAME; |
| cm->comp_var_ref[1] = ALTREF_FRAME; |
| } else { |
| cm->comp_fixed_ref = LAST_FRAME; |
| cm->comp_var_ref[0] = GOLDEN_FRAME; |
| cm->comp_var_ref[1] = ALTREF_FRAME; |
| } |
| } |
| |
| static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) { |
| return len != 0 && len <= (size_t)(end - start); |
| } |
| |
| static int decode_unsigned_max(struct vpx_read_bit_buffer *rb, int max) { |
| const int data = vpx_rb_read_literal(rb, get_unsigned_bits(max)); |
| return data > max ? max : data; |
| } |
| |
| static TX_MODE read_tx_mode(vpx_reader *r) { |
| TX_MODE tx_mode = vpx_read_literal(r, 2); |
| if (tx_mode == ALLOW_32X32) |
| tx_mode += vpx_read_bit(r); |
| return tx_mode; |
| } |
| |
| static void read_tx_mode_probs(struct tx_probs *tx_probs, vpx_reader *r) { |
| int i, j; |
| |
| for (i = 0; i < TX_SIZE_CONTEXTS; ++i) |
| for (j = 0; j < TX_SIZES - 3; ++j) |
| vp9_diff_update_prob(r, &tx_probs->p8x8[i][j]); |
| |
| for (i = 0; i < TX_SIZE_CONTEXTS; ++i) |
| for (j = 0; j < TX_SIZES - 2; ++j) |
| vp9_diff_update_prob(r, &tx_probs->p16x16[i][j]); |
| |
| for (i = 0; i < TX_SIZE_CONTEXTS; ++i) |
| for (j = 0; j < TX_SIZES - 1; ++j) |
| vp9_diff_update_prob(r, &tx_probs->p32x32[i][j]); |
| } |
| |
| static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vpx_reader *r) { |
| int i, j; |
| for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) |
| for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i) |
| vp9_diff_update_prob(r, &fc->switchable_interp_prob[j][i]); |
| } |
| |
| static void read_inter_mode_probs(FRAME_CONTEXT *fc, vpx_reader *r) { |
| int i, j; |
| for (i = 0; i < INTER_MODE_CONTEXTS; ++i) |
| for (j = 0; j < INTER_MODES - 1; ++j) |
| vp9_diff_update_prob(r, &fc->inter_mode_probs[i][j]); |
| } |
| |
| static REFERENCE_MODE read_frame_reference_mode(const VP9_COMMON *cm, |
| vpx_reader *r) { |
| if (is_compound_reference_allowed(cm)) { |
| return vpx_read_bit(r) ? (vpx_read_bit(r) ? REFERENCE_MODE_SELECT |
| : COMPOUND_REFERENCE) |
| : SINGLE_REFERENCE; |
| } else { |
| return SINGLE_REFERENCE; |
| } |
| } |
| |
| static void read_frame_reference_mode_probs(VP9_COMMON *cm, vpx_reader *r) { |
| FRAME_CONTEXT *const fc = cm->fc; |
| int i; |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) |
| for (i = 0; i < COMP_INTER_CONTEXTS; ++i) |
| vp9_diff_update_prob(r, &fc->comp_inter_prob[i]); |
| |
| if (cm->reference_mode != COMPOUND_REFERENCE) |
| for (i = 0; i < REF_CONTEXTS; ++i) { |
| vp9_diff_update_prob(r, &fc->single_ref_prob[i][0]); |
| vp9_diff_update_prob(r, &fc->single_ref_prob[i][1]); |
| } |
| |
| if (cm->reference_mode != SINGLE_REFERENCE) |
| for (i = 0; i < REF_CONTEXTS; ++i) |
| vp9_diff_update_prob(r, &fc->comp_ref_prob[i]); |
| } |
| |
| static void update_mv_probs(vpx_prob *p, int n, vpx_reader *r) { |
| int i; |
| for (i = 0; i < n; ++i) |
| if (vpx_read(r, MV_UPDATE_PROB)) |
| p[i] = (vpx_read_literal(r, 7) << 1) | 1; |
| } |
| |
| static void read_mv_probs(nmv_context *ctx, int allow_hp, vpx_reader *r) { |
| int i, j; |
| |
| update_mv_probs(ctx->joints, MV_JOINTS - 1, r); |
| |
| for (i = 0; i < 2; ++i) { |
| nmv_component *const comp_ctx = &ctx->comps[i]; |
| update_mv_probs(&comp_ctx->sign, 1, r); |
| update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r); |
| update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r); |
| update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r); |
| } |
| |
| for (i = 0; i < 2; ++i) { |
| nmv_component *const comp_ctx = &ctx->comps[i]; |
| for (j = 0; j < CLASS0_SIZE; ++j) |
| update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r); |
| update_mv_probs(comp_ctx->fp, 3, r); |
| } |
| |
| if (allow_hp) { |
| for (i = 0; i < 2; ++i) { |
| nmv_component *const comp_ctx = &ctx->comps[i]; |
| update_mv_probs(&comp_ctx->class0_hp, 1, r); |
| update_mv_probs(&comp_ctx->hp, 1, r); |
| } |
| } |
| } |
| |
| static void inverse_transform_block_inter(MACROBLOCKD* xd, int plane, |
| const TX_SIZE tx_size, |
| uint8_t *dst, int stride, |
| int eob) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| if (eob > 0) { |
| tran_low_t *const dqcoeff = pd->dqcoeff; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| if (xd->lossless) { |
| vp9_highbd_iwht4x4_add(dqcoeff, dst, stride, eob, xd->bd); |
| } else { |
| switch (tx_size) { |
| case TX_4X4: |
| vp9_highbd_idct4x4_add(dqcoeff, dst, stride, eob, xd->bd); |
| break; |
| case TX_8X8: |
| vp9_highbd_idct8x8_add(dqcoeff, dst, stride, eob, xd->bd); |
| break; |
| case TX_16X16: |
| vp9_highbd_idct16x16_add(dqcoeff, dst, stride, eob, xd->bd); |
| break; |
| case TX_32X32: |
| vp9_highbd_idct32x32_add(dqcoeff, dst, stride, eob, xd->bd); |
| break; |
| default: |
| assert(0 && "Invalid transform size"); |
| } |
| } |
| } else { |
| if (xd->lossless) { |
| vp9_iwht4x4_add(dqcoeff, dst, stride, eob); |
| } else { |
| switch (tx_size) { |
| case TX_4X4: |
| vp9_idct4x4_add(dqcoeff, dst, stride, eob); |
| break; |
| case TX_8X8: |
| vp9_idct8x8_add(dqcoeff, dst, stride, eob); |
| break; |
| case TX_16X16: |
| vp9_idct16x16_add(dqcoeff, dst, stride, eob); |
| break; |
| case TX_32X32: |
| vp9_idct32x32_add(dqcoeff, dst, stride, eob); |
| break; |
| default: |
| assert(0 && "Invalid transform size"); |
| return; |
| } |
| } |
| } |
| #else |
| if (xd->lossless) { |
| vp9_iwht4x4_add(dqcoeff, dst, stride, eob); |
| } else { |
| switch (tx_size) { |
| case TX_4X4: |
| vp9_idct4x4_add(dqcoeff, dst, stride, eob); |
| break; |
| case TX_8X8: |
| vp9_idct8x8_add(dqcoeff, dst, stride, eob); |
| break; |
| case TX_16X16: |
| vp9_idct16x16_add(dqcoeff, dst, stride, eob); |
| break; |
| case TX_32X32: |
| vp9_idct32x32_add(dqcoeff, dst, stride, eob); |
| break; |
| default: |
| assert(0 && "Invalid transform size"); |
| return; |
| } |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| if (eob == 1) { |
| dqcoeff[0] = 0; |
| } else { |
| if (tx_size <= TX_16X16 && eob <= 10) |
| memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0])); |
| else if (tx_size == TX_32X32 && eob <= 34) |
| memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0])); |
| else |
| memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0])); |
| } |
| } |
| } |
| |
| static void inverse_transform_block_intra(MACROBLOCKD* xd, int plane, |
| const TX_TYPE tx_type, |
| const TX_SIZE tx_size, |
| uint8_t *dst, int stride, |
| int eob) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| if (eob > 0) { |
| tran_low_t *const dqcoeff = pd->dqcoeff; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| if (xd->lossless) { |
| vp9_highbd_iwht4x4_add(dqcoeff, dst, stride, eob, xd->bd); |
| } else { |
| switch (tx_size) { |
| case TX_4X4: |
| vp9_highbd_iht4x4_add(tx_type, dqcoeff, dst, stride, eob, xd->bd); |
| break; |
| case TX_8X8: |
| vp9_highbd_iht8x8_add(tx_type, dqcoeff, dst, stride, eob, xd->bd); |
| break; |
| case TX_16X16: |
| vp9_highbd_iht16x16_add(tx_type, dqcoeff, dst, stride, eob, xd->bd); |
| break; |
| case TX_32X32: |
| vp9_highbd_idct32x32_add(dqcoeff, dst, stride, eob, xd->bd); |
| break; |
| default: |
| assert(0 && "Invalid transform size"); |
| } |
| } |
| } else { |
| if (xd->lossless) { |
| vp9_iwht4x4_add(dqcoeff, dst, stride, eob); |
| } else { |
| switch (tx_size) { |
| case TX_4X4: |
| vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob); |
| break; |
| case TX_8X8: |
| vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); |
| break; |
| case TX_16X16: |
| vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob); |
| break; |
| case TX_32X32: |
| vp9_idct32x32_add(dqcoeff, dst, stride, eob); |
| break; |
| default: |
| assert(0 && "Invalid transform size"); |
| return; |
| } |
| } |
| } |
| #else |
| if (xd->lossless) { |
| vp9_iwht4x4_add(dqcoeff, dst, stride, eob); |
| } else { |
| switch (tx_size) { |
| case TX_4X4: |
| vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob); |
| break; |
| case TX_8X8: |
| vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); |
| break; |
| case TX_16X16: |
| vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob); |
| break; |
| case TX_32X32: |
| vp9_idct32x32_add(dqcoeff, dst, stride, eob); |
| break; |
| default: |
| assert(0 && "Invalid transform size"); |
| return; |
| } |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| if (eob == 1) { |
| dqcoeff[0] = 0; |
| } else { |
| if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10) |
| memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0])); |
| else if (tx_size == TX_32X32 && eob <= 34) |
| memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0])); |
| else |
| memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0])); |
| } |
| } |
| } |
| |
| static void predict_and_reconstruct_intra_block(MACROBLOCKD *const xd, |
| vpx_reader *r, |
| MB_MODE_INFO *const mbmi, |
| int plane, |
| int row, int col, |
| TX_SIZE tx_size) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| PREDICTION_MODE mode = (plane == 0) ? mbmi->mode : mbmi->uv_mode; |
| uint8_t *dst; |
| dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col]; |
| |
| if (mbmi->sb_type < BLOCK_8X8) |
| if (plane == 0) |
| mode = xd->mi[0]->bmi[(row << 1) + col].as_mode; |
| |
| vp9_predict_intra_block(xd, pd->n4_wl, tx_size, mode, |
| dst, pd->dst.stride, dst, pd->dst.stride, |
| col, row, plane); |
| |
| if (!mbmi->skip) { |
| const TX_TYPE tx_type = (plane || xd->lossless) ? |
| DCT_DCT : intra_mode_to_tx_type_lookup[mode]; |
| const scan_order *sc = (plane || xd->lossless) ? |
| &vp9_default_scan_orders[tx_size] : &vp9_scan_orders[tx_size][tx_type]; |
| const int eob = vp9_decode_block_tokens(xd, plane, sc, col, row, tx_size, |
| r, mbmi->segment_id); |
| inverse_transform_block_intra(xd, plane, tx_type, tx_size, |
| dst, pd->dst.stride, eob); |
| } |
| } |
| |
| static int reconstruct_inter_block(MACROBLOCKD *const xd, vpx_reader *r, |
| MB_MODE_INFO *const mbmi, int plane, |
| int row, int col, TX_SIZE tx_size) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const scan_order *sc = &vp9_default_scan_orders[tx_size]; |
| const int eob = vp9_decode_block_tokens(xd, plane, sc, col, row, tx_size, r, |
| mbmi->segment_id); |
| |
| inverse_transform_block_inter(xd, plane, tx_size, |
| &pd->dst.buf[4 * row * pd->dst.stride + 4 * col], |
| pd->dst.stride, eob); |
| return eob; |
| } |
| |
| static void build_mc_border(const uint8_t *src, int src_stride, |
| uint8_t *dst, int dst_stride, |
| int x, int y, int b_w, int b_h, int w, int h) { |
| // Get a pointer to the start of the real data for this row. |
| const uint8_t *ref_row = src - x - y * src_stride; |
| |
| if (y >= h) |
| ref_row += (h - 1) * src_stride; |
| else if (y > 0) |
| ref_row += y * src_stride; |
| |
| do { |
| int right = 0, copy; |
| int left = x < 0 ? -x : 0; |
| |
| if (left > b_w) |
| left = b_w; |
| |
| if (x + b_w > w) |
| right = x + b_w - w; |
| |
| if (right > b_w) |
| right = b_w; |
| |
| copy = b_w - left - right; |
| |
| if (left) |
| memset(dst, ref_row[0], left); |
| |
| if (copy) |
| memcpy(dst + left, ref_row + x + left, copy); |
| |
| if (right) |
| memset(dst + left + copy, ref_row[w - 1], right); |
| |
| dst += dst_stride; |
| ++y; |
| |
| if (y > 0 && y < h) |
| ref_row += src_stride; |
| } while (--b_h); |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| static void high_build_mc_border(const uint8_t *src8, int src_stride, |
| uint16_t *dst, int dst_stride, |
| int x, int y, int b_w, int b_h, |
| int w, int h) { |
| // Get a pointer to the start of the real data for this row. |
| const uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
| const uint16_t *ref_row = src - x - y * src_stride; |
| |
| if (y >= h) |
| ref_row += (h - 1) * src_stride; |
| else if (y > 0) |
| ref_row += y * src_stride; |
| |
| do { |
| int right = 0, copy; |
| int left = x < 0 ? -x : 0; |
| |
| if (left > b_w) |
| left = b_w; |
| |
| if (x + b_w > w) |
| right = x + b_w - w; |
| |
| if (right > b_w) |
| right = b_w; |
| |
| copy = b_w - left - right; |
| |
| if (left) |
| vpx_memset16(dst, ref_row[0], left); |
| |
| if (copy) |
| memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t)); |
| |
| if (right) |
| vpx_memset16(dst + left + copy, ref_row[w - 1], right); |
| |
| dst += dst_stride; |
| ++y; |
| |
| if (y > 0 && y < h) |
| ref_row += src_stride; |
| } while (--b_h); |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| static void extend_and_predict(const uint8_t *buf_ptr1, int pre_buf_stride, |
| int x0, int y0, int b_w, int b_h, |
| int frame_width, int frame_height, |
| int border_offset, |
| uint8_t *const dst, int dst_buf_stride, |
| int subpel_x, int subpel_y, |
| const InterpKernel *kernel, |
| const struct scale_factors *sf, |
| MACROBLOCKD *xd, |
| int w, int h, int ref, int xs, int ys) { |
| DECLARE_ALIGNED(16, uint16_t, mc_buf_high[80 * 2 * 80 * 2]); |
| const uint8_t *buf_ptr; |
| |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| high_build_mc_border(buf_ptr1, pre_buf_stride, mc_buf_high, b_w, |
| x0, y0, b_w, b_h, frame_width, frame_height); |
| buf_ptr = CONVERT_TO_BYTEPTR(mc_buf_high) + border_offset; |
| } else { |
| build_mc_border(buf_ptr1, pre_buf_stride, (uint8_t *)mc_buf_high, b_w, |
| x0, y0, b_w, b_h, frame_width, frame_height); |
| buf_ptr = ((uint8_t *)mc_buf_high) + border_offset; |
| } |
| |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| high_inter_predictor(buf_ptr, b_w, dst, dst_buf_stride, subpel_x, |
| subpel_y, sf, w, h, ref, kernel, xs, ys, xd->bd); |
| } else { |
| inter_predictor(buf_ptr, b_w, dst, dst_buf_stride, subpel_x, |
| subpel_y, sf, w, h, ref, kernel, xs, ys); |
| } |
| } |
| #else |
| static void extend_and_predict(const uint8_t *buf_ptr1, int pre_buf_stride, |
| int x0, int y0, int b_w, int b_h, |
| int frame_width, int frame_height, |
| int border_offset, |
| uint8_t *const dst, int dst_buf_stride, |
| int subpel_x, int subpel_y, |
| const InterpKernel *kernel, |
| const struct scale_factors *sf, |
| int w, int h, int ref, int xs, int ys) { |
| DECLARE_ALIGNED(16, uint8_t, mc_buf[80 * 2 * 80 * 2]); |
| const uint8_t *buf_ptr; |
| |
| build_mc_border(buf_ptr1, pre_buf_stride, mc_buf, b_w, |
| x0, y0, b_w, b_h, frame_width, frame_height); |
| buf_ptr = mc_buf + border_offset; |
| |
| inter_predictor(buf_ptr, b_w, dst, dst_buf_stride, subpel_x, |
| subpel_y, sf, w, h, ref, kernel, xs, ys); |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| static void dec_build_inter_predictors(VP9Decoder *const pbi, MACROBLOCKD *xd, |
| int plane, int bw, int bh, int x, |
| int y, int w, int h, int mi_x, int mi_y, |
| const InterpKernel *kernel, |
| const struct scale_factors *sf, |
| struct buf_2d *pre_buf, |
| struct buf_2d *dst_buf, const MV* mv, |
| RefCntBuffer *ref_frame_buf, |
| int is_scaled, int ref) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; |
| MV32 scaled_mv; |
| int xs, ys, x0, y0, x0_16, y0_16, frame_width, frame_height, |
| buf_stride, subpel_x, subpel_y; |
| uint8_t *ref_frame, *buf_ptr; |
| |
| // Get reference frame pointer, width and height. |
| if (plane == 0) { |
| frame_width = ref_frame_buf->buf.y_crop_width; |
| frame_height = ref_frame_buf->buf.y_crop_height; |
| ref_frame = ref_frame_buf->buf.y_buffer; |
| } else { |
| frame_width = ref_frame_buf->buf.uv_crop_width; |
| frame_height = ref_frame_buf->buf.uv_crop_height; |
| ref_frame = plane == 1 ? ref_frame_buf->buf.u_buffer |
| : ref_frame_buf->buf.v_buffer; |
| } |
| |
| if (is_scaled) { |
| const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, mv, bw, bh, |
| pd->subsampling_x, |
| pd->subsampling_y); |
| // Co-ordinate of containing block to pixel precision. |
| int x_start = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)); |
| int y_start = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)); |
| |
| // Co-ordinate of the block to 1/16th pixel precision. |
| x0_16 = (x_start + x) << SUBPEL_BITS; |
| y0_16 = (y_start + y) << SUBPEL_BITS; |
| |
| // Co-ordinate of current block in reference frame |
| // to 1/16th pixel precision. |
| x0_16 = sf->scale_value_x(x0_16, sf); |
| y0_16 = sf->scale_value_y(y0_16, sf); |
| |
| // Map the top left corner of the block into the reference frame. |
| x0 = sf->scale_value_x(x_start + x, sf); |
| y0 = sf->scale_value_y(y_start + y, sf); |
| |
| // Scale the MV and incorporate the sub-pixel offset of the block |
| // in the reference frame. |
| scaled_mv = vp9_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf); |
| xs = sf->x_step_q4; |
| ys = sf->y_step_q4; |
| } else { |
| // Co-ordinate of containing block to pixel precision. |
| x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x; |
| y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y; |
| |
| // Co-ordinate of the block to 1/16th pixel precision. |
| x0_16 = x0 << SUBPEL_BITS; |
| y0_16 = y0 << SUBPEL_BITS; |
| |
| scaled_mv.row = mv->row * (1 << (1 - pd->subsampling_y)); |
| scaled_mv.col = mv->col * (1 << (1 - pd->subsampling_x)); |
| xs = ys = 16; |
| } |
| subpel_x = scaled_mv.col & SUBPEL_MASK; |
| subpel_y = scaled_mv.row & SUBPEL_MASK; |
| |
| // Calculate the top left corner of the best matching block in the |
| // reference frame. |
| x0 += scaled_mv.col >> SUBPEL_BITS; |
| y0 += scaled_mv.row >> SUBPEL_BITS; |
| x0_16 += scaled_mv.col; |
| y0_16 += scaled_mv.row; |
| |
| // Get reference block pointer. |
| buf_ptr = ref_frame + y0 * pre_buf->stride + x0; |
| buf_stride = pre_buf->stride; |
| |
| // Do border extension if there is motion or the |
| // width/height is not a multiple of 8 pixels. |
| if (is_scaled || scaled_mv.col || scaled_mv.row || |
| (frame_width & 0x7) || (frame_height & 0x7)) { |
| int y1 = ((y0_16 + (h - 1) * ys) >> SUBPEL_BITS) + 1; |
| |
| // Get reference block bottom right horizontal coordinate. |
| int x1 = ((x0_16 + (w - 1) * xs) >> SUBPEL_BITS) + 1; |
| int x_pad = 0, y_pad = 0; |
| |
| if (subpel_x || (sf->x_step_q4 != SUBPEL_SHIFTS)) { |
| x0 -= VP9_INTERP_EXTEND - 1; |
| x1 += VP9_INTERP_EXTEND; |
| x_pad = 1; |
| } |
| |
| if (subpel_y || (sf->y_step_q4 != SUBPEL_SHIFTS)) { |
| y0 -= VP9_INTERP_EXTEND - 1; |
| y1 += VP9_INTERP_EXTEND; |
| y_pad = 1; |
| } |
| |
| // Wait until reference block is ready. Pad 7 more pixels as last 7 |
| // pixels of each superblock row can be changed by next superblock row. |
| if (pbi->frame_parallel_decode) |
| vp9_frameworker_wait(pbi->frame_worker_owner, ref_frame_buf, |
| VPXMAX(0, (y1 + 7)) << (plane == 0 ? 0 : 1)); |
| |
| // Skip border extension if block is inside the frame. |
| if (x0 < 0 || x0 > frame_width - 1 || x1 < 0 || x1 > frame_width - 1 || |
| y0 < 0 || y0 > frame_height - 1 || y1 < 0 || y1 > frame_height - 1) { |
| // Extend the border. |
| const uint8_t *const buf_ptr1 = ref_frame + y0 * buf_stride + x0; |
| const int b_w = x1 - x0 + 1; |
| const int b_h = y1 - y0 + 1; |
| const int border_offset = y_pad * 3 * b_w + x_pad * 3; |
| |
| extend_and_predict(buf_ptr1, buf_stride, x0, y0, b_w, b_h, |
| frame_width, frame_height, border_offset, |
| dst, dst_buf->stride, |
| subpel_x, subpel_y, |
| kernel, sf, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| xd, |
| #endif |
| w, h, ref, xs, ys); |
| return; |
| } |
| } else { |
| // Wait until reference block is ready. Pad 7 more pixels as last 7 |
| // pixels of each superblock row can be changed by next superblock row. |
| if (pbi->frame_parallel_decode) { |
| const int y1 = (y0_16 + (h - 1) * ys) >> SUBPEL_BITS; |
| vp9_frameworker_wait(pbi->frame_worker_owner, ref_frame_buf, |
| VPXMAX(0, (y1 + 7)) << (plane == 0 ? 0 : 1)); |
| } |
| } |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| high_inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x, |
| subpel_y, sf, w, h, ref, kernel, xs, ys, xd->bd); |
| } else { |
| inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x, |
| subpel_y, sf, w, h, ref, kernel, xs, ys); |
| } |
| #else |
| inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x, |
| subpel_y, sf, w, h, ref, kernel, xs, ys); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| } |
| |
| static void dec_build_inter_predictors_sb(VP9Decoder *const pbi, |
| MACROBLOCKD *xd, |
| int mi_row, int mi_col) { |
| int plane; |
| const int mi_x = mi_col * MI_SIZE; |
| const int mi_y = mi_row * MI_SIZE; |
| const MODE_INFO *mi = xd->mi[0]; |
| const InterpKernel *kernel = vp9_filter_kernels[mi->mbmi.interp_filter]; |
| const BLOCK_SIZE sb_type = mi->mbmi.sb_type; |
| const int is_compound = has_second_ref(&mi->mbmi); |
| |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| struct buf_2d *const dst_buf = &pd->dst; |
| const int num_4x4_w = pd->n4_w; |
| const int num_4x4_h = pd->n4_h; |
| |
| const int n4w_x4 = 4 * num_4x4_w; |
| const int n4h_x4 = 4 * num_4x4_h; |
| int ref; |
| |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| const struct scale_factors *const sf = &xd->block_refs[ref]->sf; |
| struct buf_2d *const pre_buf = &pd->pre[ref]; |
| const int idx = xd->block_refs[ref]->idx; |
| BufferPool *const pool = pbi->common.buffer_pool; |
| RefCntBuffer *const ref_frame_buf = &pool->frame_bufs[idx]; |
| const int is_scaled = vp9_is_scaled(sf); |
| |
| if (sb_type < BLOCK_8X8) { |
| int i = 0, x, y; |
| for (y = 0; y < num_4x4_h; ++y) { |
| for (x = 0; x < num_4x4_w; ++x) { |
| const MV mv = average_split_mvs(pd, mi, ref, i++); |
| dec_build_inter_predictors(pbi, xd, plane, n4w_x4, n4h_x4, |
| 4 * x, 4 * y, 4, 4, mi_x, mi_y, kernel, |
| sf, pre_buf, dst_buf, &mv, |
| ref_frame_buf, is_scaled, ref); |
| } |
| } |
| } else { |
| const MV mv = mi->mbmi.mv[ref].as_mv; |
| dec_build_inter_predictors(pbi, xd, plane, n4w_x4, n4h_x4, |
| 0, 0, n4w_x4, n4h_x4, mi_x, mi_y, kernel, |
| sf, pre_buf, dst_buf, &mv, ref_frame_buf, |
| is_scaled, ref); |
| } |
| } |
| } |
| } |
| |
| static INLINE TX_SIZE dec_get_uv_tx_size(const MB_MODE_INFO *mbmi, |
| int n4_wl, int n4_hl) { |
| // get minimum log2 num4x4s dimension |
| const int x = VPXMIN(n4_wl, n4_hl); |
| return VPXMIN(mbmi->tx_size, x); |
| } |
| |
| static INLINE void dec_reset_skip_context(MACROBLOCKD *xd) { |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| struct macroblockd_plane *const pd = &xd->plane[i]; |
| memset(pd->above_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_w); |
| memset(pd->left_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_h); |
| } |
| } |
| |
| static void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh, int bwl, |
| int bhl) { |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].n4_w = (bw << 1) >> xd->plane[i].subsampling_x; |
| xd->plane[i].n4_h = (bh << 1) >> xd->plane[i].subsampling_y; |
| xd->plane[i].n4_wl = bwl - xd->plane[i].subsampling_x; |
| xd->plane[i].n4_hl = bhl - xd->plane[i].subsampling_y; |
| } |
| } |
| |
| static MB_MODE_INFO *set_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int bw, int bh, int x_mis, int y_mis, |
| int bwl, int bhl) { |
| const int offset = mi_row * cm->mi_stride + mi_col; |
| int x, y; |
| const TileInfo *const tile = &xd->tile; |
| |
| xd->mi = cm->mi_grid_visible + offset; |
| xd->mi[0] = &cm->mi[offset]; |
| // TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of |
| // passing bsize from decode_partition(). |
| xd->mi[0]->mbmi.sb_type = bsize; |
| for (y = 0; y < y_mis; ++y) |
| for (x = !y; x < x_mis; ++x) { |
| xd->mi[y * cm->mi_stride + x] = xd->mi[0]; |
| } |
| |
| set_plane_n4(xd, bw, bh, bwl, bhl); |
| |
| set_skip_context(xd, mi_row, mi_col); |
| |
| // Distance of Mb to the various image edges. These are specified to 8th pel |
| // as they are always compared to values that are in 1/8th pel units |
| set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); |
| |
| vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); |
| return &xd->mi[0]->mbmi; |
| } |
| |
| static void decode_block(VP9Decoder *const pbi, MACROBLOCKD *const xd, |
| int mi_row, int mi_col, |
| vpx_reader *r, BLOCK_SIZE bsize, |
| int bwl, int bhl) { |
| VP9_COMMON *const cm = &pbi->common; |
| const int less8x8 = bsize < BLOCK_8X8; |
| const int bw = 1 << (bwl - 1); |
| const int bh = 1 << (bhl - 1); |
| const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col); |
| const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row); |
| |
| MB_MODE_INFO *mbmi = set_offsets(cm, xd, bsize, mi_row, mi_col, |
| bw, bh, x_mis, y_mis, bwl, bhl); |
| |
| if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) { |
| const BLOCK_SIZE uv_subsize = |
| ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y]; |
| if (uv_subsize == BLOCK_INVALID) |
| vpx_internal_error(xd->error_info, |
| VPX_CODEC_CORRUPT_FRAME, "Invalid block size."); |
| } |
| |
| vpx_read_mode_info(pbi, xd, mi_row, mi_col, r, x_mis, y_mis); |
| |
| if (mbmi->skip) { |
| dec_reset_skip_context(xd); |
| } |
| |
| if (!is_inter_block(mbmi)) { |
| int plane; |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const TX_SIZE tx_size = |
| plane ? dec_get_uv_tx_size(mbmi, pd->n4_wl, pd->n4_hl) |
| : mbmi->tx_size; |
| const int num_4x4_w = pd->n4_w; |
| const int num_4x4_h = pd->n4_h; |
| const int step = (1 << tx_size); |
| int row, col; |
| const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? |
| 0 : xd->mb_to_right_edge >> (5 + pd->subsampling_x)); |
| const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? |
| 0 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y)); |
| |
| for (row = 0; row < max_blocks_high; row += step) |
| for (col = 0; col < max_blocks_wide; col += step) |
| predict_and_reconstruct_intra_block(xd, r, mbmi, plane, |
| row, col, tx_size); |
| } |
| } else { |
| // Prediction |
| dec_build_inter_predictors_sb(pbi, xd, mi_row, mi_col); |
| |
| // Reconstruction |
| if (!mbmi->skip) { |
| int eobtotal = 0; |
| int plane; |
| |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const TX_SIZE tx_size = |
| plane ? dec_get_uv_tx_size(mbmi, pd->n4_wl, pd->n4_hl) |
| : mbmi->tx_size; |
| const int num_4x4_w = pd->n4_w; |
| const int num_4x4_h = pd->n4_h; |
| const int step = (1 << tx_size); |
| int row, col; |
| const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? |
| 0 : xd->mb_to_right_edge >> (5 + pd->subsampling_x)); |
| const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? |
| 0 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y)); |
| |
| for (row = 0; row < max_blocks_high; row += step) |
| for (col = 0; col < max_blocks_wide; col += step) |
| eobtotal += reconstruct_inter_block(xd, r, mbmi, plane, row, col, |
| tx_size); |
| } |
| |
| if (!less8x8 && eobtotal == 0) |
| mbmi->skip = 1; // skip loopfilter |
| } |
| } |
| |
| xd->corrupted |= vpx_reader_has_error(r); |
| } |
| |
| static INLINE int dec_partition_plane_context(const MACROBLOCKD *xd, |
| int mi_row, int mi_col, |
| int bsl) { |
| const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col; |
| const PARTITION_CONTEXT *left_ctx = xd->left_seg_context + (mi_row & MI_MASK); |
| int above = (*above_ctx >> bsl) & 1 , left = (*left_ctx >> bsl) & 1; |
| |
| // assert(bsl >= 0); |
| |
| return (left * 2 + above) + bsl * PARTITION_PLOFFSET; |
| } |
| |
| static INLINE void dec_update_partition_context(MACROBLOCKD *xd, |
| int mi_row, int mi_col, |
| BLOCK_SIZE subsize, |
| int bw) { |
| PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col; |
| PARTITION_CONTEXT *const left_ctx = xd->left_seg_context + (mi_row & MI_MASK); |
| |
| // update the partition context at the end notes. set partition bits |
| // of block sizes larger than the current one to be one, and partition |
| // bits of smaller block sizes to be zero. |
| memset(above_ctx, partition_context_lookup[subsize].above, bw); |
| memset(left_ctx, partition_context_lookup[subsize].left, bw); |
| } |
| |
| static PARTITION_TYPE read_partition(MACROBLOCKD *xd, int mi_row, int mi_col, |
| vpx_reader *r, |
| int has_rows, int has_cols, int bsl) { |
| const int ctx = dec_partition_plane_context(xd, mi_row, mi_col, bsl); |
| const vpx_prob *const probs = get_partition_probs(xd, ctx); |
| FRAME_COUNTS *counts = xd->counts; |
| PARTITION_TYPE p; |
| |
| if (has_rows && has_cols) |
| p = (PARTITION_TYPE)vpx_read_tree(r, vp9_partition_tree, probs); |
| else if (!has_rows && has_cols) |
| p = vpx_read(r, probs[1]) ? PARTITION_SPLIT : PARTITION_HORZ; |
| else if (has_rows && !has_cols) |
| p = vpx_read(r, probs[2]) ? PARTITION_SPLIT : PARTITION_VERT; |
| else |
| p = PARTITION_SPLIT; |
| |
| if (counts) |
| ++counts->partition[ctx][p]; |
| |
| return p; |
| } |
| |
| // TODO(slavarnway): eliminate bsize and subsize in future commits |
| static void decode_partition(VP9Decoder *const pbi, MACROBLOCKD *const xd, |
| int mi_row, int mi_col, |
| vpx_reader* r, BLOCK_SIZE bsize, int n4x4_l2) { |
| VP9_COMMON *const cm = &pbi->common; |
| const int n8x8_l2 = n4x4_l2 - 1; |
| const int num_8x8_wh = 1 << n8x8_l2; |
| const int hbs = num_8x8_wh >> 1; |
| PARTITION_TYPE partition; |
| BLOCK_SIZE subsize; |
| const int has_rows = (mi_row + hbs) < cm->mi_rows; |
| const int has_cols = (mi_col + hbs) < cm->mi_cols; |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) |
| return; |
| |
| partition = read_partition(xd, mi_row, mi_col, r, has_rows, has_cols, |
| n8x8_l2); |
| subsize = subsize_lookup[partition][bsize]; // get_subsize(bsize, partition); |
| if (!hbs) { |
| // calculate bmode block dimensions (log 2) |
| xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT); |
| xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ); |
| decode_block(pbi, xd, mi_row, mi_col, r, subsize, 1, 1); |
| } else { |
| switch (partition) { |
| case PARTITION_NONE: |
| decode_block(pbi, xd, mi_row, mi_col, r, subsize, n4x4_l2, n4x4_l2); |
| break; |
| case PARTITION_HORZ: |
| decode_block(pbi, xd, mi_row, mi_col, r, subsize, n4x4_l2, n8x8_l2); |
| if (has_rows) |
| decode_block(pbi, xd, mi_row + hbs, mi_col, r, subsize, n4x4_l2, |
| n8x8_l2); |
| break; |
| case PARTITION_VERT: |
| decode_block(pbi, xd, mi_row, mi_col, r, subsize, n8x8_l2, n4x4_l2); |
| if (has_cols) |
| decode_block(pbi, xd, mi_row, mi_col + hbs, r, subsize, n8x8_l2, |
| n4x4_l2); |
| break; |
| case PARTITION_SPLIT: |
| decode_partition(pbi, xd, mi_row, mi_col, r, subsize, n8x8_l2); |
| decode_partition(pbi, xd, mi_row, mi_col + hbs, r, subsize, n8x8_l2); |
| decode_partition(pbi, xd, mi_row + hbs, mi_col, r, subsize, n8x8_l2); |
| decode_partition(pbi, xd, mi_row + hbs, mi_col + hbs, r, subsize, |
| n8x8_l2); |
| break; |
| default: |
| assert(0 && "Invalid partition type"); |
| } |
| } |
| |
| // update partition context |
| if (bsize >= BLOCK_8X8 && |
| (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) |
| dec_update_partition_context(xd, mi_row, mi_col, subsize, num_8x8_wh); |
| } |
| |
| static void setup_token_decoder(const uint8_t *data, |
| const uint8_t *data_end, |
| size_t read_size, |
| struct vpx_internal_error_info *error_info, |
| vpx_reader *r, |
| vpx_decrypt_cb decrypt_cb, |
| void *decrypt_state) { |
| // Validate the calculated partition length. If the buffer |
| // described by the partition can't be fully read, then restrict |
| // it to the portion that can be (for EC mode) or throw an error. |
| if (!read_is_valid(data, read_size, data_end)) |
| vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME, |
| "Truncated packet or corrupt tile length"); |
| |
| if (vpx_reader_init(r, data, read_size, decrypt_cb, decrypt_state)) |
| vpx_internal_error(error_info, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate bool decoder %d", 1); |
| } |
| |
| static void read_coef_probs_common(vp9_coeff_probs_model *coef_probs, |
| vpx_reader *r) { |
| int i, j, k, l, m; |
| |
| if (vpx_read_bit(r)) |
| for (i = 0; i < PLANE_TYPES; ++i) |
| for (j = 0; j < REF_TYPES; ++j) |
| for (k = 0; k < COEF_BANDS; ++k) |
| for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) |
| for (m = 0; m < UNCONSTRAINED_NODES; ++m) |
| vp9_diff_update_prob(r, &coef_probs[i][j][k][l][m]); |
| } |
| |
| static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode, |
| vpx_reader *r) { |
| const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; |
| TX_SIZE tx_size; |
| for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) |
| read_coef_probs_common(fc->coef_probs[tx_size], r); |
| } |
| |
| static void setup_segmentation(struct segmentation *seg, |
| struct vpx_read_bit_buffer *rb) { |
| int i, j; |
| |
| seg->update_map = 0; |
| seg->update_data = 0; |
| |
| seg->enabled = vpx_rb_read_bit(rb); |
| if (!seg->enabled) |
| return; |
| |
| // Segmentation map update |
| seg->update_map = vpx_rb_read_bit(rb); |
| if (seg->update_map) { |
| for (i = 0; i < SEG_TREE_PROBS; i++) |
| seg->tree_probs[i] = vpx_rb_read_bit(rb) ? vpx_rb_read_literal(rb, 8) |
| : MAX_PROB; |
| |
| seg->temporal_update = vpx_rb_read_bit(rb); |
| if (seg->temporal_update) { |
| for (i = 0; i < PREDICTION_PROBS; i++) |
| seg->pred_probs[i] = vpx_rb_read_bit(rb) ? vpx_rb_read_literal(rb, 8) |
| : MAX_PROB; |
| } else { |
| for (i = 0; i < PREDICTION_PROBS; i++) |
| seg->pred_probs[i] = MAX_PROB; |
| } |
| } |
| |
| // Segmentation data update |
| seg->update_data = vpx_rb_read_bit(rb); |
| if (seg->update_data) { |
| seg->abs_delta = vpx_rb_read_bit(rb); |
| |
| vp9_clearall_segfeatures(seg); |
| |
| for (i = 0; i < MAX_SEGMENTS; i++) { |
| for (j = 0; j < SEG_LVL_MAX; j++) { |
| int data = 0; |
| const int feature_enabled = vpx_rb_read_bit(rb); |
| if (feature_enabled) { |
| vp9_enable_segfeature(seg, i, j); |
| data = decode_unsigned_max(rb, vp9_seg_feature_data_max(j)); |
| if (vp9_is_segfeature_signed(j)) |
| data = vpx_rb_read_bit(rb) ? -data : data; |
| } |
| vp9_set_segdata(seg, i, j, data); |
| } |
| } |
| } |
| } |
| |
| static void setup_loopfilter(struct loopfilter *lf, |
| struct vpx_read_bit_buffer *rb) { |
| lf->filter_level = vpx_rb_read_literal(rb, 6); |
| lf->sharpness_level = vpx_rb_read_literal(rb, 3); |
| |
| // Read in loop filter deltas applied at the MB level based on mode or ref |
| // frame. |
| lf->mode_ref_delta_update = 0; |
| |
| lf->mode_ref_delta_enabled = vpx_rb_read_bit(rb); |
| if (lf->mode_ref_delta_enabled) { |
| lf->mode_ref_delta_update = vpx_rb_read_bit(rb); |
| if (lf->mode_ref_delta_update) { |
| int i; |
| |
| for (i = 0; i < MAX_REF_LF_DELTAS; i++) |
| if (vpx_rb_read_bit(rb)) |
| lf->ref_deltas[i] = vpx_rb_read_signed_literal(rb, 6); |
| |
| for (i = 0; i < MAX_MODE_LF_DELTAS; i++) |
| if (vpx_rb_read_bit(rb)) |
| lf->mode_deltas[i] = vpx_rb_read_signed_literal(rb, 6); |
| } |
| } |
| } |
| |
| static INLINE int read_delta_q(struct vpx_read_bit_buffer *rb) { |
| return vpx_rb_read_bit(rb) ? vpx_rb_read_signed_literal(rb, 4) : 0; |
| } |
| |
| static void setup_quantization(VP9_COMMON *const cm, MACROBLOCKD *const xd, |
| struct vpx_read_bit_buffer *rb) { |
| cm->base_qindex = vpx_rb_read_literal(rb, QINDEX_BITS); |
| cm->y_dc_delta_q = read_delta_q(rb); |
| cm->uv_dc_delta_q = read_delta_q(rb); |
| cm->uv_ac_delta_q = read_delta_q(rb); |
| cm->dequant_bit_depth = cm->bit_depth; |
| xd->lossless = cm->base_qindex == 0 && |
| cm->y_dc_delta_q == 0 && |
| cm->uv_dc_delta_q == 0 && |
| cm->uv_ac_delta_q == 0; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| xd->bd = (int)cm->bit_depth; |
| #endif |
| } |
| |
| static void setup_segmentation_dequant(VP9_COMMON *const cm) { |
| // Build y/uv dequant values based on segmentation. |
| if (cm->seg.enabled) { |
| int i; |
| for (i = 0; i < MAX_SEGMENTS; ++i) { |
| const int qindex = vp9_get_qindex(&cm->seg, i, cm->base_qindex); |
| cm->y_dequant[i][0] = vp9_dc_quant(qindex, cm->y_dc_delta_q, |
| cm->bit_depth); |
| cm->y_dequant[i][1] = vp9_ac_quant(qindex, 0, cm->bit_depth); |
| cm->uv_dequant[i][0] = vp9_dc_quant(qindex, cm->uv_dc_delta_q, |
| cm->bit_depth); |
| cm->uv_dequant[i][1] = vp9_ac_quant(qindex, cm->uv_ac_delta_q, |
| cm->bit_depth); |
| } |
| } else { |
| const int qindex = cm->base_qindex; |
| // When segmentation is disabled, only the first value is used. The |
| // remaining are don't cares. |
| cm->y_dequant[0][0] = vp9_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth); |
| cm->y_dequant[0][1] = vp9_ac_quant(qindex, 0, cm->bit_depth); |
| cm->uv_dequant[0][0] = vp9_dc_quant(qindex, cm->uv_dc_delta_q, |
| cm->bit_depth); |
| cm->uv_dequant[0][1] = vp9_ac_quant(qindex, cm->uv_ac_delta_q, |
| cm->bit_depth); |
| } |
| } |
| |
| static INTERP_FILTER read_interp_filter(struct vpx_read_bit_buffer *rb) { |
| const INTERP_FILTER literal_to_filter[] = { EIGHTTAP_SMOOTH, |
| EIGHTTAP, |
| EIGHTTAP_SHARP, |
| BILINEAR }; |
| return vpx_rb_read_bit(rb) ? SWITCHABLE |
| : literal_to_filter[vpx_rb_read_literal(rb, 2)]; |
| } |
| |
| static void setup_display_size(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) { |
| cm->display_width = cm->width; |
| cm->display_height = cm->height; |
| if (vpx_rb_read_bit(rb)) |
| vp9_read_frame_size(rb, &cm->display_width, &cm->display_height); |
| } |
| |
| static void resize_mv_buffer(VP9_COMMON *cm) { |
| vpx_free(cm->cur_frame->mvs); |
| cm->cur_frame->mi_rows = cm->mi_rows; |
| cm->cur_frame->mi_cols = cm->mi_cols; |
| cm->cur_frame->mvs = (MV_REF *)vpx_calloc(cm->mi_rows * cm->mi_cols, |
| sizeof(*cm->cur_frame->mvs)); |
| } |
| |
| static void resize_context_buffers(VP9_COMMON *cm, int width, int height) { |
| #if CONFIG_SIZE_LIMIT |
| if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT) |
| vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, |
| "Dimensions of %dx%d beyond allowed size of %dx%d.", |
| width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT); |
| #endif |
| if (cm->width != width || cm->height != height) { |
| const int new_mi_rows = |
| ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2; |
| const int new_mi_cols = |
| ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2; |
| |
| // Allocations in vp9_alloc_context_buffers() depend on individual |
| // dimensions as well as the overall size. |
| if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) { |
| if (vp9_alloc_context_buffers(cm, width, height)) |
| vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate context buffers"); |
| } else { |
| vp9_set_mb_mi(cm, width, height); |
| } |
| vp9_init_context_buffers(cm); |
| cm->width = width; |
| cm->height = height; |
| } |
| if (cm->cur_frame->mvs == NULL || cm->mi_rows > cm->cur_frame->mi_rows || |
| cm->mi_cols > cm->cur_frame->mi_cols) { |
| resize_mv_buffer(cm); |
| } |
| } |
| |
| static void setup_frame_size(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) { |
| int width, height; |
| BufferPool *const pool = cm->buffer_pool; |
| vp9_read_frame_size(rb, &width, &height); |
| resize_context_buffers(cm, width, height); |
| setup_display_size(cm, rb); |
| |
| lock_buffer_pool(pool); |
| if (vpx_realloc_frame_buffer( |
| get_frame_new_buffer(cm), cm->width, cm->height, |
| cm->subsampling_x, cm->subsampling_y, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| cm->use_highbitdepth, |
| #endif |
| VP9_DEC_BORDER_IN_PIXELS, |
| cm->byte_alignment, |
| &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb, |
| pool->cb_priv)) { |
| unlock_buffer_pool(pool); |
| vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate frame buffer"); |
| } |
| unlock_buffer_pool(pool); |
| |
| pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x; |
| pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y; |
| pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth; |
| pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space; |
| } |
| |
| static INLINE int valid_ref_frame_img_fmt(vpx_bit_depth_t ref_bit_depth, |
| int ref_xss, int ref_yss, |
| vpx_bit_depth_t this_bit_depth, |
| int this_xss, int this_yss) { |
| return ref_bit_depth == this_bit_depth && ref_xss == this_xss && |
| ref_yss == this_yss; |
| } |
| |
| static void setup_frame_size_with_refs(VP9_COMMON *cm, |
| struct vpx_read_bit_buffer *rb) { |
| int width, height; |
| int found = 0, i; |
| int has_valid_ref_frame = 0; |
| BufferPool *const pool = cm->buffer_pool; |
| for (i = 0; i < REFS_PER_FRAME; ++i) { |
| if (vpx_rb_read_bit(rb)) { |
| YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf; |
| width = buf->y_crop_width; |
| height = buf->y_crop_height; |
| found = 1; |
| break; |
| } |
| } |
| |
| if (!found) |
| vp9_read_frame_size(rb, &width, &height); |
| |
| if (width <= 0 || height <= 0) |
| vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, |
| "Invalid frame size"); |
| |
| // Check to make sure at least one of frames that this frame references |
| // has valid dimensions. |
| for (i = 0; i < REFS_PER_FRAME; ++i) { |
| RefBuffer *const ref_frame = &cm->frame_refs[i]; |
| has_valid_ref_frame |= valid_ref_frame_size(ref_frame->buf->y_crop_width, |
| ref_frame->buf->y_crop_height, |
| width, height); |
| } |
| if (!has_valid_ref_frame) |
| vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, |
| "Referenced frame has invalid size"); |
| for (i = 0; i < REFS_PER_FRAME; ++i) { |
| RefBuffer *const ref_frame = &cm->frame_refs[i]; |
| if (!valid_ref_frame_img_fmt( |
| ref_frame->buf->bit_depth, |
| ref_frame->buf->subsampling_x, |
| ref_frame->buf->subsampling_y, |
| cm->bit_depth, |
| cm->subsampling_x, |
| cm->subsampling_y)) |
| vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, |
| "Referenced frame has incompatible color format"); |
| } |
| |
| resize_context_buffers(cm, width, height); |
| setup_display_size(cm, rb); |
| |
| lock_buffer_pool(pool); |
| if (vpx_realloc_frame_buffer( |
| get_frame_new_buffer(cm), cm->width, cm->height, |
| cm->subsampling_x, cm->subsampling_y, |
| #if CONFIG_VP9_HIGHBITDEPTH |
| cm->use_highbitdepth, |
| #endif |
| VP9_DEC_BORDER_IN_PIXELS, |
| cm->byte_alignment, |
| &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb, |
| pool->cb_priv)) { |
| unlock_buffer_pool(pool); |
| vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate frame buffer"); |
| } |
| unlock_buffer_pool(pool); |
| |
| pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x; |
| pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y; |
| pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth; |
| pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space; |
| } |
| |
| static void setup_tile_info(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) { |
| int min_log2_tile_cols, max_log2_tile_cols, max_ones; |
| vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); |
| |
| // columns |
| max_ones = max_log2_tile_cols - min_log2_tile_cols; |
| cm->log2_tile_cols = min_log2_tile_cols; |
| while (max_ones-- && vpx_rb_read_bit(rb)) |
| cm->log2_tile_cols++; |
| |
| if (cm->log2_tile_cols > 6) |
| vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, |
| "Invalid number of tile columns"); |
| |
| // rows |
| cm->log2_tile_rows = vpx_rb_read_bit(rb); |
| if (cm->log2_tile_rows) |
| cm->log2_tile_rows += vpx_rb_read_bit(rb); |
| } |
| |
| typedef struct TileBuffer { |
| const uint8_t *data; |
| size_t size; |
| int col; // only used with multi-threaded decoding |
| } TileBuffer; |
| |
| // Reads the next tile returning its size and adjusting '*data' accordingly |
| // based on 'is_last'. |
| static void get_tile_buffer(const uint8_t *const data_end, |
| int is_last, |
| struct vpx_internal_error_info *error_info, |
| const uint8_t **data, |
| vpx_decrypt_cb decrypt_cb, void *decrypt_state, |
| TileBuffer *buf) { |
| size_t size; |
| |
| if (!is_last) { |
| if (!read_is_valid(*data, 4, data_end)) |
| vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME, |
| "Truncated packet or corrupt tile length"); |
| |
| if (decrypt_cb) { |
| uint8_t be_data[4]; |
| decrypt_cb(decrypt_state, *data, be_data, 4); |
| size = mem_get_be32(be_data); |
| } else { |
| size = mem_get_be32(*data); |
| } |
| *data += 4; |
| |
| if (size > (size_t)(data_end - *data)) |
| vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME, |
| "Truncated packet or corrupt tile size"); |
| } else { |
| size = data_end - *data; |
| } |
| |
| buf->data = *data; |
| buf->size = size; |
| |
| *data += size; |
| } |
| |
| static void get_tile_buffers(VP9Decoder *pbi, |
| const uint8_t *data, const uint8_t *data_end, |
| int tile_cols, int tile_rows, |
| TileBuffer (*tile_buffers)[1 << 6]) { |
| int r, c; |
| |
| for (r = 0; r < tile_rows; ++r) { |
| for (c = 0; c < tile_cols; ++c) { |
| const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1); |
| TileBuffer *const buf = &tile_buffers[r][c]; |
| buf->col = c; |
| get_tile_buffer(data_end, is_last, &pbi->common.error, &data, |
| pbi->decrypt_cb, pbi->decrypt_state, buf); |
| } |
| } |
| } |
| |
| static const uint8_t *decode_tiles(VP9Decoder *pbi, |
| const uint8_t *data, |
| const uint8_t *data_end) { |
| VP9_COMMON *const cm = &pbi->common; |
| const VPxWorkerInterface *const winterface = vpx_get_worker_interface(); |
| const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols); |
| const int tile_cols = 1 << cm->log2_tile_cols; |
| const int tile_rows = 1 << cm->log2_tile_rows; |
| TileBuffer tile_buffers[4][1 << 6]; |
| int tile_row, tile_col; |
| int mi_row, mi_col; |
| TileData *tile_data = NULL; |
| |
| if (cm->lf.filter_level && !cm->skip_loop_filter && |
| pbi->lf_worker.data1 == NULL) { |
| CHECK_MEM_ERROR(cm, pbi->lf_worker.data1, |
| vpx_memalign(32, sizeof(LFWorkerData))); |
| pbi->lf_worker.hook = (VPxWorkerHook)vp9_loop_filter_worker; |
| if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) { |
| vpx_internal_error(&cm->error, VPX_CODEC_ERROR, |
| "Loop filter thread creation failed"); |
| } |
| } |
| |
| if (cm->lf.filter_level && !cm->skip_loop_filter) { |
| LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1; |
| // Be sure to sync as we might be resuming after a failed frame decode. |
| winterface->sync(&pbi->lf_worker); |
| vp9_loop_filter_data_reset(lf_data, get_frame_new_buffer(cm), cm, |
| pbi->mb.plane); |
| } |
| |
| assert(tile_rows <= 4); |
| assert(tile_cols <= (1 << 6)); |
| |
| // Note: this memset assumes above_context[0], [1] and [2] |
| // are allocated as part of the same buffer. |
| memset(cm->above_context, 0, |
| sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_cols); |
| |
| memset(cm->above_seg_context, 0, |
| sizeof(*cm->above_seg_context) * aligned_cols); |
| |
| get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers); |
| |
| if (pbi->tile_data == NULL || |
| (tile_cols * tile_rows) != pbi->total_tiles) { |
| vpx_free(pbi->tile_data); |
| CHECK_MEM_ERROR( |
| cm, |
| pbi->tile_data, |
| vpx_memalign(32, tile_cols * tile_rows * (sizeof(*pbi->tile_data)))); |
| pbi->total_tiles = tile_rows * tile_cols; |
| } |
| |
| // Load all tile information into tile_data. |
| for (tile_row = 0; tile_row < tile_rows; ++tile_row) { |
| for (tile_col = 0; tile_col < tile_cols; ++tile_col) { |
| const TileBuffer *const buf = &tile_buffers[tile_row][tile_col]; |
| tile_data = pbi->tile_data + tile_cols * tile_row + tile_col; |
| tile_data->cm = cm; |
| tile_data->xd = pbi->mb; |
| tile_data->xd.corrupted = 0; |
| tile_data->xd.counts = cm->frame_parallel_decoding_mode ? |
| NULL : &cm->counts; |
| vp9_zero(tile_data->dqcoeff); |
| vp9_tile_init(&tile_data->xd.tile, tile_data->cm, tile_row, tile_col); |
| setup_token_decoder(buf->data, data_end, buf->size, &cm->error, |
| &tile_data->bit_reader, pbi->decrypt_cb, |
| pbi->decrypt_state); |
| vp9_init_macroblockd(cm, &tile_data->xd, tile_data->dqcoeff); |
| } |
| } |
| |
| for (tile_row = 0; tile_row < tile_rows; ++tile_row) { |
| TileInfo tile; |
| vp9_tile_set_row(&tile, cm, tile_row); |
| for (mi_row = tile.mi_row_start; mi_row < tile.mi_row_end; |
| mi_row += MI_BLOCK_SIZE) { |
| for (tile_col = 0; tile_col < tile_cols; ++tile_col) { |
| const int col = pbi->inv_tile_order ? |
| tile_cols - tile_col - 1 : tile_col; |
| tile_data = pbi->tile_data + tile_cols * tile_row + col; |
| vp9_tile_set_col(&tile, tile_data->cm, col); |
| vp9_zero(tile_data->xd.left_context); |
| vp9_zero(tile_data->xd.left_seg_context); |
| for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end; |
| mi_col += MI_BLOCK_SIZE) { |
| decode_partition(pbi, &tile_data->xd, mi_row, |
| mi_col, &tile_data->bit_reader, BLOCK_64X64, 4); |
| } |
| pbi->mb.corrupted |= tile_data->xd.corrupted; |
| if (pbi->mb.corrupted) |
| vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, |
| "Failed to decode tile data"); |
| } |
| // Loopfilter one row. |
| if (cm->lf.filter_level && !cm->skip_loop_filter) { |
| const int lf_start = mi_row - MI_BLOCK_SIZE; |
| LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1; |
| |
| // delay the loopfilter by 1 macroblock row. |
| if (lf_start < 0) continue; |
| |
| // decoding has completed: finish up the loop filter in this thread. |
| if (mi_row + MI_BLOCK_SIZE >= cm->mi_rows) continue; |
| |
| winterface->sync(&pbi->lf_worker); |
| lf_data->start = lf_start; |
| lf_data->stop = mi_row; |
| if (pbi->max_threads > 1) { |
| winterface->launch(&pbi->lf_worker); |
| } else { |
| winterface->execute(&pbi->lf_worker); |
| } |
| } |
| // After loopfiltering, the last 7 row pixels in each superblock row may |
| // still be changed by the longest loopfilter of the next superblock |
| // row. |
| if (pbi->frame_parallel_decode) |
| vp9_frameworker_broadcast(pbi->cur_buf, |
| mi_row << MI_BLOCK_SIZE_LOG2); |
| } |
| } |
| |
| // Loopfilter remaining rows in the frame. |
| if (cm->lf.filter_level && !cm->skip_loop_filter) { |
| LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1; |
| winterface->sync(&pbi->lf_worker); |
| lf_data->start = lf_data->stop; |
| lf_data->stop = cm->mi_rows; |
| winterface->execute(&pbi->lf_worker); |
| } |
| |
| // Get last tile data. |
| tile_data = pbi->tile_data + tile_cols * tile_rows - 1; |
| |
| if (pbi->frame_parallel_decode) |
| vp9_frameworker_broadcast(pbi->cur_buf, INT_MAX); |
| return vpx_reader_find_end(&tile_data->bit_reader); |
| } |
| |
| static int tile_worker_hook(TileWorkerData *const tile_data, |
| const TileInfo *const tile) { |
| int mi_row, mi_col; |
| |
| if (setjmp(tile_data->error_info.jmp)) { |
| tile_data->error_info.setjmp = 0; |
| tile_data->xd.corrupted = 1; |
| return 0; |
| } |
| |
| tile_data->error_info.setjmp = 1; |
| tile_data->xd.error_info = &tile_data->error_info; |
| |
| for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; |
| mi_row += MI_BLOCK_SIZE) { |
| vp9_zero(tile_data->xd.left_context); |
| vp9_zero(tile_data->xd.left_seg_context); |
| for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; |
| mi_col += MI_BLOCK_SIZE) { |
| decode_partition(tile_data->pbi, &tile_data->xd, |
| mi_row, mi_col, &tile_data->bit_reader, |
| BLOCK_64X64, 4); |
| } |
| } |
| return !tile_data->xd.corrupted; |
| } |
| |
| // sorts in descending order |
| static int compare_tile_buffers(const void *a, const void *b) { |
| const TileBuffer *const buf1 = (const TileBuffer*)a; |
| const TileBuffer *const buf2 = (const TileBuffer*)b; |
| return (int)(buf2->size - buf1->size); |
| } |
| |
| static const uint8_t *decode_tiles_mt(VP9Decoder *pbi, |
| const uint8_t *data, |
| const uint8_t *data_end) { |
| VP9_COMMON *const cm = &pbi->common; |
| const VPxWorkerInterface *const winterface = vpx_get_worker_interface(); |
| const uint8_t *bit_reader_end = NULL; |
| const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols); |
| const int tile_cols = 1 << cm->log2_tile_cols; |
| const int tile_rows = 1 << cm->log2_tile_rows; |
| const int num_workers = VPXMIN(pbi->max_threads & ~1, tile_cols); |
| TileBuffer tile_buffers[1][1 << 6]; |
| int n; |
| int final_worker = -1; |
| |
| assert(tile_cols <= (1 << 6)); |
| assert(tile_rows == 1); |
| (void)tile_rows; |
| |
| // TODO(jzern): See if we can remove the restriction of passing in max |
| // threads to the decoder. |
| if (pbi->num_tile_workers == 0) { |
| const int num_threads = pbi->max_threads & ~1; |
| int i; |
| CHECK_MEM_ERROR(cm, pbi->tile_workers, |
| vpx_malloc(num_threads * sizeof(*pbi->tile_workers))); |
| // Ensure tile data offsets will be properly aligned. This may fail on |
| // platforms without DECLARE_ALIGNED(). |
| assert((sizeof(*pbi->tile_worker_data) % 16) == 0); |
| CHECK_MEM_ERROR(cm, pbi->tile_worker_data, |
| vpx_memalign(32, num_threads * |
| sizeof(*pbi->tile_worker_data))); |
| CHECK_MEM_ERROR(cm, pbi->tile_worker_info, |
| vpx_malloc(num_threads * sizeof(*pbi->tile_worker_info))); |
| for (i = 0; i < num_threads; ++i) { |
| VPxWorker *const worker = &pbi->tile_workers[i]; |
| ++pbi->num_tile_workers; |
| |
| winterface->init(worker); |
| if (i < num_threads - 1 && !winterface->reset(worker)) { |
| vpx_internal_error(&cm->error, VPX_CODEC_ERROR, |
| "Tile decoder thread creation failed"); |
| } |
| } |
| } |
| |
| // Reset tile decoding hook |
| for (n = 0; n < num_workers; ++n) { |
| VPxWorker *const worker = &pbi->tile_workers[n]; |
| winterface->sync(worker); |
| worker->hook = (VPxWorkerHook)tile_worker_hook; |
| worker->data1 = &pbi->tile_worker_data[n]; |
| worker->data2 = &pbi->tile_worker_info[n]; |
| } |
| |
| // Note: this memset assumes above_context[0], [1] and [2] |
| // are allocated as part of the same buffer. |
| memset(cm->above_context, 0, |
| sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_mi_cols); |
| memset(cm->above_seg_context, 0, |
| sizeof(*cm->above_seg_context) * aligned_mi_cols); |
| |
| // Load tile data into tile_buffers |
| get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers); |
| |
| // Sort the buffers based on size in descending order. |
| qsort(tile_buffers[0], tile_cols, sizeof(tile_buffers[0][0]), |
| compare_tile_buffers); |
| |
| // Rearrange the tile buffers such that per-tile group the largest, and |
| // presumably the most difficult, tile will be decoded in the main thread. |
| // This should help minimize the number of instances where the main thread is |
| // waiting for a worker to complete. |
| { |
| int group_start = 0; |
| while (group_start < tile_cols) { |
| const TileBuffer largest = tile_buffers[0][group_start]; |
| const int group_end = VPXMIN(group_start + num_workers, tile_cols) - 1; |
| memmove(tile_buffers[0] + group_start, tile_buffers[0] + group_start + 1, |
| (group_end - group_start) * sizeof(tile_buffers[0][0])); |
| tile_buffers[0][group_end] = largest; |
| group_start = group_end + 1; |
| } |
| } |
| |
| // Initialize thread frame counts. |
| if (!cm->frame_parallel_decoding_mode) { |
| int i; |
| |
| for (i = 0; i < num_workers; ++i) { |
| TileWorkerData *const tile_data = |
| (TileWorkerData*)pbi->tile_workers[i].data1; |
| vp9_zero(tile_data->counts); |
| } |
| } |
| |
| n = 0; |
| while (n < tile_cols) { |
| int i; |
| for (i = 0; i < num_workers && n < tile_cols; ++i) { |
| VPxWorker *const worker = &pbi->tile_workers[i]; |
| TileWorkerData *const tile_data = (TileWorkerData*)worker->data1; |
| TileInfo *const tile = (TileInfo*)worker->data2; |
| TileBuffer *const buf = &tile_buffers[0][n]; |
| |
| tile_data->pbi = pbi; |
| tile_data->xd = pbi->mb; |
| tile_data->xd.corrupted = 0; |
| tile_data->xd.counts = cm->frame_parallel_decoding_mode ? |
| 0 : &tile_data->counts; |
| vp9_zero(tile_data->dqcoeff); |
| vp9_tile_init(tile, cm, 0, buf->col); |
| vp9_tile_init(&tile_data->xd.tile, cm, 0, buf->col); |
| setup_token_decoder(buf->data, data_end, buf->size, &cm->error, |
| &tile_data->bit_reader, pbi->decrypt_cb, |
| pbi->decrypt_state); |
| vp9_init_macroblockd(cm, &tile_data->xd, tile_data->dqcoeff); |
| |
| worker->had_error = 0; |
| if (i == num_workers - 1 || n == tile_cols - 1) { |
| winterface->execute(worker); |
| } else { |
| winterface->launch(worker); |
| } |
| |
| if (buf->col == tile_cols - 1) { |
| final_worker = i; |
| } |
| |
| ++n; |
| } |
| |
| for (; i > 0; --i) { |
| VPxWorker *const worker = &pbi->tile_workers[i - 1]; |
| // TODO(jzern): The tile may have specific error data associated with |
| // its vpx_internal_error_info which could be propagated to the main info |
| // in cm. Additionally once the threads have been synced and an error is |
| // detected, there's no point in continuing to decode tiles. |
| pbi->mb.corrupted |= !winterface->sync(worker); |
| } |
| if (final_worker > -1) { |
| TileWorkerData *const tile_data = |
| (TileWorkerData*)pbi->tile_workers[final_worker].data1; |
| bit_reader_end = vpx_reader_find_end(&tile_data->bit_reader); |
| final_worker = -1; |
| } |
| |
| // Accumulate thread frame counts. |
| if (n >= tile_cols && !cm->frame_parallel_decoding_mode) { |
| for (i = 0; i < num_workers; ++i) { |
| TileWorkerData *const tile_data = |
| (TileWorkerData*)pbi->tile_workers[i].data1; |
| vp9_accumulate_frame_counts(cm, &tile_data->counts, 1); |
| } |
| } |
| } |
| |
| return bit_reader_end; |
| } |
| |
| static void error_handler(void *data) { |
| VP9_COMMON *const cm = (VP9_COMMON *)data; |
| vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet"); |
| } |
| |
| static void read_bitdepth_colorspace_sampling( |
| VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) { |
| if (cm->profile >= PROFILE_2) { |
| cm->bit_depth = vpx_rb_read_bit(rb) ? VPX_BITS_12 : VPX_BITS_10; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| cm->use_highbitdepth = 1; |
| #endif |
| } else { |
| cm->bit_depth = VPX_BITS_8; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| cm->use_highbitdepth = 0; |
| #endif |
| } |
| cm->color_space = vpx_rb_read_literal(rb, 3); |
| if (cm->color_space != VPX_CS_SRGB) { |
| vpx_rb_read_bit(rb); // [16,235] (including xvycc) vs [0,255] range |
| if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { |
| cm->subsampling_x = vpx_rb_read_bit(rb); |
| cm->subsampling_y = vpx_rb_read_bit(rb); |
| if (cm->subsampling_x == 1 && cm->subsampling_y == 1) |
| vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, |
| "4:2:0 color not supported in profile 1 or 3"); |
| if (vpx_rb_read_bit(rb)) |
| vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, |
| "Reserved bit set"); |
| } else { |
| cm->subsampling_y = cm->subsampling_x = 1; |
| } |
| } else { |
| if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { |
| // Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed. |
| // 4:2:2 or 4:4:0 chroma sampling is not allowed. |
| cm->subsampling_y = cm->subsampling_x = 0; |
| if (vpx_rb_read_bit(rb)) |
| vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, |
| "Reserved bit set"); |
| } else { |
| vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, |
| "4:4:4 color not supported in profile 0 or 2"); |
| } |
| } |
| } |
| |
| static size_t read_uncompressed_header(VP9Decoder *pbi, |
| struct vpx_read_bit_buffer *rb) { |
| VP9_COMMON *const cm = &pbi->common; |
| BufferPool *const pool = cm->buffer_pool; |
| RefCntBuffer *const frame_bufs = pool->frame_bufs; |
| int i, mask, ref_index = 0; |
| size_t sz; |
| |
| cm->last_frame_type = cm->frame_type; |
| cm->last_intra_only = cm->intra_only; |
| |
| if (vpx_rb_read_literal(rb, 2) != VP9_FRAME_MARKER) |
| vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, |
| "Invalid frame marker"); |
| |
| cm->profile = vp9_read_profile(rb); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->profile >= MAX_PROFILES) |
| vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, |
| "Unsupported bitstream profile"); |
| #else |
| if (cm->profile >= PROFILE_2) |
| vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, |
| "Unsupported bitstream profile"); |
| #endif |
| |
| cm->show_existing_frame = vpx_rb_read_bit(rb); |
| if (cm->show_existing_frame) { |
| // Show an existing frame directly. |
| const int frame_to_show = cm->ref_frame_map[vpx_rb_read_literal(rb, 3)]; |
| lock_buffer_pool(pool); |
| if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) { |
| unlock_buffer_pool(pool); |
| vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, |
| "Buffer %d does not contain a decoded frame", |
| frame_to_show); |
| } |
| |
| ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show); |
| unlock_buffer_pool(pool); |
| pbi->refresh_frame_flags = 0; |
| cm->lf.filter_level = 0; |
| cm->show_frame = 1; |
| |
| if (pbi->frame_parallel_decode) { |
| for (i = 0; i < REF_FRAMES; ++i) |
| cm->next_ref_frame_map[i] = cm->ref_frame_map[i]; |
| } |
| return 0; |
| } |
| |
| cm->frame_type = (FRAME_TYPE) vpx_rb_read_bit(rb); |
| cm->show_frame = vpx_rb_read_bit(rb); |
| cm->error_resilient_mode = vpx_rb_read_bit(rb); |
| |
| if (cm->frame_type == KEY_FRAME) { |
| if (!vp9_read_sync_code(rb)) |
| vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, |
| "Invalid frame sync code"); |
| |
| read_bitdepth_colorspace_sampling(cm, rb); |
| pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1; |
| |
| for (i = 0; i < REFS_PER_FRAME; ++i) { |
| cm->frame_refs[i].idx = INVALID_IDX; |
| cm->frame_refs[i].buf = NULL; |
| } |
| |
| setup_frame_size(cm, rb); |
| if (pbi->need_resync) { |
| memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map)); |
| pbi->need_resync = 0; |
| } |
| } else { |
| cm->intra_only = cm->show_frame ? 0 : vpx_rb_read_bit(rb); |
| |
| cm->reset_frame_context = cm->error_resilient_mode ? |
| 0 : vpx_rb_read_literal(rb, 2); |
| |
| if (cm->intra_only) { |
| if (!vp9_read_sync_code(rb)) |
| vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, |
| "Invalid frame sync code"); |
| if (cm->profile > PROFILE_0) { |
| read_bitdepth_colorspace_sampling(cm, rb); |
| } else { |
| // NOTE: The intra-only frame header does not include the specification |
| // of either the color format or color sub-sampling in profile 0. VP9 |
| // specifies that the default color format should be YUV 4:2:0 in this |
| // case (normative). |
| cm->color_space = VPX_CS_BT_601; |
| cm->subsampling_y = cm->subsampling_x = 1; |
| cm->bit_depth = VPX_BITS_8; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| cm->use_highbitdepth = 0; |
| #endif |
| } |
| |
| pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES); |
| setup_frame_size(cm, rb); |
| if (pbi->need_resync) { |
| memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map)); |
| pbi->need_resync = 0; |
| } |
| } else if (pbi->need_resync != 1) { /* Skip if need resync */ |
| pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES); |
| for (i = 0; i < REFS_PER_FRAME; ++i) { |
| const int ref = vpx_rb_read_literal(rb, REF_FRAMES_LOG2); |
| const int idx = cm->ref_frame_map[ref]; |
| RefBuffer *const ref_frame = &cm->frame_refs[i]; |
| ref_frame->idx = idx; |
| ref_frame->buf = &frame_bufs[idx].buf; |
| cm->ref_frame_sign_bias[LAST_FRAME + i] = vpx_rb_read_bit(rb); |
| } |
| |
| setup_frame_size_with_refs(cm, rb); |
| |
| cm->allow_high_precision_mv = vpx_rb_read_bit(rb); |
| cm->interp_filter = read_interp_filter(rb); |
| |
| for (i = 0; i < REFS_PER_FRAME; ++i) { |
| RefBuffer *const ref_buf = &cm->frame_refs[i]; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| vp9_setup_scale_factors_for_frame(&ref_buf->sf, |
| ref_buf->buf->y_crop_width, |
| ref_buf->buf->y_crop_height, |
| cm->width, cm->height, |
| cm->use_highbitdepth); |
| #else |
| vp9_setup_scale_factors_for_frame(&ref_buf->sf, |
| ref_buf->buf->y_crop_width, |
| ref_buf->buf->y_crop_height, |
| cm->width, cm->height); |
| #endif |
| } |
| } |
| } |
| #if CONFIG_VP9_HIGHBITDEPTH |
| get_frame_new_buffer(cm)->bit_depth = cm->bit_depth; |
| #endif |
| get_frame_new_buffer(cm)->color_space = cm->color_space; |
| |
| if (pbi->need_resync) { |
| vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, |
| "Keyframe / intra-only frame required to reset decoder" |
| " state"); |
| } |
| |
| if (!cm->error_resilient_mode) { |
| cm->refresh_frame_context = vpx_rb_read_bit(rb); |
| cm->frame_parallel_decoding_mode = vpx_rb_read_bit(rb); |
| } else { |
| cm->refresh_frame_context = 0; |
| cm->frame_parallel_decoding_mode = 1; |
| } |
| |
| // This flag will be overridden by the call to vp9_setup_past_independence |
| // below, forcing the use of context 0 for those frame types. |
| cm->frame_context_idx = vpx_rb_read_literal(rb, FRAME_CONTEXTS_LOG2); |
| |
| // Generate next_ref_frame_map. |
| lock_buffer_pool(pool); |
| for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) { |
| if (mask & 1) { |
| cm->next_ref_frame_map[ref_index] = cm->new_fb_idx; |
| ++frame_bufs[cm->new_fb_idx].ref_count; |
| } else { |
| cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; |
| } |
| // Current thread holds the reference frame. |
| if (cm->ref_frame_map[ref_index] >= 0) |
| ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; |
| ++ref_index; |
| } |
| |
| for (; ref_index < REF_FRAMES; ++ref_index) { |
| cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; |
| // Current thread holds the reference frame. |
| if (cm->ref_frame_map[ref_index] >= 0) |
| ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; |
| } |
| unlock_buffer_pool(pool); |
| pbi->hold_ref_buf = 1; |
| |
| if (frame_is_intra_only(cm) || cm->error_resilient_mode) |
| vp9_setup_past_independence(cm); |
| |
| setup_loopfilter(&cm->lf, rb); |
| setup_quantization(cm, &pbi->mb, rb); |
| setup_segmentation(&cm->seg, rb); |
| setup_segmentation_dequant(cm); |
| |
| setup_tile_info(cm, rb); |
| sz = vpx_rb_read_literal(rb, 16); |
| |
| if (sz == 0) |
| vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, |
| "Invalid header size"); |
| |
| return sz; |
| } |
| |
| static int read_compressed_header(VP9Decoder *pbi, const uint8_t *data, |
| size_t partition_size) { |
| VP9_COMMON *const cm = &pbi->common; |
| MACROBLOCKD *const xd = &pbi->mb; |
| FRAME_CONTEXT *const fc = cm->fc; |
| vpx_reader r; |
| int k; |
| |
| if (vpx_reader_init(&r, data, partition_size, pbi->decrypt_cb, |
| pbi->decrypt_state)) |
| vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate bool decoder 0"); |
| |
| cm->tx_mode = xd->lossless ? ONLY_4X4 : read_tx_mode(&r); |
| if (cm->tx_mode == TX_MODE_SELECT) |
| read_tx_mode_probs(&fc->tx_probs, &r); |
| read_coef_probs(fc, cm->tx_mode, &r); |
| |
| for (k = 0; k < SKIP_CONTEXTS; ++k) |
| vp9_diff_update_prob(&r, &fc->skip_probs[k]); |
| |
| if (!frame_is_intra_only(cm)) { |
| nmv_context *const nmvc = &fc->nmvc; |
| int i, j; |
| |
| read_inter_mode_probs(fc, &r); |
| |
| if (cm->interp_filter == SWITCHABLE) |
| read_switchable_interp_probs(fc, &r); |
| |
| for (i = 0; i < INTRA_INTER_CONTEXTS; i++) |
| vp9_diff_update_prob(&r, &fc->intra_inter_prob[i]); |
| |
| cm->reference_mode = read_frame_reference_mode(cm, &r); |
| if (cm->reference_mode != SINGLE_REFERENCE) |
| setup_compound_reference_mode(cm); |
| read_frame_reference_mode_probs(cm, &r); |
| |
| for (j = 0; j < BLOCK_SIZE_GROUPS; j++) |
| for (i = 0; i < INTRA_MODES - 1; ++i) |
| vp9_diff_update_prob(&r, &fc->y_mode_prob[j][i]); |
| |
| for (j = 0; j < PARTITION_CONTEXTS; ++j) |
| for (i = 0; i < PARTITION_TYPES - 1; ++i) |
| vp9_diff_update_prob(&r, &fc->partition_prob[j][i]); |
| |
| read_mv_probs(nmvc, cm->allow_high_precision_mv, &r); |
| } |
| |
| return vpx_reader_has_error(&r); |
| } |
| |
| #ifdef NDEBUG |
| #define debug_check_frame_counts(cm) (void)0 |
| #else // !NDEBUG |
| // Counts should only be incremented when frame_parallel_decoding_mode and |
| // error_resilient_mode are disabled. |
| static void debug_check_frame_counts(const VP9_COMMON *const cm) { |
| FRAME_COUNTS zero_counts; |
| vp9_zero(zero_counts); |
| assert(cm->frame_parallel_decoding_mode || cm->error_resilient_mode); |
| assert(!memcmp(cm->counts.y_mode, zero_counts.y_mode, |
| sizeof(cm->counts.y_mode))); |
| assert(!memcmp(cm->counts.uv_mode, zero_counts.uv_mode, |
| sizeof(cm->counts.uv_mode))); |
| assert(!memcmp(cm->counts.partition, zero_counts.partition, |
| sizeof(cm->counts.partition))); |
| assert(!memcmp(cm->counts.coef, zero_counts.coef, |
| sizeof(cm->counts.coef))); |
| assert(!memcmp(cm->counts.eob_branch, zero_counts.eob_branch, |
| sizeof(cm->counts.eob_branch))); |
| assert(!memcmp(cm->counts.switchable_interp, zero_counts.switchable_interp, |
| sizeof(cm->counts.switchable_interp))); |
| assert(!memcmp(cm->counts.inter_mode, zero_counts.inter_mode, |
| sizeof(cm->counts.inter_mode))); |
| assert(!memcmp(cm->counts.intra_inter, zero_counts.intra_inter, |
| sizeof(cm->counts.intra_inter))); |
| assert(!memcmp(cm->counts.comp_inter, zero_counts.comp_inter, |
| sizeof(cm->counts.comp_inter))); |
| assert(!memcmp(cm->counts.single_ref, zero_counts.single_ref, |
| sizeof(cm->counts.single_ref))); |
| assert(!memcmp(cm->counts.comp_ref, zero_counts.comp_ref, |
| sizeof(cm->counts.comp_ref))); |
| assert(!memcmp(&cm->counts.tx, &zero_counts.tx, sizeof(cm->counts.tx))); |
| assert(!memcmp(cm->counts.skip, zero_counts.skip, sizeof(cm->counts.skip))); |
| assert(!memcmp(&cm->counts.mv, &zero_counts.mv, sizeof(cm->counts.mv))); |
| } |
| #endif // NDEBUG |
| |
| static struct vpx_read_bit_buffer *init_read_bit_buffer( |
| VP9Decoder *pbi, |
| struct vpx_read_bit_buffer *rb, |
| const uint8_t *data, |
| const uint8_t *data_end, |
| uint8_t clear_data[MAX_VP9_HEADER_SIZE]) { |
| rb->bit_offset = 0; |
| rb->error_handler = error_handler; |
| rb->error_handler_data = &pbi->common; |
| if (pbi->decrypt_cb) { |
| const int n = (int)VPXMIN(MAX_VP9_HEADER_SIZE, data_end - data); |
| pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n); |
| rb->bit_buffer = clear_data; |
| rb->bit_buffer_end = clear_data + n; |
| } else { |
| rb->bit_buffer = data; |
| rb->bit_buffer_end = data_end; |
| } |
| return rb; |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| int vp9_read_sync_code(struct vpx_read_bit_buffer *const rb) { |
| return vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_0 && |
| vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_1 && |
| vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_2; |
| } |
| |
| void vp9_read_frame_size(struct vpx_read_bit_buffer *rb, |
| int *width, int *height) { |
| *width = vpx_rb_read_literal(rb, 16) + 1; |
| *height = vpx_rb_read_literal(rb, 16) + 1; |
| } |
| |
| BITSTREAM_PROFILE vp9_read_profile(struct vpx_read_bit_buffer *rb) { |
| int profile = vpx_rb_read_bit(rb); |
| profile |= vpx_rb_read_bit(rb) << 1; |
| if (profile > 2) |
| profile += vpx_rb_read_bit(rb); |
| return (BITSTREAM_PROFILE) profile; |
| } |
| |
| void vp9_decode_frame(VP9Decoder *pbi, |
| const uint8_t *data, const uint8_t *data_end, |
| const uint8_t **p_data_end) { |
| VP9_COMMON *const cm = &pbi->common; |
| MACROBLOCKD *const xd = &pbi->mb; |
| struct vpx_read_bit_buffer rb; |
| int context_updated = 0; |
| uint8_t clear_data[MAX_VP9_HEADER_SIZE]; |
| const size_t first_partition_size = read_uncompressed_header(pbi, |
| init_read_bit_buffer(pbi, &rb, data, data_end, clear_data)); |
| const int tile_rows = 1 << cm->log2_tile_rows; |
| const int tile_cols = 1 << cm->log2_tile_cols; |
| YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm); |
| xd->cur_buf = new_fb; |
| |
| if (!first_partition_size) { |
| // showing a frame directly |
| *p_data_end = data + (cm->profile <= PROFILE_2 ? 1 : 2); |
| return; |
| } |
| |
| data += vpx_rb_bytes_read(&rb); |
| if (!read_is_valid(data, first_partition_size, data_end)) |
| vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, |
| "Truncated packet or corrupt header length"); |
| |
| cm->use_prev_frame_mvs = !cm->error_resilient_mode && |
| cm->width == cm->last_width && |
| cm->height == cm->last_height && |
| !cm->last_intra_only && |
| cm->last_show_frame && |
| (cm->last_frame_type != KEY_FRAME); |
| |
| vp9_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y); |
| |
| *cm->fc = cm->frame_contexts[cm->frame_context_idx]; |
| if (!cm->fc->initialized) |
| vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, |
| "Uninitialized entropy context."); |
| |
| vp9_zero(cm->counts); |
| |
| xd->corrupted = 0; |
| new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size); |
| if (new_fb->corrupted) |
| vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, |
| "Decode failed. Frame data header is corrupted."); |
| |
| if (cm->lf.filter_level && !cm->skip_loop_filter) { |
| vp9_loop_filter_frame_init(cm, cm->lf.filter_level); |
| } |
| |
| // If encoded in frame parallel mode, frame context is ready after decoding |
| // the frame header. |
| if (pbi->frame_parallel_decode && cm->frame_parallel_decoding_mode) { |
| VPxWorker *const worker = pbi->frame_worker_owner; |
| FrameWorkerData *const frame_worker_data = worker->data1; |
| if (cm->refresh_frame_context) { |
| context_updated = 1; |
| cm->frame_contexts[cm->frame_context_idx] = *cm->fc; |
| } |
| vp9_frameworker_lock_stats(worker); |
| pbi->cur_buf->row = -1; |
| pbi->cur_buf->col = -1; |
| frame_worker_data->frame_context_ready = 1; |
| // Signal the main thread that context is ready. |
| vp9_frameworker_signal_stats(worker); |
| vp9_frameworker_unlock_stats(worker); |
| } |
| |
| if (pbi->max_threads > 1 && tile_rows == 1 && tile_cols > 1) { |
| // Multi-threaded tile decoder |
| *p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end); |
| if (!xd->corrupted) { |
| if (!cm->skip_loop_filter) { |
| // If multiple threads are used to decode tiles, then we use those |
| // threads to do parallel loopfiltering. |
| vp9_loop_filter_frame_mt(new_fb, cm, pbi->mb.plane, |
| cm->lf.filter_level, 0, 0, pbi->tile_workers, |
| pbi->num_tile_workers, &pbi->lf_row_sync); |
| } |
| } else { |
| vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, |
| "Decode failed. Frame data is corrupted."); |
| } |
| } else { |
| *p_data_end = decode_tiles(pbi, data + first_partition_size, data_end); |
| } |
| |
| if (!xd->corrupted) { |
| if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) { |
| vp9_adapt_coef_probs(cm); |
| |
| if (!frame_is_intra_only(cm)) { |
| vp9_adapt_mode_probs(cm); |
| vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv); |
| } |
| } else { |
| debug_check_frame_counts(cm); |
| } |
| } else { |
| vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, |
| "Decode failed. Frame data is corrupted."); |
| } |
| |
| // Non frame parallel update frame context here. |
| if (cm->refresh_frame_context && !context_updated) |
| cm->frame_contexts[cm->frame_context_idx] = *cm->fc; |
| } |