| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| // Due to a header conflict between math.h and intrinsics includes with ceil() |
| // in certain configurations under vs9 this include needs to precede |
| // immintrin.h. |
| |
| #include <immintrin.h> |
| |
| #include "./vpx_dsp_rtcd.h" |
| #include "vpx_dsp/x86/convolve.h" |
| #include "vpx_ports/mem.h" |
| |
| // filters for 16_h8 and 16_v8 |
| DECLARE_ALIGNED(32, static const uint8_t, filt1_global_avx2[32]) = { |
| 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, |
| 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 |
| }; |
| |
| DECLARE_ALIGNED(32, static const uint8_t, filt2_global_avx2[32]) = { |
| 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, |
| 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10 |
| }; |
| |
| DECLARE_ALIGNED(32, static const uint8_t, filt3_global_avx2[32]) = { |
| 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, |
| 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12 |
| }; |
| |
| DECLARE_ALIGNED(32, static const uint8_t, filt4_global_avx2[32]) = { |
| 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, |
| 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14 |
| }; |
| |
| #if defined(__clang__) |
| # if __clang_major__ < 3 || (__clang_major__ == 3 && __clang_minor__ <= 3) || \ |
| (defined(__APPLE__) && __clang_major__ == 5 && __clang_minor__ == 0) |
| # define MM256_BROADCASTSI128_SI256(x) \ |
| _mm_broadcastsi128_si256((__m128i const *)&(x)) |
| # else // clang > 3.3, and not 5.0 on macosx. |
| # define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x) |
| # endif // clang <= 3.3 |
| #elif defined(__GNUC__) |
| # if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 6) |
| # define MM256_BROADCASTSI128_SI256(x) \ |
| _mm_broadcastsi128_si256((__m128i const *)&(x)) |
| # elif __GNUC__ == 4 && __GNUC_MINOR__ == 7 |
| # define MM256_BROADCASTSI128_SI256(x) _mm_broadcastsi128_si256(x) |
| # else // gcc > 4.7 |
| # define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x) |
| # endif // gcc <= 4.6 |
| #else // !(gcc || clang) |
| # define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x) |
| #endif // __clang__ |
| |
| static void vpx_filter_block1d16_h8_avx2(const uint8_t *src_ptr, |
| ptrdiff_t src_pixels_per_line, |
| uint8_t *output_ptr, |
| ptrdiff_t output_pitch, |
| uint32_t output_height, |
| const int16_t *filter) { |
| __m128i filtersReg; |
| __m256i addFilterReg64, filt1Reg, filt2Reg, filt3Reg, filt4Reg; |
| __m256i firstFilters, secondFilters, thirdFilters, forthFilters; |
| __m256i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3; |
| __m256i srcReg32b1, srcReg32b2, filtersReg32; |
| unsigned int i; |
| ptrdiff_t src_stride, dst_stride; |
| |
| // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 |
| addFilterReg64 = _mm256_set1_epi32((int)0x0400040u); |
| filtersReg = _mm_loadu_si128((const __m128i *)filter); |
| // converting the 16 bit (short) to 8 bit (byte) and have the same data |
| // in both lanes of 128 bit register. |
| filtersReg =_mm_packs_epi16(filtersReg, filtersReg); |
| // have the same data in both lanes of a 256 bit register |
| filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); |
| |
| // duplicate only the first 16 bits (first and second byte) |
| // across 256 bit register |
| firstFilters = _mm256_shuffle_epi8(filtersReg32, |
| _mm256_set1_epi16(0x100u)); |
| // duplicate only the second 16 bits (third and forth byte) |
| // across 256 bit register |
| secondFilters = _mm256_shuffle_epi8(filtersReg32, |
| _mm256_set1_epi16(0x302u)); |
| // duplicate only the third 16 bits (fifth and sixth byte) |
| // across 256 bit register |
| thirdFilters = _mm256_shuffle_epi8(filtersReg32, |
| _mm256_set1_epi16(0x504u)); |
| // duplicate only the forth 16 bits (seventh and eighth byte) |
| // across 256 bit register |
| forthFilters = _mm256_shuffle_epi8(filtersReg32, |
| _mm256_set1_epi16(0x706u)); |
| |
| filt1Reg = _mm256_load_si256((__m256i const *)filt1_global_avx2); |
| filt2Reg = _mm256_load_si256((__m256i const *)filt2_global_avx2); |
| filt3Reg = _mm256_load_si256((__m256i const *)filt3_global_avx2); |
| filt4Reg = _mm256_load_si256((__m256i const *)filt4_global_avx2); |
| |
| // multiple the size of the source and destination stride by two |
| src_stride = src_pixels_per_line << 1; |
| dst_stride = output_pitch << 1; |
| for (i = output_height; i > 1; i-=2) { |
| // load the 2 strides of source |
| srcReg32b1 = _mm256_castsi128_si256( |
| _mm_loadu_si128((const __m128i *)(src_ptr - 3))); |
| srcReg32b1 = _mm256_inserti128_si256(srcReg32b1, |
| _mm_loadu_si128((const __m128i *) |
| (src_ptr+src_pixels_per_line-3)), 1); |
| |
| // filter the source buffer |
| srcRegFilt32b1_1= _mm256_shuffle_epi8(srcReg32b1, filt1Reg); |
| srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b1, filt4Reg); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters); |
| srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters); |
| |
| // add and saturate the results together |
| srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, srcRegFilt32b2); |
| |
| // filter the source buffer |
| srcRegFilt32b3= _mm256_shuffle_epi8(srcReg32b1, filt2Reg); |
| srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b1, filt3Reg); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters); |
| srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters); |
| |
| // add and saturate the results together |
| srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, |
| _mm256_min_epi16(srcRegFilt32b3, srcRegFilt32b2)); |
| |
| // reading 2 strides of the next 16 bytes |
| // (part of it was being read by earlier read) |
| srcReg32b2 = _mm256_castsi128_si256( |
| _mm_loadu_si128((const __m128i *)(src_ptr + 5))); |
| srcReg32b2 = _mm256_inserti128_si256(srcReg32b2, |
| _mm_loadu_si128((const __m128i *) |
| (src_ptr+src_pixels_per_line+5)), 1); |
| |
| // add and saturate the results together |
| srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, |
| _mm256_max_epi16(srcRegFilt32b3, srcRegFilt32b2)); |
| |
| // filter the source buffer |
| srcRegFilt32b2_1 = _mm256_shuffle_epi8(srcReg32b2, filt1Reg); |
| srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt4Reg); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt32b2_1 = _mm256_maddubs_epi16(srcRegFilt32b2_1, firstFilters); |
| srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters); |
| |
| // add and saturate the results together |
| srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, srcRegFilt32b2); |
| |
| // filter the source buffer |
| srcRegFilt32b3= _mm256_shuffle_epi8(srcReg32b2, filt2Reg); |
| srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b2, filt3Reg); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters); |
| srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters); |
| |
| // add and saturate the results together |
| srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, |
| _mm256_min_epi16(srcRegFilt32b3, srcRegFilt32b2)); |
| srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, |
| _mm256_max_epi16(srcRegFilt32b3, srcRegFilt32b2)); |
| |
| |
| srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg64); |
| |
| srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, addFilterReg64); |
| |
| // shift by 7 bit each 16 bit |
| srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 7); |
| srcRegFilt32b2_1 = _mm256_srai_epi16(srcRegFilt32b2_1, 7); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve |
| // result |
| srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1, |
| srcRegFilt32b2_1); |
| |
| src_ptr+=src_stride; |
| |
| // save 16 bytes |
| _mm_store_si128((__m128i*)output_ptr, |
| _mm256_castsi256_si128(srcRegFilt32b1_1)); |
| |
| // save the next 16 bits |
| _mm_store_si128((__m128i*)(output_ptr+output_pitch), |
| _mm256_extractf128_si256(srcRegFilt32b1_1, 1)); |
| output_ptr+=dst_stride; |
| } |
| |
| // if the number of strides is odd. |
| // process only 16 bytes |
| if (i > 0) { |
| __m128i srcReg1, srcReg2, srcRegFilt1_1, srcRegFilt2_1; |
| __m128i srcRegFilt2, srcRegFilt3; |
| |
| srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr - 3)); |
| |
| // filter the source buffer |
| srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1, |
| _mm256_castsi256_si128(filt1Reg)); |
| srcRegFilt2 = _mm_shuffle_epi8(srcReg1, |
| _mm256_castsi256_si128(filt4Reg)); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt1_1 = _mm_maddubs_epi16(srcRegFilt1_1, |
| _mm256_castsi256_si128(firstFilters)); |
| srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, |
| _mm256_castsi256_si128(forthFilters)); |
| |
| // add and saturate the results together |
| srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2); |
| |
| // filter the source buffer |
| srcRegFilt3= _mm_shuffle_epi8(srcReg1, |
| _mm256_castsi256_si128(filt2Reg)); |
| srcRegFilt2= _mm_shuffle_epi8(srcReg1, |
| _mm256_castsi256_si128(filt3Reg)); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, |
| _mm256_castsi256_si128(secondFilters)); |
| srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, |
| _mm256_castsi256_si128(thirdFilters)); |
| |
| // add and saturate the results together |
| srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, |
| _mm_min_epi16(srcRegFilt3, srcRegFilt2)); |
| |
| // reading the next 16 bytes |
| // (part of it was being read by earlier read) |
| srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + 5)); |
| |
| // add and saturate the results together |
| srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, |
| _mm_max_epi16(srcRegFilt3, srcRegFilt2)); |
| |
| // filter the source buffer |
| srcRegFilt2_1 = _mm_shuffle_epi8(srcReg2, |
| _mm256_castsi256_si128(filt1Reg)); |
| srcRegFilt2 = _mm_shuffle_epi8(srcReg2, |
| _mm256_castsi256_si128(filt4Reg)); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt2_1 = _mm_maddubs_epi16(srcRegFilt2_1, |
| _mm256_castsi256_si128(firstFilters)); |
| srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, |
| _mm256_castsi256_si128(forthFilters)); |
| |
| // add and saturate the results together |
| srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, srcRegFilt2); |
| |
| // filter the source buffer |
| srcRegFilt3 = _mm_shuffle_epi8(srcReg2, |
| _mm256_castsi256_si128(filt2Reg)); |
| srcRegFilt2 = _mm_shuffle_epi8(srcReg2, |
| _mm256_castsi256_si128(filt3Reg)); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, |
| _mm256_castsi256_si128(secondFilters)); |
| srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, |
| _mm256_castsi256_si128(thirdFilters)); |
| |
| // add and saturate the results together |
| srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, |
| _mm_min_epi16(srcRegFilt3, srcRegFilt2)); |
| srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, |
| _mm_max_epi16(srcRegFilt3, srcRegFilt2)); |
| |
| |
| srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, |
| _mm256_castsi256_si128(addFilterReg64)); |
| |
| srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, |
| _mm256_castsi256_si128(addFilterReg64)); |
| |
| // shift by 7 bit each 16 bit |
| srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 7); |
| srcRegFilt2_1 = _mm_srai_epi16(srcRegFilt2_1, 7); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve |
| // result |
| srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, srcRegFilt2_1); |
| |
| // save 16 bytes |
| _mm_store_si128((__m128i*)output_ptr, srcRegFilt1_1); |
| } |
| } |
| |
| static void vpx_filter_block1d16_v8_avx2(const uint8_t *src_ptr, |
| ptrdiff_t src_pitch, |
| uint8_t *output_ptr, |
| ptrdiff_t out_pitch, |
| uint32_t output_height, |
| const int16_t *filter) { |
| __m128i filtersReg; |
| __m256i addFilterReg64; |
| __m256i srcReg32b1, srcReg32b2, srcReg32b3, srcReg32b4, srcReg32b5; |
| __m256i srcReg32b6, srcReg32b7, srcReg32b8, srcReg32b9, srcReg32b10; |
| __m256i srcReg32b11, srcReg32b12, filtersReg32; |
| __m256i firstFilters, secondFilters, thirdFilters, forthFilters; |
| unsigned int i; |
| ptrdiff_t src_stride, dst_stride; |
| |
| // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 |
| addFilterReg64 = _mm256_set1_epi32((int)0x0400040u); |
| filtersReg = _mm_loadu_si128((const __m128i *)filter); |
| // converting the 16 bit (short) to 8 bit (byte) and have the |
| // same data in both lanes of 128 bit register. |
| filtersReg =_mm_packs_epi16(filtersReg, filtersReg); |
| // have the same data in both lanes of a 256 bit register |
| filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); |
| |
| // duplicate only the first 16 bits (first and second byte) |
| // across 256 bit register |
| firstFilters = _mm256_shuffle_epi8(filtersReg32, |
| _mm256_set1_epi16(0x100u)); |
| // duplicate only the second 16 bits (third and forth byte) |
| // across 256 bit register |
| secondFilters = _mm256_shuffle_epi8(filtersReg32, |
| _mm256_set1_epi16(0x302u)); |
| // duplicate only the third 16 bits (fifth and sixth byte) |
| // across 256 bit register |
| thirdFilters = _mm256_shuffle_epi8(filtersReg32, |
| _mm256_set1_epi16(0x504u)); |
| // duplicate only the forth 16 bits (seventh and eighth byte) |
| // across 256 bit register |
| forthFilters = _mm256_shuffle_epi8(filtersReg32, |
| _mm256_set1_epi16(0x706u)); |
| |
| // multiple the size of the source and destination stride by two |
| src_stride = src_pitch << 1; |
| dst_stride = out_pitch << 1; |
| |
| // load 16 bytes 7 times in stride of src_pitch |
| srcReg32b1 = _mm256_castsi128_si256( |
| _mm_loadu_si128((const __m128i *)(src_ptr))); |
| srcReg32b2 = _mm256_castsi128_si256( |
| _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch))); |
| srcReg32b3 = _mm256_castsi128_si256( |
| _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2))); |
| srcReg32b4 = _mm256_castsi128_si256( |
| _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3))); |
| srcReg32b5 = _mm256_castsi128_si256( |
| _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4))); |
| srcReg32b6 = _mm256_castsi128_si256( |
| _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5))); |
| srcReg32b7 = _mm256_castsi128_si256( |
| _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6))); |
| |
| // have each consecutive loads on the same 256 register |
| srcReg32b1 = _mm256_inserti128_si256(srcReg32b1, |
| _mm256_castsi256_si128(srcReg32b2), 1); |
| srcReg32b2 = _mm256_inserti128_si256(srcReg32b2, |
| _mm256_castsi256_si128(srcReg32b3), 1); |
| srcReg32b3 = _mm256_inserti128_si256(srcReg32b3, |
| _mm256_castsi256_si128(srcReg32b4), 1); |
| srcReg32b4 = _mm256_inserti128_si256(srcReg32b4, |
| _mm256_castsi256_si128(srcReg32b5), 1); |
| srcReg32b5 = _mm256_inserti128_si256(srcReg32b5, |
| _mm256_castsi256_si128(srcReg32b6), 1); |
| srcReg32b6 = _mm256_inserti128_si256(srcReg32b6, |
| _mm256_castsi256_si128(srcReg32b7), 1); |
| |
| // merge every two consecutive registers except the last one |
| srcReg32b10 = _mm256_unpacklo_epi8(srcReg32b1, srcReg32b2); |
| srcReg32b1 = _mm256_unpackhi_epi8(srcReg32b1, srcReg32b2); |
| |
| // save |
| srcReg32b11 = _mm256_unpacklo_epi8(srcReg32b3, srcReg32b4); |
| |
| // save |
| srcReg32b3 = _mm256_unpackhi_epi8(srcReg32b3, srcReg32b4); |
| |
| // save |
| srcReg32b2 = _mm256_unpacklo_epi8(srcReg32b5, srcReg32b6); |
| |
| // save |
| srcReg32b5 = _mm256_unpackhi_epi8(srcReg32b5, srcReg32b6); |
| |
| |
| for (i = output_height; i > 1; i-=2) { |
| // load the last 2 loads of 16 bytes and have every two |
| // consecutive loads in the same 256 bit register |
| srcReg32b8 = _mm256_castsi128_si256( |
| _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7))); |
| srcReg32b7 = _mm256_inserti128_si256(srcReg32b7, |
| _mm256_castsi256_si128(srcReg32b8), 1); |
| srcReg32b9 = _mm256_castsi128_si256( |
| _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 8))); |
| srcReg32b8 = _mm256_inserti128_si256(srcReg32b8, |
| _mm256_castsi256_si128(srcReg32b9), 1); |
| |
| // merge every two consecutive registers |
| // save |
| srcReg32b4 = _mm256_unpacklo_epi8(srcReg32b7, srcReg32b8); |
| srcReg32b7 = _mm256_unpackhi_epi8(srcReg32b7, srcReg32b8); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcReg32b10 = _mm256_maddubs_epi16(srcReg32b10, firstFilters); |
| srcReg32b6 = _mm256_maddubs_epi16(srcReg32b4, forthFilters); |
| |
| // add and saturate the results together |
| srcReg32b10 = _mm256_adds_epi16(srcReg32b10, srcReg32b6); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcReg32b8 = _mm256_maddubs_epi16(srcReg32b11, secondFilters); |
| srcReg32b12 = _mm256_maddubs_epi16(srcReg32b2, thirdFilters); |
| |
| // add and saturate the results together |
| srcReg32b10 = _mm256_adds_epi16(srcReg32b10, |
| _mm256_min_epi16(srcReg32b8, srcReg32b12)); |
| srcReg32b10 = _mm256_adds_epi16(srcReg32b10, |
| _mm256_max_epi16(srcReg32b8, srcReg32b12)); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcReg32b1 = _mm256_maddubs_epi16(srcReg32b1, firstFilters); |
| srcReg32b6 = _mm256_maddubs_epi16(srcReg32b7, forthFilters); |
| |
| srcReg32b1 = _mm256_adds_epi16(srcReg32b1, srcReg32b6); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcReg32b8 = _mm256_maddubs_epi16(srcReg32b3, secondFilters); |
| srcReg32b12 = _mm256_maddubs_epi16(srcReg32b5, thirdFilters); |
| |
| // add and saturate the results together |
| srcReg32b1 = _mm256_adds_epi16(srcReg32b1, |
| _mm256_min_epi16(srcReg32b8, srcReg32b12)); |
| srcReg32b1 = _mm256_adds_epi16(srcReg32b1, |
| _mm256_max_epi16(srcReg32b8, srcReg32b12)); |
| |
| srcReg32b10 = _mm256_adds_epi16(srcReg32b10, addFilterReg64); |
| srcReg32b1 = _mm256_adds_epi16(srcReg32b1, addFilterReg64); |
| |
| // shift by 7 bit each 16 bit |
| srcReg32b10 = _mm256_srai_epi16(srcReg32b10, 7); |
| srcReg32b1 = _mm256_srai_epi16(srcReg32b1, 7); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve |
| // result |
| srcReg32b1 = _mm256_packus_epi16(srcReg32b10, srcReg32b1); |
| |
| src_ptr+=src_stride; |
| |
| // save 16 bytes |
| _mm_store_si128((__m128i*)output_ptr, |
| _mm256_castsi256_si128(srcReg32b1)); |
| |
| // save the next 16 bits |
| _mm_store_si128((__m128i*)(output_ptr+out_pitch), |
| _mm256_extractf128_si256(srcReg32b1, 1)); |
| |
| output_ptr+=dst_stride; |
| |
| // save part of the registers for next strides |
| srcReg32b10 = srcReg32b11; |
| srcReg32b1 = srcReg32b3; |
| srcReg32b11 = srcReg32b2; |
| srcReg32b3 = srcReg32b5; |
| srcReg32b2 = srcReg32b4; |
| srcReg32b5 = srcReg32b7; |
| srcReg32b7 = srcReg32b9; |
| } |
| if (i > 0) { |
| __m128i srcRegFilt1, srcRegFilt3, srcRegFilt4, srcRegFilt5; |
| __m128i srcRegFilt6, srcRegFilt7, srcRegFilt8; |
| // load the last 16 bytes |
| srcRegFilt8 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7)); |
| |
| // merge the last 2 results together |
| srcRegFilt4 = _mm_unpacklo_epi8( |
| _mm256_castsi256_si128(srcReg32b7), srcRegFilt8); |
| srcRegFilt7 = _mm_unpackhi_epi8( |
| _mm256_castsi256_si128(srcReg32b7), srcRegFilt8); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt1 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b10), |
| _mm256_castsi256_si128(firstFilters)); |
| srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4, |
| _mm256_castsi256_si128(forthFilters)); |
| srcRegFilt3 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b1), |
| _mm256_castsi256_si128(firstFilters)); |
| srcRegFilt7 = _mm_maddubs_epi16(srcRegFilt7, |
| _mm256_castsi256_si128(forthFilters)); |
| |
| // add and saturate the results together |
| srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4); |
| srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, srcRegFilt7); |
| |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt4 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b11), |
| _mm256_castsi256_si128(secondFilters)); |
| srcRegFilt5 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b3), |
| _mm256_castsi256_si128(secondFilters)); |
| |
| // multiply 2 adjacent elements with the filter and add the result |
| srcRegFilt6 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b2), |
| _mm256_castsi256_si128(thirdFilters)); |
| srcRegFilt7 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b5), |
| _mm256_castsi256_si128(thirdFilters)); |
| |
| // add and saturate the results together |
| srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, |
| _mm_min_epi16(srcRegFilt4, srcRegFilt6)); |
| srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, |
| _mm_min_epi16(srcRegFilt5, srcRegFilt7)); |
| |
| // add and saturate the results together |
| srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, |
| _mm_max_epi16(srcRegFilt4, srcRegFilt6)); |
| srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, |
| _mm_max_epi16(srcRegFilt5, srcRegFilt7)); |
| |
| |
| srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, |
| _mm256_castsi256_si128(addFilterReg64)); |
| srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, |
| _mm256_castsi256_si128(addFilterReg64)); |
| |
| // shift by 7 bit each 16 bit |
| srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); |
| srcRegFilt3 = _mm_srai_epi16(srcRegFilt3, 7); |
| |
| // shrink to 8 bit each 16 bits, the first lane contain the first |
| // convolve result and the second lane contain the second convolve |
| // result |
| srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt3); |
| |
| // save 16 bytes |
| _mm_store_si128((__m128i*)output_ptr, srcRegFilt1); |
| } |
| } |
| |
| #if HAVE_AVX2 && HAVE_SSSE3 |
| filter8_1dfunction vpx_filter_block1d4_v8_ssse3; |
| #if ARCH_X86_64 |
| filter8_1dfunction vpx_filter_block1d8_v8_intrin_ssse3; |
| filter8_1dfunction vpx_filter_block1d8_h8_intrin_ssse3; |
| filter8_1dfunction vpx_filter_block1d4_h8_intrin_ssse3; |
| #define vpx_filter_block1d8_v8_avx2 vpx_filter_block1d8_v8_intrin_ssse3 |
| #define vpx_filter_block1d8_h8_avx2 vpx_filter_block1d8_h8_intrin_ssse3 |
| #define vpx_filter_block1d4_h8_avx2 vpx_filter_block1d4_h8_intrin_ssse3 |
| #else // ARCH_X86 |
| filter8_1dfunction vpx_filter_block1d8_v8_ssse3; |
| filter8_1dfunction vpx_filter_block1d8_h8_ssse3; |
| filter8_1dfunction vpx_filter_block1d4_h8_ssse3; |
| #define vpx_filter_block1d8_v8_avx2 vpx_filter_block1d8_v8_ssse3 |
| #define vpx_filter_block1d8_h8_avx2 vpx_filter_block1d8_h8_ssse3 |
| #define vpx_filter_block1d4_h8_avx2 vpx_filter_block1d4_h8_ssse3 |
| #endif // ARCH_X86_64 |
| filter8_1dfunction vpx_filter_block1d16_v2_ssse3; |
| filter8_1dfunction vpx_filter_block1d16_h2_ssse3; |
| filter8_1dfunction vpx_filter_block1d8_v2_ssse3; |
| filter8_1dfunction vpx_filter_block1d8_h2_ssse3; |
| filter8_1dfunction vpx_filter_block1d4_v2_ssse3; |
| filter8_1dfunction vpx_filter_block1d4_h2_ssse3; |
| #define vpx_filter_block1d4_v8_avx2 vpx_filter_block1d4_v8_ssse3 |
| #define vpx_filter_block1d16_v2_avx2 vpx_filter_block1d16_v2_ssse3 |
| #define vpx_filter_block1d16_h2_avx2 vpx_filter_block1d16_h2_ssse3 |
| #define vpx_filter_block1d8_v2_avx2 vpx_filter_block1d8_v2_ssse3 |
| #define vpx_filter_block1d8_h2_avx2 vpx_filter_block1d8_h2_ssse3 |
| #define vpx_filter_block1d4_v2_avx2 vpx_filter_block1d4_v2_ssse3 |
| #define vpx_filter_block1d4_h2_avx2 vpx_filter_block1d4_h2_ssse3 |
| // void vpx_convolve8_horiz_avx2(const uint8_t *src, ptrdiff_t src_stride, |
| // uint8_t *dst, ptrdiff_t dst_stride, |
| // const int16_t *filter_x, int x_step_q4, |
| // const int16_t *filter_y, int y_step_q4, |
| // int w, int h); |
| // void vpx_convolve8_vert_avx2(const uint8_t *src, ptrdiff_t src_stride, |
| // uint8_t *dst, ptrdiff_t dst_stride, |
| // const int16_t *filter_x, int x_step_q4, |
| // const int16_t *filter_y, int y_step_q4, |
| // int w, int h); |
| FUN_CONV_1D(horiz, x_step_q4, filter_x, h, src, , avx2); |
| FUN_CONV_1D(vert, y_step_q4, filter_y, v, src - src_stride * 3, , avx2); |
| |
| // void vpx_convolve8_avx2(const uint8_t *src, ptrdiff_t src_stride, |
| // uint8_t *dst, ptrdiff_t dst_stride, |
| // const int16_t *filter_x, int x_step_q4, |
| // const int16_t *filter_y, int y_step_q4, |
| // int w, int h); |
| FUN_CONV_2D(, avx2); |
| #endif // HAVE_AX2 && HAVE_SSSE3 |