|  | /* | 
|  | * Copyright (c) 2017, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <math.h> | 
|  |  | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  |  | 
|  | #include "aom_dsp/noise_util.h" | 
|  | #include "aom_mem/aom_mem.h" | 
|  |  | 
|  | double aom_normalized_cross_correlation(const double *a, const double *b, | 
|  | int n) { | 
|  | double c = 0; | 
|  | double a_len = 0; | 
|  | double b_len = 0; | 
|  | for (int i = 0; i < n; ++i) { | 
|  | a_len += a[i] * a[i]; | 
|  | b_len += b[i] * b[i]; | 
|  | c += a[i] * b[i]; | 
|  | } | 
|  | return c / (sqrt(a_len) * sqrt(b_len)); | 
|  | } | 
|  |  | 
|  | int aom_noise_data_validate(const double *data, int w, int h) { | 
|  | const double kVarianceThreshold = 2; | 
|  | const double kMeanThreshold = 2; | 
|  |  | 
|  | int x = 0, y = 0; | 
|  | int ret_value = 1; | 
|  | double var = 0, mean = 0; | 
|  | double *mean_x, *mean_y, *var_x, *var_y; | 
|  |  | 
|  | // Check that noise variance is not increasing in x or y | 
|  | // and that the data is zero mean. | 
|  | mean_x = (double *)aom_malloc(sizeof(*mean_x) * w); | 
|  | var_x = (double *)aom_malloc(sizeof(*var_x) * w); | 
|  | mean_y = (double *)aom_malloc(sizeof(*mean_x) * h); | 
|  | var_y = (double *)aom_malloc(sizeof(*var_y) * h); | 
|  |  | 
|  | memset(mean_x, 0, sizeof(*mean_x) * w); | 
|  | memset(var_x, 0, sizeof(*var_x) * w); | 
|  | memset(mean_y, 0, sizeof(*mean_y) * h); | 
|  | memset(var_y, 0, sizeof(*var_y) * h); | 
|  |  | 
|  | for (y = 0; y < h; ++y) { | 
|  | for (x = 0; x < w; ++x) { | 
|  | const double d = data[y * w + x]; | 
|  | var_x[x] += d * d; | 
|  | var_y[y] += d * d; | 
|  | mean_x[x] += d; | 
|  | mean_y[y] += d; | 
|  | var += d * d; | 
|  | mean += d; | 
|  | } | 
|  | } | 
|  | mean /= (w * h); | 
|  | var = var / (w * h) - mean * mean; | 
|  |  | 
|  | for (y = 0; y < h; ++y) { | 
|  | mean_y[y] /= h; | 
|  | var_y[y] = var_y[y] / h - mean_y[y] * mean_y[y]; | 
|  | if (fabs(var_y[y] - var) >= kVarianceThreshold) { | 
|  | fprintf(stderr, "Variance distance too large %f %f\n", var_y[y], var); | 
|  | ret_value = 0; | 
|  | break; | 
|  | } | 
|  | if (fabs(mean_y[y] - mean) >= kMeanThreshold) { | 
|  | fprintf(stderr, "Mean distance too large %f %f\n", mean_y[y], mean); | 
|  | ret_value = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (x = 0; x < w; ++x) { | 
|  | mean_x[x] /= w; | 
|  | var_x[x] = var_x[x] / w - mean_x[x] * mean_x[x]; | 
|  | if (fabs(var_x[x] - var) >= kVarianceThreshold) { | 
|  | fprintf(stderr, "Variance distance too large %f %f\n", var_x[x], var); | 
|  | ret_value = 0; | 
|  | break; | 
|  | } | 
|  | if (fabs(mean_x[x] - mean) >= kMeanThreshold) { | 
|  | fprintf(stderr, "Mean distance too large %f %f\n", mean_x[x], mean); | 
|  | ret_value = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | aom_free(mean_x); | 
|  | aom_free(mean_y); | 
|  | aom_free(var_x); | 
|  | aom_free(var_y); | 
|  |  | 
|  | return ret_value; | 
|  | } |