| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <emmintrin.h> // SSE2 |
| |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/x86/synonyms.h" |
| |
| #include "aom_ports/mem.h" |
| |
| #include "av1/common/filter.h" |
| #include "av1/common/onyxc_int.h" |
| #include "av1/common/reconinter.h" |
| |
| unsigned int aom_get_mb_ss_sse2(const int16_t *src) { |
| __m128i vsum = _mm_setzero_si128(); |
| int i; |
| |
| for (i = 0; i < 32; ++i) { |
| const __m128i v = xx_loadu_128(src); |
| vsum = _mm_add_epi32(vsum, _mm_madd_epi16(v, v)); |
| src += 8; |
| } |
| |
| vsum = _mm_add_epi32(vsum, _mm_srli_si128(vsum, 8)); |
| vsum = _mm_add_epi32(vsum, _mm_srli_si128(vsum, 4)); |
| return _mm_cvtsi128_si32(vsum); |
| } |
| |
| static INLINE __m128i load4x2_sse2(const uint8_t *const p, const int stride) { |
| const __m128i p0 = _mm_cvtsi32_si128(*(const uint32_t *)(p + 0 * stride)); |
| const __m128i p1 = _mm_cvtsi32_si128(*(const uint32_t *)(p + 1 * stride)); |
| return _mm_unpacklo_epi8(_mm_unpacklo_epi32(p0, p1), _mm_setzero_si128()); |
| } |
| |
| static INLINE __m128i load8_8to16_sse2(const uint8_t *const p) { |
| const __m128i p0 = _mm_loadl_epi64((const __m128i *)p); |
| return _mm_unpacklo_epi8(p0, _mm_setzero_si128()); |
| } |
| |
| // Accumulate 4 32bit numbers in val to 1 32bit number |
| static INLINE unsigned int add32x4_sse2(__m128i val) { |
| val = _mm_add_epi32(val, _mm_srli_si128(val, 8)); |
| val = _mm_add_epi32(val, _mm_srli_si128(val, 4)); |
| return _mm_cvtsi128_si32(val); |
| } |
| |
| // Accumulate 8 16bit in sum to 4 32bit number |
| static INLINE __m128i sum_to_32bit_sse2(const __m128i sum) { |
| const __m128i sum_lo = _mm_srai_epi32(_mm_unpacklo_epi16(sum, sum), 16); |
| const __m128i sum_hi = _mm_srai_epi32(_mm_unpackhi_epi16(sum, sum), 16); |
| return _mm_add_epi32(sum_lo, sum_hi); |
| } |
| |
| static INLINE void variance_kernel_sse2(const __m128i src, const __m128i ref, |
| __m128i *const sse, |
| __m128i *const sum) { |
| const __m128i diff = _mm_sub_epi16(src, ref); |
| *sse = _mm_add_epi32(*sse, _mm_madd_epi16(diff, diff)); |
| *sum = _mm_add_epi16(*sum, diff); |
| } |
| |
| // Can handle 128 pixels' diff sum (such as 8x16 or 16x8) |
| // Slightly faster than variance_final_256_pel_sse2() |
| // diff sum of 128 pixels can still fit in 16bit integer |
| static INLINE void variance_final_128_pel_sse2(__m128i vsse, __m128i vsum, |
| unsigned int *const sse, |
| int *const sum) { |
| *sse = add32x4_sse2(vsse); |
| |
| vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 8)); |
| vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 4)); |
| vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 2)); |
| *sum = (int16_t)_mm_extract_epi16(vsum, 0); |
| } |
| |
| // Can handle 256 pixels' diff sum (such as 16x16) |
| static INLINE void variance_final_256_pel_sse2(__m128i vsse, __m128i vsum, |
| unsigned int *const sse, |
| int *const sum) { |
| *sse = add32x4_sse2(vsse); |
| |
| vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 8)); |
| vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 4)); |
| *sum = (int16_t)_mm_extract_epi16(vsum, 0); |
| *sum += (int16_t)_mm_extract_epi16(vsum, 1); |
| } |
| |
| // Can handle 512 pixels' diff sum (such as 16x32 or 32x16) |
| static INLINE void variance_final_512_pel_sse2(__m128i vsse, __m128i vsum, |
| unsigned int *const sse, |
| int *const sum) { |
| *sse = add32x4_sse2(vsse); |
| |
| vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 8)); |
| vsum = _mm_unpacklo_epi16(vsum, vsum); |
| vsum = _mm_srai_epi32(vsum, 16); |
| *sum = add32x4_sse2(vsum); |
| } |
| |
| // Can handle 1024 pixels' diff sum (such as 32x32) |
| static INLINE void variance_final_1024_pel_sse2(__m128i vsse, __m128i vsum, |
| unsigned int *const sse, |
| int *const sum) { |
| *sse = add32x4_sse2(vsse); |
| |
| vsum = sum_to_32bit_sse2(vsum); |
| *sum = add32x4_sse2(vsum); |
| } |
| |
| static INLINE void variance4_sse2(const uint8_t *src, const int src_stride, |
| const uint8_t *ref, const int ref_stride, |
| const int h, __m128i *const sse, |
| __m128i *const sum) { |
| assert(h <= 256); // May overflow for larger height. |
| *sum = _mm_setzero_si128(); |
| |
| for (int i = 0; i < h; i += 2) { |
| const __m128i s = load4x2_sse2(src, src_stride); |
| const __m128i r = load4x2_sse2(ref, ref_stride); |
| |
| variance_kernel_sse2(s, r, sse, sum); |
| src += 2 * src_stride; |
| ref += 2 * ref_stride; |
| } |
| } |
| |
| static INLINE void variance8_sse2(const uint8_t *src, const int src_stride, |
| const uint8_t *ref, const int ref_stride, |
| const int h, __m128i *const sse, |
| __m128i *const sum) { |
| assert(h <= 128); // May overflow for larger height. |
| *sum = _mm_setzero_si128(); |
| for (int i = 0; i < h; i++) { |
| const __m128i s = load8_8to16_sse2(src); |
| const __m128i r = load8_8to16_sse2(ref); |
| |
| variance_kernel_sse2(s, r, sse, sum); |
| src += src_stride; |
| ref += ref_stride; |
| } |
| } |
| |
| static INLINE void variance16_kernel_sse2(const uint8_t *const src, |
| const uint8_t *const ref, |
| __m128i *const sse, |
| __m128i *const sum) { |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i s = _mm_loadu_si128((const __m128i *)src); |
| const __m128i r = _mm_loadu_si128((const __m128i *)ref); |
| const __m128i src0 = _mm_unpacklo_epi8(s, zero); |
| const __m128i ref0 = _mm_unpacklo_epi8(r, zero); |
| const __m128i src1 = _mm_unpackhi_epi8(s, zero); |
| const __m128i ref1 = _mm_unpackhi_epi8(r, zero); |
| |
| variance_kernel_sse2(src0, ref0, sse, sum); |
| variance_kernel_sse2(src1, ref1, sse, sum); |
| } |
| |
| static INLINE void variance16_sse2(const uint8_t *src, const int src_stride, |
| const uint8_t *ref, const int ref_stride, |
| const int h, __m128i *const sse, |
| __m128i *const sum) { |
| assert(h <= 64); // May overflow for larger height. |
| *sum = _mm_setzero_si128(); |
| |
| for (int i = 0; i < h; ++i) { |
| variance16_kernel_sse2(src, ref, sse, sum); |
| src += src_stride; |
| ref += ref_stride; |
| } |
| } |
| |
| static INLINE void variance32_sse2(const uint8_t *src, const int src_stride, |
| const uint8_t *ref, const int ref_stride, |
| const int h, __m128i *const sse, |
| __m128i *const sum) { |
| assert(h <= 32); // May overflow for larger height. |
| // Don't initialize sse here since it's an accumulation. |
| *sum = _mm_setzero_si128(); |
| |
| for (int i = 0; i < h; ++i) { |
| variance16_kernel_sse2(src + 0, ref + 0, sse, sum); |
| variance16_kernel_sse2(src + 16, ref + 16, sse, sum); |
| src += src_stride; |
| ref += ref_stride; |
| } |
| } |
| |
| static INLINE void variance64_sse2(const uint8_t *src, const int src_stride, |
| const uint8_t *ref, const int ref_stride, |
| const int h, __m128i *const sse, |
| __m128i *const sum) { |
| assert(h <= 16); // May overflow for larger height. |
| *sum = _mm_setzero_si128(); |
| |
| for (int i = 0; i < h; ++i) { |
| variance16_kernel_sse2(src + 0, ref + 0, sse, sum); |
| variance16_kernel_sse2(src + 16, ref + 16, sse, sum); |
| variance16_kernel_sse2(src + 32, ref + 32, sse, sum); |
| variance16_kernel_sse2(src + 48, ref + 48, sse, sum); |
| src += src_stride; |
| ref += ref_stride; |
| } |
| } |
| |
| static INLINE void variance128_sse2(const uint8_t *src, const int src_stride, |
| const uint8_t *ref, const int ref_stride, |
| const int h, __m128i *const sse, |
| __m128i *const sum) { |
| assert(h <= 8); // May overflow for larger height. |
| *sum = _mm_setzero_si128(); |
| |
| for (int i = 0; i < h; ++i) { |
| for (int j = 0; j < 4; ++j) { |
| const int offset0 = j << 5; |
| const int offset1 = offset0 + 16; |
| variance16_kernel_sse2(src + offset0, ref + offset0, sse, sum); |
| variance16_kernel_sse2(src + offset1, ref + offset1, sse, sum); |
| } |
| src += src_stride; |
| ref += ref_stride; |
| } |
| } |
| |
| #define AOM_VAR_NO_LOOP_SSE2(bw, bh, bits, max_pixels) \ |
| unsigned int aom_variance##bw##x##bh##_sse2( \ |
| const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \ |
| unsigned int *sse) { \ |
| __m128i vsse = _mm_setzero_si128(); \ |
| __m128i vsum; \ |
| int sum = 0; \ |
| variance##bw##_sse2(src, src_stride, ref, ref_stride, bh, &vsse, &vsum); \ |
| variance_final_##max_pixels##_pel_sse2(vsse, vsum, sse, &sum); \ |
| assert(sum <= 255 * bw * bh); \ |
| assert(sum >= -255 * bw * bh); \ |
| return *sse - (uint32_t)(((int64_t)sum * sum) >> bits); \ |
| } |
| |
| AOM_VAR_NO_LOOP_SSE2(4, 4, 4, 128); |
| AOM_VAR_NO_LOOP_SSE2(4, 8, 5, 128); |
| AOM_VAR_NO_LOOP_SSE2(4, 16, 6, 128); |
| |
| AOM_VAR_NO_LOOP_SSE2(8, 4, 5, 128); |
| AOM_VAR_NO_LOOP_SSE2(8, 8, 6, 128); |
| AOM_VAR_NO_LOOP_SSE2(8, 16, 7, 128); |
| AOM_VAR_NO_LOOP_SSE2(8, 32, 8, 256); |
| |
| AOM_VAR_NO_LOOP_SSE2(16, 4, 6, 128); |
| AOM_VAR_NO_LOOP_SSE2(16, 8, 7, 128); |
| AOM_VAR_NO_LOOP_SSE2(16, 16, 8, 256); |
| AOM_VAR_NO_LOOP_SSE2(16, 32, 9, 512); |
| AOM_VAR_NO_LOOP_SSE2(16, 64, 10, 1024); |
| |
| AOM_VAR_NO_LOOP_SSE2(32, 8, 8, 256); |
| AOM_VAR_NO_LOOP_SSE2(32, 16, 9, 512); |
| AOM_VAR_NO_LOOP_SSE2(32, 32, 10, 1024); |
| |
| #define AOM_VAR_LOOP_SSE2(bw, bh, bits, uh) \ |
| unsigned int aom_variance##bw##x##bh##_sse2( \ |
| const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \ |
| unsigned int *sse) { \ |
| __m128i vsse = _mm_setzero_si128(); \ |
| __m128i vsum = _mm_setzero_si128(); \ |
| for (int i = 0; i < (bh / uh); ++i) { \ |
| __m128i vsum16; \ |
| variance##bw##_sse2(src, src_stride, ref, ref_stride, uh, &vsse, \ |
| &vsum16); \ |
| vsum = _mm_add_epi32(vsum, sum_to_32bit_sse2(vsum16)); \ |
| src += (src_stride * uh); \ |
| ref += (ref_stride * uh); \ |
| } \ |
| *sse = add32x4_sse2(vsse); \ |
| int sum = add32x4_sse2(vsum); \ |
| assert(sum <= 255 * bw * bh); \ |
| assert(sum >= -255 * bw * bh); \ |
| return *sse - (uint32_t)(((int64_t)sum * sum) >> bits); \ |
| } |
| |
| AOM_VAR_LOOP_SSE2(32, 64, 11, 32); // 32x32 * ( 64/32 ) |
| |
| AOM_VAR_NO_LOOP_SSE2(64, 16, 10, 1024); |
| AOM_VAR_LOOP_SSE2(64, 32, 11, 16); // 64x16 * ( 32/16 ) |
| AOM_VAR_LOOP_SSE2(64, 64, 12, 16); // 64x16 * ( 64/16 ) |
| AOM_VAR_LOOP_SSE2(64, 128, 13, 16); // 64x16 * ( 128/16 ) |
| |
| AOM_VAR_LOOP_SSE2(128, 64, 13, 8); // 128x8 * ( 64/8 ) |
| AOM_VAR_LOOP_SSE2(128, 128, 14, 8); // 128x8 * ( 128/8 ) |
| |
| unsigned int aom_mse8x8_sse2(const uint8_t *src, int src_stride, |
| const uint8_t *ref, int ref_stride, |
| unsigned int *sse) { |
| aom_variance8x8_sse2(src, src_stride, ref, ref_stride, sse); |
| return *sse; |
| } |
| |
| unsigned int aom_mse8x16_sse2(const uint8_t *src, int src_stride, |
| const uint8_t *ref, int ref_stride, |
| unsigned int *sse) { |
| aom_variance8x16_sse2(src, src_stride, ref, ref_stride, sse); |
| return *sse; |
| } |
| |
| unsigned int aom_mse16x8_sse2(const uint8_t *src, int src_stride, |
| const uint8_t *ref, int ref_stride, |
| unsigned int *sse) { |
| aom_variance16x8_sse2(src, src_stride, ref, ref_stride, sse); |
| return *sse; |
| } |
| |
| unsigned int aom_mse16x16_sse2(const uint8_t *src, int src_stride, |
| const uint8_t *ref, int ref_stride, |
| unsigned int *sse) { |
| aom_variance16x16_sse2(src, src_stride, ref, ref_stride, sse); |
| return *sse; |
| } |
| |
| // The 2 unused parameters are place holders for PIC enabled build. |
| // These definitions are for functions defined in subpel_variance.asm |
| #define DECL(w, opt) \ |
| int aom_sub_pixel_variance##w##xh_##opt( \ |
| const uint8_t *src, ptrdiff_t src_stride, int x_offset, int y_offset, \ |
| const uint8_t *dst, ptrdiff_t dst_stride, int height, unsigned int *sse, \ |
| void *unused0, void *unused) |
| #define DECLS(opt) \ |
| DECL(4, opt); \ |
| DECL(8, opt); \ |
| DECL(16, opt) |
| |
| DECLS(sse2); |
| DECLS(ssse3); |
| #undef DECLS |
| #undef DECL |
| |
| #define FN(w, h, wf, wlog2, hlog2, opt, cast_prod, cast) \ |
| unsigned int aom_sub_pixel_variance##w##x##h##_##opt( \ |
| const uint8_t *src, int src_stride, int x_offset, int y_offset, \ |
| const uint8_t *dst, int dst_stride, unsigned int *sse_ptr) { \ |
| unsigned int sse; \ |
| int se = aom_sub_pixel_variance##wf##xh_##opt(src, src_stride, x_offset, \ |
| y_offset, dst, dst_stride, \ |
| h, &sse, NULL, NULL); \ |
| if (w > wf) { \ |
| unsigned int sse2; \ |
| int se2 = aom_sub_pixel_variance##wf##xh_##opt( \ |
| src + 16, src_stride, x_offset, y_offset, dst + 16, dst_stride, h, \ |
| &sse2, NULL, NULL); \ |
| se += se2; \ |
| sse += sse2; \ |
| if (w > wf * 2) { \ |
| se2 = aom_sub_pixel_variance##wf##xh_##opt( \ |
| src + 32, src_stride, x_offset, y_offset, dst + 32, dst_stride, h, \ |
| &sse2, NULL, NULL); \ |
| se += se2; \ |
| sse += sse2; \ |
| se2 = aom_sub_pixel_variance##wf##xh_##opt( \ |
| src + 48, src_stride, x_offset, y_offset, dst + 48, dst_stride, h, \ |
| &sse2, NULL, NULL); \ |
| se += se2; \ |
| sse += sse2; \ |
| } \ |
| } \ |
| *sse_ptr = sse; \ |
| return sse - (unsigned int)(cast_prod(cast se * se) >> (wlog2 + hlog2)); \ |
| } |
| |
| #define FNS(opt) \ |
| FN(64, 64, 16, 6, 6, opt, (int64_t), (int64_t)); \ |
| FN(64, 32, 16, 6, 5, opt, (int64_t), (int64_t)); \ |
| FN(32, 64, 16, 5, 6, opt, (int64_t), (int64_t)); \ |
| FN(32, 32, 16, 5, 5, opt, (int64_t), (int64_t)); \ |
| FN(32, 16, 16, 5, 4, opt, (int64_t), (int64_t)); \ |
| FN(16, 32, 16, 4, 5, opt, (int64_t), (int64_t)); \ |
| FN(16, 16, 16, 4, 4, opt, (uint32_t), (int64_t)); \ |
| FN(16, 8, 16, 4, 3, opt, (int32_t), (int32_t)); \ |
| FN(8, 16, 8, 3, 4, opt, (int32_t), (int32_t)); \ |
| FN(8, 8, 8, 3, 3, opt, (int32_t), (int32_t)); \ |
| FN(8, 4, 8, 3, 2, opt, (int32_t), (int32_t)); \ |
| FN(4, 8, 4, 2, 3, opt, (int32_t), (int32_t)); \ |
| FN(4, 4, 4, 2, 2, opt, (int32_t), (int32_t)); \ |
| FN(4, 16, 4, 2, 4, opt, (int32_t), (int32_t)); \ |
| FN(16, 4, 16, 4, 2, opt, (int32_t), (int32_t)); \ |
| FN(8, 32, 8, 3, 5, opt, (uint32_t), (int64_t)); \ |
| FN(32, 8, 16, 5, 3, opt, (uint32_t), (int64_t)); \ |
| FN(16, 64, 16, 4, 6, opt, (int64_t), (int64_t)); \ |
| FN(64, 16, 16, 6, 4, opt, (int64_t), (int64_t)) |
| |
| FNS(sse2); |
| FNS(ssse3); |
| |
| #undef FNS |
| #undef FN |
| |
| // The 2 unused parameters are place holders for PIC enabled build. |
| #define DECL(w, opt) \ |
| int aom_sub_pixel_avg_variance##w##xh_##opt( \ |
| const uint8_t *src, ptrdiff_t src_stride, int x_offset, int y_offset, \ |
| const uint8_t *dst, ptrdiff_t dst_stride, const uint8_t *sec, \ |
| ptrdiff_t sec_stride, int height, unsigned int *sse, void *unused0, \ |
| void *unused) |
| #define DECLS(opt) \ |
| DECL(4, opt); \ |
| DECL(8, opt); \ |
| DECL(16, opt) |
| |
| DECLS(sse2); |
| DECLS(ssse3); |
| #undef DECL |
| #undef DECLS |
| |
| #define FN(w, h, wf, wlog2, hlog2, opt, cast_prod, cast) \ |
| unsigned int aom_sub_pixel_avg_variance##w##x##h##_##opt( \ |
| const uint8_t *src, int src_stride, int x_offset, int y_offset, \ |
| const uint8_t *dst, int dst_stride, unsigned int *sseptr, \ |
| const uint8_t *sec) { \ |
| unsigned int sse; \ |
| int se = aom_sub_pixel_avg_variance##wf##xh_##opt( \ |
| src, src_stride, x_offset, y_offset, dst, dst_stride, sec, w, h, &sse, \ |
| NULL, NULL); \ |
| if (w > wf) { \ |
| unsigned int sse2; \ |
| int se2 = aom_sub_pixel_avg_variance##wf##xh_##opt( \ |
| src + 16, src_stride, x_offset, y_offset, dst + 16, dst_stride, \ |
| sec + 16, w, h, &sse2, NULL, NULL); \ |
| se += se2; \ |
| sse += sse2; \ |
| if (w > wf * 2) { \ |
| se2 = aom_sub_pixel_avg_variance##wf##xh_##opt( \ |
| src + 32, src_stride, x_offset, y_offset, dst + 32, dst_stride, \ |
| sec + 32, w, h, &sse2, NULL, NULL); \ |
| se += se2; \ |
| sse += sse2; \ |
| se2 = aom_sub_pixel_avg_variance##wf##xh_##opt( \ |
| src + 48, src_stride, x_offset, y_offset, dst + 48, dst_stride, \ |
| sec + 48, w, h, &sse2, NULL, NULL); \ |
| se += se2; \ |
| sse += sse2; \ |
| } \ |
| } \ |
| *sseptr = sse; \ |
| return sse - (unsigned int)(cast_prod(cast se * se) >> (wlog2 + hlog2)); \ |
| } |
| |
| #define FNS(opt) \ |
| FN(64, 64, 16, 6, 6, opt, (int64_t), (int64_t)); \ |
| FN(64, 32, 16, 6, 5, opt, (int64_t), (int64_t)); \ |
| FN(32, 64, 16, 5, 6, opt, (int64_t), (int64_t)); \ |
| FN(32, 32, 16, 5, 5, opt, (int64_t), (int64_t)); \ |
| FN(32, 16, 16, 5, 4, opt, (int64_t), (int64_t)); \ |
| FN(16, 32, 16, 4, 5, opt, (int64_t), (int64_t)); \ |
| FN(16, 16, 16, 4, 4, opt, (uint32_t), (int64_t)); \ |
| FN(16, 8, 16, 4, 3, opt, (uint32_t), (int32_t)); \ |
| FN(8, 16, 8, 3, 4, opt, (uint32_t), (int32_t)); \ |
| FN(8, 8, 8, 3, 3, opt, (uint32_t), (int32_t)); \ |
| FN(8, 4, 8, 3, 2, opt, (uint32_t), (int32_t)); \ |
| FN(4, 8, 4, 2, 3, opt, (uint32_t), (int32_t)); \ |
| FN(4, 4, 4, 2, 2, opt, (uint32_t), (int32_t)); \ |
| FN(4, 16, 4, 2, 4, opt, (int32_t), (int32_t)); \ |
| FN(16, 4, 16, 4, 2, opt, (int32_t), (int32_t)); \ |
| FN(8, 32, 8, 3, 5, opt, (uint32_t), (int64_t)); \ |
| FN(32, 8, 16, 5, 3, opt, (uint32_t), (int64_t)); \ |
| FN(16, 64, 16, 4, 6, opt, (int64_t), (int64_t)); \ |
| FN(64, 16, 16, 6, 4, opt, (int64_t), (int64_t)) |
| |
| FNS(sse2); |
| FNS(ssse3); |
| |
| #undef FNS |
| #undef FN |
| |
| void aom_upsampled_pred_sse2(MACROBLOCKD *xd, const struct AV1Common *const cm, |
| int mi_row, int mi_col, const MV *const mv, |
| uint8_t *comp_pred, int width, int height, |
| int subpel_x_q3, int subpel_y_q3, |
| const uint8_t *ref, int ref_stride) { |
| // expect xd == NULL only in tests |
| if (xd != NULL) { |
| const MB_MODE_INFO *mi = xd->mi[0]; |
| const int ref_num = 0; |
| const int is_intrabc = is_intrabc_block(mi); |
| const struct scale_factors *const sf = |
| is_intrabc ? &cm->sf_identity : &xd->block_refs[ref_num]->sf; |
| const int is_scaled = av1_is_scaled(sf); |
| |
| if (is_scaled) { |
| // Note: This is mostly a copy from the >=8X8 case in |
| // build_inter_predictors() function, with some small tweaks. |
| |
| // Some assumptions. |
| const int plane = 0; |
| |
| // Get pre-requisites. |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int ssx = pd->subsampling_x; |
| const int ssy = pd->subsampling_y; |
| assert(ssx == 0 && ssy == 0); |
| const struct buf_2d *const dst_buf = &pd->dst; |
| const struct buf_2d *const pre_buf = |
| is_intrabc ? dst_buf : &pd->pre[ref_num]; |
| const int mi_x = mi_col * MI_SIZE; |
| const int mi_y = mi_row * MI_SIZE; |
| |
| // Calculate subpel_x/y and x/y_step. |
| const int row_start = 0; // Because ss_y is 0. |
| const int col_start = 0; // Because ss_x is 0. |
| const int pre_x = (mi_x + MI_SIZE * col_start) >> ssx; |
| const int pre_y = (mi_y + MI_SIZE * row_start) >> ssy; |
| int orig_pos_y = pre_y << SUBPEL_BITS; |
| orig_pos_y += mv->row * (1 << (1 - ssy)); |
| int orig_pos_x = pre_x << SUBPEL_BITS; |
| orig_pos_x += mv->col * (1 << (1 - ssx)); |
| int pos_y = sf->scale_value_y(orig_pos_y, sf); |
| int pos_x = sf->scale_value_x(orig_pos_x, sf); |
| pos_x += SCALE_EXTRA_OFF; |
| pos_y += SCALE_EXTRA_OFF; |
| |
| const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy); |
| const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx); |
| const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) |
| << SCALE_SUBPEL_BITS; |
| const int right = (pre_buf->width + AOM_INTERP_EXTEND) |
| << SCALE_SUBPEL_BITS; |
| pos_y = clamp(pos_y, top, bottom); |
| pos_x = clamp(pos_x, left, right); |
| |
| const uint8_t *const pre = |
| pre_buf->buf0 + (pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride + |
| (pos_x >> SCALE_SUBPEL_BITS); |
| |
| const SubpelParams subpel_params = { sf->x_step_q4, sf->y_step_q4, |
| pos_x & SCALE_SUBPEL_MASK, |
| pos_y & SCALE_SUBPEL_MASK }; |
| |
| // Get warp types. |
| const WarpedMotionParams *const wm = |
| &xd->global_motion[mi->ref_frame[ref_num]]; |
| const int is_global = is_global_mv_block(mi, wm->wmtype); |
| WarpTypesAllowed warp_types; |
| warp_types.global_warp_allowed = is_global; |
| warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL; |
| |
| // Get convolve parameters. |
| ConvolveParams conv_params = get_conv_params(ref_num, 0, plane, xd->bd); |
| const InterpFilters filters = |
| av1_broadcast_interp_filter(EIGHTTAP_REGULAR); |
| |
| // Get the inter predictor. |
| const int build_for_obmc = 0; |
| av1_make_inter_predictor(pre, pre_buf->stride, comp_pred, width, |
| &subpel_params, sf, width, height, &conv_params, |
| filters, &warp_types, mi_x >> pd->subsampling_x, |
| mi_y >> pd->subsampling_y, plane, ref_num, mi, |
| build_for_obmc, xd, cm->allow_warped_motion); |
| |
| return; |
| } |
| } |
| |
| const InterpFilterParams filter = |
| av1_get_interp_filter_params_with_block_size(EIGHTTAP_REGULAR, 8); |
| |
| if (!subpel_x_q3 && !subpel_y_q3) { |
| if (width >= 16) { |
| int i; |
| assert(!(width & 15)); |
| /*Read 16 pixels one row at a time.*/ |
| for (i = 0; i < height; i++) { |
| int j; |
| for (j = 0; j < width; j += 16) { |
| xx_storeu_128(comp_pred, xx_loadu_128(ref)); |
| comp_pred += 16; |
| ref += 16; |
| } |
| ref += ref_stride - width; |
| } |
| } else if (width >= 8) { |
| int i; |
| assert(!(width & 7)); |
| assert(!(height & 1)); |
| /*Read 8 pixels two rows at a time.*/ |
| for (i = 0; i < height; i += 2) { |
| __m128i s0 = xx_loadl_64(ref + 0 * ref_stride); |
| __m128i s1 = xx_loadl_64(ref + 1 * ref_stride); |
| xx_storeu_128(comp_pred, _mm_unpacklo_epi64(s0, s1)); |
| comp_pred += 16; |
| ref += 2 * ref_stride; |
| } |
| } else { |
| int i; |
| assert(!(width & 3)); |
| assert(!(height & 3)); |
| /*Read 4 pixels four rows at a time.*/ |
| for (i = 0; i < height; i++) { |
| const __m128i row0 = xx_loadl_64(ref + 0 * ref_stride); |
| const __m128i row1 = xx_loadl_64(ref + 1 * ref_stride); |
| const __m128i row2 = xx_loadl_64(ref + 2 * ref_stride); |
| const __m128i row3 = xx_loadl_64(ref + 3 * ref_stride); |
| const __m128i reg = _mm_unpacklo_epi64(_mm_unpacklo_epi32(row0, row1), |
| _mm_unpacklo_epi32(row2, row3)); |
| xx_storeu_128(comp_pred, reg); |
| comp_pred += 16; |
| ref += 4 * ref_stride; |
| } |
| } |
| } else if (!subpel_y_q3) { |
| const int16_t *const kernel = |
| av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1); |
| aom_convolve8_horiz(ref, ref_stride, comp_pred, width, kernel, 16, NULL, -1, |
| width, height); |
| } else if (!subpel_x_q3) { |
| const int16_t *const kernel = |
| av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1); |
| aom_convolve8_vert(ref, ref_stride, comp_pred, width, NULL, -1, kernel, 16, |
| width, height); |
| } else { |
| DECLARE_ALIGNED(16, uint8_t, |
| temp[((MAX_SB_SIZE * 2 + 16) + 16) * MAX_SB_SIZE]); |
| const int16_t *const kernel_x = |
| av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1); |
| const int16_t *const kernel_y = |
| av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1); |
| const int intermediate_height = |
| (((height - 1) * 8 + subpel_y_q3) >> 3) + filter.taps; |
| assert(intermediate_height <= (MAX_SB_SIZE * 2 + 16) + 16); |
| aom_convolve8_horiz(ref - ref_stride * ((filter.taps >> 1) - 1), ref_stride, |
| temp, MAX_SB_SIZE, kernel_x, 16, NULL, -1, width, |
| intermediate_height); |
| aom_convolve8_vert(temp + MAX_SB_SIZE * ((filter.taps >> 1) - 1), |
| MAX_SB_SIZE, comp_pred, width, NULL, -1, kernel_y, 16, |
| width, height); |
| } |
| } |
| |
| void aom_comp_avg_upsampled_pred_sse2( |
| MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col, |
| const MV *const mv, uint8_t *comp_pred, const uint8_t *pred, int width, |
| int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref, |
| int ref_stride) { |
| int n; |
| int i; |
| aom_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred, width, height, |
| subpel_x_q3, subpel_y_q3, ref, ref_stride); |
| /*The total number of pixels must be a multiple of 16 (e.g., 4x4).*/ |
| assert(!(width * height & 15)); |
| n = width * height >> 4; |
| for (i = 0; i < n; i++) { |
| __m128i s0 = xx_loadu_128(comp_pred); |
| __m128i p0 = xx_loadu_128(pred); |
| xx_storeu_128(comp_pred, _mm_avg_epu8(s0, p0)); |
| comp_pred += 16; |
| pred += 16; |
| } |
| } |