blob: cf2facdd3e51ab1b03d2d0103001d7bac54e219d [file] [log] [blame]
/*
* Copyright (c) 2016 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef TEST_TRANSFORM_TEST_BASE_H_
#define TEST_TRANSFORM_TEST_BASE_H_
#include "./vpx_config.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx/vpx_codec.h"
namespace libvpx_test {
// Note:
// Same constant are defined in vp9/common/vp9_entropy.h and
// vp10/common/entropy.h. Goal is to make this base class
// to use for future codec transform testing. But including
// either of them would lead to compiling error when we do
// unit test for another codec. Suggest to move the definition
// to a vpx header file.
const int kDctMaxValue = 16384;
typedef void (*FhtFunc)(const int16_t *in, tran_low_t *out, int stride,
int tx_type);
class TransformTestBase {
public:
virtual ~TransformTestBase() {}
protected:
virtual void RunFwdTxfm(const int16_t *in, tran_low_t *out, int stride) = 0;
virtual void RunInvTxfm(const tran_low_t *out, uint8_t *dst, int stride) = 0;
void RunAccuracyCheck(int limit) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
uint32_t max_error = 0;
int64_t total_error = 0;
const int count_test_block = 10000;
int16_t *test_input_block = reinterpret_cast<int16_t *>
(vpx_memalign(16, sizeof(int16_t) * num_coeffs_));
tran_low_t *test_temp_block = reinterpret_cast<tran_low_t *>
(vpx_memalign(16, sizeof(tran_low_t) * num_coeffs_));
uint8_t *dst = reinterpret_cast<uint8_t *>
(vpx_memalign(16, sizeof(uint8_t) * num_coeffs_));
uint8_t *src = reinterpret_cast<uint8_t *>
(vpx_memalign(16, sizeof(uint8_t) * num_coeffs_));
#if CONFIG_VP9_HIGHBITDEPTH
uint16_t *dst16 = reinterpret_cast<uint16_t *>
(vpx_memalign(16, sizeof(uint16_t) * num_coeffs_));
uint16_t *src16 = reinterpret_cast<uint16_t *>
(vpx_memalign(16, sizeof(uint16_t) * num_coeffs_));
#endif
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < num_coeffs_; ++j) {
if (bit_depth_ == VPX_BITS_8) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
test_input_block[j] = src[j] - dst[j];
#if CONFIG_VP9_HIGHBITDEPTH
} else {
src16[j] = rnd.Rand16() & mask_;
dst16[j] = rnd.Rand16() & mask_;
test_input_block[j] = src16[j] - dst16[j];
#endif
}
}
ASM_REGISTER_STATE_CHECK(RunFwdTxfm(test_input_block,
test_temp_block, pitch_));
if (bit_depth_ == VPX_BITS_8) {
ASM_REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_));
#if CONFIG_VP9_HIGHBITDEPTH
} else {
ASM_REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block,
CONVERT_TO_BYTEPTR(dst16), pitch_));
#endif
}
for (int j = 0; j < num_coeffs_; ++j) {
#if CONFIG_VP9_HIGHBITDEPTH
const uint32_t diff =
bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
#else
ASSERT_EQ(VPX_BITS_8, bit_depth_);
const uint32_t diff = dst[j] - src[j];
#endif
const uint32_t error = diff * diff;
if (max_error < error)
max_error = error;
total_error += error;
}
}
EXPECT_GE(static_cast<uint32_t>(limit), max_error)
<< "Error: 4x4 FHT/IHT has an individual round trip error > "
<< limit;
EXPECT_GE(count_test_block * limit, total_error)
<< "Error: 4x4 FHT/IHT has average round trip error > " << limit
<< " per block";
vpx_free(test_input_block);
vpx_free(test_temp_block);
vpx_free(dst);
vpx_free(src);
#if CONFIG_VP9_HIGHBITDEPTH
vpx_free(dst16);
vpx_free(src16);
#endif
}
void RunCoeffCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 5000;
int16_t *input_block = reinterpret_cast<int16_t *>
(vpx_memalign(16, sizeof(int16_t) * num_coeffs_));
tran_low_t *output_ref_block = reinterpret_cast<tran_low_t *>
(vpx_memalign(16, sizeof(tran_low_t) * num_coeffs_));
tran_low_t *output_block = reinterpret_cast<tran_low_t *>
(vpx_memalign(16, sizeof(tran_low_t) * num_coeffs_));
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < num_coeffs_; ++j)
input_block[j] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_);
fwd_txfm_ref(input_block, output_ref_block, pitch_, tx_type_);
ASM_REGISTER_STATE_CHECK(RunFwdTxfm(input_block, output_block, pitch_));
// The minimum quant value is 4.
for (int j = 0; j < num_coeffs_; ++j) {
EXPECT_EQ(output_block[j], output_ref_block[j])
<< "Error: not bit-exact result at index: " << j
<< " at test block: " << i;
}
}
vpx_free(input_block);
vpx_free(output_ref_block);
vpx_free(output_block);
}
void RunMemCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 5000;
int16_t *input_extreme_block = reinterpret_cast<int16_t *>
(vpx_memalign(16, sizeof(int16_t) * num_coeffs_));
tran_low_t *output_ref_block = reinterpret_cast<tran_low_t *>
(vpx_memalign(16, sizeof(tran_low_t) * num_coeffs_));
tran_low_t *output_block = reinterpret_cast<tran_low_t *>
(vpx_memalign(16, sizeof(tran_low_t) * num_coeffs_));
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < num_coeffs_; ++j) {
input_extreme_block[j] = rnd.Rand8() % 2 ? mask_ : -mask_;
}
if (i == 0) {
for (int j = 0; j < num_coeffs_; ++j)
input_extreme_block[j] = mask_;
} else if (i == 1) {
for (int j = 0; j < num_coeffs_; ++j)
input_extreme_block[j] = -mask_;
}
fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_);
ASM_REGISTER_STATE_CHECK(RunFwdTxfm(input_extreme_block,
output_block, pitch_));
int row_length = FindRowLength();
// The minimum quant value is 4.
for (int j = 0; j < num_coeffs_; ++j) {
EXPECT_EQ(output_block[j], output_ref_block[j]);
EXPECT_GE(row_length * kDctMaxValue << (bit_depth_ - 8),
abs(output_block[j]))
<< "Error: NxN FDCT has coefficient larger than N*DCT_MAX_VALUE";
}
}
vpx_free(input_extreme_block);
vpx_free(output_ref_block);
vpx_free(output_block);
}
void RunInvAccuracyCheck(int limit) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
int16_t *in = reinterpret_cast<int16_t *>
(vpx_memalign(16, sizeof(int16_t) * num_coeffs_));
tran_low_t *coeff = reinterpret_cast<tran_low_t *>
(vpx_memalign(16, sizeof(tran_low_t) * num_coeffs_));
uint8_t *dst = reinterpret_cast<uint8_t *>
(vpx_memalign(16, sizeof(uint8_t) * num_coeffs_));
uint8_t *src = reinterpret_cast<uint8_t *>
(vpx_memalign(16, sizeof(uint8_t) * num_coeffs_));
#if CONFIG_VP9_HIGHBITDEPTH
uint16_t *dst16 = reinterpret_cast<uint16_t *>
(vpx_memalign(16, sizeof(uint16_t) * num_coeffs_));
uint16_t *src16 = reinterpret_cast<uint16_t *>
(vpx_memalign(16, sizeof(uint16_t) * num_coeffs_));
#endif
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < num_coeffs_; ++j) {
if (bit_depth_ == VPX_BITS_8) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
in[j] = src[j] - dst[j];
#if CONFIG_VP9_HIGHBITDEPTH
} else {
src16[j] = rnd.Rand16() & mask_;
dst16[j] = rnd.Rand16() & mask_;
in[j] = src16[j] - dst16[j];
#endif
}
}
fwd_txfm_ref(in, coeff, pitch_, tx_type_);
if (bit_depth_ == VPX_BITS_8) {
ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_));
#if CONFIG_VP9_HIGHBITDEPTH
} else {
ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16),
pitch_));
#endif
}
for (int j = 0; j < num_coeffs_; ++j) {
#if CONFIG_VP9_HIGHBITDEPTH
const uint32_t diff =
bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
#else
const uint32_t diff = dst[j] - src[j];
#endif
const uint32_t error = diff * diff;
EXPECT_GE(static_cast<uint32_t>(limit), error)
<< "Error: 4x4 IDCT has error " << error
<< " at index " << j;
}
}
vpx_free(in);
vpx_free(coeff);
vpx_free(dst);
vpx_free(src);
#if CONFIG_VP9_HIGHBITDEPTH
vpx_free(src16);
vpx_free(dst16);
#endif
}
int pitch_;
int tx_type_;
FhtFunc fwd_txfm_ref;
vpx_bit_depth_t bit_depth_;
int mask_;
int num_coeffs_;
private:
// Assume transform size is 4x4, 8x8, 16x16,...
int FindRowLength() const {
int row = 4;
if (16 == num_coeffs_) {
row = 4;
} else if (64 == num_coeffs_) {
row = 8;
} else if (256 == num_coeffs_) {
row = 16;
} else if (1024 == num_coeffs_) {
row = 32;
}
return row;
}
};
} // namespace libvpx_test
#endif // TEST_TRANSFORM_TEST_BASE_H_