| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #ifndef AOM_AV1_COMMON_OBMC_H_ |
| #define AOM_AV1_COMMON_OBMC_H_ |
| |
| typedef void (*overlappable_nb_visitor_t)(MACROBLOCKD *xd, int rel_mi_row, |
| int rel_mi_col, uint8_t op_mi_size, |
| int dir, MB_MODE_INFO *nb_mi, |
| void *fun_ctxt, const int num_planes); |
| |
| static INLINE void foreach_overlappable_nb_above(const AV1_COMMON *cm, |
| MACROBLOCKD *xd, int nb_max, |
| overlappable_nb_visitor_t fun, |
| void *fun_ctxt, |
| bool count_only) { |
| if (!xd->up_available) return; |
| |
| const int num_planes = av1_num_planes(cm); |
| int nb_count = 0; |
| const int mi_col = xd->mi_col; |
| |
| // prev_row_mi points into the mi array, starting at the beginning of the |
| // previous row. |
| MB_MODE_INFO **prev_row_mi = xd->mi - mi_col - 1 * xd->mi_stride; |
| const int end_col = AOMMIN(mi_col + xd->width, cm->mi_params.mi_cols); |
| uint8_t mi_step; |
| for (int above_mi_col = mi_col; above_mi_col < end_col && nb_count < nb_max; |
| above_mi_col += mi_step) { |
| MB_MODE_INFO **above_mi = prev_row_mi + above_mi_col; |
| mi_step = mi_size_wide[above_mi[0]->sb_type[PLANE_TYPE_Y]]; |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| if (count_only) { |
| // In this case, we may only be parsing without decoding (e.g. in case of |
| // row-baed multi-threading). Hence, we do not have access to variables |
| // `above_mi[0]->chroma_ref_info` and `above_mi[0]->mi_col_start`. |
| // Also, if mi_step = 1, it must be a non-chroma ref block. So, we use |
| // mi_step = 2. |
| if (mi_step == 1) { |
| mi_step = 2; |
| } |
| } else { |
| // If we're considering a block that is NOT a chroma ref: |
| // - Move above_mi_col back to the base mi col, |
| // - Set above_mbmi to point at the block with chroma information, and |
| // - Set mi_step to step over all blocks that the chroma block covers. |
| const CHROMA_REF_INFO *chroma_ref_info = &above_mi[0]->chroma_ref_info; |
| if (!chroma_ref_info->is_chroma_ref) { |
| above_mi_col = chroma_ref_info->mi_col_chroma_base; |
| mi_step = mi_size_wide[chroma_ref_info->bsize_base]; |
| if (above_mi_col < mi_col) continue; |
| above_mi = prev_row_mi + above_mi_col; |
| assert(above_mi[0]->chroma_ref_info.bsize_base == |
| chroma_ref_info->bsize_base); |
| } |
| // If above block's left boundary is to the left of current block's left |
| // boundary, we need to find the common overlap. |
| if (above_mi[0]->mi_col_start < above_mi_col) { |
| const int extra_cols = above_mi_col - above_mi[0]->mi_col_start; |
| mi_step -= extra_cols; |
| assert(mi_step > 0); |
| } |
| } |
| #else |
| (void)count_only; |
| // If we're considering a block with width 4, it should be treated as |
| // half of a pair of blocks with chroma information in the second. Move |
| // above_mi_col back to the start of the pair if needed, set above_mbmi |
| // to point at the block with chroma information, and set mi_step to 2 to |
| // step over the entire pair at the end of the iteration. |
| if (mi_step == 1) { |
| above_mi_col &= ~1; |
| above_mi = prev_row_mi + above_mi_col + 1; |
| mi_step = 2; |
| } |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| |
| mi_step = AOMMIN(mi_step, mi_size_wide[BLOCK_64X64]); |
| int overlapped_mi_width = AOMMIN(xd->width, mi_step); |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| if (!IS_POWER_OF_TWO(overlapped_mi_width)) { |
| assert(!IS_POWER_OF_TWO(mi_step)); |
| const int mi_step_pow2 = 1 << get_msb(mi_step); |
| above_mi_col += (mi_step - mi_step_pow2); |
| mi_step = mi_step_pow2; |
| overlapped_mi_width = AOMMIN(xd->width, mi_step); |
| } |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| assert(IS_POWER_OF_TWO(overlapped_mi_width)); |
| if (is_neighbor_overlappable(*above_mi, xd->tree_type)) { |
| ++nb_count; |
| assert(above_mi_col >= mi_col); |
| fun(xd, 0, above_mi_col - mi_col, overlapped_mi_width, 0, *above_mi, |
| fun_ctxt, num_planes); |
| } |
| } |
| } |
| |
| static INLINE void foreach_overlappable_nb_left(const AV1_COMMON *cm, |
| MACROBLOCKD *xd, int nb_max, |
| overlappable_nb_visitor_t fun, |
| void *fun_ctxt) { |
| if (!xd->left_available) return; |
| |
| const int num_planes = av1_num_planes(cm); |
| int nb_count = 0; |
| // prev_col_mi points into the mi array, starting at the top of the |
| // previous column |
| const int mi_row = xd->mi_row; |
| MB_MODE_INFO **prev_col_mi = xd->mi - 1 - mi_row * xd->mi_stride; |
| const int end_row = AOMMIN(mi_row + xd->height, cm->mi_params.mi_rows); |
| uint8_t mi_step; |
| for (int left_mi_row = mi_row; left_mi_row < end_row && nb_count < nb_max; |
| left_mi_row += mi_step) { |
| MB_MODE_INFO **left_mi = prev_col_mi + left_mi_row * xd->mi_stride; |
| mi_step = mi_size_high[left_mi[0]->sb_type[PLANE_TYPE_Y]]; |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| // If we're considering a block that is NOT a chroma ref: |
| // - Move left_mi_col back to the base mi col, |
| // - Set left_mbmi to point at the block with chroma information, and |
| // - Set mi_step to step over all blocks that the chroma block covers. |
| const CHROMA_REF_INFO *chroma_ref_info = &left_mi[0]->chroma_ref_info; |
| if (!chroma_ref_info->is_chroma_ref) { |
| left_mi_row = chroma_ref_info->mi_row_chroma_base; |
| mi_step = mi_size_high[chroma_ref_info->bsize_base]; |
| if (left_mi_row < mi_row) continue; |
| left_mi = prev_col_mi + left_mi_row * xd->mi_stride; |
| assert(left_mi[0]->chroma_ref_info.bsize_base == |
| chroma_ref_info->bsize_base); |
| } |
| // If left block's top boundary is above current block's top boundary, we |
| // need to find the common overlap. |
| if (left_mi[0]->mi_row_start < left_mi_row) { |
| const int extra_cols = left_mi_row - left_mi[0]->mi_row_start; |
| mi_step -= extra_cols; |
| assert(mi_step > 0); |
| } |
| #else |
| if (mi_step == 1) { |
| left_mi_row &= ~1; |
| left_mi = prev_col_mi + (left_mi_row + 1) * xd->mi_stride; |
| mi_step = 2; |
| } |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| |
| mi_step = AOMMIN(mi_step, mi_size_high[BLOCK_64X64]); |
| int overlapped_mi_height = AOMMIN(xd->height, mi_step); |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| if (!IS_POWER_OF_TWO(overlapped_mi_height)) { |
| assert(!IS_POWER_OF_TWO(mi_step)); |
| const int mi_step_pow2 = 1 << get_msb(mi_step); |
| left_mi_row += (mi_step - mi_step_pow2); |
| mi_step = mi_step_pow2; |
| overlapped_mi_height = AOMMIN(xd->height, mi_step); |
| } |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| assert(IS_POWER_OF_TWO(overlapped_mi_height)); |
| if (is_neighbor_overlappable(*left_mi, xd->tree_type)) { |
| ++nb_count; |
| assert(left_mi_row >= mi_row); |
| fun(xd, left_mi_row - mi_row, 0, overlapped_mi_height, 1, *left_mi, |
| fun_ctxt, num_planes); |
| } |
| } |
| } |
| |
| #endif // AOM_AV1_COMMON_OBMC_H_ |