blob: 2cba1fb5c49dcf7bb824c8d87906590d8799b461 [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include "av1/decoder/decoder.h"
#include "av1/decoder/inspection.h"
#include "av1/common/blockd.h"
#include "av1/common/enums.h"
#include "av1/common/cdef.h"
static void ifd_init_mi_rc(insp_frame_data *fd, int mi_cols, int mi_rows) {
fd->mi_cols = mi_cols;
fd->mi_rows = mi_rows;
fd->mi_grid = (insp_mi_data *)aom_malloc(sizeof(insp_mi_data) * fd->mi_rows *
fd->mi_cols);
fd->max_sb_rows =
(mi_rows + (1 << MIN_MIB_SIZE_LOG2) - 1) / (1 << MIN_MIB_SIZE_LOG2);
fd->max_sb_cols =
(mi_cols + (1 << MIN_MIB_SIZE_LOG2) - 1) / (1 << MIN_MIB_SIZE_LOG2);
fd->sb_grid = (insp_sb_data *)aom_calloc(sizeof(insp_sb_data),
fd->max_sb_rows * fd->max_sb_cols);
}
void ifd_init(insp_frame_data *fd, int frame_width, int frame_height) {
int mi_cols = ALIGN_POWER_OF_TWO(frame_width, 3) >> MI_SIZE_LOG2;
int mi_rows = ALIGN_POWER_OF_TWO(frame_height, 3) >> MI_SIZE_LOG2;
ifd_init_mi_rc(fd, mi_cols, mi_rows);
}
void ifd_clear(insp_frame_data *fd) {
aom_free(fd->mi_grid);
fd->mi_grid = NULL;
for (int i = 0; i < fd->max_sb_rows; i++) {
for (int j = 0; j < fd->max_sb_cols; j++) {
insp_sb_data *sb = &fd->sb_grid[i * fd->max_sb_cols + j];
// Note: NULL checking happens within av1_free_ptree_recursive
av1_free_ptree_recursive(sb->partition_tree_luma);
av1_free_ptree_recursive(sb->partition_tree_chroma);
}
}
aom_free(fd->sb_grid);
fd->sb_grid = NULL;
}
PARTITION_TREE *copy_partition_tree(PARTITION_TREE *orig,
PARTITION_TREE *parent) {
PARTITION_TREE *copy = av1_alloc_ptree_node(NULL, 0);
memcpy(copy, orig, sizeof(PARTITION_TREE));
copy->parent = parent;
for (size_t i = 0; i < sizeof(copy->sub_tree) / sizeof(copy->sub_tree[0]);
i++) {
if (copy->sub_tree[i] != NULL) {
copy->sub_tree[i] = copy_partition_tree(orig->sub_tree[i], copy);
}
}
return copy;
}
int ifd_inspect_superblock(insp_frame_data *fd, void *decoder) {
struct AV1Decoder *pbi = (struct AV1Decoder *)decoder;
AV1_COMMON *const cm = &pbi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
if (fd->mi_rows != mi_params->mi_rows || fd->mi_cols != mi_params->mi_cols) {
ifd_clear(fd);
ifd_init_mi_rc(fd, mi_params->mi_rows, mi_params->mi_cols);
}
int sb_size = cm->seq_params.sb_size;
int sb_width = mi_size_wide[sb_size];
int sb_height = mi_size_high[sb_size];
int sb_row = pbi->td.dcb.xd.sbi->mi_row / sb_height;
int sb_col = pbi->td.dcb.xd.sbi->mi_col / sb_width;
PARTITION_TREE *luma_tree = pbi->td.dcb.xd.sbi->ptree_root[0];
PARTITION_TREE *chroma_tree = pbi->td.dcb.xd.sbi->ptree_root[1];
insp_sb_data *sb = &fd->sb_grid[sb_row * fd->max_sb_cols + sb_col];
sb->partition_tree_luma = copy_partition_tree(luma_tree, NULL);
// Semi-decoupled partitioning is enabled only for intra-frames.
int use_sdp = (frame_is_intra_only(cm) && !cm->seq_params.monochrome &&
cm->seq_params.enable_sdp);
if (chroma_tree != NULL && use_sdp) {
sb->partition_tree_chroma = copy_partition_tree(chroma_tree, NULL);
} else {
// For consistency, use a copy of the luma tree when SDP is not enabled for
// the frame.
sb->partition_tree_chroma = copy_partition_tree(luma_tree, NULL);
}
sb->has_separate_chroma_partition_tree = use_sdp;
for (int i = 0; i < MAX_MB_PLANE; i++) {
memcpy(sb->dqcoeff[i], pbi->td.dcb.dqcoeff_block_copy[i], MAX_SB_SQUARE);
memcpy(sb->qcoeff[i], pbi->td.dcb.qcoeff_block[i], MAX_SB_SQUARE);
memcpy(sb->dequant_values[i], pbi->td.dcb.dequant_values[i], MAX_SB_SQUARE);
}
return 1;
}
/* TODO(negge) This function may be called by more than one thread when using
a multi-threaded decoder and this may cause a data race. */
int ifd_inspect(insp_frame_data *fd, void *decoder, int skip_not_transform) {
struct AV1Decoder *pbi = (struct AV1Decoder *)decoder;
AV1_COMMON *const cm = &pbi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const CommonQuantParams *quant_params = &cm->quant_params;
fd->recon_frame_buffer = cm->cur_frame->buf;
fd->predicted_frame_buffer = cm->predicted_pixels;
fd->prefiltered_frame_buffer = cm->prefiltered_pixels;
if (fd->mi_rows != mi_params->mi_rows || fd->mi_cols != mi_params->mi_cols) {
ifd_clear(fd);
ifd_init_mi_rc(fd, mi_params->mi_rows, mi_params->mi_cols);
}
fd->show_existing_frame = cm->show_existing_frame;
fd->frame_number = cm->current_frame.frame_number;
fd->show_frame = cm->show_frame;
fd->frame_type = cm->current_frame.frame_type;
fd->base_qindex = quant_params->base_qindex;
fd->superblock_size = cm->seq_params.sb_size;
// Set width and height of the first tile until generic support can be added
TileInfo tile_info;
av1_tile_set_row(&tile_info, cm, 0);
av1_tile_set_col(&tile_info, cm, 0);
fd->tile_mi_cols = tile_info.mi_col_end - tile_info.mi_col_start;
fd->tile_mi_rows = tile_info.mi_row_end - tile_info.mi_row_start;
fd->delta_q_present_flag = cm->delta_q_info.delta_q_present_flag;
fd->delta_q_res = cm->delta_q_info.delta_q_res;
fd->bit_depth = cm->seq_params.bit_depth;
fd->width = cm->width;
fd->height = cm->height;
fd->render_width = cm->render_width;
fd->render_height = cm->render_height;
#if CONFIG_ACCOUNTING
fd->accounting = &pbi->accounting;
#endif
// TODO(negge): copy per frame CDEF data
int i, j;
for (i = 0; i < MAX_SEGMENTS; i++) {
for (j = 0; j < 2; j++) {
fd->y_dequant[i][j] = quant_params->y_dequant_QTX[i][j];
fd->u_dequant[i][j] = quant_params->u_dequant_QTX[i][j];
fd->v_dequant[i][j] = quant_params->v_dequant_QTX[i][j];
}
}
for (j = 0; j < mi_params->mi_rows; j++) {
for (i = 0; i < mi_params->mi_cols; i++) {
const MB_MODE_INFO *mbmi =
mi_params->mi_grid_base[j * mi_params->mi_stride + i];
insp_mi_data *mi = &fd->mi_grid[j * mi_params->mi_cols + i];
// Segment
mi->segment_id = mbmi->segment_id;
// Motion Vectors
mi->mv[0].row = mbmi->mv[0].as_mv.row;
mi->mv[0].col = mbmi->mv[0].as_mv.col;
mi->mv[1].row = mbmi->mv[1].as_mv.row;
mi->mv[1].col = mbmi->mv[1].as_mv.col;
// Reference Frames
mi->ref_frame[0] = mbmi->ref_frame[0];
mi->ref_frame[1] = mbmi->ref_frame[1];
// Prediction Mode
mi->mode = mbmi->mode;
mi->intrabc = (int16_t)mbmi->use_intrabc[0];
mi->palette = (int16_t)mbmi->palette_mode_info.palette_size[0];
mi->uv_palette = (int16_t)mbmi->palette_mode_info.palette_size[1];
// Prediction Mode for Chromatic planes
if (mi->mode < INTRA_MODES) {
mi->uv_mode = mbmi->uv_mode;
} else {
mi->uv_mode = UV_MODE_INVALID;
}
mi->motion_mode = mbmi->motion_mode;
mi->compound_type = mbmi->interinter_comp.type;
// Block Size
mi->sb_type = mbmi->sb_type[0];
mi->sb_type_chroma = mbmi->sb_type[1];
// Skip Flag
// TODO(comc): Check handling of skip_txfm vs tx_skip.
mi->skip = mbmi->skip_txfm[0];
mi->filter[0] = mbmi->interp_fltr;
mi->filter[1] = mbmi->interp_fltr;
mi->dual_filter_type = mi->filter[0] * 3 + mi->filter[1];
// Transform
const BLOCK_SIZE bsize = mbmi->sb_type[0];
const int c = i % mi_size_wide[bsize];
const int r = j % mi_size_high[bsize];
if (is_inter_block(mbmi, SHARED_PART) ||
is_intrabc_block(mbmi, SHARED_PART))
mi->tx_size = mbmi->inter_tx_size[av1_get_txb_size_index(bsize, r, c)];
else
mi->tx_size = mbmi->tx_size;
if (skip_not_transform && mi->skip) mi->tx_size = -1;
const int tx_type_row = j - j % tx_size_high_unit[mi->tx_size];
const int tx_type_col = i - i % tx_size_wide_unit[mi->tx_size];
const int tx_type_map_idx =
tx_type_row * mi_params->mi_stride + tx_type_col;
mi->tx_type = mi_params->tx_type_map[tx_type_map_idx];
bool skip = mbmi->tx_skip[av1_get_txk_type_index(bsize, r, c)];
mi->skip |= skip;
if (skip_not_transform &&
(mi->skip || mbmi->tx_skip[av1_get_txk_type_index(bsize, r, c)])) {
mi->tx_type = -1;
}
mi->cdef_level = cm->cdef_info.cdef_strengths[mbmi->cdef_strength] /
CDEF_SEC_STRENGTHS;
mi->cdef_strength = cm->cdef_info.cdef_strengths[mbmi->cdef_strength] %
CDEF_SEC_STRENGTHS;
mi->cdef_strength += mi->cdef_strength == 3;
if (mbmi->uv_mode == UV_CFL_PRED) {
mi->cfl_alpha_idx = mbmi->cfl_alpha_idx;
mi->cfl_alpha_sign = mbmi->cfl_alpha_signs;
} else {
mi->cfl_alpha_idx = 0;
mi->cfl_alpha_sign = 0;
}
// delta_q
mi->current_qindex = mbmi->current_qindex;
}
}
return 1;
}