| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| |
| #include "vpx_ports/config.h" |
| #include "encodemb.h" |
| #include "encodemv.h" |
| #include "vp8/common/common.h" |
| #include "onyx_int.h" |
| #include "vp8/common/extend.h" |
| #include "vp8/common/entropymode.h" |
| #include "vp8/common/quant_common.h" |
| #include "segmentation.h" |
| #include "vp8/common/setupintrarecon.h" |
| #include "encodeintra.h" |
| #include "vp8/common/reconinter.h" |
| #include "rdopt.h" |
| #include "pickinter.h" |
| #include "vp8/common/findnearmv.h" |
| #include "vp8/common/reconintra.h" |
| #include <stdio.h> |
| #include <limits.h> |
| #include "vp8/common/subpixel.h" |
| #include "vpx_ports/vpx_timer.h" |
| |
| #if CONFIG_RUNTIME_CPU_DETECT |
| #define RTCD(x) &cpi->common.rtcd.x |
| #define IF_RTCD(x) (x) |
| #else |
| #define RTCD(x) NULL |
| #define IF_RTCD(x) NULL |
| #endif |
| extern void vp8_stuff_mb(VP8_COMP *cpi, MACROBLOCKD *x, TOKENEXTRA **t) ; |
| |
| extern void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex); |
| extern void vp8_auto_select_speed(VP8_COMP *cpi); |
| extern void vp8cx_init_mbrthread_data(VP8_COMP *cpi, |
| MACROBLOCK *x, |
| MB_ROW_COMP *mbr_ei, |
| int mb_row, |
| int count); |
| void vp8_build_block_offsets(MACROBLOCK *x); |
| void vp8_setup_block_ptrs(MACROBLOCK *x); |
| int vp8cx_encode_inter_macroblock(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, int recon_yoffset, int recon_uvoffset); |
| int vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t); |
| static void adjust_act_zbin( VP8_COMP *cpi, MACROBLOCK *x ); |
| |
| #ifdef MODE_STATS |
| unsigned int inter_y_modes[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| unsigned int inter_uv_modes[4] = {0, 0, 0, 0}; |
| unsigned int inter_b_modes[15] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| unsigned int y_modes[5] = {0, 0, 0, 0, 0}; |
| unsigned int uv_modes[4] = {0, 0, 0, 0}; |
| unsigned int b_modes[14] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| #endif |
| |
| |
| /* activity_avg must be positive, or flat regions could get a zero weight |
| * (infinite lambda), which confounds analysis. |
| * This also avoids the need for divide by zero checks in |
| * vp8_activity_masking(). |
| */ |
| #define VP8_ACTIVITY_AVG_MIN (64) |
| |
| /* This is used as a reference when computing the source variance for the |
| * purposes of activity masking. |
| * Eventually this should be replaced by custom no-reference routines, |
| * which will be faster. |
| */ |
| static const unsigned char VP8_VAR_OFFS[16]= |
| { |
| 128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128 |
| }; |
| |
| |
| // Original activity measure from Tim T's code. |
| static unsigned int tt_activity_measure( VP8_COMP *cpi, MACROBLOCK *x ) |
| { |
| unsigned int act; |
| unsigned int sse; |
| /* TODO: This could also be done over smaller areas (8x8), but that would |
| * require extensive changes elsewhere, as lambda is assumed to be fixed |
| * over an entire MB in most of the code. |
| * Another option is to compute four 8x8 variances, and pick a single |
| * lambda using a non-linear combination (e.g., the smallest, or second |
| * smallest, etc.). |
| */ |
| act = VARIANCE_INVOKE(&cpi->rtcd.variance, var16x16)(x->src.y_buffer, |
| x->src.y_stride, VP8_VAR_OFFS, 0, &sse); |
| act = act<<4; |
| |
| /* If the region is flat, lower the activity some more. */ |
| if (act < 8<<12) |
| act = act < 5<<12 ? act : 5<<12; |
| |
| return act; |
| } |
| |
| // Stub for alternative experimental activity measures. |
| static unsigned int alt_activity_measure( VP8_COMP *cpi, |
| MACROBLOCK *x, int use_dc_pred ) |
| { |
| return vp8_encode_intra(cpi,x, use_dc_pred); |
| } |
| |
| |
| // Measure the activity of the current macroblock |
| // What we measure here is TBD so abstracted to this function |
| #define ALT_ACT_MEASURE 1 |
| static unsigned int mb_activity_measure( VP8_COMP *cpi, MACROBLOCK *x, |
| int mb_row, int mb_col) |
| { |
| unsigned int mb_activity; |
| |
| if ( ALT_ACT_MEASURE ) |
| { |
| int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); |
| |
| // Or use and alternative. |
| mb_activity = alt_activity_measure( cpi, x, use_dc_pred ); |
| } |
| else |
| { |
| // Original activity measure from Tim T's code. |
| mb_activity = tt_activity_measure( cpi, x ); |
| } |
| |
| if ( mb_activity < VP8_ACTIVITY_AVG_MIN ) |
| mb_activity = VP8_ACTIVITY_AVG_MIN; |
| |
| return mb_activity; |
| } |
| |
| // Calculate an "average" mb activity value for the frame |
| #define ACT_MEDIAN 0 |
| static void calc_av_activity( VP8_COMP *cpi, INT64 activity_sum ) |
| { |
| #if ACT_MEDIAN |
| // Find median: Simple n^2 algorithm for experimentation |
| { |
| unsigned int median; |
| unsigned int i,j; |
| unsigned int * sortlist; |
| unsigned int tmp; |
| |
| // Create a list to sort to |
| CHECK_MEM_ERROR(sortlist, |
| vpx_calloc(sizeof(unsigned int), |
| cpi->common.MBs)); |
| |
| // Copy map to sort list |
| vpx_memcpy( sortlist, cpi->mb_activity_map, |
| sizeof(unsigned int) * cpi->common.MBs ); |
| |
| |
| // Ripple each value down to its correct position |
| for ( i = 1; i < cpi->common.MBs; i ++ ) |
| { |
| for ( j = i; j > 0; j -- ) |
| { |
| if ( sortlist[j] < sortlist[j-1] ) |
| { |
| // Swap values |
| tmp = sortlist[j-1]; |
| sortlist[j-1] = sortlist[j]; |
| sortlist[j] = tmp; |
| } |
| else |
| break; |
| } |
| } |
| |
| // Even number MBs so estimate median as mean of two either side. |
| median = ( 1 + sortlist[cpi->common.MBs >> 1] + |
| sortlist[(cpi->common.MBs >> 1) + 1] ) >> 1; |
| |
| cpi->activity_avg = median; |
| |
| vpx_free(sortlist); |
| } |
| #else |
| // Simple mean for now |
| cpi->activity_avg = (unsigned int)(activity_sum/cpi->common.MBs); |
| #endif |
| |
| if (cpi->activity_avg < VP8_ACTIVITY_AVG_MIN) |
| cpi->activity_avg = VP8_ACTIVITY_AVG_MIN; |
| |
| // Experimental code: return fixed value normalized for several clips |
| if ( ALT_ACT_MEASURE ) |
| cpi->activity_avg = 100000; |
| } |
| |
| #define USE_ACT_INDEX 0 |
| #define OUTPUT_NORM_ACT_STATS 0 |
| |
| #if USE_ACT_INDEX |
| // Calculate and activity index for each mb |
| static void calc_activity_index( VP8_COMP *cpi, MACROBLOCK *x ) |
| { |
| VP8_COMMON *const cm = & cpi->common; |
| int mb_row, mb_col; |
| |
| INT64 act; |
| INT64 a; |
| INT64 b; |
| |
| #if OUTPUT_NORM_ACT_STATS |
| FILE *f = fopen("norm_act.stt", "a"); |
| fprintf(f, "\n%12d\n", cpi->activity_avg ); |
| #endif |
| |
| // Reset pointers to start of activity map |
| x->mb_activity_ptr = cpi->mb_activity_map; |
| |
| // Calculate normalized mb activity number. |
| for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) |
| { |
| // for each macroblock col in image |
| for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) |
| { |
| // Read activity from the map |
| act = *(x->mb_activity_ptr); |
| |
| // Calculate a normalized activity number |
| a = act + 4*cpi->activity_avg; |
| b = 4*act + cpi->activity_avg; |
| |
| if ( b >= a ) |
| *(x->activity_ptr) = (int)((b + (a>>1))/a) - 1; |
| else |
| *(x->activity_ptr) = 1 - (int)((a + (b>>1))/b); |
| |
| #if OUTPUT_NORM_ACT_STATS |
| fprintf(f, " %6d", *(x->mb_activity_ptr)); |
| #endif |
| // Increment activity map pointers |
| x->mb_activity_ptr++; |
| } |
| |
| #if OUTPUT_NORM_ACT_STATS |
| fprintf(f, "\n"); |
| #endif |
| |
| } |
| |
| #if OUTPUT_NORM_ACT_STATS |
| fclose(f); |
| #endif |
| |
| } |
| #endif |
| |
| // Loop through all MBs. Note activity of each, average activity and |
| // calculate a normalized activity for each |
| static void build_activity_map( VP8_COMP *cpi ) |
| { |
| MACROBLOCK *const x = & cpi->mb; |
| MACROBLOCKD *xd = &x->e_mbd; |
| VP8_COMMON *const cm = & cpi->common; |
| |
| #if ALT_ACT_MEASURE |
| YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; |
| int recon_yoffset; |
| int recon_y_stride = new_yv12->y_stride; |
| #endif |
| |
| int mb_row, mb_col; |
| unsigned int mb_activity; |
| INT64 activity_sum = 0; |
| |
| // for each macroblock row in image |
| for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) |
| { |
| #if ALT_ACT_MEASURE |
| // reset above block coeffs |
| xd->up_available = (mb_row != 0); |
| recon_yoffset = (mb_row * recon_y_stride * 16); |
| #endif |
| // for each macroblock col in image |
| for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) |
| { |
| #if ALT_ACT_MEASURE |
| xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset; |
| xd->left_available = (mb_col != 0); |
| recon_yoffset += 16; |
| #endif |
| //Copy current mb to a buffer |
| RECON_INVOKE(&xd->rtcd->recon, copy16x16)(x->src.y_buffer, x->src.y_stride, x->thismb, 16); |
| |
| // measure activity |
| mb_activity = mb_activity_measure( cpi, x, mb_row, mb_col ); |
| |
| // Keep frame sum |
| activity_sum += mb_activity; |
| |
| // Store MB level activity details. |
| *x->mb_activity_ptr = mb_activity; |
| |
| // Increment activity map pointer |
| x->mb_activity_ptr++; |
| |
| // adjust to the next column of source macroblocks |
| x->src.y_buffer += 16; |
| } |
| |
| |
| // adjust to the next row of mbs |
| x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; |
| |
| #if ALT_ACT_MEASURE |
| //extend the recon for intra prediction |
| vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, |
| xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); |
| #endif |
| |
| } |
| |
| // Calculate an "average" MB activity |
| calc_av_activity(cpi, activity_sum); |
| |
| #if USE_ACT_INDEX |
| // Calculate an activity index number of each mb |
| calc_activity_index( cpi, x ); |
| #endif |
| |
| } |
| |
| // Macroblock activity masking |
| void vp8_activity_masking(VP8_COMP *cpi, MACROBLOCK *x) |
| { |
| #if USE_ACT_INDEX |
| x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2); |
| x->errorperbit = x->rdmult * 100 /(110 * x->rddiv); |
| x->errorperbit += (x->errorperbit==0); |
| #else |
| INT64 a; |
| INT64 b; |
| INT64 act = *(x->mb_activity_ptr); |
| |
| // Apply the masking to the RD multiplier. |
| a = act + (2*cpi->activity_avg); |
| b = (2*act) + cpi->activity_avg; |
| |
| x->rdmult = (unsigned int)(((INT64)x->rdmult*b + (a>>1))/a); |
| x->errorperbit = x->rdmult * 100 /(110 * x->rddiv); |
| x->errorperbit += (x->errorperbit==0); |
| #endif |
| |
| // Activity based Zbin adjustment |
| adjust_act_zbin(cpi, x); |
| } |
| |
| static |
| void encode_mb_row(VP8_COMP *cpi, |
| VP8_COMMON *cm, |
| int mb_row, |
| MACROBLOCK *x, |
| MACROBLOCKD *xd, |
| TOKENEXTRA **tp, |
| int *segment_counts, |
| int *totalrate) |
| { |
| int i; |
| int recon_yoffset, recon_uvoffset; |
| int mb_col; |
| int ref_fb_idx = cm->lst_fb_idx; |
| int dst_fb_idx = cm->new_fb_idx; |
| int recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride; |
| int recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride; |
| int map_index = (mb_row * cpi->common.mb_cols); |
| |
| #if CONFIG_MULTITHREAD |
| const int nsync = cpi->mt_sync_range; |
| const int rightmost_col = cm->mb_cols - 1; |
| volatile const int *last_row_current_mb_col; |
| |
| if ((cpi->b_multi_threaded != 0) && (mb_row != 0)) |
| last_row_current_mb_col = &cpi->mt_current_mb_col[mb_row - 1]; |
| else |
| last_row_current_mb_col = &rightmost_col; |
| #endif |
| |
| // reset above block coeffs |
| xd->above_context = cm->above_context; |
| |
| xd->up_available = (mb_row != 0); |
| recon_yoffset = (mb_row * recon_y_stride * 16); |
| recon_uvoffset = (mb_row * recon_uv_stride * 8); |
| |
| cpi->tplist[mb_row].start = *tp; |
| //printf("Main mb_row = %d\n", mb_row); |
| |
| // Distance of Mb to the top & bottom edges, specified in 1/8th pel |
| // units as they are always compared to values that are in 1/8th pel units |
| xd->mb_to_top_edge = -((mb_row * 16) << 3); |
| xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3; |
| |
| // Set up limit values for vertical motion vector components |
| // to prevent them extending beyond the UMV borders |
| x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16)); |
| x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) |
| + (VP8BORDERINPIXELS - 16); |
| |
| // Set the mb activity pointer to the start of the row. |
| x->mb_activity_ptr = &cpi->mb_activity_map[map_index]; |
| |
| // for each macroblock col in image |
| for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) |
| { |
| // Distance of Mb to the left & right edges, specified in |
| // 1/8th pel units as they are always compared to values |
| // that are in 1/8th pel units |
| xd->mb_to_left_edge = -((mb_col * 16) << 3); |
| xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3; |
| |
| // Set up limit values for horizontal motion vector components |
| // to prevent them extending beyond the UMV borders |
| x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); |
| x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) |
| + (VP8BORDERINPIXELS - 16); |
| |
| xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; |
| xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; |
| xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; |
| xd->left_available = (mb_col != 0); |
| |
| x->rddiv = cpi->RDDIV; |
| x->rdmult = cpi->RDMULT; |
| |
| //Copy current mb to a buffer |
| RECON_INVOKE(&xd->rtcd->recon, copy16x16)(x->src.y_buffer, x->src.y_stride, x->thismb, 16); |
| |
| #if CONFIG_MULTITHREAD |
| if ((cpi->b_multi_threaded != 0) && (mb_row != 0)) |
| { |
| if ((mb_col & (nsync - 1)) == 0) |
| { |
| while (mb_col > (*last_row_current_mb_col - nsync) |
| && (*last_row_current_mb_col) != (cm->mb_cols - 1)) |
| { |
| x86_pause_hint(); |
| thread_sleep(0); |
| } |
| } |
| } |
| #endif |
| |
| if(cpi->oxcf.tuning == VP8_TUNE_SSIM) |
| vp8_activity_masking(cpi, x); |
| |
| // Is segmentation enabled |
| // MB level adjutment to quantizer |
| if (xd->segmentation_enabled) |
| { |
| // Code to set segment id in xd->mbmi.segment_id for current MB (with range checking) |
| if (cpi->segmentation_map[map_index+mb_col] <= 3) |
| xd->mode_info_context->mbmi.segment_id = cpi->segmentation_map[map_index+mb_col]; |
| else |
| xd->mode_info_context->mbmi.segment_id = 0; |
| |
| vp8cx_mb_init_quantizer(cpi, x); |
| } |
| else |
| xd->mode_info_context->mbmi.segment_id = 0; // Set to Segment 0 by default |
| |
| x->active_ptr = cpi->active_map + map_index + mb_col; |
| |
| if (cm->frame_type == KEY_FRAME) |
| { |
| *totalrate += vp8cx_encode_intra_macro_block(cpi, x, tp); |
| #ifdef MODE_STATS |
| y_modes[xd->mbmi.mode] ++; |
| #endif |
| } |
| else |
| { |
| *totalrate += vp8cx_encode_inter_macroblock(cpi, x, tp, recon_yoffset, recon_uvoffset); |
| |
| #ifdef MODE_STATS |
| inter_y_modes[xd->mbmi.mode] ++; |
| |
| if (xd->mbmi.mode == SPLITMV) |
| { |
| int b; |
| |
| for (b = 0; b < xd->mbmi.partition_count; b++) |
| { |
| inter_b_modes[x->partition->bmi[b].mode] ++; |
| } |
| } |
| |
| #endif |
| |
| // Count of last ref frame 0,0 useage |
| if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)) |
| cpi->inter_zz_count ++; |
| |
| // Special case code for cyclic refresh |
| // If cyclic update enabled then copy xd->mbmi.segment_id; (which may have been updated based on mode |
| // during vp8cx_encode_inter_macroblock()) back into the global sgmentation map |
| if (cpi->cyclic_refresh_mode_enabled && xd->segmentation_enabled) |
| { |
| cpi->segmentation_map[map_index+mb_col] = xd->mode_info_context->mbmi.segment_id; |
| |
| // If the block has been refreshed mark it as clean (the magnitude of the -ve influences how long it will be before we consider another refresh): |
| // Else if it was coded (last frame 0,0) and has not already been refreshed then mark it as a candidate for cleanup next time (marked 0) |
| // else mark it as dirty (1). |
| if (xd->mode_info_context->mbmi.segment_id) |
| cpi->cyclic_refresh_map[map_index+mb_col] = -1; |
| else if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)) |
| { |
| if (cpi->cyclic_refresh_map[map_index+mb_col] == 1) |
| cpi->cyclic_refresh_map[map_index+mb_col] = 0; |
| } |
| else |
| cpi->cyclic_refresh_map[map_index+mb_col] = 1; |
| |
| } |
| } |
| |
| cpi->tplist[mb_row].stop = *tp; |
| |
| // Increment pointer into gf useage flags structure. |
| x->gf_active_ptr++; |
| |
| // Increment the activity mask pointers. |
| x->mb_activity_ptr++; |
| |
| /* save the block info */ |
| for (i = 0; i < 16; i++) |
| xd->mode_info_context->bmi[i] = xd->block[i].bmi; |
| |
| // adjust to the next column of macroblocks |
| x->src.y_buffer += 16; |
| x->src.u_buffer += 8; |
| x->src.v_buffer += 8; |
| |
| recon_yoffset += 16; |
| recon_uvoffset += 8; |
| |
| // Keep track of segment useage |
| segment_counts[xd->mode_info_context->mbmi.segment_id] ++; |
| |
| // skip to next mb |
| xd->mode_info_context++; |
| x->partition_info++; |
| |
| xd->above_context++; |
| #if CONFIG_MULTITHREAD |
| if (cpi->b_multi_threaded != 0) |
| { |
| cpi->mt_current_mb_col[mb_row] = mb_col; |
| } |
| #endif |
| } |
| |
| //extend the recon for intra prediction |
| vp8_extend_mb_row( |
| &cm->yv12_fb[dst_fb_idx], |
| xd->dst.y_buffer + 16, |
| xd->dst.u_buffer + 8, |
| xd->dst.v_buffer + 8); |
| |
| // this is to account for the border |
| xd->mode_info_context++; |
| x->partition_info++; |
| |
| #if CONFIG_MULTITHREAD |
| if ((cpi->b_multi_threaded != 0) && (mb_row == cm->mb_rows - 1)) |
| { |
| sem_post(&cpi->h_event_end_encoding); /* signal frame encoding end */ |
| } |
| #endif |
| } |
| |
| void init_encode_frame_mb_context(VP8_COMP *cpi) |
| { |
| MACROBLOCK *const x = & cpi->mb; |
| VP8_COMMON *const cm = & cpi->common; |
| MACROBLOCKD *const xd = & x->e_mbd; |
| |
| // GF active flags data structure |
| x->gf_active_ptr = (signed char *)cpi->gf_active_flags; |
| |
| // Activity map pointer |
| x->mb_activity_ptr = cpi->mb_activity_map; |
| |
| x->vector_range = 32; |
| |
| x->act_zbin_adj = 0; |
| |
| x->partition_info = x->pi; |
| |
| xd->mode_info_context = cm->mi; |
| xd->mode_info_stride = cm->mode_info_stride; |
| |
| xd->frame_type = cm->frame_type; |
| |
| xd->frames_since_golden = cm->frames_since_golden; |
| xd->frames_till_alt_ref_frame = cm->frames_till_alt_ref_frame; |
| |
| // reset intra mode contexts |
| if (cm->frame_type == KEY_FRAME) |
| vp8_init_mbmode_probs(cm); |
| |
| // Copy data over into macro block data sturctures. |
| x->src = * cpi->Source; |
| xd->pre = cm->yv12_fb[cm->lst_fb_idx]; |
| xd->dst = cm->yv12_fb[cm->new_fb_idx]; |
| |
| // set up frame for intra coded blocks |
| vp8_setup_intra_recon(&cm->yv12_fb[cm->new_fb_idx]); |
| |
| vp8_build_block_offsets(x); |
| |
| vp8_setup_block_dptrs(&x->e_mbd); |
| |
| vp8_setup_block_ptrs(x); |
| |
| xd->mode_info_context->mbmi.mode = DC_PRED; |
| xd->mode_info_context->mbmi.uv_mode = DC_PRED; |
| |
| xd->left_context = &cm->left_context; |
| |
| vp8_zero(cpi->count_mb_ref_frame_usage) |
| vp8_zero(cpi->ymode_count) |
| vp8_zero(cpi->uv_mode_count) |
| |
| x->mvc = cm->fc.mvc; |
| |
| vpx_memset(cm->above_context, 0, |
| sizeof(ENTROPY_CONTEXT_PLANES) * cm->mb_cols); |
| |
| xd->ref_frame_cost[INTRA_FRAME] = vp8_cost_zero(cpi->prob_intra_coded); |
| |
| // Special case treatment when GF and ARF are not sensible options for reference |
| if (cpi->ref_frame_flags == VP8_LAST_FLAG) |
| { |
| xd->ref_frame_cost[LAST_FRAME] = vp8_cost_one(cpi->prob_intra_coded) |
| + vp8_cost_zero(255); |
| xd->ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(cpi->prob_intra_coded) |
| + vp8_cost_one(255) |
| + vp8_cost_zero(128); |
| xd->ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(cpi->prob_intra_coded) |
| + vp8_cost_one(255) |
| + vp8_cost_one(128); |
| } |
| else |
| { |
| xd->ref_frame_cost[LAST_FRAME] = vp8_cost_one(cpi->prob_intra_coded) |
| + vp8_cost_zero(cpi->prob_last_coded); |
| xd->ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(cpi->prob_intra_coded) |
| + vp8_cost_one(cpi->prob_last_coded) |
| + vp8_cost_zero(cpi->prob_gf_coded); |
| xd->ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(cpi->prob_intra_coded) |
| + vp8_cost_one(cpi->prob_last_coded) |
| + vp8_cost_one(cpi->prob_gf_coded); |
| } |
| |
| } |
| |
| void vp8_encode_frame(VP8_COMP *cpi) |
| { |
| int mb_row; |
| MACROBLOCK *const x = & cpi->mb; |
| VP8_COMMON *const cm = & cpi->common; |
| MACROBLOCKD *const xd = & x->e_mbd; |
| |
| TOKENEXTRA *tp = cpi->tok; |
| int segment_counts[MAX_MB_SEGMENTS]; |
| int totalrate; |
| |
| vpx_memset(segment_counts, 0, sizeof(segment_counts)); |
| totalrate = 0; |
| |
| if (cpi->compressor_speed == 2) |
| { |
| if (cpi->oxcf.cpu_used < 0) |
| cpi->Speed = -(cpi->oxcf.cpu_used); |
| else |
| vp8_auto_select_speed(cpi); |
| } |
| |
| // Functions setup for all frame types so we can use MC in AltRef |
| if (cm->mcomp_filter_type == SIXTAP) |
| { |
| xd->subpixel_predict = SUBPIX_INVOKE( |
| &cpi->common.rtcd.subpix, sixtap4x4); |
| xd->subpixel_predict8x4 = SUBPIX_INVOKE( |
| &cpi->common.rtcd.subpix, sixtap8x4); |
| xd->subpixel_predict8x8 = SUBPIX_INVOKE( |
| &cpi->common.rtcd.subpix, sixtap8x8); |
| xd->subpixel_predict16x16 = SUBPIX_INVOKE( |
| &cpi->common.rtcd.subpix, sixtap16x16); |
| } |
| else |
| { |
| xd->subpixel_predict = SUBPIX_INVOKE( |
| &cpi->common.rtcd.subpix, bilinear4x4); |
| xd->subpixel_predict8x4 = SUBPIX_INVOKE( |
| &cpi->common.rtcd.subpix, bilinear8x4); |
| xd->subpixel_predict8x8 = SUBPIX_INVOKE( |
| &cpi->common.rtcd.subpix, bilinear8x8); |
| xd->subpixel_predict16x16 = SUBPIX_INVOKE( |
| &cpi->common.rtcd.subpix, bilinear16x16); |
| } |
| |
| // Reset frame count of inter 0,0 motion vector useage. |
| cpi->inter_zz_count = 0; |
| |
| vpx_memset(segment_counts, 0, sizeof(segment_counts)); |
| |
| cpi->prediction_error = 0; |
| cpi->intra_error = 0; |
| cpi->skip_true_count = 0; |
| cpi->skip_false_count = 0; |
| |
| #if 0 |
| // Experimental code |
| cpi->frame_distortion = 0; |
| cpi->last_mb_distortion = 0; |
| #endif |
| |
| xd->mode_info_context = cm->mi; |
| |
| vp8_zero(cpi->MVcount); |
| vp8_zero(cpi->coef_counts); |
| |
| vp8cx_frame_init_quantizer(cpi); |
| |
| vp8_initialize_rd_consts(cpi, |
| vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q)); |
| |
| vp8cx_initialize_me_consts(cpi, cm->base_qindex); |
| |
| if(cpi->oxcf.tuning == VP8_TUNE_SSIM) |
| { |
| // Initialize encode frame context. |
| init_encode_frame_mb_context(cpi); |
| |
| // Build a frame level activity map |
| build_activity_map(cpi); |
| } |
| |
| // re-initencode frame context. |
| init_encode_frame_mb_context(cpi); |
| |
| { |
| struct vpx_usec_timer emr_timer; |
| vpx_usec_timer_start(&emr_timer); |
| |
| #if CONFIG_MULTITHREAD |
| if (cpi->b_multi_threaded) |
| { |
| int i; |
| |
| vp8cx_init_mbrthread_data(cpi, x, cpi->mb_row_ei, 1, cpi->encoding_thread_count); |
| |
| for (i = 0; i < cm->mb_rows; i++) |
| cpi->mt_current_mb_col[i] = -1; |
| |
| for (i = 0; i < cpi->encoding_thread_count; i++) |
| { |
| sem_post(&cpi->h_event_start_encoding[i]); |
| } |
| |
| for (mb_row = 0; mb_row < cm->mb_rows; mb_row += (cpi->encoding_thread_count + 1)) |
| { |
| vp8_zero(cm->left_context) |
| |
| tp = cpi->tok + mb_row * (cm->mb_cols * 16 * 24); |
| |
| encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate); |
| |
| // adjust to the next row of mbs |
| x->src.y_buffer += 16 * x->src.y_stride * (cpi->encoding_thread_count + 1) - 16 * cm->mb_cols; |
| x->src.u_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols; |
| x->src.v_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols; |
| |
| xd->mode_info_context += xd->mode_info_stride * cpi->encoding_thread_count; |
| x->partition_info += xd->mode_info_stride * cpi->encoding_thread_count; |
| x->gf_active_ptr += cm->mb_cols * cpi->encoding_thread_count; |
| |
| } |
| |
| sem_wait(&cpi->h_event_end_encoding); /* wait for other threads to finish */ |
| |
| cpi->tok_count = 0; |
| |
| for (mb_row = 0; mb_row < cm->mb_rows; mb_row ++) |
| { |
| cpi->tok_count += cpi->tplist[mb_row].stop - cpi->tplist[mb_row].start; |
| } |
| |
| if (xd->segmentation_enabled) |
| { |
| int i, j; |
| |
| if (xd->segmentation_enabled) |
| { |
| |
| for (i = 0; i < cpi->encoding_thread_count; i++) |
| { |
| for (j = 0; j < 4; j++) |
| segment_counts[j] += cpi->mb_row_ei[i].segment_counts[j]; |
| } |
| } |
| } |
| |
| for (i = 0; i < cpi->encoding_thread_count; i++) |
| { |
| totalrate += cpi->mb_row_ei[i].totalrate; |
| } |
| |
| } |
| else |
| #endif |
| { |
| // for each macroblock row in image |
| for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) |
| { |
| |
| vp8_zero(cm->left_context) |
| |
| encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate); |
| |
| // adjust to the next row of mbs |
| x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; |
| x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; |
| x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; |
| } |
| |
| cpi->tok_count = tp - cpi->tok; |
| |
| } |
| |
| vpx_usec_timer_mark(&emr_timer); |
| cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer); |
| |
| } |
| |
| |
| // Work out the segment probabilites if segmentation is enabled |
| if (xd->segmentation_enabled) |
| { |
| int tot_count; |
| int i; |
| |
| // Set to defaults |
| vpx_memset(xd->mb_segment_tree_probs, 255 , sizeof(xd->mb_segment_tree_probs)); |
| |
| tot_count = segment_counts[0] + segment_counts[1] + segment_counts[2] + segment_counts[3]; |
| |
| if (tot_count) |
| { |
| xd->mb_segment_tree_probs[0] = ((segment_counts[0] + segment_counts[1]) * 255) / tot_count; |
| |
| tot_count = segment_counts[0] + segment_counts[1]; |
| |
| if (tot_count > 0) |
| { |
| xd->mb_segment_tree_probs[1] = (segment_counts[0] * 255) / tot_count; |
| } |
| |
| tot_count = segment_counts[2] + segment_counts[3]; |
| |
| if (tot_count > 0) |
| xd->mb_segment_tree_probs[2] = (segment_counts[2] * 255) / tot_count; |
| |
| // Zero probabilities not allowed |
| for (i = 0; i < MB_FEATURE_TREE_PROBS; i ++) |
| { |
| if (xd->mb_segment_tree_probs[i] == 0) |
| xd->mb_segment_tree_probs[i] = 1; |
| } |
| } |
| } |
| |
| // 256 rate units to the bit |
| cpi->projected_frame_size = totalrate >> 8; // projected_frame_size in units of BYTES |
| |
| // Make a note of the percentage MBs coded Intra. |
| if (cm->frame_type == KEY_FRAME) |
| { |
| cpi->this_frame_percent_intra = 100; |
| } |
| else |
| { |
| int tot_modes; |
| |
| tot_modes = cpi->count_mb_ref_frame_usage[INTRA_FRAME] |
| + cpi->count_mb_ref_frame_usage[LAST_FRAME] |
| + cpi->count_mb_ref_frame_usage[GOLDEN_FRAME] |
| + cpi->count_mb_ref_frame_usage[ALTREF_FRAME]; |
| |
| if (tot_modes) |
| cpi->this_frame_percent_intra = cpi->count_mb_ref_frame_usage[INTRA_FRAME] * 100 / tot_modes; |
| |
| } |
| |
| #if 0 |
| { |
| int cnt = 0; |
| int flag[2] = {0, 0}; |
| |
| for (cnt = 0; cnt < MVPcount; cnt++) |
| { |
| if (cm->fc.pre_mvc[0][cnt] != cm->fc.mvc[0][cnt]) |
| { |
| flag[0] = 1; |
| vpx_memcpy(cm->fc.pre_mvc[0], cm->fc.mvc[0], MVPcount); |
| break; |
| } |
| } |
| |
| for (cnt = 0; cnt < MVPcount; cnt++) |
| { |
| if (cm->fc.pre_mvc[1][cnt] != cm->fc.mvc[1][cnt]) |
| { |
| flag[1] = 1; |
| vpx_memcpy(cm->fc.pre_mvc[1], cm->fc.mvc[1], MVPcount); |
| break; |
| } |
| } |
| |
| if (flag[0] || flag[1]) |
| vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cm->fc.mvc, flag); |
| } |
| #endif |
| |
| // Adjust the projected reference frame useage probability numbers to reflect |
| // what we have just seen. This may be usefull when we make multiple itterations |
| // of the recode loop rather than continuing to use values from the previous frame. |
| if ((cm->frame_type != KEY_FRAME) && !cm->refresh_alt_ref_frame && !cm->refresh_golden_frame) |
| { |
| const int *const rfct = cpi->count_mb_ref_frame_usage; |
| const int rf_intra = rfct[INTRA_FRAME]; |
| const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; |
| |
| if ((rf_intra + rf_inter) > 0) |
| { |
| cpi->prob_intra_coded = (rf_intra * 255) / (rf_intra + rf_inter); |
| |
| if (cpi->prob_intra_coded < 1) |
| cpi->prob_intra_coded = 1; |
| |
| if ((cm->frames_since_golden > 0) || cpi->source_alt_ref_active) |
| { |
| cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128; |
| |
| if (cpi->prob_last_coded < 1) |
| cpi->prob_last_coded = 1; |
| |
| cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) |
| ? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128; |
| |
| if (cpi->prob_gf_coded < 1) |
| cpi->prob_gf_coded = 1; |
| } |
| } |
| } |
| |
| #if 0 |
| // Keep record of the total distortion this time around for future use |
| cpi->last_frame_distortion = cpi->frame_distortion; |
| #endif |
| |
| } |
| void vp8_setup_block_ptrs(MACROBLOCK *x) |
| { |
| int r, c; |
| int i; |
| |
| for (r = 0; r < 4; r++) |
| { |
| for (c = 0; c < 4; c++) |
| { |
| x->block[r*4+c].src_diff = x->src_diff + r * 4 * 16 + c * 4; |
| } |
| } |
| |
| for (r = 0; r < 2; r++) |
| { |
| for (c = 0; c < 2; c++) |
| { |
| x->block[16 + r*2+c].src_diff = x->src_diff + 256 + r * 4 * 8 + c * 4; |
| } |
| } |
| |
| |
| for (r = 0; r < 2; r++) |
| { |
| for (c = 0; c < 2; c++) |
| { |
| x->block[20 + r*2+c].src_diff = x->src_diff + 320 + r * 4 * 8 + c * 4; |
| } |
| } |
| |
| x->block[24].src_diff = x->src_diff + 384; |
| |
| |
| for (i = 0; i < 25; i++) |
| { |
| x->block[i].coeff = x->coeff + i * 16; |
| } |
| } |
| |
| void vp8_build_block_offsets(MACROBLOCK *x) |
| { |
| int block = 0; |
| int br, bc; |
| |
| vp8_build_block_doffsets(&x->e_mbd); |
| |
| // y blocks |
| x->thismb_ptr = &x->thismb[0]; |
| for (br = 0; br < 4; br++) |
| { |
| for (bc = 0; bc < 4; bc++) |
| { |
| BLOCK *this_block = &x->block[block]; |
| //this_block->base_src = &x->src.y_buffer; |
| //this_block->src_stride = x->src.y_stride; |
| //this_block->src = 4 * br * this_block->src_stride + 4 * bc; |
| this_block->base_src = &x->thismb_ptr; |
| this_block->src_stride = 16; |
| this_block->src = 4 * br * 16 + 4 * bc; |
| ++block; |
| } |
| } |
| |
| // u blocks |
| for (br = 0; br < 2; br++) |
| { |
| for (bc = 0; bc < 2; bc++) |
| { |
| BLOCK *this_block = &x->block[block]; |
| this_block->base_src = &x->src.u_buffer; |
| this_block->src_stride = x->src.uv_stride; |
| this_block->src = 4 * br * this_block->src_stride + 4 * bc; |
| ++block; |
| } |
| } |
| |
| // v blocks |
| for (br = 0; br < 2; br++) |
| { |
| for (bc = 0; bc < 2; bc++) |
| { |
| BLOCK *this_block = &x->block[block]; |
| this_block->base_src = &x->src.v_buffer; |
| this_block->src_stride = x->src.uv_stride; |
| this_block->src = 4 * br * this_block->src_stride + 4 * bc; |
| ++block; |
| } |
| } |
| } |
| |
| static void sum_intra_stats(VP8_COMP *cpi, MACROBLOCK *x) |
| { |
| const MACROBLOCKD *xd = & x->e_mbd; |
| const MB_PREDICTION_MODE m = xd->mode_info_context->mbmi.mode; |
| const MB_PREDICTION_MODE uvm = xd->mode_info_context->mbmi.uv_mode; |
| |
| #ifdef MODE_STATS |
| const int is_key = cpi->common.frame_type == KEY_FRAME; |
| |
| ++ (is_key ? uv_modes : inter_uv_modes)[uvm]; |
| |
| if (m == B_PRED) |
| { |
| unsigned int *const bct = is_key ? b_modes : inter_b_modes; |
| |
| int b = 0; |
| |
| do |
| { |
| ++ bct[xd->block[b].bmi.mode]; |
| } |
| while (++b < 16); |
| } |
| |
| #endif |
| |
| ++cpi->ymode_count[m]; |
| ++cpi->uv_mode_count[uvm]; |
| |
| } |
| |
| // Experimental stub function to create a per MB zbin adjustment based on |
| // some previously calculated measure of MB activity. |
| static void adjust_act_zbin( VP8_COMP *cpi, MACROBLOCK *x ) |
| { |
| #if USE_ACT_INDEX |
| x->act_zbin_adj = *(x->mb_activity_ptr); |
| #else |
| INT64 a; |
| INT64 b; |
| INT64 act = *(x->mb_activity_ptr); |
| |
| // Apply the masking to the RD multiplier. |
| a = act + 4*cpi->activity_avg; |
| b = 4*act + cpi->activity_avg; |
| |
| if ( act > cpi->activity_avg ) |
| x->act_zbin_adj = (int)(((INT64)b + (a>>1))/a) - 1; |
| else |
| x->act_zbin_adj = 1 - (int)(((INT64)a + (b>>1))/b); |
| #endif |
| } |
| |
| int vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t) |
| { |
| int rate; |
| |
| if (cpi->sf.RD && cpi->compressor_speed != 2) |
| vp8_rd_pick_intra_mode(cpi, x, &rate); |
| else |
| vp8_pick_intra_mode(cpi, x, &rate); |
| |
| if(cpi->oxcf.tuning == VP8_TUNE_SSIM) |
| { |
| adjust_act_zbin( cpi, x ); |
| vp8_update_zbin_extra(cpi, x); |
| } |
| |
| if (x->e_mbd.mode_info_context->mbmi.mode == B_PRED) |
| vp8_encode_intra4x4mby(IF_RTCD(&cpi->rtcd), x); |
| else |
| vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x); |
| |
| vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x); |
| sum_intra_stats(cpi, x); |
| vp8_tokenize_mb(cpi, &x->e_mbd, t); |
| |
| return rate; |
| } |
| #ifdef SPEEDSTATS |
| extern int cnt_pm; |
| #endif |
| |
| extern void vp8_fix_contexts(MACROBLOCKD *x); |
| |
| int vp8cx_encode_inter_macroblock |
| ( |
| VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, |
| int recon_yoffset, int recon_uvoffset |
| ) |
| { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int intra_error = 0; |
| int rate; |
| int distortion; |
| |
| x->skip = 0; |
| |
| if (xd->segmentation_enabled) |
| x->encode_breakout = cpi->segment_encode_breakout[xd->mode_info_context->mbmi.segment_id]; |
| else |
| x->encode_breakout = cpi->oxcf.encode_breakout; |
| |
| if (cpi->sf.RD) |
| { |
| int zbin_mode_boost_enabled = cpi->zbin_mode_boost_enabled; |
| |
| /* Are we using the fast quantizer for the mode selection? */ |
| if(cpi->sf.use_fastquant_for_pick) |
| { |
| cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize, |
| fastquantb); |
| cpi->mb.quantize_b_pair = QUANTIZE_INVOKE(&cpi->rtcd.quantize, |
| fastquantb_pair); |
| |
| /* the fast quantizer does not use zbin_extra, so |
| * do not recalculate */ |
| cpi->zbin_mode_boost_enabled = 0; |
| } |
| vp8_rd_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate, |
| &distortion, &intra_error); |
| |
| /* switch back to the regular quantizer for the encode */ |
| if (cpi->sf.improved_quant) |
| { |
| cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize, |
| quantb); |
| cpi->mb.quantize_b_pair = QUANTIZE_INVOKE(&cpi->rtcd.quantize, |
| quantb_pair); |
| } |
| |
| /* restore cpi->zbin_mode_boost_enabled */ |
| cpi->zbin_mode_boost_enabled = zbin_mode_boost_enabled; |
| |
| } |
| else |
| vp8_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate, |
| &distortion, &intra_error); |
| |
| cpi->prediction_error += distortion; |
| cpi->intra_error += intra_error; |
| |
| if(cpi->oxcf.tuning == VP8_TUNE_SSIM) |
| { |
| // Adjust the zbin based on this MB rate. |
| adjust_act_zbin( cpi, x ); |
| } |
| |
| #if 0 |
| // Experimental RD code |
| cpi->frame_distortion += distortion; |
| cpi->last_mb_distortion = distortion; |
| #endif |
| |
| // MB level adjutment to quantizer setup |
| if (xd->segmentation_enabled) |
| { |
| // If cyclic update enabled |
| if (cpi->cyclic_refresh_mode_enabled) |
| { |
| // Clear segment_id back to 0 if not coded (last frame 0,0) |
| if ((xd->mode_info_context->mbmi.segment_id == 1) && |
| ((xd->mode_info_context->mbmi.ref_frame != LAST_FRAME) || (xd->mode_info_context->mbmi.mode != ZEROMV))) |
| { |
| xd->mode_info_context->mbmi.segment_id = 0; |
| |
| /* segment_id changed, so update */ |
| vp8cx_mb_init_quantizer(cpi, x); |
| } |
| } |
| } |
| |
| { |
| // Experimental code. Special case for gf and arf zeromv modes. |
| // Increase zbin size to supress noise |
| cpi->zbin_mode_boost = 0; |
| if (cpi->zbin_mode_boost_enabled) |
| { |
| if ( xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME ) |
| { |
| if (xd->mode_info_context->mbmi.mode == ZEROMV) |
| { |
| if (xd->mode_info_context->mbmi.ref_frame != LAST_FRAME) |
| cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST; |
| else |
| cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST; |
| } |
| else if (xd->mode_info_context->mbmi.mode == SPLITMV) |
| cpi->zbin_mode_boost = 0; |
| else |
| cpi->zbin_mode_boost = MV_ZBIN_BOOST; |
| } |
| } |
| vp8_update_zbin_extra(cpi, x); |
| } |
| |
| cpi->count_mb_ref_frame_usage[xd->mode_info_context->mbmi.ref_frame] ++; |
| |
| if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) |
| { |
| vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x); |
| |
| if (xd->mode_info_context->mbmi.mode == B_PRED) |
| { |
| vp8_encode_intra4x4mby(IF_RTCD(&cpi->rtcd), x); |
| } |
| else |
| { |
| vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x); |
| } |
| |
| sum_intra_stats(cpi, x); |
| } |
| else |
| { |
| int ref_fb_idx; |
| |
| vp8_build_uvmvs(xd, cpi->common.full_pixel); |
| |
| if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) |
| ref_fb_idx = cpi->common.lst_fb_idx; |
| else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME) |
| ref_fb_idx = cpi->common.gld_fb_idx; |
| else |
| ref_fb_idx = cpi->common.alt_fb_idx; |
| |
| xd->pre.y_buffer = cpi->common.yv12_fb[ref_fb_idx].y_buffer + recon_yoffset; |
| xd->pre.u_buffer = cpi->common.yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset; |
| xd->pre.v_buffer = cpi->common.yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset; |
| |
| if (!x->skip) |
| { |
| vp8_encode_inter16x16(IF_RTCD(&cpi->rtcd), x); |
| |
| // Clear mb_skip_coeff if mb_no_coeff_skip is not set |
| if (!cpi->common.mb_no_coeff_skip) |
| xd->mode_info_context->mbmi.mb_skip_coeff = 0; |
| |
| } |
| else |
| vp8_build_inter16x16_predictors_mb(xd, xd->dst.y_buffer, |
| xd->dst.u_buffer, xd->dst.v_buffer, |
| xd->dst.y_stride, xd->dst.uv_stride); |
| |
| } |
| |
| if (!x->skip) |
| vp8_tokenize_mb(cpi, xd, t); |
| else |
| { |
| if (cpi->common.mb_no_coeff_skip) |
| { |
| xd->mode_info_context->mbmi.mb_skip_coeff = 1; |
| cpi->skip_true_count ++; |
| vp8_fix_contexts(xd); |
| } |
| else |
| { |
| vp8_stuff_mb(cpi, xd, t); |
| xd->mode_info_context->mbmi.mb_skip_coeff = 0; |
| cpi->skip_false_count ++; |
| } |
| } |
| |
| return rate; |
| } |