blob: ecb2be794a3cd342246653133db98c9bd0babf8b [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <tuple>
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "aom/aom_codec.h"
#include "aom_ports/aom_timer.h"
#include "av1/encoder/encoder.h"
#include "av1/common/scan.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
namespace {
using libaom_test::ACMRandom;
typedef void (*QuantizeFuncHbd)(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int32_t *zbin_ptr,
const int32_t *round_ptr, const int32_t *quant_ptr,
const int32_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int32_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan, int log_scale);
enum QuantType { TYPE_B, TYPE_DC, TYPE_FP };
enum LogScale {
LOGSCALE_0 = 0,
LOGSCALE_1 = 1,
LOGSCALE_2 = 2,
};
using std::tuple;
typedef tuple<QuantizeFuncHbd, QuantizeFuncHbd, TX_SIZE, QuantType,
aom_bit_depth_t, LogScale>
QuantizeParam;
typedef struct {
QUANTS quant;
Dequants dequant;
} QuanTable;
const int kTestNum = 1000;
class QuantizeTest : public ::testing::TestWithParam<QuantizeParam> {
protected:
QuantizeTest()
: quant_ref_(GET_PARAM(0)), quant_(GET_PARAM(1)), tx_size_(GET_PARAM(2)),
type_(GET_PARAM(3)), bd_(GET_PARAM(4)), LogScale_(GET_PARAM(5)) {}
virtual ~QuantizeTest() {}
virtual void SetUp() {
qtab_ = reinterpret_cast<QuanTable *>(aom_memalign(32, sizeof(*qtab_)));
const int n_coeffs = coeff_num();
coeff_ = reinterpret_cast<tran_low_t *>(
aom_memalign(32, 6 * n_coeffs * sizeof(tran_low_t)));
InitQuantizer();
}
virtual void TearDown() {
aom_free(qtab_);
qtab_ = NULL;
aom_free(coeff_);
coeff_ = NULL;
libaom_test::ClearSystemState();
}
void InitQuantizer() {
av1_build_quantizer(bd_, 0, 0, 0, 0, 0, 0, 0, &qtab_->quant,
&qtab_->dequant);
}
void QuantizeRun(bool is_loop, int q = 0, int test_num = 1) {
tran_low_t *coeff_ptr = coeff_;
const intptr_t n_coeffs = coeff_num();
tran_low_t *qcoeff_ref = coeff_ptr + n_coeffs;
tran_low_t *dqcoeff_ref = qcoeff_ref + n_coeffs;
tran_low_t *qcoeff = dqcoeff_ref + n_coeffs;
tran_low_t *dqcoeff = qcoeff + n_coeffs;
uint16_t *eob = (uint16_t *)(dqcoeff + n_coeffs);
const int log_scale = LogScale_;
// Testing uses 2-D DCT scan order table
const SCAN_ORDER *const sc = get_default_scan(tx_size_, DCT_DCT);
// Testing uses luminance quantization table
const int32_t *zbin = qtab_->quant.y_zbin[q];
const int32_t *round = 0;
const int32_t *quant = 0;
if (type_ == TYPE_B) {
round = qtab_->quant.y_round[q];
quant = qtab_->quant.y_quant[q];
} else if (type_ == TYPE_FP) {
round = qtab_->quant.y_round_fp[q];
quant = qtab_->quant.y_quant_fp[q];
}
const int32_t *quant_shift = qtab_->quant.y_quant_shift[q];
const int32_t *dequant = qtab_->dequant.y_dequant_QTX[q];
for (int i = 0; i < test_num; ++i) {
if (is_loop) FillCoeffRandom();
memset(qcoeff_ref, 0, 5 * n_coeffs * sizeof(*qcoeff_ref));
quant_ref_(coeff_ptr, n_coeffs, zbin, round, quant, quant_shift,
qcoeff_ref, dqcoeff_ref, dequant, &eob[0], sc->scan, sc->iscan,
log_scale);
ASM_REGISTER_STATE_CHECK(quant_(coeff_ptr, n_coeffs, zbin, round, quant,
quant_shift, qcoeff, dqcoeff, dequant,
&eob[1], sc->scan, sc->iscan, log_scale));
for (int j = 0; j < n_coeffs; ++j) {
ASSERT_EQ(qcoeff_ref[j], qcoeff[j])
<< "Q mismatch on test: " << i << " at position: " << j
<< " Q: " << q << " coeff: " << coeff_ptr[j];
}
for (int j = 0; j < n_coeffs; ++j) {
ASSERT_EQ(dqcoeff_ref[j], dqcoeff[j])
<< "Dq mismatch on test: " << i << " at position: " << j
<< " Q: " << q << " coeff: " << coeff_ptr[j];
}
ASSERT_EQ(eob[0], eob[1])
<< "eobs mismatch on test: " << i << " Q: " << q;
}
}
void CompareResults(const tran_low_t *buf_ref, const tran_low_t *buf,
int size, const char *text, int q, int number) {
int i;
for (i = 0; i < size; ++i) {
ASSERT_EQ(buf_ref[i], buf[i]) << text << " mismatch on test: " << number
<< " at position: " << i << " Q: " << q;
}
}
int coeff_num() const { return av1_get_max_eob(tx_size_); }
void FillCoeff(tran_low_t c) {
const int n_coeffs = coeff_num();
for (int i = 0; i < n_coeffs; ++i) {
coeff_[i] = c;
}
}
void FillCoeffRandom() {
const int n_coeffs = coeff_num();
FillCoeffZero();
int num = rnd_.Rand16() % n_coeffs;
for (int i = 0; i < num; ++i) {
coeff_[i] = GetRandomCoeff();
}
}
void FillCoeffRandomRows(int num) {
FillCoeffZero();
for (int i = 0; i < num; ++i) {
coeff_[i] = GetRandomCoeff();
}
}
void FillCoeffZero() { FillCoeff(0); }
void FillCoeffConstant() {
tran_low_t c = GetRandomCoeff();
FillCoeff(c);
}
void FillDcOnly() {
FillCoeffZero();
coeff_[0] = GetRandomCoeff();
}
void FillDcLargeNegative() {
FillCoeffZero();
// Generate a qcoeff which contains 512/-512 (0x0100/0xFE00) to catch issues
// like BUG=883 where the constant being compared was incorrectly
// initialized.
coeff_[0] = -8191;
}
tran_low_t GetRandomCoeff() {
tran_low_t coeff;
if (bd_ == AOM_BITS_8) {
coeff =
clamp(static_cast<int16_t>(rnd_.Rand16()), INT16_MIN + 1, INT16_MAX);
} else {
tran_low_t min = -(1 << (7 + bd_));
tran_low_t max = -min - 1;
coeff = clamp(static_cast<tran_low_t>(rnd_.Rand31()), min, max);
}
return coeff;
}
ACMRandom rnd_;
QuanTable *qtab_;
tran_low_t *coeff_;
QuantizeFuncHbd quant_ref_;
QuantizeFuncHbd quant_;
TX_SIZE tx_size_;
QuantType type_;
aom_bit_depth_t bd_;
LogScale LogScale_;
};
TEST_P(QuantizeTest, ZeroInput) {
FillCoeffZero();
QuantizeRun(false);
}
TEST_P(QuantizeTest, LargeNegativeInput) {
FillDcLargeNegative();
QuantizeRun(false, 0, 1);
}
TEST_P(QuantizeTest, DcOnlyInput) {
FillDcOnly();
QuantizeRun(false, 0, 1);
}
TEST_P(QuantizeTest, RandomInput) { QuantizeRun(true, 0, kTestNum); }
TEST_P(QuantizeTest, MultipleQ) {
for (int q = 0; q < (QINDEX_RANGE_8_BITS + (bd_ - AOM_BITS_8) * MAXQ_OFFSET);
++q) {
QuantizeRun(true, q, kTestNum);
}
}
// Force the coeff to be half the value of the dequant. This exposes a
// mismatch found in av1_quantize_fp_sse2().
TEST_P(QuantizeTest, CoeffHalfDequant) {
FillCoeff(16);
QuantizeRun(false, 25, 1);
}
TEST_P(QuantizeTest, DISABLED_Speed) {
tran_low_t *coeff_ptr = coeff_;
const intptr_t n_coeffs = coeff_num();
tran_low_t *qcoeff_ref = coeff_ptr + n_coeffs;
tran_low_t *dqcoeff_ref = qcoeff_ref + n_coeffs;
tran_low_t *qcoeff = dqcoeff_ref + n_coeffs;
tran_low_t *dqcoeff = qcoeff + n_coeffs;
uint16_t *eob = (uint16_t *)(dqcoeff + n_coeffs);
// Testing uses 2-D DCT scan order table
const SCAN_ORDER *const sc = get_default_scan(tx_size_, DCT_DCT);
// Testing uses luminance quantization table
const int q = 22;
const int32_t *zbin = qtab_->quant.y_zbin[q];
const int32_t *round_fp = qtab_->quant.y_round_fp[q];
const int32_t *quant_fp = qtab_->quant.y_quant_fp[q];
const int32_t *quant_shift = qtab_->quant.y_quant_shift[q];
const int32_t *dequant = qtab_->dequant.y_dequant_QTX[q];
const int log_scale = LogScale_;
const int kNumTests = 5000000;
aom_usec_timer timer, simd_timer;
int rows = tx_size_high[tx_size_];
int cols = tx_size_wide[tx_size_];
rows = AOMMIN(32, rows);
cols = AOMMIN(32, cols);
for (int cnt = 0; cnt <= rows; cnt++) {
FillCoeffRandomRows(cnt * cols);
aom_usec_timer_start(&timer);
for (int n = 0; n < kNumTests; ++n) {
quant_ref_(coeff_ptr, n_coeffs, zbin, round_fp, quant_fp, quant_shift,
qcoeff, dqcoeff, dequant, eob, sc->scan, sc->iscan, log_scale);
}
aom_usec_timer_mark(&timer);
aom_usec_timer_start(&simd_timer);
for (int n = 0; n < kNumTests; ++n) {
quant_(coeff_ptr, n_coeffs, zbin, round_fp, quant_fp, quant_shift, qcoeff,
dqcoeff, dequant, eob, sc->scan, sc->iscan, log_scale);
}
aom_usec_timer_mark(&simd_timer);
const int elapsed_time = static_cast<int>(aom_usec_timer_elapsed(&timer));
const int simd_elapsed_time =
static_cast<int>(aom_usec_timer_elapsed(&simd_timer));
printf("c_time = %d \t simd_time = %d \t Gain = %f \n", elapsed_time,
simd_elapsed_time, ((float)elapsed_time / simd_elapsed_time));
}
}
using std::make_tuple;
#if HAVE_AVX2
const QuantizeParam kQParamArrayAvx2[] = {
make_tuple(&aom_highbd_quantize_b_c, &aom_highbd_quantize_b_avx2,
static_cast<TX_SIZE>(TX_16X16), TYPE_B, AOM_BITS_8, LOGSCALE_0),
make_tuple(&aom_highbd_quantize_b_c, &aom_highbd_quantize_b_avx2,
static_cast<TX_SIZE>(TX_16X16), TYPE_B, AOM_BITS_10, LOGSCALE_0),
make_tuple(&aom_highbd_quantize_b_c, &aom_highbd_quantize_b_avx2,
static_cast<TX_SIZE>(TX_16X16), TYPE_B, AOM_BITS_12, LOGSCALE_0),
make_tuple(&aom_highbd_quantize_b_c, &aom_highbd_quantize_b_avx2,
static_cast<TX_SIZE>(TX_32X32), TYPE_B, AOM_BITS_8, LOGSCALE_1),
make_tuple(&aom_highbd_quantize_b_c, &aom_highbd_quantize_b_avx2,
static_cast<TX_SIZE>(TX_32X32), TYPE_B, AOM_BITS_10, LOGSCALE_1),
make_tuple(&aom_highbd_quantize_b_c, &aom_highbd_quantize_b_avx2,
static_cast<TX_SIZE>(TX_32X32), TYPE_B, AOM_BITS_12, LOGSCALE_1),
make_tuple(&aom_highbd_quantize_b_c, &aom_highbd_quantize_b_avx2,
static_cast<TX_SIZE>(TX_64X64), TYPE_B, AOM_BITS_8, LOGSCALE_2),
make_tuple(&aom_highbd_quantize_b_c, &aom_highbd_quantize_b_avx2,
static_cast<TX_SIZE>(TX_64X64), TYPE_B, AOM_BITS_10, LOGSCALE_2),
make_tuple(&aom_highbd_quantize_b_c, &aom_highbd_quantize_b_avx2,
static_cast<TX_SIZE>(TX_64X64), TYPE_B, AOM_BITS_12, LOGSCALE_2),
make_tuple(&av1_highbd_quantize_fp_c, &av1_highbd_quantize_fp_avx2,
static_cast<TX_SIZE>(TX_16X16), TYPE_FP, AOM_BITS_8, LOGSCALE_0),
make_tuple(&av1_highbd_quantize_fp_c, &av1_highbd_quantize_fp_avx2,
static_cast<TX_SIZE>(TX_16X16), TYPE_FP, AOM_BITS_10, LOGSCALE_0),
make_tuple(&av1_highbd_quantize_fp_c, &av1_highbd_quantize_fp_avx2,
static_cast<TX_SIZE>(TX_16X16), TYPE_FP, AOM_BITS_12, LOGSCALE_0),
make_tuple(&av1_highbd_quantize_fp_c, &av1_highbd_quantize_fp_avx2,
static_cast<TX_SIZE>(TX_32X32), TYPE_FP, AOM_BITS_8, LOGSCALE_1),
make_tuple(&av1_highbd_quantize_fp_c, &av1_highbd_quantize_fp_avx2,
static_cast<TX_SIZE>(TX_32X32), TYPE_FP, AOM_BITS_10, LOGSCALE_1),
make_tuple(&av1_highbd_quantize_fp_c, &av1_highbd_quantize_fp_avx2,
static_cast<TX_SIZE>(TX_32X32), TYPE_FP, AOM_BITS_12, LOGSCALE_1),
make_tuple(&av1_highbd_quantize_fp_c, &av1_highbd_quantize_fp_avx2,
static_cast<TX_SIZE>(TX_64X64), TYPE_FP, AOM_BITS_8, LOGSCALE_2),
make_tuple(&av1_highbd_quantize_fp_c, &av1_highbd_quantize_fp_avx2,
static_cast<TX_SIZE>(TX_64X64), TYPE_FP, AOM_BITS_10, LOGSCALE_2),
make_tuple(&av1_highbd_quantize_fp_c, &av1_highbd_quantize_fp_avx2,
static_cast<TX_SIZE>(TX_64X64), TYPE_FP, AOM_BITS_12, LOGSCALE_2),
};
INSTANTIATE_TEST_SUITE_P(AVX2, QuantizeTest,
::testing::ValuesIn(kQParamArrayAvx2));
#endif // HAVE_AVX2
#if HAVE_SSE2
const QuantizeParam kQParamArraySSE2[] = {
make_tuple(&aom_highbd_quantize_b_c, &aom_highbd_quantize_b_sse2,
static_cast<TX_SIZE>(TX_16X16), TYPE_B, AOM_BITS_8, LOGSCALE_0),
make_tuple(&aom_highbd_quantize_b_c, &aom_highbd_quantize_b_sse2,
static_cast<TX_SIZE>(TX_16X16), TYPE_B, AOM_BITS_10, LOGSCALE_0),
make_tuple(&aom_highbd_quantize_b_c, &aom_highbd_quantize_b_sse2,
static_cast<TX_SIZE>(TX_16X16), TYPE_B, AOM_BITS_12, LOGSCALE_0),
make_tuple(&aom_highbd_quantize_b_c, &aom_highbd_quantize_b_sse2,
static_cast<TX_SIZE>(TX_32X32), TYPE_B, AOM_BITS_8, LOGSCALE_1),
make_tuple(&aom_highbd_quantize_b_c, &aom_highbd_quantize_b_sse2,
static_cast<TX_SIZE>(TX_32X32), TYPE_B, AOM_BITS_10, LOGSCALE_1),
make_tuple(&aom_highbd_quantize_b_c, &aom_highbd_quantize_b_sse2,
static_cast<TX_SIZE>(TX_32X32), TYPE_B, AOM_BITS_12, LOGSCALE_1),
make_tuple(&aom_highbd_quantize_b_c, &aom_highbd_quantize_b_sse2,
static_cast<TX_SIZE>(TX_64X64), TYPE_B, AOM_BITS_8, LOGSCALE_2),
make_tuple(&aom_highbd_quantize_b_c, &aom_highbd_quantize_b_sse2,
static_cast<TX_SIZE>(TX_64X64), TYPE_B, AOM_BITS_10, LOGSCALE_2),
make_tuple(&aom_highbd_quantize_b_c, &aom_highbd_quantize_b_sse2,
static_cast<TX_SIZE>(TX_64X64), TYPE_B, AOM_BITS_12, LOGSCALE_2),
};
INSTANTIATE_TEST_SUITE_P(SSE2, QuantizeTest,
::testing::ValuesIn(kQParamArraySSE2));
#endif // HAVE_SSE2
} // namespace