| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <memory.h> |
| #include <math.h> |
| #include <assert.h> |
| |
| #include "av1/common/warped_motion.h" |
| |
| /* clang-format off */ |
| static const int error_measure_lut[512] = { |
| // power 0.6 |
| 255, 254, 254, 253, 253, 252, 251, 251, |
| 250, 250, 249, 248, 248, 247, 247, 246, |
| 245, 245, 244, 243, 243, 242, 242, 241, |
| 240, 240, 239, 238, 238, 237, 237, 236, |
| 235, 235, 234, 233, 233, 232, 231, 231, |
| 230, 230, 229, 228, 228, 227, 226, 226, |
| 225, 224, 224, 223, 222, 222, 221, 220, |
| 220, 219, 218, 218, 217, 216, 216, 215, |
| 214, 214, 213, 212, 212, 211, 210, 210, |
| 209, 208, 208, 207, 206, 206, 205, 204, |
| 203, 203, 202, 201, 201, 200, 199, 199, |
| 198, 197, 196, 196, 195, 194, 194, 193, |
| 192, 191, 191, 190, 189, 188, 188, 187, |
| 186, 185, 185, 184, 183, 182, 182, 181, |
| 180, 179, 179, 178, 177, 176, 176, 175, |
| 174, 173, 173, 172, 171, 170, 169, 169, |
| 168, 167, 166, 165, 165, 164, 163, 162, |
| 161, 161, 160, 159, 158, 157, 156, 156, |
| 155, 154, 153, 152, 151, 151, 150, 149, |
| 148, 147, 146, 145, 145, 144, 143, 142, |
| 141, 140, 139, 138, 137, 137, 136, 135, |
| 134, 133, 132, 131, 130, 129, 128, 127, |
| 126, 125, 124, 123, 122, 121, 120, 119, |
| 118, 117, 116, 115, 114, 113, 112, 111, |
| 110, 109, 108, 107, 106, 105, 104, 103, |
| 102, 100, 99, 98, 97, 96, 95, 94, |
| 92, 91, 90, 89, 88, 86, 85, 84, |
| 83, 81, 80, 79, 77, 76, 75, 73, |
| 72, 71, 69, 68, 66, 65, 63, 62, |
| 60, 59, 57, 55, 54, 52, 50, 48, |
| 47, 45, 43, 41, 39, 37, 34, 32, |
| 29, 27, 24, 21, 18, 14, 9, 0, |
| 9, 14, 18, 21, 24, 27, 29, 32, |
| 34, 37, 39, 41, 43, 45, 47, 48, |
| 50, 52, 54, 55, 57, 59, 60, 62, |
| 63, 65, 66, 68, 69, 71, 72, 73, |
| 75, 76, 77, 79, 80, 81, 83, 84, |
| 85, 86, 88, 89, 90, 91, 92, 94, |
| 95, 96, 97, 98, 99, 100, 102, 103, |
| 104, 105, 106, 107, 108, 109, 110, 111, |
| 112, 113, 114, 115, 116, 117, 118, 119, |
| 120, 121, 122, 123, 124, 125, 126, 127, |
| 128, 129, 130, 131, 132, 133, 134, 135, |
| 136, 137, 137, 138, 139, 140, 141, 142, |
| 143, 144, 145, 145, 146, 147, 148, 149, |
| 150, 151, 151, 152, 153, 154, 155, 156, |
| 156, 157, 158, 159, 160, 161, 161, 162, |
| 163, 164, 165, 165, 166, 167, 168, 169, |
| 169, 170, 171, 172, 173, 173, 174, 175, |
| 176, 176, 177, 178, 179, 179, 180, 181, |
| 182, 182, 183, 184, 185, 185, 186, 187, |
| 188, 188, 189, 190, 191, 191, 192, 193, |
| 194, 194, 195, 196, 196, 197, 198, 199, |
| 199, 200, 201, 201, 202, 203, 203, 204, |
| 205, 206, 206, 207, 208, 208, 209, 210, |
| 210, 211, 212, 212, 213, 214, 214, 215, |
| 216, 216, 217, 218, 218, 219, 220, 220, |
| 221, 222, 222, 223, 224, 224, 225, 226, |
| 226, 227, 228, 228, 229, 230, 230, 231, |
| 231, 232, 233, 233, 234, 235, 235, 236, |
| 237, 237, 238, 238, 239, 240, 240, 241, |
| 242, 242, 243, 243, 244, 245, 245, 246, |
| 247, 247, 248, 248, 249, 250, 250, 251, |
| 251, 252, 253, 253, 254, 254, 255, 255, |
| }; |
| /* clang-format on */ |
| |
| static ProjectPointsFunc get_project_points_type(TransformationType type) { |
| switch (type) { |
| case HOMOGRAPHY: return project_points_homography; |
| case AFFINE: return project_points_affine; |
| case ROTZOOM: return project_points_rotzoom; |
| case TRANSLATION: return project_points_translation; |
| default: assert(0); return NULL; |
| } |
| } |
| |
| void project_points_translation(int32_t *mat, int *points, int *proj, |
| const int n, const int stride_points, |
| const int stride_proj, const int subsampling_x, |
| const int subsampling_y) { |
| int i; |
| for (i = 0; i < n; ++i) { |
| const int x = *(points++), y = *(points++); |
| if (subsampling_x) |
| *(proj++) = ROUND_POWER_OF_TWO_SIGNED( |
| ((x * (1 << (WARPEDMODEL_PREC_BITS + 1))) + mat[0]), |
| WARPEDDIFF_PREC_BITS + 1); |
| else |
| *(proj++) = ROUND_POWER_OF_TWO_SIGNED( |
| ((x * (1 << WARPEDMODEL_PREC_BITS)) + mat[0]), WARPEDDIFF_PREC_BITS); |
| if (subsampling_y) |
| *(proj++) = ROUND_POWER_OF_TWO_SIGNED( |
| ((y * (1 << (WARPEDMODEL_PREC_BITS + 1))) + mat[1]), |
| WARPEDDIFF_PREC_BITS + 1); |
| else |
| *(proj++) = ROUND_POWER_OF_TWO_SIGNED( |
| ((y * (1 << WARPEDMODEL_PREC_BITS))) + mat[1], WARPEDDIFF_PREC_BITS); |
| points += stride_points - 2; |
| proj += stride_proj - 2; |
| } |
| } |
| |
| void project_points_rotzoom(int32_t *mat, int *points, int *proj, const int n, |
| const int stride_points, const int stride_proj, |
| const int subsampling_x, const int subsampling_y) { |
| int i; |
| for (i = 0; i < n; ++i) { |
| const int x = *(points++), y = *(points++); |
| if (subsampling_x) |
| *(proj++) = ROUND_POWER_OF_TWO_SIGNED( |
| mat[2] * 2 * x + mat[3] * 2 * y + mat[0] + |
| (mat[2] + mat[3] - (1 << WARPEDMODEL_PREC_BITS)) / 2, |
| WARPEDDIFF_PREC_BITS + 1); |
| else |
| *(proj++) = ROUND_POWER_OF_TWO_SIGNED(mat[2] * x + mat[3] * y + mat[0], |
| WARPEDDIFF_PREC_BITS); |
| if (subsampling_y) |
| *(proj++) = ROUND_POWER_OF_TWO_SIGNED( |
| -mat[3] * 2 * x + mat[2] * 2 * y + mat[1] + |
| (-mat[3] + mat[2] - (1 << WARPEDMODEL_PREC_BITS)) / 2, |
| WARPEDDIFF_PREC_BITS + 1); |
| else |
| *(proj++) = ROUND_POWER_OF_TWO_SIGNED(-mat[3] * x + mat[2] * y + mat[1], |
| WARPEDDIFF_PREC_BITS); |
| points += stride_points - 2; |
| proj += stride_proj - 2; |
| } |
| } |
| |
| void project_points_affine(int32_t *mat, int *points, int *proj, const int n, |
| const int stride_points, const int stride_proj, |
| const int subsampling_x, const int subsampling_y) { |
| int i; |
| for (i = 0; i < n; ++i) { |
| const int x = *(points++), y = *(points++); |
| if (subsampling_x) |
| *(proj++) = ROUND_POWER_OF_TWO_SIGNED( |
| mat[2] * 2 * x + mat[3] * 2 * y + mat[0] + |
| (mat[2] + mat[3] - (1 << WARPEDMODEL_PREC_BITS)) / 2, |
| WARPEDDIFF_PREC_BITS + 1); |
| else |
| *(proj++) = ROUND_POWER_OF_TWO_SIGNED(mat[2] * x + mat[3] * y + mat[0], |
| WARPEDDIFF_PREC_BITS); |
| if (subsampling_y) |
| *(proj++) = ROUND_POWER_OF_TWO_SIGNED( |
| mat[4] * 2 * x + mat[5] * 2 * y + mat[1] + |
| (mat[4] + mat[5] - (1 << WARPEDMODEL_PREC_BITS)) / 2, |
| WARPEDDIFF_PREC_BITS + 1); |
| else |
| *(proj++) = ROUND_POWER_OF_TWO_SIGNED(mat[4] * x + mat[5] * y + mat[1], |
| WARPEDDIFF_PREC_BITS); |
| points += stride_points - 2; |
| proj += stride_proj - 2; |
| } |
| } |
| |
| void project_points_homography(int32_t *mat, int *points, int *proj, |
| const int n, const int stride_points, |
| const int stride_proj, const int subsampling_x, |
| const int subsampling_y) { |
| int i; |
| int64_t x, y, Z; |
| int64_t xp, yp; |
| for (i = 0; i < n; ++i) { |
| x = *(points++), y = *(points++); |
| x = (subsampling_x ? 4 * x + 1 : 2 * x); |
| y = (subsampling_y ? 4 * y + 1 : 2 * y); |
| |
| Z = (mat[6] * x + mat[7] * y + (1 << (WARPEDMODEL_ROW3HOMO_PREC_BITS + 1))); |
| xp = (mat[2] * x + mat[3] * y + 2 * mat[0]) * |
| (1 << (WARPEDPIXEL_PREC_BITS + WARPEDMODEL_ROW3HOMO_PREC_BITS - |
| WARPEDMODEL_PREC_BITS)); |
| yp = (mat[4] * x + mat[5] * y + 2 * mat[1]) * |
| (1 << (WARPEDPIXEL_PREC_BITS + WARPEDMODEL_ROW3HOMO_PREC_BITS - |
| WARPEDMODEL_PREC_BITS)); |
| |
| xp = xp > 0 ? (xp + Z / 2) / Z : (xp - Z / 2) / Z; |
| yp = yp > 0 ? (yp + Z / 2) / Z : (yp - Z / 2) / Z; |
| |
| if (subsampling_x) xp = (xp - (1 << (WARPEDPIXEL_PREC_BITS - 1))) / 2; |
| if (subsampling_y) yp = (yp - (1 << (WARPEDPIXEL_PREC_BITS - 1))) / 2; |
| *(proj++) = xp; |
| *(proj++) = yp; |
| |
| points += stride_points - 2; |
| proj += stride_proj - 2; |
| } |
| } |
| |
| // 'points' are at original scale, output 'proj's are scaled up by |
| // 1 << WARPEDPIXEL_PREC_BITS |
| void project_points(WarpedMotionParams *wm_params, int *points, int *proj, |
| const int n, const int stride_points, const int stride_proj, |
| const int subsampling_x, const int subsampling_y) { |
| switch (wm_params->wmtype) { |
| case AFFINE: |
| project_points_affine(wm_params->wmmat, points, proj, n, stride_points, |
| stride_proj, subsampling_x, subsampling_y); |
| break; |
| case ROTZOOM: |
| project_points_rotzoom(wm_params->wmmat, points, proj, n, stride_points, |
| stride_proj, subsampling_x, subsampling_y); |
| break; |
| case HOMOGRAPHY: |
| project_points_homography(wm_params->wmmat, points, proj, n, |
| stride_points, stride_proj, subsampling_x, |
| subsampling_y); |
| break; |
| default: assert(0 && "Invalid warped motion type!"); return; |
| } |
| } |
| |
| static const int16_t |
| filter_ntap[WARPEDPIXEL_PREC_SHIFTS][WARPEDPIXEL_FILTER_TAPS] = { |
| { 0, 0, 128, 0, 0, 0 }, { 0, -1, 128, 2, -1, 0 }, |
| { 1, -3, 127, 4, -1, 0 }, { 1, -4, 126, 6, -2, 1 }, |
| { 1, -5, 126, 8, -3, 1 }, { 1, -6, 125, 11, -4, 1 }, |
| { 1, -7, 124, 13, -4, 1 }, { 2, -8, 123, 15, -5, 1 }, |
| { 2, -9, 122, 18, -6, 1 }, { 2, -10, 121, 20, -6, 1 }, |
| { 2, -11, 120, 22, -7, 2 }, { 2, -12, 119, 25, -8, 2 }, |
| { 3, -13, 117, 27, -8, 2 }, { 3, -13, 116, 29, -9, 2 }, |
| { 3, -14, 114, 32, -10, 3 }, { 3, -15, 113, 35, -10, 2 }, |
| { 3, -15, 111, 37, -11, 3 }, { 3, -16, 109, 40, -11, 3 }, |
| { 3, -16, 108, 42, -12, 3 }, { 4, -17, 106, 45, -13, 3 }, |
| { 4, -17, 104, 47, -13, 3 }, { 4, -17, 102, 50, -14, 3 }, |
| { 4, -17, 100, 52, -14, 3 }, { 4, -18, 98, 55, -15, 4 }, |
| { 4, -18, 96, 58, -15, 3 }, { 4, -18, 94, 60, -16, 4 }, |
| { 4, -18, 91, 63, -16, 4 }, { 4, -18, 89, 65, -16, 4 }, |
| { 4, -18, 87, 68, -17, 4 }, { 4, -18, 85, 70, -17, 4 }, |
| { 4, -18, 82, 73, -17, 4 }, { 4, -18, 80, 75, -17, 4 }, |
| { 4, -18, 78, 78, -18, 4 }, { 4, -17, 75, 80, -18, 4 }, |
| { 4, -17, 73, 82, -18, 4 }, { 4, -17, 70, 85, -18, 4 }, |
| { 4, -17, 68, 87, -18, 4 }, { 4, -16, 65, 89, -18, 4 }, |
| { 4, -16, 63, 91, -18, 4 }, { 4, -16, 60, 94, -18, 4 }, |
| { 3, -15, 58, 96, -18, 4 }, { 4, -15, 55, 98, -18, 4 }, |
| { 3, -14, 52, 100, -17, 4 }, { 3, -14, 50, 102, -17, 4 }, |
| { 3, -13, 47, 104, -17, 4 }, { 3, -13, 45, 106, -17, 4 }, |
| { 3, -12, 42, 108, -16, 3 }, { 3, -11, 40, 109, -16, 3 }, |
| { 3, -11, 37, 111, -15, 3 }, { 2, -10, 35, 113, -15, 3 }, |
| { 3, -10, 32, 114, -14, 3 }, { 2, -9, 29, 116, -13, 3 }, |
| { 2, -8, 27, 117, -13, 3 }, { 2, -8, 25, 119, -12, 2 }, |
| { 2, -7, 22, 120, -11, 2 }, { 1, -6, 20, 121, -10, 2 }, |
| { 1, -6, 18, 122, -9, 2 }, { 1, -5, 15, 123, -8, 2 }, |
| { 1, -4, 13, 124, -7, 1 }, { 1, -4, 11, 125, -6, 1 }, |
| { 1, -3, 8, 126, -5, 1 }, { 1, -2, 6, 126, -4, 1 }, |
| { 0, -1, 4, 127, -3, 1 }, { 0, -1, 2, 128, -1, 0 }, |
| }; |
| |
| static int32_t do_ntap_filter(int32_t *p, int x) { |
| int i; |
| int32_t sum = 0; |
| for (i = 0; i < WARPEDPIXEL_FILTER_TAPS; ++i) { |
| sum += p[i - WARPEDPIXEL_FILTER_TAPS / 2 + 1] * filter_ntap[x][i]; |
| } |
| return sum; |
| } |
| |
| static int32_t do_cubic_filter(int32_t *p, int x) { |
| if (x == 0) { |
| return p[0] * (1 << WARPEDPIXEL_FILTER_BITS); |
| } else if (x == (1 << WARPEDPIXEL_PREC_BITS)) { |
| return p[1] * (1 << WARPEDPIXEL_FILTER_BITS); |
| } else { |
| const int64_t v1 = (int64_t)x * x * x * (3 * (p[0] - p[1]) + p[2] - p[-1]); |
| const int64_t v2 = x * x * (2 * p[-1] - 5 * p[0] + 4 * p[1] - p[2]); |
| const int64_t v3 = x * (p[1] - p[-1]); |
| const int64_t v4 = 2 * p[0]; |
| return (int32_t)ROUND_POWER_OF_TWO_SIGNED( |
| (v4 * (1 << (3 * WARPEDPIXEL_PREC_BITS))) + |
| (v3 * (1 << (2 * WARPEDPIXEL_PREC_BITS))) + |
| (v2 * (1 << WARPEDPIXEL_PREC_BITS)) + v1, |
| 3 * WARPEDPIXEL_PREC_BITS + 1 - WARPEDPIXEL_FILTER_BITS); |
| } |
| } |
| |
| static INLINE void get_subcolumn(int taps, uint8_t *ref, int32_t *col, |
| int stride, int x, int y_start) { |
| int i; |
| for (i = 0; i < taps; ++i) { |
| col[i] = ref[(i + y_start) * stride + x]; |
| } |
| } |
| |
| static uint8_t bi_ntap_filter(uint8_t *ref, int x, int y, int stride) { |
| int32_t val, arr[WARPEDPIXEL_FILTER_TAPS]; |
| int k; |
| int i = (int)x >> WARPEDPIXEL_PREC_BITS; |
| int j = (int)y >> WARPEDPIXEL_PREC_BITS; |
| for (k = 0; k < WARPEDPIXEL_FILTER_TAPS; ++k) { |
| int32_t arr_temp[WARPEDPIXEL_FILTER_TAPS]; |
| get_subcolumn(WARPEDPIXEL_FILTER_TAPS, ref, arr_temp, stride, |
| i + k + 1 - WARPEDPIXEL_FILTER_TAPS / 2, |
| j + 1 - WARPEDPIXEL_FILTER_TAPS / 2); |
| arr[k] = do_ntap_filter(arr_temp + WARPEDPIXEL_FILTER_TAPS / 2 - 1, |
| y - (j * (1 << WARPEDPIXEL_PREC_BITS))); |
| } |
| val = do_ntap_filter(arr + WARPEDPIXEL_FILTER_TAPS / 2 - 1, |
| x - (i * (1 << WARPEDPIXEL_PREC_BITS))); |
| val = ROUND_POWER_OF_TWO_SIGNED(val, WARPEDPIXEL_FILTER_BITS * 2); |
| return (uint8_t)clip_pixel(val); |
| } |
| |
| static uint8_t bi_cubic_filter(uint8_t *ref, int x, int y, int stride) { |
| int32_t val, arr[4]; |
| int k; |
| int i = (int)x >> WARPEDPIXEL_PREC_BITS; |
| int j = (int)y >> WARPEDPIXEL_PREC_BITS; |
| for (k = 0; k < 4; ++k) { |
| int32_t arr_temp[4]; |
| get_subcolumn(4, ref, arr_temp, stride, i + k - 1, j - 1); |
| arr[k] = |
| do_cubic_filter(arr_temp + 1, y - (j * (1 << WARPEDPIXEL_PREC_BITS))); |
| } |
| val = do_cubic_filter(arr + 1, x - (i * (1 << WARPEDPIXEL_PREC_BITS))); |
| val = ROUND_POWER_OF_TWO_SIGNED(val, WARPEDPIXEL_FILTER_BITS * 2); |
| return (uint8_t)clip_pixel(val); |
| } |
| |
| static uint8_t bi_linear_filter(uint8_t *ref, int x, int y, int stride) { |
| const int ix = x >> WARPEDPIXEL_PREC_BITS; |
| const int iy = y >> WARPEDPIXEL_PREC_BITS; |
| const int sx = x - (ix * (1 << WARPEDPIXEL_PREC_BITS)); |
| const int sy = y - (iy * (1 << WARPEDPIXEL_PREC_BITS)); |
| int32_t val; |
| val = ROUND_POWER_OF_TWO_SIGNED( |
| ref[iy * stride + ix] * (WARPEDPIXEL_PREC_SHIFTS - sy) * |
| (WARPEDPIXEL_PREC_SHIFTS - sx) + |
| ref[iy * stride + ix + 1] * (WARPEDPIXEL_PREC_SHIFTS - sy) * sx + |
| ref[(iy + 1) * stride + ix] * sy * (WARPEDPIXEL_PREC_SHIFTS - sx) + |
| ref[(iy + 1) * stride + ix + 1] * sy * sx, |
| WARPEDPIXEL_PREC_BITS * 2); |
| return (uint8_t)clip_pixel(val); |
| } |
| |
| static uint8_t warp_interpolate(uint8_t *ref, int x, int y, int width, |
| int height, int stride) { |
| int ix = x >> WARPEDPIXEL_PREC_BITS; |
| int iy = y >> WARPEDPIXEL_PREC_BITS; |
| int sx = x - (ix * (1 << WARPEDPIXEL_PREC_BITS)); |
| int sy = y - (iy * (1 << WARPEDPIXEL_PREC_BITS)); |
| int32_t v; |
| |
| if (ix < 0 && iy < 0) |
| return ref[0]; |
| else if (ix < 0 && iy >= height - 1) |
| return ref[(height - 1) * stride]; |
| else if (ix >= width - 1 && iy < 0) |
| return ref[width - 1]; |
| else if (ix >= width - 1 && iy >= height - 1) |
| return ref[(height - 1) * stride + (width - 1)]; |
| else if (ix < 0) { |
| v = ROUND_POWER_OF_TWO_SIGNED( |
| ref[iy * stride] * (WARPEDPIXEL_PREC_SHIFTS - sy) + |
| ref[(iy + 1) * stride] * sy, |
| WARPEDPIXEL_PREC_BITS); |
| return clip_pixel(v); |
| } else if (iy < 0) { |
| v = ROUND_POWER_OF_TWO_SIGNED( |
| ref[ix] * (WARPEDPIXEL_PREC_SHIFTS - sx) + ref[ix + 1] * sx, |
| WARPEDPIXEL_PREC_BITS); |
| return clip_pixel(v); |
| } else if (ix >= width - 1) { |
| v = ROUND_POWER_OF_TWO_SIGNED( |
| ref[iy * stride + width - 1] * (WARPEDPIXEL_PREC_SHIFTS - sy) + |
| ref[(iy + 1) * stride + width - 1] * sy, |
| WARPEDPIXEL_PREC_BITS); |
| return clip_pixel(v); |
| } else if (iy >= height - 1) { |
| v = ROUND_POWER_OF_TWO_SIGNED( |
| ref[(height - 1) * stride + ix] * (WARPEDPIXEL_PREC_SHIFTS - sx) + |
| ref[(height - 1) * stride + ix + 1] * sx, |
| WARPEDPIXEL_PREC_BITS); |
| return clip_pixel(v); |
| } else if (ix >= WARPEDPIXEL_FILTER_TAPS / 2 - 1 && |
| iy >= WARPEDPIXEL_FILTER_TAPS / 2 - 1 && |
| ix < width - WARPEDPIXEL_FILTER_TAPS / 2 && |
| iy < height - WARPEDPIXEL_FILTER_TAPS / 2) { |
| return bi_ntap_filter(ref, x, y, stride); |
| } else if (ix >= 1 && iy >= 1 && ix < width - 2 && iy < height - 2) { |
| return bi_cubic_filter(ref, x, y, stride); |
| } else { |
| return bi_linear_filter(ref, x, y, stride); |
| } |
| } |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| static INLINE void highbd_get_subcolumn(int taps, uint16_t *ref, int32_t *col, |
| int stride, int x, int y_start) { |
| int i; |
| for (i = 0; i < taps; ++i) { |
| col[i] = ref[(i + y_start) * stride + x]; |
| } |
| } |
| |
| static uint16_t highbd_bi_ntap_filter(uint16_t *ref, int x, int y, int stride, |
| int bd) { |
| int32_t val, arr[WARPEDPIXEL_FILTER_TAPS]; |
| int k; |
| int i = (int)x >> WARPEDPIXEL_PREC_BITS; |
| int j = (int)y >> WARPEDPIXEL_PREC_BITS; |
| for (k = 0; k < WARPEDPIXEL_FILTER_TAPS; ++k) { |
| int32_t arr_temp[WARPEDPIXEL_FILTER_TAPS]; |
| highbd_get_subcolumn(WARPEDPIXEL_FILTER_TAPS, ref, arr_temp, stride, |
| i + k + 1 - WARPEDPIXEL_FILTER_TAPS / 2, |
| j + 1 - WARPEDPIXEL_FILTER_TAPS / 2); |
| arr[k] = do_ntap_filter(arr_temp + WARPEDPIXEL_FILTER_TAPS / 2 - 1, |
| y - (j * (1 << WARPEDPIXEL_PREC_BITS))); |
| } |
| val = do_ntap_filter(arr + WARPEDPIXEL_FILTER_TAPS / 2 - 1, |
| x - (i * (1 << WARPEDPIXEL_PREC_BITS))); |
| val = ROUND_POWER_OF_TWO_SIGNED(val, WARPEDPIXEL_FILTER_BITS * 2); |
| return (uint16_t)clip_pixel_highbd(val, bd); |
| } |
| |
| static uint16_t highbd_bi_cubic_filter(uint16_t *ref, int x, int y, int stride, |
| int bd) { |
| int32_t val, arr[4]; |
| int k; |
| int i = (int)x >> WARPEDPIXEL_PREC_BITS; |
| int j = (int)y >> WARPEDPIXEL_PREC_BITS; |
| for (k = 0; k < 4; ++k) { |
| int32_t arr_temp[4]; |
| highbd_get_subcolumn(4, ref, arr_temp, stride, i + k - 1, j - 1); |
| arr[k] = |
| do_cubic_filter(arr_temp + 1, y - (j * (1 << WARPEDPIXEL_PREC_BITS))); |
| } |
| val = do_cubic_filter(arr + 1, x - (i * (1 << WARPEDPIXEL_PREC_BITS))); |
| val = ROUND_POWER_OF_TWO_SIGNED(val, WARPEDPIXEL_FILTER_BITS * 2); |
| return (uint16_t)clip_pixel_highbd(val, bd); |
| } |
| |
| static uint16_t highbd_bi_linear_filter(uint16_t *ref, int x, int y, int stride, |
| int bd) { |
| const int ix = x >> WARPEDPIXEL_PREC_BITS; |
| const int iy = y >> WARPEDPIXEL_PREC_BITS; |
| const int sx = x - (ix * (1 << WARPEDPIXEL_PREC_BITS)); |
| const int sy = y - (iy * (1 << WARPEDPIXEL_PREC_BITS)); |
| int32_t val; |
| val = ROUND_POWER_OF_TWO_SIGNED( |
| ref[iy * stride + ix] * (WARPEDPIXEL_PREC_SHIFTS - sy) * |
| (WARPEDPIXEL_PREC_SHIFTS - sx) + |
| ref[iy * stride + ix + 1] * (WARPEDPIXEL_PREC_SHIFTS - sy) * sx + |
| ref[(iy + 1) * stride + ix] * sy * (WARPEDPIXEL_PREC_SHIFTS - sx) + |
| ref[(iy + 1) * stride + ix + 1] * sy * sx, |
| WARPEDPIXEL_PREC_BITS * 2); |
| return (uint16_t)clip_pixel_highbd(val, bd); |
| } |
| |
| static uint16_t highbd_warp_interpolate(uint16_t *ref, int x, int y, int width, |
| int height, int stride, int bd) { |
| int ix = x >> WARPEDPIXEL_PREC_BITS; |
| int iy = y >> WARPEDPIXEL_PREC_BITS; |
| int sx = x - (ix * (1 << WARPEDPIXEL_PREC_BITS)); |
| int sy = y - (iy * (1 << WARPEDPIXEL_PREC_BITS)); |
| int32_t v; |
| |
| if (ix < 0 && iy < 0) |
| return ref[0]; |
| else if (ix < 0 && iy > height - 1) |
| return ref[(height - 1) * stride]; |
| else if (ix > width - 1 && iy < 0) |
| return ref[width - 1]; |
| else if (ix > width - 1 && iy > height - 1) |
| return ref[(height - 1) * stride + (width - 1)]; |
| else if (ix < 0) { |
| v = ROUND_POWER_OF_TWO_SIGNED( |
| ref[iy * stride] * (WARPEDPIXEL_PREC_SHIFTS - sy) + |
| ref[(iy + 1) * stride] * sy, |
| WARPEDPIXEL_PREC_BITS); |
| return clip_pixel_highbd(v, bd); |
| } else if (iy < 0) { |
| v = ROUND_POWER_OF_TWO_SIGNED( |
| ref[ix] * (WARPEDPIXEL_PREC_SHIFTS - sx) + ref[ix + 1] * sx, |
| WARPEDPIXEL_PREC_BITS); |
| return clip_pixel_highbd(v, bd); |
| } else if (ix > width - 1) { |
| v = ROUND_POWER_OF_TWO_SIGNED( |
| ref[iy * stride + width - 1] * (WARPEDPIXEL_PREC_SHIFTS - sy) + |
| ref[(iy + 1) * stride + width - 1] * sy, |
| WARPEDPIXEL_PREC_BITS); |
| return clip_pixel_highbd(v, bd); |
| } else if (iy > height - 1) { |
| v = ROUND_POWER_OF_TWO_SIGNED( |
| ref[(height - 1) * stride + ix] * (WARPEDPIXEL_PREC_SHIFTS - sx) + |
| ref[(height - 1) * stride + ix + 1] * sx, |
| WARPEDPIXEL_PREC_BITS); |
| return clip_pixel_highbd(v, bd); |
| } else if (ix >= WARPEDPIXEL_FILTER_TAPS / 2 - 1 && |
| iy >= WARPEDPIXEL_FILTER_TAPS / 2 - 1 && |
| ix < width - WARPEDPIXEL_FILTER_TAPS / 2 && |
| iy < height - WARPEDPIXEL_FILTER_TAPS / 2) { |
| return highbd_bi_ntap_filter(ref, x, y, stride, bd); |
| } else if (ix >= 1 && iy >= 1 && ix < width - 2 && iy < height - 2) { |
| return highbd_bi_cubic_filter(ref, x, y, stride, bd); |
| } else { |
| return highbd_bi_linear_filter(ref, x, y, stride, bd); |
| } |
| } |
| |
| static INLINE int highbd_error_measure(int err, int bd) { |
| const int b = bd - 8; |
| const int bmask = (1 << b) - 1; |
| const int v = (1 << b); |
| int e1, e2; |
| err = abs(err); |
| e1 = err >> b; |
| e2 = err & bmask; |
| return error_measure_lut[255 + e1] * (v - e2) + |
| error_measure_lut[256 + e1] * e2; |
| } |
| |
| static double highbd_warp_erroradv(WarpedMotionParams *wm, uint8_t *ref8, |
| int width, int height, int stride, |
| uint8_t *dst8, int p_col, int p_row, |
| int p_width, int p_height, int p_stride, |
| int subsampling_x, int subsampling_y, |
| int x_scale, int y_scale, int bd) { |
| int i, j; |
| ProjectPointsFunc projectpoints = get_project_points_type(wm->wmtype); |
| uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); |
| uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); |
| int gm_err = 0, no_gm_err = 0; |
| int64_t gm_sumerr = 0, no_gm_sumerr = 0; |
| for (i = p_row; i < p_row + p_height; ++i) { |
| for (j = p_col; j < p_col + p_width; ++j) { |
| int in[2], out[2]; |
| in[0] = j; |
| in[1] = i; |
| projectpoints(wm->wmmat, in, out, 1, 2, 2, subsampling_x, subsampling_y); |
| out[0] = ROUND_POWER_OF_TWO_SIGNED(out[0] * x_scale, 4); |
| out[1] = ROUND_POWER_OF_TWO_SIGNED(out[1] * y_scale, 4); |
| gm_err = dst[(j - p_col) + (i - p_row) * p_stride] - |
| highbd_warp_interpolate(ref, out[0], out[1], width, height, |
| stride, bd); |
| no_gm_err = |
| dst[(j - p_col) + (i - p_row) * p_stride] - ref[j + i * stride]; |
| gm_sumerr += highbd_error_measure(gm_err, bd); |
| no_gm_sumerr += highbd_error_measure(no_gm_err, bd); |
| } |
| } |
| return (double)gm_sumerr / no_gm_sumerr; |
| } |
| |
| static void highbd_warp_plane(WarpedMotionParams *wm, uint8_t *ref8, int width, |
| int height, int stride, uint8_t *pred8, int p_col, |
| int p_row, int p_width, int p_height, |
| int p_stride, int subsampling_x, |
| int subsampling_y, int x_scale, int y_scale, |
| int bd, int ref_frm) { |
| int i, j; |
| ProjectPointsFunc projectpoints = get_project_points_type(wm->wmtype); |
| uint16_t *pred = CONVERT_TO_SHORTPTR(pred8); |
| uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); |
| if (projectpoints == NULL) return; |
| for (i = p_row; i < p_row + p_height; ++i) { |
| for (j = p_col; j < p_col + p_width; ++j) { |
| int in[2], out[2]; |
| in[0] = j; |
| in[1] = i; |
| projectpoints(wm->wmmat, in, out, 1, 2, 2, subsampling_x, subsampling_y); |
| out[0] = ROUND_POWER_OF_TWO_SIGNED(out[0] * x_scale, 4); |
| out[1] = ROUND_POWER_OF_TWO_SIGNED(out[1] * y_scale, 4); |
| if (ref_frm) |
| pred[(j - p_col) + (i - p_row) * p_stride] = ROUND_POWER_OF_TWO( |
| pred[(j - p_col) + (i - p_row) * p_stride] + |
| highbd_warp_interpolate(ref, out[0], out[1], width, height, |
| stride, bd), |
| 1); |
| else |
| pred[(j - p_col) + (i - p_row) * p_stride] = highbd_warp_interpolate( |
| ref, out[0], out[1], width, height, stride, bd); |
| } |
| } |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| static INLINE int error_measure(int err) { |
| return error_measure_lut[255 + err]; |
| } |
| |
| static double warp_erroradv(WarpedMotionParams *wm, uint8_t *ref, int width, |
| int height, int stride, uint8_t *dst, int p_col, |
| int p_row, int p_width, int p_height, int p_stride, |
| int subsampling_x, int subsampling_y, int x_scale, |
| int y_scale) { |
| int gm_err = 0, no_gm_err = 0; |
| int gm_sumerr = 0, no_gm_sumerr = 0; |
| int i, j; |
| ProjectPointsFunc projectpoints = get_project_points_type(wm->wmtype); |
| for (i = p_row; i < p_row + p_height; ++i) { |
| for (j = p_col; j < p_col + p_width; ++j) { |
| int in[2], out[2]; |
| in[0] = j; |
| in[1] = i; |
| projectpoints(wm->wmmat, in, out, 1, 2, 2, subsampling_x, subsampling_y); |
| out[0] = ROUND_POWER_OF_TWO_SIGNED(out[0] * x_scale, 4); |
| out[1] = ROUND_POWER_OF_TWO_SIGNED(out[1] * y_scale, 4); |
| gm_err = dst[(j - p_col) + (i - p_row) * p_stride] - |
| warp_interpolate(ref, out[0], out[1], width, height, stride); |
| no_gm_err = |
| dst[(j - p_col) + (i - p_row) * p_stride] - ref[j + i * stride]; |
| gm_sumerr += error_measure(gm_err); |
| no_gm_sumerr += error_measure(no_gm_err); |
| } |
| } |
| return (double)gm_sumerr / no_gm_sumerr; |
| } |
| |
| static void warp_plane(WarpedMotionParams *wm, uint8_t *ref, int width, |
| int height, int stride, uint8_t *pred, int p_col, |
| int p_row, int p_width, int p_height, int p_stride, |
| int subsampling_x, int subsampling_y, int x_scale, |
| int y_scale, int ref_frm) { |
| int i, j; |
| ProjectPointsFunc projectpoints = get_project_points_type(wm->wmtype); |
| if (projectpoints == NULL) return; |
| for (i = p_row; i < p_row + p_height; ++i) { |
| for (j = p_col; j < p_col + p_width; ++j) { |
| int in[2], out[2]; |
| in[0] = j; |
| in[1] = i; |
| projectpoints(wm->wmmat, in, out, 1, 2, 2, subsampling_x, subsampling_y); |
| out[0] = ROUND_POWER_OF_TWO_SIGNED(out[0] * x_scale, 4); |
| out[1] = ROUND_POWER_OF_TWO_SIGNED(out[1] * y_scale, 4); |
| if (ref_frm) |
| pred[(j - p_col) + (i - p_row) * p_stride] = ROUND_POWER_OF_TWO( |
| pred[(j - p_col) + (i - p_row) * p_stride] + |
| warp_interpolate(ref, out[0], out[1], width, height, stride), |
| 1); |
| else |
| pred[(j - p_col) + (i - p_row) * p_stride] = |
| warp_interpolate(ref, out[0], out[1], width, height, stride); |
| } |
| } |
| } |
| |
| double av1_warp_erroradv(WarpedMotionParams *wm, |
| #if CONFIG_AOM_HIGHBITDEPTH |
| int use_hbd, int bd, |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| uint8_t *ref, int width, int height, int stride, |
| uint8_t *dst, int p_col, int p_row, int p_width, |
| int p_height, int p_stride, int subsampling_x, |
| int subsampling_y, int x_scale, int y_scale) { |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (use_hbd) |
| return highbd_warp_erroradv( |
| wm, ref, width, height, stride, dst, p_col, p_row, p_width, p_height, |
| p_stride, subsampling_x, subsampling_y, x_scale, y_scale, bd); |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| return warp_erroradv(wm, ref, width, height, stride, dst, p_col, p_row, |
| p_width, p_height, p_stride, subsampling_x, |
| subsampling_y, x_scale, y_scale); |
| } |
| |
| void av1_warp_plane(WarpedMotionParams *wm, |
| #if CONFIG_AOM_HIGHBITDEPTH |
| int use_hbd, int bd, |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| uint8_t *ref, int width, int height, int stride, |
| uint8_t *pred, int p_col, int p_row, int p_width, |
| int p_height, int p_stride, int subsampling_x, |
| int subsampling_y, int x_scale, int y_scale, int ref_frm) { |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (use_hbd) |
| highbd_warp_plane(wm, ref, width, height, stride, pred, p_col, p_row, |
| p_width, p_height, p_stride, subsampling_x, subsampling_y, |
| x_scale, y_scale, bd, ref_frm); |
| else |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| warp_plane(wm, ref, width, height, stride, pred, p_col, p_row, p_width, |
| p_height, p_stride, subsampling_x, subsampling_y, x_scale, |
| y_scale, ref_frm); |
| } |
| |
| void av1_integerize_model(const double *model, TransformationType wmtype, |
| WarpedMotionParams *wm) { |
| wm->wmtype = wmtype; |
| switch (wmtype) { |
| case HOMOGRAPHY: |
| assert(fabs(model[8] - 1.0) < 1e-12); |
| wm->wmmat[6] = |
| (int32_t)lrint(model[6] * (1 << WARPEDMODEL_ROW3HOMO_PREC_BITS)); |
| wm->wmmat[7] = |
| (int32_t)lrint(model[7] * (1 << WARPEDMODEL_ROW3HOMO_PREC_BITS)); |
| /* fallthrough intended */ |
| case AFFINE: |
| wm->wmmat[4] = (int32_t)lrint(model[4] * (1 << WARPEDMODEL_PREC_BITS)); |
| wm->wmmat[5] = (int32_t)lrint(model[5] * (1 << WARPEDMODEL_PREC_BITS)); |
| /* fallthrough intended */ |
| case ROTZOOM: |
| wm->wmmat[2] = (int32_t)lrint(model[2] * (1 << WARPEDMODEL_PREC_BITS)); |
| wm->wmmat[3] = (int32_t)lrint(model[3] * (1 << WARPEDMODEL_PREC_BITS)); |
| /* fallthrough intended */ |
| case TRANSLATION: |
| wm->wmmat[0] = (int32_t)lrint(model[0] * (1 << WARPEDMODEL_PREC_BITS)); |
| wm->wmmat[1] = (int32_t)lrint(model[1] * (1 << WARPEDMODEL_PREC_BITS)); |
| break; |
| default: assert(0 && "Invalid TransformationType"); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // svdcmp |
| // Adopted from Numerical Recipes in C |
| |
| static const double TINY_NEAR_ZERO = 1.0E-12; |
| |
| static INLINE double sign(double a, double b) { |
| return ((b) >= 0 ? fabs(a) : -fabs(a)); |
| } |
| |
| static INLINE double pythag(double a, double b) { |
| double ct; |
| const double absa = fabs(a); |
| const double absb = fabs(b); |
| |
| if (absa > absb) { |
| ct = absb / absa; |
| return absa * sqrt(1.0 + ct * ct); |
| } else { |
| ct = absa / absb; |
| return (absb == 0) ? 0 : absb * sqrt(1.0 + ct * ct); |
| } |
| } |
| |
| static void multiply_mat(const double *m1, const double *m2, double *res, |
| const int m1_rows, const int inner_dim, |
| const int m2_cols) { |
| double sum; |
| |
| int row, col, inner; |
| for (row = 0; row < m1_rows; ++row) { |
| for (col = 0; col < m2_cols; ++col) { |
| sum = 0; |
| for (inner = 0; inner < inner_dim; ++inner) |
| sum += m1[row * inner_dim + inner] * m2[inner * m2_cols + col]; |
| *(res++) = sum; |
| } |
| } |
| } |
| |
| static int svdcmp(double **u, int m, int n, double w[], double **v) { |
| const int max_its = 30; |
| int flag, i, its, j, jj, k, l, nm; |
| double anorm, c, f, g, h, s, scale, x, y, z; |
| double *rv1 = (double *)aom_malloc(sizeof(*rv1) * (n + 1)); |
| g = scale = anorm = 0.0; |
| for (i = 0; i < n; i++) { |
| l = i + 1; |
| rv1[i] = scale * g; |
| g = s = scale = 0.0; |
| if (i < m) { |
| for (k = i; k < m; k++) scale += fabs(u[k][i]); |
| if (scale != 0.) { |
| for (k = i; k < m; k++) { |
| u[k][i] /= scale; |
| s += u[k][i] * u[k][i]; |
| } |
| f = u[i][i]; |
| g = -sign(sqrt(s), f); |
| h = f * g - s; |
| u[i][i] = f - g; |
| for (j = l; j < n; j++) { |
| for (s = 0.0, k = i; k < m; k++) s += u[k][i] * u[k][j]; |
| f = s / h; |
| for (k = i; k < m; k++) u[k][j] += f * u[k][i]; |
| } |
| for (k = i; k < m; k++) u[k][i] *= scale; |
| } |
| } |
| w[i] = scale * g; |
| g = s = scale = 0.0; |
| if (i < m && i != n - 1) { |
| for (k = l; k < n; k++) scale += fabs(u[i][k]); |
| if (scale != 0.) { |
| for (k = l; k < n; k++) { |
| u[i][k] /= scale; |
| s += u[i][k] * u[i][k]; |
| } |
| f = u[i][l]; |
| g = -sign(sqrt(s), f); |
| h = f * g - s; |
| u[i][l] = f - g; |
| for (k = l; k < n; k++) rv1[k] = u[i][k] / h; |
| for (j = l; j < m; j++) { |
| for (s = 0.0, k = l; k < n; k++) s += u[j][k] * u[i][k]; |
| for (k = l; k < n; k++) u[j][k] += s * rv1[k]; |
| } |
| for (k = l; k < n; k++) u[i][k] *= scale; |
| } |
| } |
| anorm = fmax(anorm, (fabs(w[i]) + fabs(rv1[i]))); |
| } |
| |
| for (i = n - 1; i >= 0; i--) { |
| if (i < n - 1) { |
| if (g != 0.) { |
| for (j = l; j < n; j++) v[j][i] = (u[i][j] / u[i][l]) / g; |
| for (j = l; j < n; j++) { |
| for (s = 0.0, k = l; k < n; k++) s += u[i][k] * v[k][j]; |
| for (k = l; k < n; k++) v[k][j] += s * v[k][i]; |
| } |
| } |
| for (j = l; j < n; j++) v[i][j] = v[j][i] = 0.0; |
| } |
| v[i][i] = 1.0; |
| g = rv1[i]; |
| l = i; |
| } |
| for (i = AOMMIN(m, n) - 1; i >= 0; i--) { |
| l = i + 1; |
| g = w[i]; |
| for (j = l; j < n; j++) u[i][j] = 0.0; |
| if (g != 0.) { |
| g = 1.0 / g; |
| for (j = l; j < n; j++) { |
| for (s = 0.0, k = l; k < m; k++) s += u[k][i] * u[k][j]; |
| f = (s / u[i][i]) * g; |
| for (k = i; k < m; k++) u[k][j] += f * u[k][i]; |
| } |
| for (j = i; j < m; j++) u[j][i] *= g; |
| } else { |
| for (j = i; j < m; j++) u[j][i] = 0.0; |
| } |
| ++u[i][i]; |
| } |
| for (k = n - 1; k >= 0; k--) { |
| for (its = 0; its < max_its; its++) { |
| flag = 1; |
| for (l = k; l >= 0; l--) { |
| nm = l - 1; |
| if ((double)(fabs(rv1[l]) + anorm) == anorm || nm < 0) { |
| flag = 0; |
| break; |
| } |
| if ((double)(fabs(w[nm]) + anorm) == anorm) break; |
| } |
| if (flag) { |
| c = 0.0; |
| s = 1.0; |
| for (i = l; i <= k; i++) { |
| f = s * rv1[i]; |
| rv1[i] = c * rv1[i]; |
| if ((double)(fabs(f) + anorm) == anorm) break; |
| g = w[i]; |
| h = pythag(f, g); |
| w[i] = h; |
| h = 1.0 / h; |
| c = g * h; |
| s = -f * h; |
| for (j = 0; j < m; j++) { |
| y = u[j][nm]; |
| z = u[j][i]; |
| u[j][nm] = y * c + z * s; |
| u[j][i] = z * c - y * s; |
| } |
| } |
| } |
| z = w[k]; |
| if (l == k) { |
| if (z < 0.0) { |
| w[k] = -z; |
| for (j = 0; j < n; j++) v[j][k] = -v[j][k]; |
| } |
| break; |
| } |
| if (its == max_its - 1) { |
| aom_free(rv1); |
| return 1; |
| } |
| assert(k > 0); |
| x = w[l]; |
| nm = k - 1; |
| y = w[nm]; |
| g = rv1[nm]; |
| h = rv1[k]; |
| f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y); |
| g = pythag(f, 1.0); |
| f = ((x - z) * (x + z) + h * ((y / (f + sign(g, f))) - h)) / x; |
| c = s = 1.0; |
| for (j = l; j <= nm; j++) { |
| i = j + 1; |
| g = rv1[i]; |
| y = w[i]; |
| h = s * g; |
| g = c * g; |
| z = pythag(f, h); |
| rv1[j] = z; |
| c = f / z; |
| s = h / z; |
| f = x * c + g * s; |
| g = g * c - x * s; |
| h = y * s; |
| y *= c; |
| for (jj = 0; jj < n; jj++) { |
| x = v[jj][j]; |
| z = v[jj][i]; |
| v[jj][j] = x * c + z * s; |
| v[jj][i] = z * c - x * s; |
| } |
| z = pythag(f, h); |
| w[j] = z; |
| if (z != 0.) { |
| z = 1.0 / z; |
| c = f * z; |
| s = h * z; |
| } |
| f = c * g + s * y; |
| x = c * y - s * g; |
| for (jj = 0; jj < m; jj++) { |
| y = u[jj][j]; |
| z = u[jj][i]; |
| u[jj][j] = y * c + z * s; |
| u[jj][i] = z * c - y * s; |
| } |
| } |
| rv1[l] = 0.0; |
| rv1[k] = f; |
| w[k] = x; |
| } |
| } |
| aom_free(rv1); |
| return 0; |
| } |
| |
| static int SVD(double *U, double *W, double *V, double *matx, int M, int N) { |
| // Assumes allocation for U is MxN |
| double **nrU = (double **)aom_malloc((M) * sizeof(*nrU)); |
| double **nrV = (double **)aom_malloc((N) * sizeof(*nrV)); |
| int problem, i; |
| |
| problem = !(nrU && nrV); |
| if (!problem) { |
| for (i = 0; i < M; i++) { |
| nrU[i] = &U[i * N]; |
| } |
| for (i = 0; i < N; i++) { |
| nrV[i] = &V[i * N]; |
| } |
| } else { |
| if (nrU) aom_free(nrU); |
| if (nrV) aom_free(nrV); |
| return 1; |
| } |
| |
| /* copy from given matx into nrU */ |
| for (i = 0; i < M; i++) { |
| memcpy(&(nrU[i][0]), matx + N * i, N * sizeof(*matx)); |
| } |
| |
| /* HERE IT IS: do SVD */ |
| if (svdcmp(nrU, M, N, W, nrV)) { |
| aom_free(nrU); |
| aom_free(nrV); |
| return 1; |
| } |
| |
| /* aom_free Numerical Recipes arrays */ |
| aom_free(nrU); |
| aom_free(nrV); |
| |
| return 0; |
| } |
| |
| int pseudo_inverse(double *inv, double *matx, const int M, const int N) { |
| double ans; |
| int i, j, k; |
| double *const U = (double *)aom_malloc(M * N * sizeof(*matx)); |
| double *const W = (double *)aom_malloc(N * sizeof(*matx)); |
| double *const V = (double *)aom_malloc(N * N * sizeof(*matx)); |
| |
| if (!(U && W && V)) { |
| return 1; |
| } |
| if (SVD(U, W, V, matx, M, N)) { |
| aom_free(U); |
| aom_free(W); |
| aom_free(V); |
| return 1; |
| } |
| for (i = 0; i < N; i++) { |
| if (fabs(W[i]) < TINY_NEAR_ZERO) { |
| aom_free(U); |
| aom_free(W); |
| aom_free(V); |
| return 1; |
| } |
| } |
| |
| for (i = 0; i < N; i++) { |
| for (j = 0; j < M; j++) { |
| ans = 0; |
| for (k = 0; k < N; k++) { |
| ans += V[k + N * i] * U[k + N * j] / W[k]; |
| } |
| inv[j + M * i] = ans; |
| } |
| } |
| aom_free(U); |
| aom_free(W); |
| aom_free(V); |
| return 0; |
| } |
| |
| static void normalize_homography(double *pts, int n, double *T) { |
| double *p = pts; |
| double mean[2] = { 0, 0 }; |
| double msqe = 0; |
| double scale; |
| int i; |
| for (i = 0; i < n; ++i, p += 2) { |
| mean[0] += p[0]; |
| mean[1] += p[1]; |
| } |
| mean[0] /= n; |
| mean[1] /= n; |
| for (p = pts, i = 0; i < n; ++i, p += 2) { |
| p[0] -= mean[0]; |
| p[1] -= mean[1]; |
| msqe += sqrt(p[0] * p[0] + p[1] * p[1]); |
| } |
| msqe /= n; |
| scale = sqrt(2) / msqe; |
| T[0] = scale; |
| T[1] = 0; |
| T[2] = -scale * mean[0]; |
| T[3] = 0; |
| T[4] = scale; |
| T[5] = -scale * mean[1]; |
| T[6] = 0; |
| T[7] = 0; |
| T[8] = 1; |
| for (p = pts, i = 0; i < n; ++i, p += 2) { |
| p[0] *= scale; |
| p[1] *= scale; |
| } |
| } |
| |
| static void invnormalize_mat(double *T, double *iT) { |
| double is = 1.0 / T[0]; |
| double m0 = -T[2] * is; |
| double m1 = -T[5] * is; |
| iT[0] = is; |
| iT[1] = 0; |
| iT[2] = m0; |
| iT[3] = 0; |
| iT[4] = is; |
| iT[5] = m1; |
| iT[6] = 0; |
| iT[7] = 0; |
| iT[8] = 1; |
| } |
| |
| static void denormalize_homography(double *params, double *T1, double *T2) { |
| double iT2[9]; |
| double params2[9]; |
| invnormalize_mat(T2, iT2); |
| multiply_mat(params, T1, params2, 3, 3, 3); |
| multiply_mat(iT2, params2, params, 3, 3, 3); |
| } |
| |
| static void denormalize_homography_reorder(double *params, double *T1, |
| double *T2) { |
| double params_denorm[MAX_PARAMDIM]; |
| memcpy(params_denorm, params, sizeof(*params) * 8); |
| params_denorm[8] = 1.0; |
| denormalize_homography(params_denorm, T1, T2); |
| params[0] = params_denorm[2]; |
| params[1] = params_denorm[5]; |
| params[2] = params_denorm[0]; |
| params[3] = params_denorm[1]; |
| params[4] = params_denorm[3]; |
| params[5] = params_denorm[4]; |
| params[6] = params_denorm[6]; |
| params[7] = params_denorm[7]; |
| } |
| |
| static void denormalize_affine_reorder(double *params, double *T1, double *T2) { |
| double params_denorm[MAX_PARAMDIM]; |
| params_denorm[0] = params[0]; |
| params_denorm[1] = params[1]; |
| params_denorm[2] = params[4]; |
| params_denorm[3] = params[2]; |
| params_denorm[4] = params[3]; |
| params_denorm[5] = params[5]; |
| params_denorm[6] = params_denorm[7] = 0; |
| params_denorm[8] = 1; |
| denormalize_homography(params_denorm, T1, T2); |
| params[0] = params_denorm[2]; |
| params[1] = params_denorm[5]; |
| params[2] = params_denorm[0]; |
| params[3] = params_denorm[1]; |
| params[4] = params_denorm[3]; |
| params[5] = params_denorm[4]; |
| params[6] = params[7] = 0; |
| } |
| |
| static void denormalize_rotzoom_reorder(double *params, double *T1, |
| double *T2) { |
| double params_denorm[MAX_PARAMDIM]; |
| params_denorm[0] = params[0]; |
| params_denorm[1] = params[1]; |
| params_denorm[2] = params[2]; |
| params_denorm[3] = -params[1]; |
| params_denorm[4] = params[0]; |
| params_denorm[5] = params[3]; |
| params_denorm[6] = params_denorm[7] = 0; |
| params_denorm[8] = 1; |
| denormalize_homography(params_denorm, T1, T2); |
| params[0] = params_denorm[2]; |
| params[1] = params_denorm[5]; |
| params[2] = params_denorm[0]; |
| params[3] = params_denorm[1]; |
| params[4] = -params[3]; |
| params[5] = params[2]; |
| params[6] = params[7] = 0; |
| } |
| |
| static void denormalize_translation_reorder(double *params, double *T1, |
| double *T2) { |
| double params_denorm[MAX_PARAMDIM]; |
| params_denorm[0] = 1; |
| params_denorm[1] = 0; |
| params_denorm[2] = params[0]; |
| params_denorm[3] = 0; |
| params_denorm[4] = 1; |
| params_denorm[5] = params[1]; |
| params_denorm[6] = params_denorm[7] = 0; |
| params_denorm[8] = 1; |
| denormalize_homography(params_denorm, T1, T2); |
| params[0] = params_denorm[2]; |
| params[1] = params_denorm[5]; |
| params[2] = params[5] = 1; |
| params[3] = params[4] = 0; |
| params[6] = params[7] = 0; |
| } |
| |
| int find_translation(const int np, double *pts1, double *pts2, double *mat) { |
| int i; |
| double sx, sy, dx, dy; |
| double sumx, sumy; |
| |
| double T1[9], T2[9]; |
| normalize_homography(pts1, np, T1); |
| normalize_homography(pts2, np, T2); |
| |
| sumx = 0; |
| sumy = 0; |
| for (i = 0; i < np; ++i) { |
| dx = *(pts2++); |
| dy = *(pts2++); |
| sx = *(pts1++); |
| sy = *(pts1++); |
| |
| sumx += dx - sx; |
| sumy += dy - sy; |
| } |
| mat[0] = sumx / np; |
| mat[1] = sumy / np; |
| denormalize_translation_reorder(mat, T1, T2); |
| return 0; |
| } |
| |
| int find_rotzoom(const int np, double *pts1, double *pts2, double *mat) { |
| const int np2 = np * 2; |
| double *a = (double *)aom_malloc(sizeof(*a) * np2 * 9); |
| double *b = a + np2 * 4; |
| double *temp = b + np2; |
| int i; |
| double sx, sy, dx, dy; |
| |
| double T1[9], T2[9]; |
| normalize_homography(pts1, np, T1); |
| normalize_homography(pts2, np, T2); |
| |
| for (i = 0; i < np; ++i) { |
| dx = *(pts2++); |
| dy = *(pts2++); |
| sx = *(pts1++); |
| sy = *(pts1++); |
| |
| a[i * 2 * 4 + 0] = sx; |
| a[i * 2 * 4 + 1] = sy; |
| a[i * 2 * 4 + 2] = 1; |
| a[i * 2 * 4 + 3] = 0; |
| a[(i * 2 + 1) * 4 + 0] = sy; |
| a[(i * 2 + 1) * 4 + 1] = -sx; |
| a[(i * 2 + 1) * 4 + 2] = 0; |
| a[(i * 2 + 1) * 4 + 3] = 1; |
| |
| b[2 * i] = dx; |
| b[2 * i + 1] = dy; |
| } |
| if (pseudo_inverse(temp, a, np2, 4)) { |
| aom_free(a); |
| return 1; |
| } |
| multiply_mat(temp, b, mat, 4, np2, 1); |
| denormalize_rotzoom_reorder(mat, T1, T2); |
| aom_free(a); |
| return 0; |
| } |
| |
| int find_affine(const int np, double *pts1, double *pts2, double *mat) { |
| const int np2 = np * 2; |
| double *a = (double *)aom_malloc(sizeof(*a) * np2 * 13); |
| double *b = a + np2 * 6; |
| double *temp = b + np2; |
| int i; |
| double sx, sy, dx, dy; |
| |
| double T1[9], T2[9]; |
| normalize_homography(pts1, np, T1); |
| normalize_homography(pts2, np, T2); |
| |
| for (i = 0; i < np; ++i) { |
| dx = *(pts2++); |
| dy = *(pts2++); |
| sx = *(pts1++); |
| sy = *(pts1++); |
| |
| a[i * 2 * 6 + 0] = sx; |
| a[i * 2 * 6 + 1] = sy; |
| a[i * 2 * 6 + 2] = 0; |
| a[i * 2 * 6 + 3] = 0; |
| a[i * 2 * 6 + 4] = 1; |
| a[i * 2 * 6 + 5] = 0; |
| a[(i * 2 + 1) * 6 + 0] = 0; |
| a[(i * 2 + 1) * 6 + 1] = 0; |
| a[(i * 2 + 1) * 6 + 2] = sx; |
| a[(i * 2 + 1) * 6 + 3] = sy; |
| a[(i * 2 + 1) * 6 + 4] = 0; |
| a[(i * 2 + 1) * 6 + 5] = 1; |
| |
| b[2 * i] = dx; |
| b[2 * i + 1] = dy; |
| } |
| if (pseudo_inverse(temp, a, np2, 6)) { |
| aom_free(a); |
| return 1; |
| } |
| multiply_mat(temp, b, mat, 6, np2, 1); |
| denormalize_affine_reorder(mat, T1, T2); |
| aom_free(a); |
| return 0; |
| } |
| |
| int find_homography(const int np, double *pts1, double *pts2, double *mat) { |
| // Implemented from Peter Kovesi's normalized implementation |
| const int np3 = np * 3; |
| double *a = (double *)aom_malloc(sizeof(*a) * np3 * 18); |
| double *U = a + np3 * 9; |
| double S[9], V[9 * 9], H[9]; |
| int i, mini; |
| double sx, sy, dx, dy; |
| double T1[9], T2[9]; |
| |
| normalize_homography(pts1, np, T1); |
| normalize_homography(pts2, np, T2); |
| |
| for (i = 0; i < np; ++i) { |
| dx = *(pts2++); |
| dy = *(pts2++); |
| sx = *(pts1++); |
| sy = *(pts1++); |
| |
| a[i * 3 * 9 + 0] = a[i * 3 * 9 + 1] = a[i * 3 * 9 + 2] = 0; |
| a[i * 3 * 9 + 3] = -sx; |
| a[i * 3 * 9 + 4] = -sy; |
| a[i * 3 * 9 + 5] = -1; |
| a[i * 3 * 9 + 6] = dy * sx; |
| a[i * 3 * 9 + 7] = dy * sy; |
| a[i * 3 * 9 + 8] = dy; |
| |
| a[(i * 3 + 1) * 9 + 0] = sx; |
| a[(i * 3 + 1) * 9 + 1] = sy; |
| a[(i * 3 + 1) * 9 + 2] = 1; |
| a[(i * 3 + 1) * 9 + 3] = a[(i * 3 + 1) * 9 + 4] = a[(i * 3 + 1) * 9 + 5] = |
| 0; |
| a[(i * 3 + 1) * 9 + 6] = -dx * sx; |
| a[(i * 3 + 1) * 9 + 7] = -dx * sy; |
| a[(i * 3 + 1) * 9 + 8] = -dx; |
| |
| a[(i * 3 + 2) * 9 + 0] = -dy * sx; |
| a[(i * 3 + 2) * 9 + 1] = -dy * sy; |
| a[(i * 3 + 2) * 9 + 2] = -dy; |
| a[(i * 3 + 2) * 9 + 3] = dx * sx; |
| a[(i * 3 + 2) * 9 + 4] = dx * sy; |
| a[(i * 3 + 2) * 9 + 5] = dx; |
| a[(i * 3 + 2) * 9 + 6] = a[(i * 3 + 2) * 9 + 7] = a[(i * 3 + 2) * 9 + 8] = |
| 0; |
| } |
| |
| if (SVD(U, S, V, a, np3, 9)) { |
| aom_free(a); |
| return 1; |
| } else { |
| double minS = 1e12; |
| mini = -1; |
| for (i = 0; i < 9; ++i) { |
| if (S[i] < minS) { |
| minS = S[i]; |
| mini = i; |
| } |
| } |
| } |
| |
| for (i = 0; i < 9; i++) H[i] = V[i * 9 + mini]; |
| denormalize_homography_reorder(H, T1, T2); |
| aom_free(a); |
| if (H[8] == 0.0) { |
| return 1; |
| } else { |
| // normalize |
| double f = 1.0 / H[8]; |
| for (i = 0; i < 8; i++) mat[i] = f * H[i]; |
| } |
| return 0; |
| } |
| |
| int find_projection(const int np, double *pts1, double *pts2, |
| WarpedMotionParams *wm_params) { |
| double H[9]; |
| int result = 1; |
| |
| switch (wm_params->wmtype) { |
| case AFFINE: result = find_affine(np, pts1, pts2, H); break; |
| case ROTZOOM: result = find_rotzoom(np, pts1, pts2, H); break; |
| case HOMOGRAPHY: result = find_homography(np, pts1, pts2, H); break; |
| default: assert(0 && "Invalid warped motion type!"); return 1; |
| } |
| if (result == 0) av1_integerize_model(H, wm_params->wmtype, wm_params); |
| |
| return result; |
| } |