| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <stdlib.h> // qsort() |
| |
| #include "./aom_config.h" |
| #include "./aom_dsp_rtcd.h" |
| #include "./aom_scale_rtcd.h" |
| #include "./av1_rtcd.h" |
| |
| #include "aom/aom_codec.h" |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/bitreader.h" |
| #include "aom_dsp/bitreader_buffer.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/mem_ops.h" |
| #include "aom_scale/aom_scale.h" |
| #include "aom_util/aom_thread.h" |
| |
| #include "av1/common/alloccommon.h" |
| #if CONFIG_CLPF |
| #include "aom/aom_image.h" |
| #include "av1/common/clpf.h" |
| #endif |
| #include "av1/common/common.h" |
| #if CONFIG_DERING |
| #include "av1/common/dering.h" |
| #endif // CONFIG_DERING |
| #include "av1/common/entropy.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/entropymv.h" |
| #include "av1/common/idct.h" |
| #include "av1/common/pred_common.h" |
| #include "av1/common/quant_common.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/seg_common.h" |
| #include "av1/common/thread_common.h" |
| #include "av1/common/tile_common.h" |
| |
| #include "av1/decoder/decodeframe.h" |
| #include "av1/decoder/decodemv.h" |
| #include "av1/decoder/decoder.h" |
| #include "av1/decoder/detokenize.h" |
| #include "av1/decoder/dsubexp.h" |
| |
| #if CONFIG_WARPED_MOTION |
| #include "av1/common/warped_motion.h" |
| #endif // CONFIG_WARPED_MOTION |
| |
| #define MAX_AV1_HEADER_SIZE 80 |
| #define ACCT_STR __func__ |
| |
| #if CONFIG_PVQ |
| #include "av1/decoder/pvq_decoder.h" |
| #include "av1/encoder/encodemb.h" |
| |
| #include "aom_dsp/entdec.h" |
| #include "av1/common/partition.h" |
| #include "av1/decoder/decint.h" |
| #include "av1/encoder/hybrid_fwd_txfm.h" |
| #endif |
| |
| static struct aom_read_bit_buffer *init_read_bit_buffer( |
| AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data, |
| const uint8_t *data_end, uint8_t clear_data[MAX_AV1_HEADER_SIZE]); |
| static int read_compressed_header(AV1Decoder *pbi, const uint8_t *data, |
| size_t partition_size); |
| static size_t read_uncompressed_header(AV1Decoder *pbi, |
| struct aom_read_bit_buffer *rb); |
| |
| static int is_compound_reference_allowed(const AV1_COMMON *cm) { |
| int i; |
| if (frame_is_intra_only(cm)) return 0; |
| for (i = 1; i < INTER_REFS_PER_FRAME; ++i) |
| if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1]) return 1; |
| |
| return 0; |
| } |
| |
| static void setup_compound_reference_mode(AV1_COMMON *cm) { |
| #if CONFIG_EXT_REFS |
| cm->comp_fwd_ref[0] = LAST_FRAME; |
| cm->comp_fwd_ref[1] = LAST2_FRAME; |
| cm->comp_fwd_ref[2] = LAST3_FRAME; |
| cm->comp_fwd_ref[3] = GOLDEN_FRAME; |
| |
| cm->comp_bwd_ref[0] = BWDREF_FRAME; |
| cm->comp_bwd_ref[1] = ALTREF_FRAME; |
| #else |
| if (cm->ref_frame_sign_bias[LAST_FRAME] == |
| cm->ref_frame_sign_bias[GOLDEN_FRAME]) { |
| cm->comp_fixed_ref = ALTREF_FRAME; |
| cm->comp_var_ref[0] = LAST_FRAME; |
| cm->comp_var_ref[1] = GOLDEN_FRAME; |
| } else if (cm->ref_frame_sign_bias[LAST_FRAME] == |
| cm->ref_frame_sign_bias[ALTREF_FRAME]) { |
| cm->comp_fixed_ref = GOLDEN_FRAME; |
| cm->comp_var_ref[0] = LAST_FRAME; |
| cm->comp_var_ref[1] = ALTREF_FRAME; |
| } else { |
| cm->comp_fixed_ref = LAST_FRAME; |
| cm->comp_var_ref[0] = GOLDEN_FRAME; |
| cm->comp_var_ref[1] = ALTREF_FRAME; |
| } |
| #endif // CONFIG_EXT_REFS |
| } |
| |
| static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) { |
| return len != 0 && len <= (size_t)(end - start); |
| } |
| |
| static int decode_unsigned_max(struct aom_read_bit_buffer *rb, int max) { |
| const int data = aom_rb_read_literal(rb, get_unsigned_bits(max)); |
| return data > max ? max : data; |
| } |
| |
| static TX_MODE read_tx_mode(struct aom_read_bit_buffer *rb) { |
| #if CONFIG_TX64X64 |
| TX_MODE tx_mode = |
| aom_rb_read_bit(rb) ? TX_MODE_SELECT : aom_rb_read_literal(rb, 2); |
| if (tx_mode == ALLOW_32X32) tx_mode += aom_rb_read_bit(rb); |
| return tx_mode; |
| #else |
| return aom_rb_read_bit(rb) ? TX_MODE_SELECT : aom_rb_read_literal(rb, 2); |
| #endif // CONFIG_TX64X64 |
| } |
| |
| static void read_tx_size_probs(FRAME_CONTEXT *fc, aom_reader *r) { |
| int i, j, k; |
| for (i = 0; i < MAX_TX_DEPTH; ++i) |
| for (j = 0; j < TX_SIZE_CONTEXTS; ++j) |
| for (k = 0; k < i + 1; ++k) |
| av1_diff_update_prob(r, &fc->tx_size_probs[i][j][k], ACCT_STR); |
| } |
| |
| #if !CONFIG_EC_ADAPT |
| static void read_switchable_interp_probs(FRAME_CONTEXT *fc, aom_reader *r) { |
| int i, j; |
| for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) { |
| for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i) |
| av1_diff_update_prob(r, &fc->switchable_interp_prob[j][i], ACCT_STR); |
| } |
| } |
| #endif |
| |
| static void read_inter_mode_probs(FRAME_CONTEXT *fc, aom_reader *r) { |
| #if CONFIG_REF_MV |
| int i; |
| for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i) |
| av1_diff_update_prob(r, &fc->newmv_prob[i], ACCT_STR); |
| for (i = 0; i < ZEROMV_MODE_CONTEXTS; ++i) |
| av1_diff_update_prob(r, &fc->zeromv_prob[i], ACCT_STR); |
| for (i = 0; i < REFMV_MODE_CONTEXTS; ++i) |
| av1_diff_update_prob(r, &fc->refmv_prob[i], ACCT_STR); |
| for (i = 0; i < DRL_MODE_CONTEXTS; ++i) |
| av1_diff_update_prob(r, &fc->drl_prob[i], ACCT_STR); |
| #if CONFIG_EXT_INTER |
| av1_diff_update_prob(r, &fc->new2mv_prob, ACCT_STR); |
| #endif // CONFIG_EXT_INTER |
| #else |
| #if !CONFIG_EC_ADAPT |
| int i, j; |
| for (i = 0; i < INTER_MODE_CONTEXTS; ++i) { |
| for (j = 0; j < INTER_MODES - 1; ++j) |
| av1_diff_update_prob(r, &fc->inter_mode_probs[i][j], ACCT_STR); |
| } |
| #else |
| (void)fc; |
| (void)r; |
| #endif |
| #endif |
| } |
| |
| #if CONFIG_EXT_INTER |
| static void read_inter_compound_mode_probs(FRAME_CONTEXT *fc, aom_reader *r) { |
| int i, j; |
| if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) { |
| for (j = 0; j < INTER_MODE_CONTEXTS; ++j) { |
| for (i = 0; i < INTER_COMPOUND_MODES - 1; ++i) { |
| av1_diff_update_prob(r, &fc->inter_compound_mode_probs[j][i], ACCT_STR); |
| } |
| } |
| } |
| } |
| #endif // CONFIG_EXT_INTER |
| #if !CONFIG_EC_ADAPT |
| #if !CONFIG_EXT_TX |
| static void read_ext_tx_probs(FRAME_CONTEXT *fc, aom_reader *r) { |
| int i, j, k; |
| if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) { |
| for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { |
| for (j = 0; j < TX_TYPES; ++j) { |
| for (k = 0; k < TX_TYPES - 1; ++k) |
| av1_diff_update_prob(r, &fc->intra_ext_tx_prob[i][j][k], ACCT_STR); |
| } |
| } |
| } |
| if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) { |
| for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { |
| for (k = 0; k < TX_TYPES - 1; ++k) |
| av1_diff_update_prob(r, &fc->inter_ext_tx_prob[i][k], ACCT_STR); |
| } |
| } |
| } |
| #endif |
| #endif |
| |
| static REFERENCE_MODE read_frame_reference_mode( |
| const AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { |
| if (is_compound_reference_allowed(cm)) { |
| return aom_rb_read_bit(rb) |
| ? REFERENCE_MODE_SELECT |
| : (aom_rb_read_bit(rb) ? COMPOUND_REFERENCE : SINGLE_REFERENCE); |
| } else { |
| return SINGLE_REFERENCE; |
| } |
| } |
| |
| static void read_frame_reference_mode_probs(AV1_COMMON *cm, aom_reader *r) { |
| FRAME_CONTEXT *const fc = cm->fc; |
| int i, j; |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) |
| for (i = 0; i < COMP_INTER_CONTEXTS; ++i) |
| av1_diff_update_prob(r, &fc->comp_inter_prob[i], ACCT_STR); |
| |
| if (cm->reference_mode != COMPOUND_REFERENCE) { |
| for (i = 0; i < REF_CONTEXTS; ++i) { |
| for (j = 0; j < (SINGLE_REFS - 1); ++j) { |
| av1_diff_update_prob(r, &fc->single_ref_prob[i][j], ACCT_STR); |
| } |
| } |
| } |
| |
| if (cm->reference_mode != SINGLE_REFERENCE) { |
| for (i = 0; i < REF_CONTEXTS; ++i) { |
| #if CONFIG_EXT_REFS |
| for (j = 0; j < (FWD_REFS - 1); ++j) |
| av1_diff_update_prob(r, &fc->comp_ref_prob[i][j], ACCT_STR); |
| for (j = 0; j < (BWD_REFS - 1); ++j) |
| av1_diff_update_prob(r, &fc->comp_bwdref_prob[i][j], ACCT_STR); |
| #else |
| for (j = 0; j < (COMP_REFS - 1); ++j) |
| av1_diff_update_prob(r, &fc->comp_ref_prob[i][j], ACCT_STR); |
| #endif // CONFIG_EXT_REFS |
| } |
| } |
| } |
| |
| static void update_mv_probs(aom_prob *p, int n, aom_reader *r) { |
| int i; |
| for (i = 0; i < n; ++i) av1_diff_update_prob(r, &p[i], ACCT_STR); |
| } |
| |
| static void read_mv_probs(nmv_context *ctx, int allow_hp, aom_reader *r) { |
| int i; |
| |
| #if !CONFIG_EC_ADAPT |
| int j; |
| update_mv_probs(ctx->joints, MV_JOINTS - 1, r); |
| |
| for (i = 0; i < 2; ++i) { |
| nmv_component *const comp_ctx = &ctx->comps[i]; |
| update_mv_probs(&comp_ctx->sign, 1, r); |
| update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r); |
| update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r); |
| update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r); |
| } |
| for (i = 0; i < 2; ++i) { |
| nmv_component *const comp_ctx = &ctx->comps[i]; |
| for (j = 0; j < CLASS0_SIZE; ++j) { |
| update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r); |
| } |
| update_mv_probs(comp_ctx->fp, MV_FP_SIZE - 1, r); |
| } |
| #endif // !CONFIG_EC_ADAPT |
| |
| if (allow_hp) { |
| for (i = 0; i < 2; ++i) { |
| nmv_component *const comp_ctx = &ctx->comps[i]; |
| update_mv_probs(&comp_ctx->class0_hp, 1, r); |
| update_mv_probs(&comp_ctx->hp, 1, r); |
| } |
| } |
| } |
| |
| static void inverse_transform_block(MACROBLOCKD *xd, int plane, |
| const TX_TYPE tx_type, |
| const TX_SIZE tx_size, uint8_t *dst, |
| int stride, int16_t scan_line, int eob) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| tran_low_t *const dqcoeff = pd->dqcoeff; |
| INV_TXFM_PARAM inv_txfm_param; |
| inv_txfm_param.tx_type = tx_type; |
| inv_txfm_param.tx_size = tx_size; |
| inv_txfm_param.eob = eob; |
| inv_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id]; |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| inv_txfm_param.bd = xd->bd; |
| highbd_inv_txfm_add(dqcoeff, dst, stride, &inv_txfm_param); |
| } else { |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| inv_txfm_add(dqcoeff, dst, stride, &inv_txfm_param); |
| #if CONFIG_AOM_HIGHBITDEPTH |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| memset(dqcoeff, 0, (scan_line + 1) * sizeof(dqcoeff[0])); |
| } |
| |
| #if CONFIG_PVQ |
| static int av1_pvq_decode_helper(od_dec_ctx *dec, int16_t *ref_coeff, |
| int16_t *dqcoeff, int16_t *quant, int pli, |
| int bs, TX_TYPE tx_type, int xdec, |
| int ac_dc_coded) { |
| unsigned int flags; // used for daala's stream analyzer. |
| int off; |
| const int is_keyframe = 0; |
| const int has_dc_skip = 1; |
| int quant_shift = get_tx_scale(bs); |
| // DC quantizer for PVQ |
| int pvq_dc_quant; |
| int lossless = (quant[0] == 0); |
| const int blk_size = tx_size_wide[bs]; |
| int eob = 0; |
| int i; |
| // TODO(yushin) : To enable activity masking, |
| // int use_activity_masking = dec->use_activity_masking; |
| int use_activity_masking = 0; |
| |
| DECLARE_ALIGNED(16, int16_t, dqcoeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); |
| DECLARE_ALIGNED(16, int16_t, ref_coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]); |
| |
| od_coeff ref_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]; |
| od_coeff out_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]; |
| |
| od_raster_to_coding_order(ref_coeff_pvq, blk_size, tx_type, ref_coeff, |
| blk_size); |
| |
| if (lossless) |
| pvq_dc_quant = 1; |
| else { |
| // TODO(yushin): Enable this for activity masking, |
| // when pvq_qm_q4 is available in AOM. |
| // pvq_dc_quant = OD_MAXI(1, quant* |
| // dec->state.pvq_qm_q4[pli][od_qm_get_index(bs, 0)] >> 4); |
| pvq_dc_quant = OD_MAXI(1, quant[0] >> quant_shift); |
| } |
| |
| off = od_qm_offset(bs, xdec); |
| |
| // copy int16 inputs to int32 |
| for (i = 0; i < blk_size * blk_size; i++) ref_int32[i] = ref_coeff_pvq[i]; |
| |
| od_pvq_decode(dec, ref_int32, out_int32, (int)quant[1] >> quant_shift, pli, |
| bs, OD_PVQ_BETA[use_activity_masking][pli][bs], |
| OD_ROBUST_STREAM, is_keyframe, &flags, ac_dc_coded, |
| dec->state.qm + off, dec->state.qm_inv + off); |
| |
| // copy int32 result back to int16 |
| for (i = 0; i < blk_size * blk_size; i++) dqcoeff_pvq[i] = out_int32[i]; |
| |
| if (!has_dc_skip || dqcoeff_pvq[0]) { |
| dqcoeff_pvq[0] = |
| has_dc_skip + generic_decode(dec->ec, &dec->state.adapt.model_dc[pli], |
| -1, &dec->state.adapt.ex_dc[pli][bs][0], 2, |
| "dc:mag"); |
| if (dqcoeff_pvq[0]) |
| dqcoeff_pvq[0] *= od_ec_dec_bits(dec->ec, 1, "dc:sign") ? -1 : 1; |
| } |
| dqcoeff_pvq[0] = dqcoeff_pvq[0] * pvq_dc_quant + ref_coeff_pvq[0]; |
| |
| od_coding_order_to_raster(dqcoeff, blk_size, tx_type, dqcoeff_pvq, blk_size); |
| |
| eob = blk_size * blk_size; |
| |
| return eob; |
| } |
| |
| static int av1_pvq_decode_helper2(MACROBLOCKD *const xd, |
| MB_MODE_INFO *const mbmi, int plane, int row, |
| int col, TX_SIZE tx_size, TX_TYPE tx_type) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| // transform block size in pixels |
| int tx_blk_size = tx_size_wide[tx_size]; |
| int i, j; |
| tran_low_t *pvq_ref_coeff = pd->pvq_ref_coeff; |
| const int diff_stride = tx_blk_size; |
| int16_t *pred = pd->pred; |
| tran_low_t *const dqcoeff = pd->dqcoeff; |
| int ac_dc_coded; // bit0: DC coded, bit1 : AC coded |
| uint8_t *dst; |
| int eob; |
| |
| eob = 0; |
| dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col]; |
| |
| // decode ac/dc coded flag. bit0: DC coded, bit1 : AC coded |
| // NOTE : we don't use 5 symbols for luma here in aom codebase, |
| // since block partition is taken care of by aom. |
| // So, only AC/DC skip info is coded |
| ac_dc_coded = od_decode_cdf_adapt( |
| xd->daala_dec.ec, |
| xd->daala_dec.state.adapt.skip_cdf[2 * tx_size + (plane != 0)], 4, |
| xd->daala_dec.state.adapt.skip_increment, "skip"); |
| |
| if (ac_dc_coded) { |
| int xdec = pd->subsampling_x; |
| int seg_id = mbmi->segment_id; |
| int16_t *quant; |
| FWD_TXFM_PARAM fwd_txfm_param; |
| // ToDo(yaowu): correct this with optimal number from decoding process. |
| const int max_scan_line = tx_size_2d[tx_size]; |
| |
| for (j = 0; j < tx_blk_size; j++) |
| for (i = 0; i < tx_blk_size; i++) { |
| pred[diff_stride * j + i] = dst[pd->dst.stride * j + i]; |
| } |
| |
| fwd_txfm_param.tx_type = tx_type; |
| fwd_txfm_param.tx_size = tx_size; |
| fwd_txfm_param.fwd_txfm_opt = FWD_TXFM_OPT_NORMAL; |
| fwd_txfm_param.rd_transform = 0; |
| fwd_txfm_param.lossless = xd->lossless[seg_id]; |
| |
| fwd_txfm(pred, pvq_ref_coeff, diff_stride, &fwd_txfm_param); |
| |
| quant = &pd->seg_dequant[seg_id][0]; // aom's quantizer |
| |
| eob = av1_pvq_decode_helper(&xd->daala_dec, pvq_ref_coeff, dqcoeff, quant, |
| plane, tx_size, tx_type, xdec, ac_dc_coded); |
| |
| // Since av1 does not have separate inverse transform |
| // but also contains adding to predicted image, |
| // pass blank dummy image to av1_inv_txfm_add_*x*(), i.e. set dst as zeros |
| for (j = 0; j < tx_blk_size; j++) |
| for (i = 0; i < tx_blk_size; i++) dst[j * pd->dst.stride + i] = 0; |
| |
| inverse_transform_block(xd, plane, tx_type, tx_size, dst, pd->dst.stride, |
| max_scan_line, eob); |
| } |
| |
| return eob; |
| } |
| #endif |
| |
| static void predict_and_reconstruct_intra_block(AV1_COMMON *cm, |
| MACROBLOCKD *const xd, |
| #if CONFIG_ANS |
| struct AnsDecoder *const r, |
| #else |
| aom_reader *r, |
| #endif // CONFIG_ANS |
| MB_MODE_INFO *const mbmi, |
| int plane, int row, int col, |
| TX_SIZE tx_size) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| PREDICTION_MODE mode = (plane == 0) ? mbmi->mode : mbmi->uv_mode; |
| PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; |
| uint8_t *dst; |
| int block_idx = (row << 1) + col; |
| #if CONFIG_PVQ |
| (void)cm; |
| (void)r; |
| #endif |
| dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col]; |
| |
| if (mbmi->sb_type < BLOCK_8X8) |
| if (plane == 0) mode = xd->mi[0]->bmi[(row << 1) + col].as_mode; |
| |
| av1_predict_intra_block(xd, pd->width, pd->height, tx_size, mode, dst, |
| pd->dst.stride, dst, pd->dst.stride, col, row, plane); |
| |
| if (!mbmi->skip) { |
| TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size); |
| #if !CONFIG_PVQ |
| const SCAN_ORDER *scan_order = get_scan(cm, tx_size, tx_type, 0); |
| int16_t max_scan_line = 0; |
| const int eob = |
| av1_decode_block_tokens(xd, plane, scan_order, col, row, tx_size, |
| tx_type, &max_scan_line, r, mbmi->segment_id); |
| #if CONFIG_ADAPT_SCAN |
| av1_update_scan_count_facade(cm, tx_size, tx_type, pd->dqcoeff, eob); |
| #endif |
| if (eob) |
| inverse_transform_block(xd, plane, tx_type, tx_size, dst, pd->dst.stride, |
| max_scan_line, eob); |
| #else |
| av1_pvq_decode_helper2(xd, mbmi, plane, row, col, tx_size, tx_type); |
| #endif |
| } |
| } |
| |
| #if CONFIG_VAR_TX |
| static void decode_reconstruct_tx(AV1_COMMON *cm, MACROBLOCKD *const xd, |
| aom_reader *r, MB_MODE_INFO *const mbmi, |
| int plane, BLOCK_SIZE plane_bsize, |
| int blk_row, int blk_col, TX_SIZE tx_size, |
| int *eob_total) { |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; |
| const int tx_row = blk_row >> (1 - pd->subsampling_y); |
| const int tx_col = blk_col >> (1 - pd->subsampling_x); |
| const TX_SIZE plane_tx_size = |
| plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0] |
| : mbmi->inter_tx_size[tx_row][tx_col]; |
| // Scale to match transform block unit. |
| const int max_blocks_high = max_block_high(xd, plane_bsize, plane); |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| if (tx_size == plane_tx_size) { |
| PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; |
| int block_idx = (blk_row << 1) + blk_col; |
| TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, plane_tx_size); |
| const SCAN_ORDER *sc = get_scan(cm, plane_tx_size, tx_type, 1); |
| int16_t max_scan_line = 0; |
| const int eob = |
| av1_decode_block_tokens(xd, plane, sc, blk_col, blk_row, plane_tx_size, |
| tx_type, &max_scan_line, r, mbmi->segment_id); |
| inverse_transform_block( |
| xd, plane, tx_type, plane_tx_size, |
| &pd->dst.buf[4 * blk_row * pd->dst.stride + 4 * blk_col], |
| pd->dst.stride, max_scan_line, eob); |
| *eob_total += eob; |
| } else { |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bsl = tx_size_wide_unit[sub_txs]; |
| int i; |
| |
| assert(bsl > 0); |
| |
| for (i = 0; i < 4; ++i) { |
| const int offsetr = blk_row + (i >> 1) * bsl; |
| const int offsetc = blk_col + (i & 0x01) * bsl; |
| |
| if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; |
| |
| decode_reconstruct_tx(cm, xd, r, mbmi, plane, plane_bsize, offsetr, |
| offsetc, sub_txs, eob_total); |
| } |
| } |
| } |
| #endif // CONFIG_VAR_TX |
| |
| #if !CONFIG_VAR_TX || CONFIG_SUPERTX || \ |
| (!CONFIG_VAR_TX && CONFIG_EXT_TX && CONFIG_RECT_TX) |
| static int reconstruct_inter_block(AV1_COMMON *cm, MACROBLOCKD *const xd, |
| #if CONFIG_ANS |
| struct AnsDecoder *const r, |
| #else |
| aom_reader *r, |
| #endif |
| int segment_id, int plane, int row, int col, |
| TX_SIZE tx_size) { |
| PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; |
| int block_idx = (row << 1) + col; |
| TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size); |
| #if CONFIG_PVQ |
| int eob; |
| (void)cm; |
| (void)r; |
| (void)segment_id; |
| #else |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| #endif |
| |
| #if !CONFIG_PVQ |
| const SCAN_ORDER *scan_order = get_scan(cm, tx_size, tx_type, 1); |
| int16_t max_scan_line = 0; |
| const int eob = |
| av1_decode_block_tokens(xd, plane, scan_order, col, row, tx_size, tx_type, |
| &max_scan_line, r, segment_id); |
| #if CONFIG_ADAPT_SCAN |
| av1_update_scan_count_facade(cm, tx_size, tx_type, pd->dqcoeff, eob); |
| #endif |
| if (eob) |
| inverse_transform_block(xd, plane, tx_type, tx_size, |
| &pd->dst.buf[4 * row * pd->dst.stride + 4 * col], |
| pd->dst.stride, max_scan_line, eob); |
| #else |
| eob = av1_pvq_decode_helper2(xd, &xd->mi[0]->mbmi, plane, row, col, tx_size, |
| tx_type); |
| #endif |
| return eob; |
| } |
| #endif // !CONFIG_VAR_TX || CONFIG_SUPER_TX |
| |
| static INLINE void dec_reset_skip_context(MACROBLOCKD *xd) { |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| struct macroblockd_plane *const pd = &xd->plane[i]; |
| memset(pd->above_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_w); |
| memset(pd->left_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_h); |
| } |
| } |
| |
| static MB_MODE_INFO *set_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int bw, int bh, int x_mis, int y_mis, int bwl, |
| int bhl) { |
| const int offset = mi_row * cm->mi_stride + mi_col; |
| int x, y; |
| const TileInfo *const tile = &xd->tile; |
| |
| xd->mi = cm->mi_grid_visible + offset; |
| xd->mi[0] = &cm->mi[offset]; |
| // TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of |
| // passing bsize from decode_partition(). |
| xd->mi[0]->mbmi.sb_type = bsize; |
| #if CONFIG_RD_DEBUG |
| xd->mi[0]->mbmi.mi_row = mi_row; |
| xd->mi[0]->mbmi.mi_col = mi_col; |
| #endif |
| for (y = 0; y < y_mis; ++y) |
| for (x = !y; x < x_mis; ++x) xd->mi[y * cm->mi_stride + x] = xd->mi[0]; |
| |
| set_plane_n4(xd, bw, bh, bwl, bhl); |
| set_skip_context(xd, mi_row, mi_col); |
| |
| #if CONFIG_VAR_TX |
| xd->max_tx_size = max_txsize_lookup[bsize]; |
| #endif |
| |
| // Distance of Mb to the various image edges. These are specified to 8th pel |
| // as they are always compared to values that are in 1/8th pel units |
| set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); |
| |
| av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); |
| return &xd->mi[0]->mbmi; |
| } |
| |
| #if CONFIG_SUPERTX |
| static MB_MODE_INFO *set_offsets_extend(AV1_COMMON *const cm, |
| MACROBLOCKD *const xd, |
| const TileInfo *const tile, |
| BLOCK_SIZE bsize_pred, int mi_row_pred, |
| int mi_col_pred, int mi_row_ori, |
| int mi_col_ori) { |
| // Used in supertx |
| // (mi_row_ori, mi_col_ori): location for mv |
| // (mi_row_pred, mi_col_pred, bsize_pred): region to predict |
| const int bw = num_8x8_blocks_wide_lookup[bsize_pred]; |
| const int bh = num_8x8_blocks_high_lookup[bsize_pred]; |
| const int offset = mi_row_ori * cm->mi_stride + mi_col_ori; |
| const int bwl = b_width_log2_lookup[bsize_pred]; |
| const int bhl = b_height_log2_lookup[bsize_pred]; |
| xd->mi = cm->mi_grid_visible + offset; |
| xd->mi[0] = cm->mi + offset; |
| set_mi_row_col(xd, tile, mi_row_pred, bh, mi_col_pred, bw, cm->mi_rows, |
| cm->mi_cols); |
| |
| xd->up_available = (mi_row_ori > tile->mi_row_start); |
| xd->left_available = (mi_col_ori > tile->mi_col_start); |
| |
| set_plane_n4(xd, bw, bh, bwl, bhl); |
| |
| return &xd->mi[0]->mbmi; |
| } |
| |
| static MB_MODE_INFO *set_mb_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int bw, int bh, int x_mis, int y_mis) { |
| const int offset = mi_row * cm->mi_stride + mi_col; |
| const TileInfo *const tile = &xd->tile; |
| int x, y; |
| |
| xd->mi = cm->mi_grid_visible + offset; |
| xd->mi[0] = cm->mi + offset; |
| xd->mi[0]->mbmi.sb_type = bsize; |
| for (y = 0; y < y_mis; ++y) |
| for (x = !y; x < x_mis; ++x) xd->mi[y * cm->mi_stride + x] = xd->mi[0]; |
| |
| set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); |
| return &xd->mi[0]->mbmi; |
| } |
| |
| static void set_offsets_topblock(AV1_COMMON *const cm, MACROBLOCKD *const xd, |
| const TileInfo *const tile, BLOCK_SIZE bsize, |
| int mi_row, int mi_col) { |
| const int bw = num_8x8_blocks_wide_lookup[bsize]; |
| const int bh = num_8x8_blocks_high_lookup[bsize]; |
| const int offset = mi_row * cm->mi_stride + mi_col; |
| const int bwl = b_width_log2_lookup[bsize]; |
| const int bhl = b_height_log2_lookup[bsize]; |
| |
| xd->mi = cm->mi_grid_visible + offset; |
| xd->mi[0] = cm->mi + offset; |
| |
| set_plane_n4(xd, bw, bh, bwl, bhl); |
| |
| set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); |
| |
| av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); |
| } |
| |
| static void set_param_topblock(AV1_COMMON *const cm, MACROBLOCKD *const xd, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int txfm, int skip) { |
| const int bw = num_8x8_blocks_wide_lookup[bsize]; |
| const int bh = num_8x8_blocks_high_lookup[bsize]; |
| const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col); |
| const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row); |
| const int offset = mi_row * cm->mi_stride + mi_col; |
| int x, y; |
| |
| xd->mi = cm->mi_grid_visible + offset; |
| xd->mi[0] = cm->mi + offset; |
| |
| for (y = 0; y < y_mis; ++y) |
| for (x = 0; x < x_mis; ++x) { |
| xd->mi[y * cm->mi_stride + x]->mbmi.skip = skip; |
| xd->mi[y * cm->mi_stride + x]->mbmi.tx_type = txfm; |
| } |
| #if CONFIG_VAR_TX |
| xd->above_txfm_context = cm->above_txfm_context + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| set_txfm_ctxs(xd->mi[0]->mbmi.tx_size, bw, bh, skip, xd); |
| #endif |
| } |
| |
| static void set_ref(AV1_COMMON *const cm, MACROBLOCKD *const xd, int idx, |
| int mi_row, int mi_col) { |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| RefBuffer *ref_buffer = &cm->frame_refs[mbmi->ref_frame[idx] - LAST_FRAME]; |
| xd->block_refs[idx] = ref_buffer; |
| if (!av1_is_valid_scale(&ref_buffer->sf)) |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Invalid scale factors"); |
| av1_setup_pre_planes(xd, idx, ref_buffer->buf, mi_row, mi_col, |
| &ref_buffer->sf); |
| xd->corrupted |= ref_buffer->buf->corrupted; |
| } |
| |
| static void dec_predict_b_extend( |
| AV1Decoder *const pbi, MACROBLOCKD *const xd, const TileInfo *const tile, |
| int block, int mi_row_ori, int mi_col_ori, int mi_row_pred, int mi_col_pred, |
| int mi_row_top, int mi_col_top, uint8_t *dst_buf[3], int dst_stride[3], |
| BLOCK_SIZE bsize_top, BLOCK_SIZE bsize_pred, int b_sub8x8, int bextend) { |
| // Used in supertx |
| // (mi_row_ori, mi_col_ori): location for mv |
| // (mi_row_pred, mi_col_pred, bsize_pred): region to predict |
| // (mi_row_top, mi_col_top, bsize_top): region of the top partition size |
| // block: sub location of sub8x8 blocks |
| // b_sub8x8: 1: ori is sub8x8; 0: ori is not sub8x8 |
| // bextend: 1: region to predict is an extension of ori; 0: not |
| int r = (mi_row_pred - mi_row_top) * MI_SIZE; |
| int c = (mi_col_pred - mi_col_top) * MI_SIZE; |
| const int mi_width_top = num_8x8_blocks_wide_lookup[bsize_top]; |
| const int mi_height_top = num_8x8_blocks_high_lookup[bsize_top]; |
| MB_MODE_INFO *mbmi; |
| AV1_COMMON *const cm = &pbi->common; |
| |
| if (mi_row_pred < mi_row_top || mi_col_pred < mi_col_top || |
| mi_row_pred >= mi_row_top + mi_height_top || |
| mi_col_pred >= mi_col_top + mi_width_top || mi_row_pred >= cm->mi_rows || |
| mi_col_pred >= cm->mi_cols) |
| return; |
| |
| mbmi = set_offsets_extend(cm, xd, tile, bsize_pred, mi_row_pred, mi_col_pred, |
| mi_row_ori, mi_col_ori); |
| set_ref(cm, xd, 0, mi_row_pred, mi_col_pred); |
| if (has_second_ref(&xd->mi[0]->mbmi)) |
| set_ref(cm, xd, 1, mi_row_pred, mi_col_pred); |
| |
| if (!bextend) { |
| mbmi->tx_size = b_width_log2_lookup[bsize_top]; |
| } |
| |
| xd->plane[0].dst.stride = dst_stride[0]; |
| xd->plane[1].dst.stride = dst_stride[1]; |
| xd->plane[2].dst.stride = dst_stride[2]; |
| xd->plane[0].dst.buf = dst_buf[0] + |
| (r >> xd->plane[0].subsampling_y) * dst_stride[0] + |
| (c >> xd->plane[0].subsampling_x); |
| xd->plane[1].dst.buf = dst_buf[1] + |
| (r >> xd->plane[1].subsampling_y) * dst_stride[1] + |
| (c >> xd->plane[1].subsampling_x); |
| xd->plane[2].dst.buf = dst_buf[2] + |
| (r >> xd->plane[2].subsampling_y) * dst_stride[2] + |
| (c >> xd->plane[2].subsampling_x); |
| |
| if (!b_sub8x8) |
| av1_build_inter_predictors_sb_extend(xd, |
| #if CONFIG_EXT_INTER |
| mi_row_ori, mi_col_ori, |
| #endif // CONFIG_EXT_INTER |
| mi_row_pred, mi_col_pred, bsize_pred); |
| else |
| av1_build_inter_predictors_sb_sub8x8_extend(xd, |
| #if CONFIG_EXT_INTER |
| mi_row_ori, mi_col_ori, |
| #endif // CONFIG_EXT_INTER |
| mi_row_pred, mi_col_pred, |
| bsize_pred, block); |
| } |
| |
| static void dec_extend_dir(AV1Decoder *const pbi, MACROBLOCKD *const xd, |
| const TileInfo *const tile, int block, |
| BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, int mi_row, |
| int mi_col, int mi_row_top, int mi_col_top, |
| uint8_t *dst_buf[3], int dst_stride[3], int dir) { |
| // dir: 0-lower, 1-upper, 2-left, 3-right |
| // 4-lowerleft, 5-upperleft, 6-lowerright, 7-upperright |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| int xss = xd->plane[1].subsampling_x; |
| int yss = xd->plane[1].subsampling_y; |
| int b_sub8x8 = (bsize < BLOCK_8X8) ? 1 : 0; |
| BLOCK_SIZE extend_bsize; |
| int unit, mi_row_pred, mi_col_pred; |
| |
| if (dir == 0 || dir == 1) { |
| extend_bsize = (mi_width == 1 || bsize < BLOCK_8X8 || xss < yss) |
| ? BLOCK_8X8 |
| : BLOCK_16X8; |
| unit = num_8x8_blocks_wide_lookup[extend_bsize]; |
| mi_row_pred = mi_row + ((dir == 0) ? mi_height : -1); |
| mi_col_pred = mi_col; |
| |
| dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, mi_row_pred, |
| mi_col_pred, mi_row_top, mi_col_top, dst_buf, |
| dst_stride, top_bsize, extend_bsize, b_sub8x8, 1); |
| |
| if (mi_width > unit) { |
| int i; |
| assert(!b_sub8x8); |
| for (i = 0; i < mi_width / unit - 1; i++) { |
| mi_col_pred += unit; |
| dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, mi_row_pred, |
| mi_col_pred, mi_row_top, mi_col_top, dst_buf, |
| dst_stride, top_bsize, extend_bsize, b_sub8x8, 1); |
| } |
| } |
| } else if (dir == 2 || dir == 3) { |
| extend_bsize = (mi_height == 1 || bsize < BLOCK_8X8 || yss < xss) |
| ? BLOCK_8X8 |
| : BLOCK_8X16; |
| unit = num_8x8_blocks_high_lookup[extend_bsize]; |
| mi_row_pred = mi_row; |
| mi_col_pred = mi_col + ((dir == 3) ? mi_width : -1); |
| |
| dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, mi_row_pred, |
| mi_col_pred, mi_row_top, mi_col_top, dst_buf, |
| dst_stride, top_bsize, extend_bsize, b_sub8x8, 1); |
| |
| if (mi_height > unit) { |
| int i; |
| for (i = 0; i < mi_height / unit - 1; i++) { |
| mi_row_pred += unit; |
| dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, mi_row_pred, |
| mi_col_pred, mi_row_top, mi_col_top, dst_buf, |
| dst_stride, top_bsize, extend_bsize, b_sub8x8, 1); |
| } |
| } |
| } else { |
| extend_bsize = BLOCK_8X8; |
| mi_row_pred = mi_row + ((dir == 4 || dir == 6) ? mi_height : -1); |
| mi_col_pred = mi_col + ((dir == 6 || dir == 7) ? mi_width : -1); |
| dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, mi_row_pred, |
| mi_col_pred, mi_row_top, mi_col_top, dst_buf, |
| dst_stride, top_bsize, extend_bsize, b_sub8x8, 1); |
| } |
| } |
| |
| static void dec_extend_all(AV1Decoder *const pbi, MACROBLOCKD *const xd, |
| const TileInfo *const tile, int block, |
| BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, int mi_row, |
| int mi_col, int mi_row_top, int mi_col_top, |
| uint8_t *dst_buf[3], int dst_stride[3]) { |
| dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, 0); |
| dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, 1); |
| dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, 2); |
| dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, 3); |
| dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, 4); |
| dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, 5); |
| dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, 6); |
| dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, 7); |
| } |
| |
| static void dec_predict_sb_complex(AV1Decoder *const pbi, MACROBLOCKD *const xd, |
| const TileInfo *const tile, int mi_row, |
| int mi_col, int mi_row_top, int mi_col_top, |
| BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, |
| uint8_t *dst_buf[3], int dst_stride[3]) { |
| const AV1_COMMON *const cm = &pbi->common; |
| const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2; |
| const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize); |
| const BLOCK_SIZE subsize = get_subsize(bsize, partition); |
| #if CONFIG_EXT_PARTITION_TYPES |
| const BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); |
| #endif |
| int i; |
| const int mi_offset = mi_row * cm->mi_stride + mi_col; |
| uint8_t *dst_buf1[3], *dst_buf2[3], *dst_buf3[3]; |
| |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_TX_SQUARE * 2]); |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_TX_SQUARE * 2]); |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf3[MAX_MB_PLANE * MAX_TX_SQUARE * 2]); |
| int dst_stride1[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE }; |
| int dst_stride2[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE }; |
| int dst_stride3[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE }; |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| int len = sizeof(uint16_t); |
| dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1); |
| dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_TX_SQUARE * len); |
| dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + 2 * MAX_TX_SQUARE * len); |
| dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2); |
| dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_TX_SQUARE * len); |
| dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + 2 * MAX_TX_SQUARE * len); |
| dst_buf3[0] = CONVERT_TO_BYTEPTR(tmp_buf3); |
| dst_buf3[1] = CONVERT_TO_BYTEPTR(tmp_buf3 + MAX_TX_SQUARE * len); |
| dst_buf3[2] = CONVERT_TO_BYTEPTR(tmp_buf3 + 2 * MAX_TX_SQUARE * len); |
| } else { |
| #endif |
| dst_buf1[0] = tmp_buf1; |
| dst_buf1[1] = tmp_buf1 + MAX_TX_SQUARE; |
| dst_buf1[2] = tmp_buf1 + 2 * MAX_TX_SQUARE; |
| dst_buf2[0] = tmp_buf2; |
| dst_buf2[1] = tmp_buf2 + MAX_TX_SQUARE; |
| dst_buf2[2] = tmp_buf2 + 2 * MAX_TX_SQUARE; |
| dst_buf3[0] = tmp_buf3; |
| dst_buf3[1] = tmp_buf3 + MAX_TX_SQUARE; |
| dst_buf3[2] = tmp_buf3 + 2 * MAX_TX_SQUARE; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| } |
| #endif |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| xd->mi = cm->mi_grid_visible + mi_offset; |
| xd->mi[0] = cm->mi + mi_offset; |
| |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = dst_buf[i]; |
| xd->plane[i].dst.stride = dst_stride[i]; |
| } |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| assert(bsize < top_bsize); |
| dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, |
| top_bsize, bsize, 0, 0); |
| dec_extend_all(pbi, xd, tile, 0, bsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride); |
| break; |
| case PARTITION_HORZ: |
| if (bsize == BLOCK_8X8) { |
| // For sub8x8, predict in 8x8 unit |
| // First half |
| dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, |
| top_bsize, BLOCK_8X8, 1, 0); |
| if (bsize < top_bsize) |
| dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride); |
| |
| // Second half |
| dec_predict_b_extend(pbi, xd, tile, 2, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf1, dst_stride1, |
| top_bsize, BLOCK_8X8, 1, 1); |
| if (bsize < top_bsize) |
| dec_extend_all(pbi, xd, tile, 2, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf1, dst_stride1); |
| |
| // weighted average to smooth the boundary |
| xd->plane[0].dst.buf = dst_buf[0]; |
| xd->plane[0].dst.stride = dst_stride[0]; |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row, |
| mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, |
| 0); |
| } else { |
| // First half |
| dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, |
| top_bsize, subsize, 0, 0); |
| if (bsize < top_bsize) |
| dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride); |
| else |
| dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, 0); |
| |
| if (mi_row + hbs < cm->mi_rows) { |
| // Second half |
| dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, |
| mi_row + hbs, mi_col, mi_row_top, mi_col_top, |
| dst_buf1, dst_stride1, top_bsize, subsize, 0, 0); |
| if (bsize < top_bsize) |
| dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs, |
| mi_col, mi_row_top, mi_col_top, dst_buf1, |
| dst_stride1); |
| else |
| dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs, |
| mi_col, mi_row_top, mi_col_top, dst_buf1, |
| dst_stride1, 1); |
| |
| // weighted average to smooth the boundary |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = dst_buf[i]; |
| xd->plane[i].dst.stride = dst_stride[i]; |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], |
| mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, |
| PARTITION_HORZ, i); |
| } |
| } |
| } |
| break; |
| case PARTITION_VERT: |
| if (bsize == BLOCK_8X8) { |
| // First half |
| dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, |
| top_bsize, BLOCK_8X8, 1, 0); |
| if (bsize < top_bsize) |
| dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride); |
| |
| // Second half |
| dec_predict_b_extend(pbi, xd, tile, 1, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf1, dst_stride1, |
| top_bsize, BLOCK_8X8, 1, 1); |
| if (bsize < top_bsize) |
| dec_extend_all(pbi, xd, tile, 1, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf1, dst_stride1); |
| |
| // Smooth |
| xd->plane[0].dst.buf = dst_buf[0]; |
| xd->plane[0].dst.stride = dst_stride[0]; |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row, |
| mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, |
| 0); |
| } else { |
| // First half |
| dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, |
| top_bsize, subsize, 0, 0); |
| if (bsize < top_bsize) |
| dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride); |
| else |
| dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, 3); |
| |
| // Second half |
| if (mi_col + hbs < cm->mi_cols) { |
| dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row, |
| mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, |
| dst_stride1, top_bsize, subsize, 0, 0); |
| if (bsize < top_bsize) |
| dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, |
| mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, |
| dst_stride1); |
| else |
| dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, |
| mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, |
| dst_stride1, 2); |
| |
| // Smooth |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = dst_buf[i]; |
| xd->plane[i].dst.stride = dst_stride[i]; |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], |
| mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, |
| PARTITION_VERT, i); |
| } |
| } |
| } |
| break; |
| case PARTITION_SPLIT: |
| if (bsize == BLOCK_8X8) { |
| dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, |
| top_bsize, BLOCK_8X8, 1, 0); |
| dec_predict_b_extend(pbi, xd, tile, 1, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf1, dst_stride1, |
| top_bsize, BLOCK_8X8, 1, 1); |
| dec_predict_b_extend(pbi, xd, tile, 2, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf2, dst_stride2, |
| top_bsize, BLOCK_8X8, 1, 1); |
| dec_predict_b_extend(pbi, xd, tile, 3, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf3, dst_stride3, |
| top_bsize, BLOCK_8X8, 1, 1); |
| if (bsize < top_bsize) { |
| dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride); |
| dec_extend_all(pbi, xd, tile, 1, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf1, dst_stride1); |
| dec_extend_all(pbi, xd, tile, 2, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf2, dst_stride2); |
| dec_extend_all(pbi, xd, tile, 3, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf3, dst_stride3); |
| } |
| } else { |
| dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col, mi_row_top, |
| mi_col_top, subsize, top_bsize, dst_buf, |
| dst_stride); |
| if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) |
| dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col + hbs, |
| mi_row_top, mi_col_top, subsize, top_bsize, |
| dst_buf1, dst_stride1); |
| if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) |
| dec_predict_sb_complex(pbi, xd, tile, mi_row + hbs, mi_col, |
| mi_row_top, mi_col_top, subsize, top_bsize, |
| dst_buf2, dst_stride2); |
| if (mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) |
| dec_predict_sb_complex(pbi, xd, tile, mi_row + hbs, mi_col + hbs, |
| mi_row_top, mi_col_top, subsize, top_bsize, |
| dst_buf3, dst_stride3); |
| } |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| if (bsize == BLOCK_8X8 && i != 0) |
| continue; // Skip <4x4 chroma smoothing |
| if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) { |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], |
| mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, |
| PARTITION_VERT, i); |
| if (mi_row + hbs < cm->mi_rows) { |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf2[i], dst_stride2[i], dst_buf3[i], dst_stride3[i], |
| mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, |
| PARTITION_VERT, i); |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], |
| mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, |
| PARTITION_HORZ, i); |
| } |
| } else if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) { |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], |
| mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, |
| PARTITION_HORZ, i); |
| } |
| } |
| break; |
| #if CONFIG_EXT_PARTITION_TYPES |
| case PARTITION_HORZ_A: |
| dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, |
| top_bsize, bsize2, 0, 0); |
| dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride); |
| |
| dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row, |
| mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, |
| dst_stride1, top_bsize, bsize2, 0, 0); |
| dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs, |
| mi_row_top, mi_col_top, dst_buf1, dst_stride1); |
| |
| dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, |
| mi_col, mi_row_top, mi_col_top, dst_buf2, |
| dst_stride2, top_bsize, subsize, 0, 0); |
| if (bsize < top_bsize) |
| dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs, |
| mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2); |
| else |
| dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs, |
| mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2, |
| 1); |
| |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = dst_buf[i]; |
| xd->plane[i].dst.stride = dst_stride[i]; |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, |
| mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, |
| i); |
| } |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row, |
| mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, |
| i); |
| } |
| break; |
| case PARTITION_VERT_A: |
| |
| dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, |
| top_bsize, bsize2, 0, 0); |
| dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride); |
| |
| dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, |
| mi_col, mi_row_top, mi_col_top, dst_buf1, |
| dst_stride1, top_bsize, bsize2, 0, 0); |
| dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col, |
| mi_row_top, mi_col_top, dst_buf1, dst_stride1); |
| |
| dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row, |
| mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, |
| dst_stride2, top_bsize, subsize, 0, 0); |
| if (bsize < top_bsize) |
| dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, |
| mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, |
| dst_stride2); |
| else |
| dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, |
| mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, |
| dst_stride2, 2); |
| |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = dst_buf[i]; |
| xd->plane[i].dst.stride = dst_stride[i]; |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, |
| mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, |
| i); |
| } |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row, |
| mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, |
| i); |
| } |
| break; |
| case PARTITION_HORZ_B: |
| dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, |
| top_bsize, subsize, 0, 0); |
| if (bsize < top_bsize) |
| dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride); |
| else |
| dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, 0); |
| |
| dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, |
| mi_col, mi_row_top, mi_col_top, dst_buf1, |
| dst_stride1, top_bsize, bsize2, 0, 0); |
| dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col, |
| mi_row_top, mi_col_top, dst_buf1, dst_stride1); |
| |
| dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col + hbs, |
| mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, |
| dst_buf2, dst_stride2, top_bsize, bsize2, 0, 0); |
| dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, |
| mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, |
| dst_stride2); |
| |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = dst_buf1[i]; |
| xd->plane[i].dst.stride = dst_stride1[i]; |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i], |
| mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, |
| PARTITION_VERT, i); |
| } |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = dst_buf[i]; |
| xd->plane[i].dst.stride = dst_stride[i]; |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, |
| mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, |
| i); |
| } |
| break; |
| case PARTITION_VERT_B: |
| dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, |
| top_bsize, subsize, 0, 0); |
| if (bsize < top_bsize) |
| dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride); |
| else |
| dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, 3); |
| |
| dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row, |
| mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, |
| dst_stride1, top_bsize, bsize2, 0, 0); |
| dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs, |
| mi_row_top, mi_col_top, dst_buf1, dst_stride1); |
| |
| dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col + hbs, |
| mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, |
| dst_buf2, dst_stride2, top_bsize, bsize2, 0, 0); |
| dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, |
| mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, |
| dst_stride2); |
| |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = dst_buf1[i]; |
| xd->plane[i].dst.stride = dst_stride1[i]; |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i], |
| mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, |
| PARTITION_HORZ, i); |
| } |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = dst_buf[i]; |
| xd->plane[i].dst.stride = dst_stride[i]; |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, |
| mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, |
| i); |
| } |
| break; |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| default: assert(0); |
| } |
| } |
| |
| static void set_segment_id_supertx(const AV1_COMMON *const cm, const int mi_row, |
| const int mi_col, const BLOCK_SIZE bsize) { |
| const struct segmentation *seg = &cm->seg; |
| const int miw = |
| AOMMIN(num_8x8_blocks_wide_lookup[bsize], cm->mi_cols - mi_col); |
| const int mih = |
| AOMMIN(num_8x8_blocks_high_lookup[bsize], cm->mi_rows - mi_row); |
| const int mi_offset = mi_row * cm->mi_stride + mi_col; |
| MODE_INFO **const mip = cm->mi_grid_visible + mi_offset; |
| int r, c; |
| int seg_id_supertx = MAX_SEGMENTS; |
| |
| if (!seg->enabled) { |
| seg_id_supertx = 0; |
| } else { |
| // Find the minimum segment_id |
| for (r = 0; r < mih; r++) |
| for (c = 0; c < miw; c++) |
| seg_id_supertx = |
| AOMMIN(mip[r * cm->mi_stride + c]->mbmi.segment_id, seg_id_supertx); |
| assert(0 <= seg_id_supertx && seg_id_supertx < MAX_SEGMENTS); |
| } |
| |
| // Assign the the segment_id back to segment_id_supertx |
| for (r = 0; r < mih; r++) |
| for (c = 0; c < miw; c++) |
| mip[r * cm->mi_stride + c]->mbmi.segment_id_supertx = seg_id_supertx; |
| } |
| #endif // CONFIG_SUPERTX |
| |
| static void decode_block(AV1Decoder *const pbi, MACROBLOCKD *const xd, |
| #if CONFIG_SUPERTX |
| int supertx_enabled, |
| #endif // CONFIG_SUPERTX |
| int mi_row, int mi_col, aom_reader *r, |
| #if CONFIG_EXT_PARTITION_TYPES |
| PARTITION_TYPE partition, |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| BLOCK_SIZE bsize, int bwl, int bhl) { |
| AV1_COMMON *const cm = &pbi->common; |
| const int bw = 1 << (bwl - 1); |
| const int bh = 1 << (bhl - 1); |
| const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col); |
| const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row); |
| MB_MODE_INFO *mbmi; |
| |
| #if CONFIG_ACCOUNTING |
| aom_accounting_set_context(&pbi->accounting, mi_col, mi_row); |
| #endif |
| #if CONFIG_SUPERTX |
| if (supertx_enabled) { |
| mbmi = set_mb_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis); |
| } else { |
| mbmi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis, bwl, |
| bhl); |
| } |
| #if CONFIG_EXT_PARTITION_TYPES |
| xd->mi[0]->mbmi.partition = partition; |
| #endif |
| av1_read_mode_info(pbi, xd, supertx_enabled, mi_row, mi_col, r, x_mis, y_mis); |
| #else |
| mbmi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis, bwl, |
| bhl); |
| #if CONFIG_EXT_PARTITION_TYPES |
| xd->mi[0]->mbmi.partition = partition; |
| #endif |
| av1_read_mode_info(pbi, xd, mi_row, mi_col, r, x_mis, y_mis); |
| #endif // CONFIG_SUPERTX |
| |
| if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) { |
| const BLOCK_SIZE uv_subsize = |
| ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y]; |
| if (uv_subsize == BLOCK_INVALID) |
| aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Invalid block size."); |
| } |
| |
| #if CONFIG_SUPERTX |
| mbmi->segment_id_supertx = MAX_SEGMENTS; |
| |
| if (supertx_enabled) { |
| xd->corrupted |= aom_reader_has_error(r); |
| return; |
| } |
| #endif // CONFIG_SUPERTX |
| |
| #if CONFIG_DELTA_Q |
| if (cm->delta_q_present_flag) { |
| int i; |
| for (i = 0; i < MAX_SEGMENTS; i++) { |
| xd->plane[0].seg_dequant[i][0] = |
| av1_dc_quant(xd->current_qindex, cm->y_dc_delta_q, cm->bit_depth); |
| xd->plane[0].seg_dequant[i][1] = |
| av1_ac_quant(xd->current_qindex, 0, cm->bit_depth); |
| xd->plane[1].seg_dequant[i][0] = |
| av1_dc_quant(xd->current_qindex, cm->uv_dc_delta_q, cm->bit_depth); |
| xd->plane[1].seg_dequant[i][1] = |
| av1_ac_quant(xd->current_qindex, cm->uv_ac_delta_q, cm->bit_depth); |
| xd->plane[2].seg_dequant[i][0] = |
| av1_dc_quant(xd->current_qindex, cm->uv_dc_delta_q, cm->bit_depth); |
| xd->plane[2].seg_dequant[i][1] = |
| av1_ac_quant(xd->current_qindex, cm->uv_ac_delta_q, cm->bit_depth); |
| } |
| } |
| #endif |
| |
| if (mbmi->skip) { |
| dec_reset_skip_context(xd); |
| } |
| #if CONFIG_COEF_INTERLEAVE |
| { |
| const struct macroblockd_plane *const pd_y = &xd->plane[0]; |
| const struct macroblockd_plane *const pd_c = &xd->plane[1]; |
| const TX_SIZE tx_log2_y = mbmi->tx_size; |
| const TX_SIZE tx_log2_c = get_uv_tx_size(mbmi, pd_c); |
| const int tx_sz_y = (1 << tx_log2_y); |
| const int tx_sz_c = (1 << tx_log2_c); |
| const int num_4x4_w_y = pd_y->n4_w; |
| const int num_4x4_h_y = pd_y->n4_h; |
| const int num_4x4_w_c = pd_c->n4_w; |
| const int num_4x4_h_c = pd_c->n4_h; |
| const int max_4x4_w_y = get_max_4x4_size(num_4x4_w_y, xd->mb_to_right_edge, |
| pd_y->subsampling_x); |
| const int max_4x4_h_y = get_max_4x4_size(num_4x4_h_y, xd->mb_to_bottom_edge, |
| pd_y->subsampling_y); |
| const int max_4x4_w_c = get_max_4x4_size(num_4x4_w_c, xd->mb_to_right_edge, |
| pd_c->subsampling_x); |
| const int max_4x4_h_c = get_max_4x4_size(num_4x4_h_c, xd->mb_to_bottom_edge, |
| pd_c->subsampling_y); |
| |
| // The max_4x4_w/h may be smaller than tx_sz under some corner cases, |
| // i.e. when the SB is splitted by tile boundaries. |
| const int tu_num_w_y = (max_4x4_w_y + tx_sz_y - 1) / tx_sz_y; |
| const int tu_num_h_y = (max_4x4_h_y + tx_sz_y - 1) / tx_sz_y; |
| const int tu_num_w_c = (max_4x4_w_c + tx_sz_c - 1) / tx_sz_c; |
| const int tu_num_h_c = (max_4x4_h_c + tx_sz_c - 1) / tx_sz_c; |
| const int tu_num_y = tu_num_w_y * tu_num_h_y; |
| const int tu_num_c = tu_num_w_c * tu_num_h_c; |
| |
| if (!is_inter_block(mbmi)) { |
| int tu_idx_c = 0; |
| int row_y, col_y, row_c, col_c; |
| int plane; |
| |
| #if CONFIG_PALETTE |
| for (plane = 0; plane <= 1; ++plane) { |
| if (mbmi->palette_mode_info.palette_size[plane]) |
| av1_decode_palette_tokens(xd, plane, r); |
| } |
| #endif |
| |
| for (row_y = 0; row_y < tu_num_h_y; row_y++) { |
| for (col_y = 0; col_y < tu_num_w_y; col_y++) { |
| // luma |
| predict_and_reconstruct_intra_block( |
| cm, xd, r, mbmi, 0, row_y * tx_sz_y, col_y * tx_sz_y, tx_log2_y); |
| // chroma |
| if (tu_idx_c < tu_num_c) { |
| row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c; |
| col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c; |
| predict_and_reconstruct_intra_block(cm, xd, r, mbmi, 1, row_c, |
| col_c, tx_log2_c); |
| predict_and_reconstruct_intra_block(cm, xd, r, mbmi, 2, row_c, |
| col_c, tx_log2_c); |
| tu_idx_c++; |
| } |
| } |
| } |
| |
| // In 422 case, it's possilbe that Chroma has more TUs than Luma |
| while (tu_idx_c < tu_num_c) { |
| row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c; |
| col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c; |
| predict_and_reconstruct_intra_block(cm, xd, r, mbmi, 1, row_c, col_c, |
| tx_log2_c); |
| predict_and_reconstruct_intra_block(cm, xd, r, mbmi, 2, row_c, col_c, |
| tx_log2_c); |
| tu_idx_c++; |
| } |
| } else { |
| // Prediction |
| av1_build_inter_predictors_sb(xd, mi_row, mi_col, |
| AOMMAX(bsize, BLOCK_8X8)); |
| |
| // Reconstruction |
| if (!mbmi->skip) { |
| int eobtotal = 0; |
| int tu_idx_c = 0; |
| int row_y, col_y, row_c, col_c; |
| |
| for (row_y = 0; row_y < tu_num_h_y; row_y++) { |
| for (col_y = 0; col_y < tu_num_w_y; col_y++) { |
| // luma |
| eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, 0, |
| row_y * tx_sz_y, |
| col_y * tx_sz_y, tx_log2_y); |
| // chroma |
| if (tu_idx_c < tu_num_c) { |
| row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c; |
| col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c; |
| eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, |
| 1, row_c, col_c, tx_log2_c); |
| eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, |
| 2, row_c, col_c, tx_log2_c); |
| tu_idx_c++; |
| } |
| } |
| } |
| |
| // In 422 case, it's possilbe that Chroma has more TUs than Luma |
| while (tu_idx_c < tu_num_c) { |
| row_c = (tu_idx_c / tu_num_w_c) * tx_sz_c; |
| col_c = (tu_idx_c % tu_num_w_c) * tx_sz_c; |
| eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, 1, |
| row_c, col_c, tx_log2_c); |
| eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, 2, |
| row_c, col_c, tx_log2_c); |
| tu_idx_c++; |
| } |
| |
| if (bsize >= BLOCK_8X8 && eobtotal == 0) |
| #if CONFIG_MISC_FIXES |
| mbmi->has_no_coeffs = 1; |
| #else |
| mbmi->skip = 1; |
| #endif |
| } |
| } |
| } |
| #else |
| if (!is_inter_block(mbmi)) { |
| int plane; |
| #if CONFIG_PALETTE |
| for (plane = 0; plane <= 1; ++plane) { |
| if (mbmi->palette_mode_info.palette_size[plane]) |
| av1_decode_palette_tokens(xd, plane, r); |
| } |
| #endif // CONFIG_PALETTE |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size; |
| const int num_4x4_w = pd->n4_w; |
| const int num_4x4_h = pd->n4_h; |
| const int stepr = tx_size_high_unit[tx_size]; |
| const int stepc = tx_size_wide_unit[tx_size]; |
| int row, col; |
| const int max_blocks_wide = |
| num_4x4_w + (xd->mb_to_right_edge >= 0 |
| ? 0 |
| : xd->mb_to_right_edge >> (5 + pd->subsampling_x)); |
| const int max_blocks_high = |
| num_4x4_h + (xd->mb_to_bottom_edge >= 0 |
| ? 0 |
| : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y)); |
| |
| for (row = 0; row < max_blocks_high; row += stepr) |
| for (col = 0; col < max_blocks_wide; col += stepc) |
| predict_and_reconstruct_intra_block(cm, xd, r, mbmi, plane, row, col, |
| tx_size); |
| } |
| } else { |
| // Prediction |
| #if CONFIG_WARPED_MOTION |
| if (mbmi->motion_mode == WARPED_CAUSAL) { |
| int i; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| int use_hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| for (i = 0; i < 3; ++i) { |
| const struct macroblockd_plane *pd = &xd->plane[i]; |
| |
| av1_warp_plane(&mbmi->wm_params[0], |
| #if CONFIG_AOM_HIGHBITDEPTH |
| xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| pd->pre[0].buf0, pd->pre[0].width, pd->pre[0].height, |
| pd->pre[0].stride, pd->dst.buf, |
| ((mi_col * MI_SIZE) >> pd->subsampling_x), |
| ((mi_row * MI_SIZE) >> pd->subsampling_y), |
| xd->n8_w * (8 >> pd->subsampling_x), |
| xd->n8_h * (8 >> pd->subsampling_y), pd->dst.stride, |
| pd->subsampling_x, pd->subsampling_y, 16, 16, 0); |
| } |
| } else { |
| #endif // CONFIG_WARPED_MOTION |
| av1_build_inter_predictors_sb(xd, mi_row, mi_col, |
| AOMMAX(bsize, BLOCK_8X8)); |
| #if CONFIG_WARPED_MOTION |
| } |
| #endif // CONFIG_WARPED_MOTION |
| #if CONFIG_MOTION_VAR |
| if (mbmi->motion_mode == OBMC_CAUSAL) { |
| av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col); |
| } |
| #endif // CONFIG_MOTION_VAR |
| |
| // Reconstruction |
| if (!mbmi->skip) { |
| int eobtotal = 0; |
| int plane; |
| |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| int block_width = pd->width; |
| int block_height = pd->height; |
| int row, col; |
| #if CONFIG_VAR_TX |
| // TODO(jingning): This can be simplified for decoder performance. |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(AOMMAX(bsize, BLOCK_8X8), pd); |
| const TX_SIZE max_tx_size = max_txsize_rect_lookup[plane_bsize]; |
| const int bh_var_tx = tx_size_high_unit[max_tx_size]; |
| const int bw_var_tx = tx_size_wide_unit[max_tx_size]; |
| |
| block_width >>= tx_size_wide_log2[0]; |
| block_height >>= tx_size_wide_log2[0]; |
| for (row = 0; row < block_height; row += bh_var_tx) |
| for (col = 0; col < block_width; col += bw_var_tx) |
| decode_reconstruct_tx(cm, xd, r, mbmi, plane, plane_bsize, row, col, |
| max_tx_size, &eobtotal); |
| #else |
| const TX_SIZE tx_size = |
| plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size; |
| const int stepr = tx_size_high_unit[tx_size]; |
| const int stepc = tx_size_wide_unit[tx_size]; |
| int max_blocks_wide = |
| block_width + |
| (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> |
| (3 + pd->subsampling_x)); |
| int max_blocks_high = |
| block_height + |
| (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> |
| (3 + pd->subsampling_y)); |
| max_blocks_wide >>= tx_size_wide_log2[0]; |
| max_blocks_high >>= tx_size_wide_log2[0]; |
| for (row = 0; row < max_blocks_high; row += stepr) |
| for (col = 0; col < max_blocks_wide; col += stepc) |
| eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id, |
| plane, row, col, tx_size); |
| #endif |
| } |
| } |
| } |
| #endif |
| |
| xd->corrupted |= aom_reader_has_error(r); |
| } |
| |
| static INLINE int dec_partition_plane_context(const MACROBLOCKD *xd, int mi_row, |
| int mi_col, int bsl) { |
| const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col; |
| const PARTITION_CONTEXT *left_ctx = |
| xd->left_seg_context + (mi_row & MAX_MIB_MASK); |
| int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1; |
| |
| // assert(bsl >= 0); |
| |
| return (left * 2 + above) + bsl * PARTITION_PLOFFSET; |
| } |
| |
| #if !CONFIG_EXT_PARTITION_TYPES |
| static INLINE void dec_update_partition_context(MACROBLOCKD *xd, int mi_row, |
| int mi_col, BLOCK_SIZE subsize, |
| int bw) { |
| PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col; |
| PARTITION_CONTEXT *const left_ctx = |
| xd->left_seg_context + (mi_row & MAX_MIB_MASK); |
| |
| // update the partition context at the end notes. set partition bits |
| // of block sizes larger than the current one to be one, and partition |
| // bits of smaller block sizes to be zero. |
| memset(above_ctx, partition_context_lookup[subsize].above, bw); |
| memset(left_ctx, partition_context_lookup[subsize].left, bw); |
| } |
| #endif // !CONFIG_EXT_PARTITION_TYPES |
| |
| static PARTITION_TYPE read_partition(AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, aom_reader *r, |
| int has_rows, int has_cols, |
| #if CONFIG_EXT_PARTITION_TYPES |
| BLOCK_SIZE bsize, |
| #endif |
| int bsl) { |
| const int ctx = dec_partition_plane_context(xd, mi_row, mi_col, bsl); |
| const aom_prob *const probs = cm->fc->partition_prob[ctx]; |
| FRAME_COUNTS *counts = xd->counts; |
| PARTITION_TYPE p; |
| |
| if (has_rows && has_cols) |
| #if CONFIG_EXT_PARTITION_TYPES |
| if (bsize <= BLOCK_8X8) |
| p = (PARTITION_TYPE)aom_read_tree(r, av1_partition_tree, probs, ACCT_STR); |
| else |
| p = (PARTITION_TYPE)aom_read_tree(r, av1_ext_partition_tree, probs, |
| ACCT_STR); |
| #else |
| #if CONFIG_DAALA_EC |
| p = (PARTITION_TYPE)aom_read_symbol(r, cm->fc->partition_cdf[ctx], |
| PARTITION_TYPES, ACCT_STR); |
| #else |
| p = (PARTITION_TYPE)aom_read_tree(r, av1_partition_tree, probs, ACCT_STR); |
| #endif |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| else if (!has_rows && has_cols) |
| p = aom_read(r, probs[1], ACCT_STR) ? PARTITION_SPLIT : PARTITION_HORZ; |
| else if (has_rows && !has_cols) |
| p = aom_read(r, probs[2], ACCT_STR) ? PARTITION_SPLIT : PARTITION_VERT; |
| else |
| p = PARTITION_SPLIT; |
| |
| if (counts) ++counts->partition[ctx][p]; |
| |
| return p; |
| } |
| |
| #if CONFIG_SUPERTX |
| static int read_skip(AV1_COMMON *cm, const MACROBLOCKD *xd, int segment_id, |
| aom_reader *r) { |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { |
| return 1; |
| } else { |
| const int ctx = av1_get_skip_context(xd); |
| const int skip = aom_read(r, cm->fc->skip_probs[ctx], ACCT_STR); |
| FRAME_COUNTS *counts = xd->counts; |
| if (counts) ++counts->skip[ctx][skip]; |
| return skip; |
| } |
| } |
| #endif // CONFIG_SUPERTX |
| #if CONFIG_CLPF |
| static int clpf_all_skip(const AV1_COMMON *cm, int mi_col, int mi_row, |
| int size) { |
| int r, c; |
| int skip = 1; |
| const int maxc = AOMMIN(size, cm->mi_cols - mi_col); |
| const int maxr = AOMMIN(size, cm->mi_rows - mi_row); |
| for (r = 0; r < maxr && skip; r++) { |
| for (c = 0; c < maxc && skip; c++) { |
| skip &= !!cm->mi_grid_visible[(mi_row + r) * cm->mi_stride + mi_col + c] |
| ->mbmi.skip; |
| } |
| } |
| return skip; |
| } |
| #endif |
| |
| // TODO(slavarnway): eliminate bsize and subsize in future commits |
| static void decode_partition(AV1Decoder *const pbi, MACROBLOCKD *const xd, |
| #if CONFIG_SUPERTX |
| int supertx_enabled, |
| #endif |
| int mi_row, int mi_col, aom_reader *r, |
| BLOCK_SIZE bsize, int n4x4_l2) { |
| AV1_COMMON *const cm = &pbi->common; |
| const int n8x8_l2 = n4x4_l2 - 1; |
| const int num_8x8_wh = 1 << n8x8_l2; |
| const int hbs = num_8x8_wh >> 1; |
| PARTITION_TYPE partition; |
| BLOCK_SIZE subsize; |
| #if CONFIG_EXT_PARTITION_TYPES |
| BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); |
| #endif |
| const int has_rows = (mi_row + hbs) < cm->mi_rows; |
| const int has_cols = (mi_col + hbs) < cm->mi_cols; |
| #if CONFIG_SUPERTX |
| const int read_token = !supertx_enabled; |
| int skip = 0; |
| TX_SIZE supertx_size = b_width_log2_lookup[bsize]; |
| const TileInfo *const tile = &xd->tile; |
| int txfm = DCT_DCT; |
| #endif // CONFIG_SUPERTX |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| partition = read_partition(cm, xd, mi_row, mi_col, r, has_rows, has_cols, |
| #if CONFIG_EXT_PARTITION_TYPES |
| bsize, |
| #endif |
| n8x8_l2); |
| subsize = subsize_lookup[partition][bsize]; // get_subsize(bsize, partition); |
| |
| #if CONFIG_PVQ |
| assert(partition < PARTITION_TYPES); |
| assert(subsize < BLOCK_SIZES); |
| #endif |
| #if CONFIG_SUPERTX |
| if (!frame_is_intra_only(cm) && partition != PARTITION_NONE && |
| bsize <= MAX_SUPERTX_BLOCK_SIZE && !supertx_enabled && !xd->lossless[0]) { |
| const int supertx_context = partition_supertx_context_lookup[partition]; |
| supertx_enabled = aom_read( |
| r, cm->fc->supertx_prob[supertx_context][supertx_size], ACCT_STR); |
| if (xd->counts) |
| xd->counts->supertx[supertx_context][supertx_size][supertx_enabled]++; |
| #if CONFIG_VAR_TX |
| if (supertx_enabled) xd->supertx_size = supertx_size; |
| #endif |
| } |
| #endif // CONFIG_SUPERTX |
| if (!hbs) { |
| // calculate bmode block dimensions (log 2) |
| xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT); |
| xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ); |
| decode_block(pbi, xd, |
| #if CONFIG_SUPERTX |
| supertx_enabled, |
| #endif // CONFIG_SUPERTX |
| mi_row, mi_col, r, |
| #if CONFIG_EXT_PARTITION_TYPES |
| partition, |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| subsize, 1, 1); |
| } else { |
| switch (partition) { |
| case PARTITION_NONE: |
| decode_block(pbi, xd, |
| #if CONFIG_SUPERTX |
| supertx_enabled, |
| #endif // CONFIG_SUPERTX |
| mi_row, mi_col, r, |
| #if CONFIG_EXT_PARTITION_TYPES |
| partition, |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| subsize, n4x4_l2, n4x4_l2); |
| break; |
| case PARTITION_HORZ: |
| decode_block(pbi, xd, |
| #if CONFIG_SUPERTX |
| supertx_enabled, |
| #endif // CONFIG_SUPERTX |
| mi_row, mi_col, r, |
| #if CONFIG_EXT_PARTITION_TYPES |
| partition, |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| subsize, n4x4_l2, n8x8_l2); |
| if (has_rows) |
| decode_block(pbi, xd, |
| #if CONFIG_SUPERTX |
| supertx_enabled, |
| #endif // CONFIG_SUPERTX |
| mi_row + hbs, mi_col, r, |
| #if CONFIG_EXT_PARTITION_TYPES |
| partition, |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| subsize, n4x4_l2, n8x8_l2); |
| break; |
| case PARTITION_VERT: |
| decode_block(pbi, xd, |
| #if CONFIG_SUPERTX |
| supertx_enabled, |
| #endif // CONFIG_SUPERTX |
| mi_row, mi_col, r, |
| #if CONFIG_EXT_PARTITION_TYPES |
| partition, |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| subsize, n8x8_l2, n4x4_l2); |
| if (has_cols) |
| decode_block(pbi, xd, |
| #if CONFIG_SUPERTX |
| supertx_enabled, |
| #endif // CONFIG_SUPERTX |
| mi_row, mi_col + hbs, r, |
| #if CONFIG_EXT_PARTITION_TYPES |
| partition, |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| subsize, n8x8_l2, n4x4_l2); |
| break; |
| case PARTITION_SPLIT: |
| decode_partition(pbi, xd, |
| #if CONFIG_SUPERTX |
| supertx_enabled, |
| #endif // CONFIG_SUPERTX |
| mi_row, mi_col, r, subsize, n8x8_l2); |
| decode_partition(pbi, xd, |
| #if CONFIG_SUPERTX |
| supertx_enabled, |
| #endif // CONFIG_SUPERTX |
| mi_row, mi_col + hbs, r, subsize, n8x8_l2); |
| decode_partition(pbi, xd, |
| #if CONFIG_SUPERTX |
| supertx_enabled, |
| #endif // CONFIG_SUPERTX |
| mi_row + hbs, mi_col, r, subsize, n8x8_l2); |
| decode_partition(pbi, xd, |
| #if CONFIG_SUPERTX |
| supertx_enabled, |
| #endif // CONFIG_SUPERTX |
| mi_row + hbs, mi_col + hbs, r, subsize, n8x8_l2); |
| break; |
| #if CONFIG_EXT_PARTITION_TYPES |
| case PARTITION_HORZ_A: |
| decode_block(pbi, xd, |
| #if CONFIG_SUPERTX |
| supertx_enabled, |
| #endif |
| mi_row, mi_col, r, partition, bsize2, n8x8_l2, n8x8_l2); |
| decode_block(pbi, xd, |
| #if CONFIG_SUPERTX |
| supertx_enabled, |
| #endif |
| mi_row, mi_col + hbs, r, partition, bsize2, n8x8_l2, |
| n8x8_l2); |
| decode_block(pbi, xd, |
| #if CONFIG_SUPERTX |
| supertx_enabled, |
| #endif |
| mi_row + hbs, mi_col, r, partition, subsize, n4x4_l2, |
| n8x8_l2); |
| break; |
| case PARTITION_HORZ_B: |
| decode_block(pbi, xd, |
| #if CONFIG_SUPERTX |
| supertx_enabled, |
| #endif |
| mi_row, mi_col, r, partition, subsize, n4x4_l2, n8x8_l2); |
| decode_block(pbi, xd, |
| #if CONFIG_SUPERTX |
| supertx_enabled, |
| #endif |
| mi_row + hbs, mi_col, r, partition, bsize2, n8x8_l2, |
| n8x8_l2); |
| decode_block(pbi, xd, |
| #if CONFIG_SUPERTX |
| supertx_enabled, |
| #endif |
| mi_row + hbs, mi_col + hbs, r, partition, bsize2, n8x8_l2, |
| n8x8_l2); |
| break; |
| case PARTITION_VERT_A: |
| decode_block(pbi, xd, |
| #if CONFIG_SUPERTX |
| supertx_enabled, |
| #endif |
| mi_row, mi_col, r, partition, bsize2, n8x8_l2, n8x8_l2); |
| decode_block(pbi, xd, |
| #if CONFIG_SUPERTX |
| supertx_enabled, |
| #endif |
| mi_row + hbs, mi_col, r, partition, bsize2, n8x8_l2, |
| n8x8_l2); |
| decode_block(pbi, xd, |
| #if CONFIG_SUPERTX |
| supertx_enabled, |
| #endif |
| mi_row, mi_col + hbs, r, partition, subsize, n8x8_l2, |
| n4x4_l2); |
| break; |
| case PARTITION_VERT_B: |
| decode_block(pbi, xd, |
| #if CONFIG_SUPERTX |
| supertx_enabled, |
| #endif |
| mi_row, mi_col, r, partition, subsize, n8x8_l2, n4x4_l2); |
| decode_block(pbi, xd, |
| #if CONFIG_SUPERTX |
| supertx_enabled, |
| #endif |
| mi_row, mi_col + hbs, r, partition, bsize2, n8x8_l2, |
| n8x8_l2); |
| decode_block(pbi, xd, |
| #if CONFIG_SUPERTX |
| supertx_enabled, |
| #endif |
| mi_row + hbs, mi_col + hbs, r, partition, bsize2, n8x8_l2, |
| n8x8_l2); |
| break; |
| #endif |
| default: assert(0 && "Invalid partition type"); |
| } |
| } |
| |
| #if CONFIG_SUPERTX |
| if (supertx_enabled && read_token) { |
| uint8_t *dst_buf[3]; |
| int dst_stride[3], i; |
| int offset = mi_row * cm->mi_stride + mi_col; |
| |
| set_segment_id_supertx(cm, mi_row, mi_col, bsize); |
| |
| xd->mi = cm->mi_grid_visible + offset; |
| xd->mi[0] = cm->mi + offset; |
| set_mi_row_col(xd, tile, mi_row, num_8x8_blocks_high_lookup[bsize], mi_col, |
| num_8x8_blocks_wide_lookup[bsize], cm->mi_rows, cm->mi_cols); |
| set_skip_context(xd, mi_row, mi_col); |
| skip = read_skip(cm, xd, xd->mi[0]->mbmi.segment_id_supertx, r); |
| if (skip) { |
| reset_skip_context(xd, bsize); |
| } else { |
| #if CONFIG_EXT_TX |
| if (get_ext_tx_types(supertx_size, bsize, 1) > 1) { |
| int eset = get_ext_tx_set(supertx_size, bsize, 1); |
| if (eset > 0) { |
| txfm = aom_read_tree(r, av1_ext_tx_inter_tree[eset], |
| cm->fc->inter_ext_tx_prob[eset][supertx_size], |
| ACCT_STR); |
| if (xd->counts) ++xd->counts->inter_ext_tx[eset][supertx_size][txfm]; |
| } |
| } |
| #else |
| if (supertx_size < TX_32X32) { |
| txfm = aom_read_tree(r, av1_ext_tx_tree, |
| cm->fc->inter_ext_tx_prob[supertx_size], ACCT_STR); |
| if (xd->counts) ++xd->counts->inter_ext_tx[supertx_size][txfm]; |
| } |
| #endif // CONFIG_EXT_TX |
| } |
| |
| av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| dst_buf[i] = xd->plane[i].dst.buf; |
| dst_stride[i] = xd->plane[i].dst.stride; |
| } |
| dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col, mi_row, mi_col, bsize, |
| bsize, dst_buf, dst_stride); |
| |
| if (!skip) { |
| int eobtotal = 0; |
| MB_MODE_INFO *mbmi; |
| set_offsets_topblock(cm, xd, tile, bsize, mi_row, mi_col); |
| mbmi = &xd->mi[0]->mbmi; |
| mbmi->tx_type = txfm; |
| assert(mbmi->segment_id_supertx != MAX_SEGMENTS); |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| const struct macroblockd_plane *const pd = &xd->plane[i]; |
| int row, col; |
| const TX_SIZE tx_size = i ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size; |
| const int stepr = tx_size_high_unit[tx_size]; |
| const int stepc = tx_size_wide_unit[tx_size]; |
| int max_blocks_wide = |
| pd->width + (xd->mb_to_right_edge >= 0 |
| ? 0 |
| : xd->mb_to_right_edge >> (3 + pd->subsampling_x)); |
| int max_blocks_high = |
| pd->height + |
| (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> |
| (3 + pd->subsampling_y)); |
| |
| max_blocks_wide >>= tx_size_wide_log2[0]; |
| max_blocks_high >>= tx_size_wide_log2[0]; |
| |
| for (row = 0; row < max_blocks_high; row += stepr) |
| for (col = 0; col < max_blocks_wide; col += stepc) |
| eobtotal += reconstruct_inter_block( |
| cm, xd, r, mbmi->segment_id_supertx, i, row, col, tx_size); |
| } |
| if (!(subsize < BLOCK_8X8) && eobtotal == 0) skip = 1; |
| } |
| set_param_topblock(cm, xd, bsize, mi_row, mi_col, txfm, skip); |
| } |
| #endif // CONFIG_SUPERTX |
| |
| #if CONFIG_EXT_PARTITION_TYPES |
| if (bsize >= BLOCK_8X8) { |
| switch (partition) { |
| case PARTITION_SPLIT: |
| if (bsize > BLOCK_8X8) break; |
| case PARTITION_NONE: |
| case PARTITION_HORZ: |
| case PARTITION_VERT: |
| update_partition_context(xd, mi_row, mi_col, subsize, bsize); |
| break; |
| case PARTITION_HORZ_A: |
| update_partition_context(xd, mi_row, mi_col, bsize2, subsize); |
| update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize); |
| break; |
| case PARTITION_HORZ_B: |
| update_partition_context(xd, mi_row, mi_col, subsize, subsize); |
| update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize); |
| break; |
| case PARTITION_VERT_A: |
| update_partition_context(xd, mi_row, mi_col, bsize2, subsize); |
| update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize); |
| break; |
| case PARTITION_VERT_B: |
| update_partition_context(xd, mi_row, mi_col, subsize, subsize); |
| update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize); |
| break; |
| default: assert(0 && "Invalid partition type"); |
| } |
| } |
| #else |
| // update partition context |
| if (bsize >= BLOCK_8X8 && |
| (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) |
| dec_update_partition_context(xd, mi_row, mi_col, subsize, num_8x8_wh); |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| |
| #if CONFIG_DERING |
| #if CONFIG_EXT_PARTITION |
| if (cm->sb_size == BLOCK_128X128 && bsize == BLOCK_128X128) { |
| if (cm->dering_level != 0 && !sb_all_skip(cm, mi_row, mi_col)) { |
| cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.dering_gain = |
| aom_read_literal(r, DERING_REFINEMENT_BITS, ACCT_STR); |
| } else { |
| cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.dering_gain = |
| 0; |
| } |
| } else if (cm->sb_size == BLOCK_64X64 && bsize == BLOCK_64X64) { |
| #else |
| if (bsize == BLOCK_64X64) { |
| #endif |
| if (cm->dering_level != 0 && !sb_all_skip(cm, mi_row, mi_col)) { |
| cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.dering_gain = |
| aom_read_literal(r, DERING_REFINEMENT_BITS, ACCT_STR); |
| } else { |
| cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.dering_gain = |
| 0; |
| } |
| } |
| #endif |
| |
| #if CONFIG_CLPF |
| #if CONFIG_EXT_PARTITION |
| if (cm->sb_size == BLOCK_128X128 && bsize == BLOCK_128X128 && |
| cm->clpf_strength_y && cm->clpf_size != CLPF_NOSIZE) { |
| const int tl = mi_row * MI_SIZE / MIN_FB_SIZE * cm->clpf_stride + |
| mi_col * MI_SIZE / MIN_FB_SIZE; |
| if (cm->clpf_size == CLPF_128X128) { |
| cm->clpf_blocks[tl] = aom_read_literal(r, 1, ACCT_STR); |
| } else if (cm->clpf_size == CLPF_64X64) { |
| const int tr = tl + 2; |
| const int bl = tl + 2 * cm->clpf_stride; |
| const int br = tr + 2 * cm->clpf_stride; |
| const int size = 64 / MI_SIZE; |
| |
| // Up to four bits per SB |
| if (!clpf_all_skip(cm, mi_col, mi_row, size)) |
| cm->clpf_blocks[tl] = aom_read_literal(r, 1, ACCT_STR); |
| |
| if (mi_col + size < cm->mi_cols && |
| !clpf_all_skip(cm, mi_col + size, mi_row, size)) |
| cm->clpf_blocks[tr] = aom_read_literal(r, 1, ACCT_STR); |
| |
| if (mi_row + size < cm->mi_rows && |
| !clpf_all_skip(cm, mi_col, mi_row + size, size)) |
| cm->clpf_blocks[bl] = aom_read_literal(r, 1, ACCT_STR); |
| |
| if (mi_col + size < cm->mi_cols && mi_row + size < cm->mi_rows && |
| !clpf_all_skip(cm, mi_col + size, mi_row + size, size)) |
| cm->clpf_blocks[br] = aom_read_literal(r, 1, ACCT_STR); |
| } else if (cm->clpf_size == CLPF_32X32) { |
| int i, j; |
| const int size = 32 / MI_SIZE; |
| for (i = 0; i < 4; ++i) |
| for (j = 0; j < 4; ++j) { |
| const int index = tl + i * cm->clpf_stride + j; |
| if (mi_row + i * size < cm->mi_rows && |
| mi_col + j * size < cm->mi_cols && |
| !clpf_all_skip(cm, mi_col + j * size, mi_row + i * size, size)) |
| cm->clpf_blocks[index] = aom_read_literal(r, 1, ACCT_STR); |
| } |
| } |
| } else if (cm->sb_size == BLOCK_64X64 && bsize == BLOCK_64X64 && |
| #else |
| if (bsize == BLOCK_64X64 && |
| #endif // CONFIG_EXT_PARTITION |
| cm->clpf_strength_y && cm->clpf_size != CLPF_NOSIZE) { |
| const int tl = mi_row * MI_SIZE / MIN_FB_SIZE * cm->clpf_stride + |
| mi_col * MI_SIZE / MIN_FB_SIZE; |
| |
| if (!((mi_row * MI_SIZE) & 127) && !((mi_col * MI_SIZE) & 127) && |
| cm->clpf_size == CLPF_128X128) { |
| cm->clpf_blocks[tl] = aom_read_literal(r, 1, ACCT_STR); |
| } else if (cm->clpf_size == CLPF_64X64 && |
| !clpf_all_skip(cm, mi_col, mi_row, 64 / MI_SIZE)) { |
| cm->clpf_blocks[tl] = aom_read_literal(r, 1, ACCT_STR); |
| } else if (cm->clpf_size == CLPF_32X32) { |
| const int tr = tl + 1; |
| const int bl = tl + cm->clpf_stride; |
| const int br = tr + cm->clpf_stride; |
| const int size = 32 / MI_SIZE; |
| |
| // Up to four bits per SB |
| if (!clpf_all_skip(cm, mi_col, mi_row, size)) |
| cm->clpf_blocks[tl] = aom_read_literal(r, 1, ACCT_STR); |
| |
| if (mi_col + size < cm->mi_cols && |
| !clpf_all_skip(cm, mi_col + size, mi_row, size)) |
| cm->clpf_blocks[tr] = aom_read_literal(r, 1, ACCT_STR); |
| |
| if (mi_row + size < cm->mi_rows && |
| !clpf_all_skip(cm, mi_col, mi_row + size, size)) |
| cm->clpf_blocks[bl] = aom_read_literal(r, 1, ACCT_STR); |
| |
| if (mi_col + size < cm->mi_cols && mi_row + size < cm->mi_rows && |
| !clpf_all_skip(cm, mi_col + size, mi_row + size, size)) |
| cm->clpf_blocks[br] = aom_read_literal(r, 1, ACCT_STR); |
| } |
| } |
| #endif // CONFIG_CLPF |
| } |
| |
| #if !CONFIG_ANS |
| static void setup_bool_decoder(const uint8_t *data, const uint8_t *data_end, |
| const size_t read_size, |
| struct aom_internal_error_info *error_info, |
| aom_reader *r, aom_decrypt_cb decrypt_cb, |
| void *decrypt_state) { |
| // Validate the calculated partition length. If the buffer |
| // described by the partition can't be fully read, then restrict |
| // it to the portion that can be (for EC mode) or throw an error. |
| if (!read_is_valid(data, read_size, data_end)) |
| aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Truncated packet or corrupt tile length"); |
| |
| if (aom_reader_init(r, data, read_size, decrypt_cb, decrypt_state)) |
| aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate bool decoder %d", 1); |
| } |
| #else |
| static void setup_token_decoder(const uint8_t *data, const uint8_t *data_end, |
| const size_t read_size, |
| struct aom_internal_error_info *error_info, |
| struct AnsDecoder *const ans, |
| aom_decrypt_cb decrypt_cb, |
| void *decrypt_state) { |
| (void)decrypt_cb; |
| (void)decrypt_state; |
| // Validate the calculated partition length. If the buffer |
| // described by the partition can't be fully read, then restrict |
| // it to the portion that can be (for EC mode) or throw an error. |
| if (!read_is_valid(data, read_size, data_end)) |
| aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Truncated packet or corrupt tile length"); |
| |
| if (read_size > INT_MAX || ans_read_init(ans, data, (int)read_size)) |
| aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate token decoder %d", 1); |
| } |
| #endif |
| |
| #if !CONFIG_PVQ |
| static void read_coef_probs_common(av1_coeff_probs_model *coef_probs, |
| aom_reader *r) { |
| int i, j, k, l, m; |
| #if CONFIG_EC_ADAPT |
| const int node_limit = UNCONSTRAINED_NODES - 1; |
| #else |
| const int node_limit = UNCONSTRAINED_NODES; |
| #endif |
| |
| if (aom_read_bit(r, ACCT_STR)) |
| for (i = 0; i < PLANE_TYPES; ++i) |
| for (j = 0; j < REF_TYPES; ++j) |
| for (k = 0; k < COEF_BANDS; ++k) |
| for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) |
| for (m = 0; m < node_limit; ++m) |
| av1_diff_update_prob(r, &coef_probs[i][j][k][l][m], ACCT_STR); |
| } |
| |
| static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode, aom_reader *r) { |
| const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; |
| TX_SIZE tx_size; |
| for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) |
| read_coef_probs_common(fc->coef_probs[tx_size], r); |
| } |
| #endif |
| |
| static void setup_segmentation(AV1_COMMON *const cm, |
| struct aom_read_bit_buffer *rb) { |
| struct segmentation *const seg = &cm->seg; |
| int i, j; |
| |
| seg->update_map = 0; |
| seg->update_data = 0; |
| |
| seg->enabled = aom_rb_read_bit(rb); |
| if (!seg->enabled) return; |
| |
| // Segmentation map update |
| if (frame_is_intra_only(cm) || cm->error_resilient_mode) { |
| seg->update_map = 1; |
| } else { |
| seg->update_map = aom_rb_read_bit(rb); |
| } |
| if (seg->update_map) { |
| if (frame_is_intra_only(cm) || cm->error_resilient_mode) { |
| seg->temporal_update = 0; |
| } else { |
| seg->temporal_update = aom_rb_read_bit(rb); |
| } |
| } |
| |
| // Segmentation data update |
| seg->update_data = aom_rb_read_bit(rb); |
| if (seg->update_data) { |
| seg->abs_delta = aom_rb_read_bit(rb); |
| |
| av1_clearall_segfeatures(seg); |
| |
| for (i = 0; i < MAX_SEGMENTS; i++) { |
| for (j = 0; j < SEG_LVL_MAX; j++) { |
| int data = 0; |
| const int feature_enabled = aom_rb_read_bit(rb); |
| if (feature_enabled) { |
| av1_enable_segfeature(seg, i, j); |
| data = decode_unsigned_max(rb, av1_seg_feature_data_max(j)); |
| if (av1_is_segfeature_signed(j)) |
| data = aom_rb_read_bit(rb) ? -data : data; |
| } |
| av1_set_segdata(seg, i, j, data); |
| } |
| } |
| } |
| } |
| |
| #if CONFIG_LOOP_RESTORATION |
| static void decode_restoration_mode(AV1_COMMON *cm, |
| struct aom_read_bit_buffer *rb) { |
| RestorationInfo *rsi = &cm->rst_info; |
| if (aom_rb_read_bit(rb)) { |
| if (aom_rb_read_bit(rb)) |
| rsi->frame_restoration_type = |
| (aom_rb_read_bit(rb) ? RESTORE_WIENER : RESTORE_BILATERAL); |
| else |
| rsi->frame_restoration_type = RESTORE_SGRPROJ; |
| } else { |
| rsi->frame_restoration_type = |
| aom_rb_read_bit(rb) ? RESTORE_SWITCHABLE : RESTORE_NONE; |
| } |
| } |
| |
| static void read_wiener_filter(WienerInfo *wiener_info, aom_reader *rb) { |
| wiener_info->vfilter[0] = |
| aom_read_literal(rb, WIENER_FILT_TAP0_BITS, ACCT_STR) + |
| WIENER_FILT_TAP0_MINV; |
| wiener_info->vfilter[1] = |
| aom_read_literal(rb, WIENER_FILT_TAP1_BITS, ACCT_STR) + |
| WIENER_FILT_TAP1_MINV; |
| wiener_info->vfilter[2] = |
| aom_read_literal(rb, WIENER_FILT_TAP2_BITS, ACCT_STR) + |
| WIENER_FILT_TAP2_MINV; |
| wiener_info->hfilter[0] = |
| aom_read_literal(rb, WIENER_FILT_TAP0_BITS, ACCT_STR) + |
| WIENER_FILT_TAP0_MINV; |
| wiener_info->hfilter[1] = |
| aom_read_literal(rb, WIENER_FILT_TAP1_BITS, ACCT_STR) + |
| WIENER_FILT_TAP1_MINV; |
| wiener_info->hfilter[2] = |
| aom_read_literal(rb, WIENER_FILT_TAP2_BITS, ACCT_STR) + |
| WIENER_FILT_TAP2_MINV; |
| } |
| |
| static void read_sgrproj_filter(SgrprojInfo *sgrproj_info, aom_reader *rb) { |
| sgrproj_info->ep = aom_read_literal(rb, SGRPROJ_PARAMS_BITS, ACCT_STR); |
| sgrproj_info->xqd[0] = |
| aom_read_literal(rb, SGRPROJ_PRJ_BITS, ACCT_STR) + SGRPROJ_PRJ_MIN0; |
| sgrproj_info->xqd[1] = |
| aom_read_literal(rb, SGRPROJ_PRJ_BITS, ACCT_STR) + SGRPROJ_PRJ_MIN1; |
| } |
| |
| static void read_bilateral_filter(const AV1_COMMON *cm, |
| BilateralInfo *bilateral_info, |
| aom_reader *rb) { |
| int s; |
| for (s = 0; s < BILATERAL_SUBTILES; ++s) { |
| if (aom_read(rb, RESTORE_NONE_BILATERAL_PROB, ACCT_STR)) { |
| bilateral_info->level[s] = |
| aom_read_literal(rb, av1_bilateral_level_bits(cm), ACCT_STR); |
| } else { |
| bilateral_info->level[s] = -1; |
| } |
| } |
| } |
| |
| static void decode_restoration(AV1_COMMON *cm, aom_reader *rb) { |
| int i; |
| RestorationInfo *rsi = &cm->rst_info; |
| const int ntiles = |
| av1_get_rest_ntiles(cm->width, cm->height, NULL, NULL, NULL, NULL); |
| if (rsi->frame_restoration_type != RESTORE_NONE) { |
| rsi->restoration_type = (RestorationType *)aom_realloc( |
| rsi->restoration_type, sizeof(*rsi->restoration_type) * ntiles); |
| if (rsi->frame_restoration_type == RESTORE_SWITCHABLE) { |
| rsi->bilateral_info = (BilateralInfo *)aom_realloc( |
| rsi->bilateral_info, sizeof(*rsi->bilateral_info) * ntiles); |
| assert(rsi->bilateral_info != NULL); |
| rsi->wiener_info = (WienerInfo *)aom_realloc( |
| rsi->wiener_info, sizeof(*rsi->wiener_info) * ntiles); |
| assert(rsi->wiener_info != NULL); |
| rsi->sgrproj_info = (SgrprojInfo *)aom_realloc( |
| rsi->sgrproj_info, sizeof(*rsi->sgrproj_info) * ntiles); |
| assert(rsi->sgrproj_info != NULL); |
| for (i = 0; i < ntiles; ++i) { |
| rsi->restoration_type[i] = |
| aom_read_tree(rb, av1_switchable_restore_tree, |
| cm->fc->switchable_restore_prob, ACCT_STR); |
| if (rsi->restoration_type[i] == RESTORE_WIENER) { |
| rsi->wiener_info[i].level = 1; |
| read_wiener_filter(&rsi->wiener_info[i], rb); |
| } else if (rsi->restoration_type[i] == RESTORE_BILATERAL) { |
| #if BILATERAL_SUBTILES == 0 |
| rsi->bilateral_info[i].level[0] = |
| aom_read_literal(rb, av1_bilateral_level_bits(cm), ACCT_STR); |
| #else |
| read_bilateral_filter(cm, &rsi->bilateral_info[i], rb); |
| #endif |
| } else if (rsi->restoration_type[i] == RESTORE_SGRPROJ) { |
| rsi->sgrproj_info[i].level = 1; |
| read_sgrproj_filter(&rsi->sgrproj_info[i], rb); |
| } |
| } |
| } else if (rsi->frame_restoration_type == RESTORE_WIENER) { |
| rsi->wiener_info = (WienerInfo *)aom_realloc( |
| rsi->wiener_info, sizeof(*rsi->wiener_info) * ntiles); |
| assert(rsi->wiener_info != NULL); |
| for (i = 0; i < ntiles; ++i) { |
| if (aom_read(rb, RESTORE_NONE_WIENER_PROB, ACCT_STR)) { |
| rsi->restoration_type[i] = RESTORE_WIENER; |
| rsi->wiener_info[i].level = 1; |
| read_wiener_filter(&rsi->wiener_info[i], rb); |
| } else { |
| rsi->wiener_info[i].level = 0; |
| rsi->restoration_type[i] = RESTORE_NONE; |
| } |
| } |
| } else if (rsi->frame_restoration_type == RESTORE_BILATERAL) { |
| rsi->bilateral_info = (BilateralInfo *)aom_realloc( |
| rsi->bilateral_info, sizeof(*rsi->bilateral_info) * ntiles); |
| assert(rsi->bilateral_info != NULL); |
| for (i = 0; i < ntiles; ++i) { |
| rsi->restoration_type[i] = RESTORE_BILATERAL; |
| read_bilateral_filter(cm, &rsi->bilateral_info[i], rb); |
| } |
| } else if (rsi->frame_restoration_type == RESTORE_SGRPROJ) { |
| rsi->sgrproj_info = (SgrprojInfo *)aom_realloc( |
| rsi->sgrproj_info, sizeof(*rsi->sgrproj_info) * ntiles); |
| assert(rsi->sgrproj_info != NULL); |
| for (i = 0; i < ntiles; ++i) { |
| if (aom_read(rb, RESTORE_NONE_SGRPROJ_PROB, ACCT_STR)) { |
| rsi->restoration_type[i] = RESTORE_SGRPROJ; |
| rsi->sgrproj_info[i].level = 1; |
| read_sgrproj_filter(&rsi->sgrproj_info[i], rb); |
| } else { |
| rsi->sgrproj_info[i].level = 0; |
| rsi->restoration_type[i] = RESTORE_NONE; |
| } |
| } |
| } |
| } |
| } |
| #endif // CONFIG_LOOP_RESTORATION |
| |
| static void setup_loopfilter(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { |
| struct loopfilter *lf = &cm->lf; |
| lf->filter_level = aom_rb_read_literal(rb, 6); |
| lf->sharpness_level = aom_rb_read_literal(rb, 3); |
| |
| // Read in loop filter deltas applied at the MB level based on mode or ref |
| // frame. |
| lf->mode_ref_delta_update = 0; |
| |
| lf->mode_ref_delta_enabled = aom_rb_read_bit(rb); |
| if (lf->mode_ref_delta_enabled) { |
| lf->mode_ref_delta_update = aom_rb_read_bit(rb); |
| if (lf->mode_ref_delta_update) { |
| int i; |
| |
| for (i = 0; i < TOTAL_REFS_PER_FRAME; i++) |
| if (aom_rb_read_bit(rb)) |
| lf->ref_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6); |
| |
| for (i = 0; i < MAX_MODE_LF_DELTAS; i++) |
| if (aom_rb_read_bit(rb)) |
| lf->mode_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6); |
| } |
| } |
| } |
| |
| #if CONFIG_CLPF |
| static void setup_clpf(AV1Decoder *pbi, struct aom_read_bit_buffer *rb) { |
| AV1_COMMON *const cm = &pbi->common; |
| const int width = pbi->cur_buf->buf.y_crop_width; |
| const int height = pbi->cur_buf->buf.y_crop_height; |
| |
| cm->clpf_blocks = 0; |
| cm->clpf_strength_y = aom_rb_read_literal(rb, 2); |
| cm->clpf_strength_u = aom_rb_read_literal(rb, 2); |
| cm->clpf_strength_v = aom_rb_read_literal(rb, 2); |
| if (cm->clpf_strength_y) { |
| cm->clpf_size = aom_rb_read_literal(rb, 2); |
| if (cm->clpf_size != CLPF_NOSIZE) { |
| int size; |
| cm->clpf_stride = |
| ((width + MIN_FB_SIZE - 1) & ~(MIN_FB_SIZE - 1)) >> MIN_FB_SIZE_LOG2; |
| size = |
| cm->clpf_stride * ((height + MIN_FB_SIZE - 1) & ~(MIN_FB_SIZE - 1)) >> |
| MIN_FB_SIZE_LOG2; |
| CHECK_MEM_ERROR(cm, cm->clpf_blocks, aom_malloc(size)); |
| memset(cm->clpf_blocks, -1, size); |
| } |
| } |
| } |
| |
| static int clpf_bit(UNUSED int k, UNUSED int l, |
| UNUSED const YV12_BUFFER_CONFIG *rec, |
| UNUSED const YV12_BUFFER_CONFIG *org, |
| UNUSED const AV1_COMMON *cm, UNUSED int block_size, |
| UNUSED int w, UNUSED int h, UNUSED unsigned int strength, |
| UNUSED unsigned int fb_size_log2, int8_t *bit) { |
| return *bit; |
| } |
| #endif |
| |
| #if CONFIG_DERING |
| static void setup_dering(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { |
| cm->dering_level = aom_rb_read_literal(rb, DERING_LEVEL_BITS); |
| } |
| #endif // CONFIG_DERING |
| |
| static INLINE int read_delta_q(struct aom_read_bit_buffer *rb) { |
| return aom_rb_read_bit(rb) ? aom_rb_read_inv_signed_literal(rb, 6) : 0; |
| } |
| |
| static void setup_quantization(AV1_COMMON *const cm, |
| struct aom_read_bit_buffer *rb) { |
| cm->base_qindex = aom_rb_read_literal(rb, QINDEX_BITS); |
| cm->y_dc_delta_q = read_delta_q(rb); |
| cm->uv_dc_delta_q = read_delta_q(rb); |
| cm->uv_ac_delta_q = read_delta_q(rb); |
| cm->dequant_bit_depth = cm->bit_depth; |
| #if CONFIG_AOM_QM |
| cm->using_qmatrix = aom_rb_read_bit(rb); |
| if (cm->using_qmatrix) { |
| cm->min_qmlevel = aom_rb_read_literal(rb, QM_LEVEL_BITS); |
| cm->max_qmlevel = aom_rb_read_literal(rb, QM_LEVEL_BITS); |
| } else { |
| cm->min_qmlevel = 0; |
| cm->max_qmlevel = 0; |
| } |
| #endif |
| } |
| |
| static void setup_segmentation_dequant(AV1_COMMON *const cm) { |
| // Build y/uv dequant values based on segmentation. |
| int i = 0; |
| #if CONFIG_AOM_QM |
| int lossless; |
| int j = 0; |
| int qmlevel; |
| int using_qm = cm->using_qmatrix; |
| int minqm = cm->min_qmlevel; |
| int maxqm = cm->max_qmlevel; |
| #endif |
| #if CONFIG_NEW_QUANT |
| int b; |
| int dq; |
| #endif // CONFIG_NEW_QUANT |
| if (cm->seg.enabled) { |
| for (i = 0; i < MAX_SEGMENTS; ++i) { |
| const int qindex = av1_get_qindex(&cm->seg, i, cm->base_qindex); |
| cm->y_dequant[i][0] = |
| av1_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth); |
| cm->y_dequant[i][1] = av1_ac_quant(qindex, 0, cm->bit_depth); |
| cm->uv_dequant[i][0] = |
| av1_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth); |
| cm->uv_dequant[i][1] = |
| av1_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth); |
| #if CONFIG_AOM_QM |
| lossless = qindex == 0 && cm->y_dc_delta_q == 0 && |
| cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; |
| // NB: depends on base index so there is only 1 set per frame |
| // No quant weighting when lossless or signalled not using QM |
| qmlevel = (lossless || using_qm == 0) |
| ? NUM_QM_LEVELS - 1 |
| : aom_get_qmlevel(cm->base_qindex, minqm, maxqm); |
| for (j = 0; j < TX_SIZES; ++j) { |
| cm->y_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 0, j, 1); |
| cm->y_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 0, j, 0); |
| cm->uv_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 1, j, 1); |
| cm->uv_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 1, j, 0); |
| } |
| #endif // CONFIG_AOM_QM |
| #if CONFIG_NEW_QUANT |
| for (dq = 0; dq < QUANT_PROFILES; dq++) { |
| for (b = 0; b < COEF_BANDS; ++b) { |
| av1_get_dequant_val_nuq(cm->y_dequant[i][b != 0], b, |
| cm->y_dequant_nuq[i][dq][b], NULL, dq); |
| av1_get_dequant_val_nuq(cm->uv_dequant[i][b != 0], b, |
| cm->uv_dequant_nuq[i][dq][b], NULL, dq); |
| } |
| } |
| #endif // CONFIG_NEW_QUANT |
| } |
| } else { |
| const int qindex = cm->base_qindex; |
| // When segmentation is disabled, only the first value is used. The |
| // remaining are don't cares. |
| cm->y_dequant[0][0] = av1_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth); |
| cm->y_dequant[0][1] = av1_ac_quant(qindex, 0, cm->bit_depth); |
| cm->uv_dequant[0][0] = |
| av1_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth); |
| cm->uv_dequant[0][1] = |
| av1_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth); |
| #if CONFIG_AOM_QM |
| lossless = qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 && |
| cm->uv_ac_delta_q == 0; |
| // No quant weighting when lossless or signalled not using QM |
| qmlevel = (lossless || using_qm == 0) |
| ? NUM_QM_LEVELS - 1 |
| : aom_get_qmlevel(cm->base_qindex, minqm, maxqm); |
| for (j = 0; j < TX_SIZES; ++j) { |
| cm->y_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 0, j, 1); |
| cm->y_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 0, j, 0); |
| cm->uv_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 1, j, 1); |
| cm->uv_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 1, j, 0); |
| } |
| #endif |
| #if CONFIG_NEW_QUANT |
| for (dq = 0; dq < QUANT_PROFILES; dq++) { |
| for (b = 0; b < COEF_BANDS; ++b) { |
| av1_get_dequant_val_nuq(cm->y_dequant[0][b != 0], b, |
| cm->y_dequant_nuq[0][dq][b], NULL, dq); |
| av1_get_dequant_val_nuq(cm->uv_dequant[0][b != 0], b, |
| cm->uv_dequant_nuq[0][dq][b], NULL, dq); |
| } |
| } |
| #endif // CONFIG_NEW_QUANT |
| } |
| } |
| |
| static InterpFilter read_frame_interp_filter(struct aom_read_bit_buffer *rb) { |
| return aom_rb_read_bit(rb) ? SWITCHABLE |
| : aom_rb_read_literal(rb, LOG_SWITCHABLE_FILTERS); |
| } |
| |
| static void setup_render_size(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { |
| cm->render_width = cm->width; |
| cm->render_height = cm->height; |
| if (aom_rb_read_bit(rb)) |
| av1_read_frame_size(rb, &cm->render_width, &cm->render_height); |
| } |
| |
| static void resize_mv_buffer(AV1_COMMON *cm) { |
| aom_free(cm->cur_frame->mvs); |
| cm->cur_frame->mi_rows = cm->mi_rows; |
| cm->cur_frame->mi_cols = cm->mi_cols; |
| CHECK_MEM_ERROR(cm, cm->cur_frame->mvs, |
| (MV_REF *)aom_calloc(cm->mi_rows * cm->mi_cols, |
| sizeof(*cm->cur_frame->mvs))); |
| } |
| |
| static void resize_context_buffers(AV1_COMMON *cm, int width, int height) { |
| #if CONFIG_SIZE_LIMIT |
| if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Dimensions of %dx%d beyond allowed size of %dx%d.", |
| width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT); |
| #endif |
| if (cm->width != width || cm->height != height) { |
| const int new_mi_rows = |
| ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2; |
| const int new_mi_cols = |
| ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2; |
| |
| // Allocations in av1_alloc_context_buffers() depend on individual |
| // dimensions as well as the overall size. |
| if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) { |
| if (av1_alloc_context_buffers(cm, width, height)) |
| aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate context buffers"); |
| } else { |
| av1_set_mb_mi(cm, width, height); |
| } |
| av1_init_context_buffers(cm); |
| cm->width = width; |
| cm->height = height; |
| } |
| if (cm->cur_frame->mvs == NULL || cm->mi_rows > cm->cur_frame->mi_rows || |
| cm->mi_cols > cm->cur_frame->mi_cols) { |
| resize_mv_buffer(cm); |
| } |
| } |
| |
| static void setup_frame_size(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { |
| int width, height; |
| BufferPool *const pool = cm->buffer_pool; |
| av1_read_frame_size(rb, &width, &height); |
| resize_context_buffers(cm, width, height); |
| setup_render_size(cm, rb); |
| |
| lock_buffer_pool(pool); |
| if (aom_realloc_frame_buffer( |
| get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, |
| cm->subsampling_y, |
| #if CONFIG_AOM_HIGHBITDEPTH |
| cm->use_highbitdepth, |
| #endif |
| AOM_BORDER_IN_PIXELS, cm->byte_alignment, |
| &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb, |
| pool->cb_priv)) { |
| unlock_buffer_pool(pool); |
| aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate frame buffer"); |
| } |
| unlock_buffer_pool(pool); |
| |
| pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x; |
| pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y; |
| pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth; |
| pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space; |
| pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range; |
| pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width; |
| pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height; |
| } |
| |
| static INLINE int valid_ref_frame_img_fmt(aom_bit_depth_t ref_bit_depth, |
| int ref_xss, int ref_yss, |
| aom_bit_depth_t this_bit_depth, |
| int this_xss, int this_yss) { |
| return ref_bit_depth == this_bit_depth && ref_xss == this_xss && |
| ref_yss == this_yss; |
| } |
| |
| static void setup_frame_size_with_refs(AV1_COMMON *cm, |
| struct aom_read_bit_buffer *rb) { |
| int width, height; |
| int found = 0, i; |
| int has_valid_ref_frame = 0; |
| BufferPool *const pool = cm->buffer_pool; |
| for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { |
| if (aom_rb_read_bit(rb)) { |
| YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf; |
| width = buf->y_crop_width; |
| height = buf->y_crop_height; |
| cm->render_width = buf->render_width; |
| cm->render_height = buf->render_height; |
| found = 1; |
| break; |
| } |
| } |
| |
| if (!found) { |
| av1_read_frame_size(rb, &width, &height); |
| setup_render_size(cm, rb); |
| } |
| |
| if (width <= 0 || height <= 0) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Invalid frame size"); |
| |
| // Check to make sure at least one of frames that this frame references |
| // has valid dimensions. |
| for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { |
| RefBuffer *const ref_frame = &cm->frame_refs[i]; |
| has_valid_ref_frame |= |
| valid_ref_frame_size(ref_frame->buf->y_crop_width, |
| ref_frame->buf->y_crop_height, width, height); |
| } |
| if (!has_valid_ref_frame) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Referenced frame has invalid size"); |
| for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { |
| RefBuffer *const ref_frame = &cm->frame_refs[i]; |
| if (!valid_ref_frame_img_fmt(ref_frame->buf->bit_depth, |
| ref_frame->buf->subsampling_x, |
| ref_frame->buf->subsampling_y, cm->bit_depth, |
| cm->subsampling_x, cm->subsampling_y)) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Referenced frame has incompatible color format"); |
| } |
| |
| resize_context_buffers(cm, width, height); |
| |
| lock_buffer_pool(pool); |
| if (aom_realloc_frame_buffer( |
| get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, |
| cm->subsampling_y, |
| #if CONFIG_AOM_HIGHBITDEPTH |
| cm->use_highbitdepth, |
| #endif |
| AOM_BORDER_IN_PIXELS, cm->byte_alignment, |
| &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb, |
| pool->cb_priv)) { |
| unlock_buffer_pool(pool); |
| aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate frame buffer"); |
| } |
| unlock_buffer_pool(pool); |
| |
| pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x; |
| pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y; |
| pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth; |
| pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space; |
| pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range; |
| pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width; |
| pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height; |
| } |
| |
| static void read_tile_info(AV1Decoder *const pbi, |
| struct aom_read_bit_buffer *const rb) { |
| AV1_COMMON *const cm = &pbi->common; |
| #if CONFIG_EXT_TILE |
| // Read the tile width/height |
| #if CONFIG_EXT_PARTITION |
| if (cm->sb_size == BLOCK_128X128) { |
| cm->tile_width = aom_rb_read_literal(rb, 5) + 1; |
| cm->tile_height = aom_rb_read_literal(rb, 5) + 1; |
| } else |
| #endif // CONFIG_EXT_PARTITION |
| { |
| cm->tile_width = aom_rb_read_literal(rb, 6) + 1; |
| cm->tile_height = aom_rb_read_literal(rb, 6) + 1; |
| } |
| |
| cm->tile_width <<= cm->mib_size_log2; |
| cm->tile_height <<= cm->mib_size_log2; |
| |
| cm->tile_width = AOMMIN(cm->tile_width, cm->mi_cols); |
| cm->tile_height = AOMMIN(cm->tile_height, cm->mi_rows); |
| |
| // Get the number of tiles |
| cm->tile_cols = 1; |
| while (cm->tile_cols * cm->tile_width < cm->mi_cols) ++cm->tile_cols; |
| |
| cm->tile_rows = 1; |
| while (cm->tile_rows * cm->tile_height < cm->mi_rows) ++cm->tile_rows; |
| |
| if (cm->tile_cols * cm->tile_rows > 1) { |
| // Read the number of bytes used to store tile size |
| pbi->tile_col_size_bytes = aom_rb_read_literal(rb, 2) + 1; |
| pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1; |
| } |
| #else |
| int min_log2_tile_cols, max_log2_tile_cols, max_ones; |
| av1_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); |
| |
| // columns |
| max_ones = max_log2_tile_cols - min_log2_tile_cols; |
| cm->log2_tile_cols = min_log2_tile_cols; |
| while (max_ones-- && aom_rb_read_bit(rb)) cm->log2_tile_cols++; |
| |
| if (cm->log2_tile_cols > 6) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Invalid number of tile columns"); |
| |
| // rows |
| cm->log2_tile_rows = aom_rb_read_bit(rb); |
| if (cm->log2_tile_rows) cm->log2_tile_rows += aom_rb_read_bit(rb); |
| |
| cm->tile_cols = 1 << cm->log2_tile_cols; |
| cm->tile_rows = 1 << cm->log2_tile_rows; |
| |
| cm->tile_width = ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2); |
| cm->tile_width >>= cm->log2_tile_cols; |
| cm->tile_height = ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2); |
| cm->tile_height >>= cm->log2_tile_rows; |
| |
| // round to integer multiples of superblock size |
| cm->tile_width = ALIGN_POWER_OF_TWO(cm->tile_width, MAX_MIB_SIZE_LOG2); |
| cm->tile_height = ALIGN_POWER_OF_TWO(cm->tile_height, MAX_MIB_SIZE_LOG2); |
| |
| // tile size magnitude |
| #if !CONFIG_TILE_GROUPS |
| if (cm->tile_rows > 1 || cm->tile_cols > 1) |
| #endif |
| pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1; |
| #endif // CONFIG_EXT_TILE |
| |
| #if CONFIG_TILE_GROUPS |
| // Store an index to the location of the tile group information |
| pbi->tg_size_bit_offset = rb->bit_offset; |
| pbi->tg_size = 1 << (cm->log2_tile_rows + cm->log2_tile_cols); |
| if (cm->log2_tile_rows + cm->log2_tile_cols > 0) { |
| pbi->tg_start = |
| aom_rb_read_literal(rb, cm->log2_tile_rows + cm->log2_tile_cols); |
| pbi->tg_size = |
| 1 + aom_rb_read_literal(rb, cm->log2_tile_rows + cm->log2_tile_cols); |
| } |
| #endif |
| } |
| |
| static int mem_get_varsize(const uint8_t *src, const int sz) { |
| switch (sz) { |
| case 1: return src[0]; |
| case 2: return mem_get_le16(src); |
| case 3: return mem_get_le24(src); |
| case 4: return mem_get_le32(src); |
| default: assert("Invalid size" && 0); return -1; |
| } |
| } |
| |
| #if CONFIG_EXT_TILE |
| // Reads the next tile returning its size and adjusting '*data' accordingly |
| // based on 'is_last'. |
| static void get_tile_buffer(const uint8_t *const data_end, |
| struct aom_internal_error_info *error_info, |
| const uint8_t **data, aom_decrypt_cb decrypt_cb, |
| void *decrypt_state, |
| TileBufferDec (*const tile_buffers)[MAX_TILE_COLS], |
| int tile_size_bytes, int col, int row) { |
| size_t size; |
| |
| size_t copy_size = 0; |
| const uint8_t *copy_data = NULL; |
| |
| if (!read_is_valid(*data, tile_size_bytes, data_end)) |
| aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Truncated packet or corrupt tile length"); |
| if (decrypt_cb) { |
| uint8_t be_data[4]; |
| decrypt_cb(decrypt_state, *data, be_data, tile_size_bytes); |
| |
| // Only read number of bytes in cm->tile_size_bytes. |
| size = mem_get_varsize(be_data, tile_size_bytes); |
| } else { |
| size = mem_get_varsize(*data, tile_size_bytes); |
| } |
| |
| // The top bit indicates copy mode |
| if ((size >> (tile_size_bytes * 8 - 1)) == 1) { |
| // The remaining bits in the top byte signal the row offset |
| int offset = (size >> (tile_size_bytes - 1) * 8) & 0x7f; |
| |
| // Currently, only use tiles in same column as reference tiles. |
| copy_data = tile_buffers[row - offset][col].data; |
| copy_size = tile_buffers[row - offset][col].size; |
| size = 0; |
| } |
| |
| *data += tile_size_bytes; |
| |
| if (size > (size_t)(data_end - *data)) |
| aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Truncated packet or corrupt tile size"); |
| |
| if (size > 0) { |
| tile_buffers[row][col].data = *data; |
| tile_buffers[row][col].size = size; |
| } else { |
| tile_buffers[row][col].data = copy_data; |
| tile_buffers[row][col].size = copy_size; |
| } |
| |
| *data += size; |
| |
| tile_buffers[row][col].raw_data_end = *data; |
| } |
| |
| static void get_tile_buffers( |
| AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, |
| TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) { |
| AV1_COMMON *const cm = &pbi->common; |
| const int tile_cols = cm->tile_cols; |
| const int tile_rows = cm->tile_rows; |
| const int have_tiles = tile_cols * tile_rows > 1; |
| |
| if (!have_tiles) { |
| const uint32_t tile_size = data_end - data; |
| tile_buffers[0][0].data = data; |
| tile_buffers[0][0].size = tile_size; |
| tile_buffers[0][0].raw_data_end = NULL; |
| } else { |
| // We locate only the tile buffers that are required, which are the ones |
| // specified by pbi->dec_tile_col and pbi->dec_tile_row. Also, we always |
| // need the last (bottom right) tile buffer, as we need to know where the |
| // end of the compressed frame buffer is for proper superframe decoding. |
| |
| const uint8_t *tile_col_data_end[MAX_TILE_COLS]; |
| const uint8_t *const data_start = data; |
| |
| const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); |
| const int single_row = pbi->dec_tile_row >= 0; |
| const int tile_rows_start = single_row ? dec_tile_row : 0; |
| const int tile_rows_end = single_row ? tile_rows_start + 1 : tile_rows; |
| const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); |
| const int single_col = pbi->dec_tile_col >= 0; |
| const int tile_cols_start = single_col ? dec_tile_col : 0; |
| const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; |
| |
| const int tile_col_size_bytes = pbi->tile_col_size_bytes; |
| const int tile_size_bytes = pbi->tile_size_bytes; |
| |
| size_t tile_col_size; |
| int r, c; |
| |
| // Read tile column sizes for all columns (we need the last tile buffer) |
| for (c = 0; c < tile_cols; ++c) { |
| const int is_last = c == tile_cols - 1; |
| if (!is_last) { |
| tile_col_size = mem_get_varsize(data, tile_col_size_bytes); |
| data += tile_col_size_bytes; |
| tile_col_data_end[c] = data + tile_col_size; |
| } else { |
| tile_col_size = data_end - data; |
| tile_col_data_end[c] = data_end; |
| } |
| data += tile_col_size; |
| } |
| |
| data = data_start; |
| |
| // Read the required tile sizes. |
| for (c = tile_cols_start; c < tile_cols_end; ++c) { |
| const int is_last = c == tile_cols - 1; |
| |
| if (c > 0) data = tile_col_data_end[c - 1]; |
| |
| if (!is_last) data += tile_col_size_bytes; |
| |
| // Get the whole of the last column, otherwise stop at the required tile. |
| for (r = 0; r < (is_last ? tile_rows : tile_rows_end); ++r) { |
| tile_buffers[r][c].col = c; |
| |
| get_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data, |
| pbi->decrypt_cb, pbi->decrypt_state, tile_buffers, |
| tile_size_bytes, c, r); |
| } |
| } |
| |
| // If we have not read the last column, then read it to get the last tile. |
| if (tile_cols_end != tile_cols) { |
| c = tile_cols - 1; |
| |
| data = tile_col_data_end[c - 1]; |
| |
| for (r = 0; r < tile_rows; ++r) { |
| tile_buffers[r][c].col = c; |
| |
| get_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data, |
| pbi->decrypt_cb, pbi->decrypt_state, tile_buffers, |
| tile_size_bytes, c, r); |
| } |
| } |
| } |
| } |
| #else |
| // Reads the next tile returning its size and adjusting '*data' accordingly |
| // based on 'is_last'. |
| static void get_tile_buffer(const uint8_t *const data_end, |
| const int tile_size_bytes, int is_last, |
| struct aom_internal_error_info *error_info, |
| const uint8_t **data, aom_decrypt_cb decrypt_cb, |
| void *decrypt_state, TileBufferDec *const buf) { |
| size_t size; |
| |
| if (!is_last) { |
| if (!read_is_valid(*data, 4, data_end)) |
| aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Truncated packet or corrupt tile length"); |
| |
| if (decrypt_cb) { |
| uint8_t be_data[4]; |
| decrypt_cb(decrypt_state, *data, be_data, tile_size_bytes); |
| size = mem_get_varsize(be_data, tile_size_bytes); |
| } else { |
| size = mem_get_varsize(*data, tile_size_bytes); |
| } |
| *data += tile_size_bytes; |
| |
| if (size > (size_t)(data_end - *data)) |
| aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Truncated packet or corrupt tile size"); |
| } else { |
| size = data_end - *data; |
| } |
| |
| buf->data = *data; |
| buf->size = size; |
| |
| *data += size; |
| } |
| |
| static void get_tile_buffers( |
| AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, |
| TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) { |
| AV1_COMMON *const cm = &pbi->common; |
| #if CONFIG_TILE_GROUPS |
| int r, c; |
| const int tile_cols = cm->tile_cols; |
| const int tile_rows = cm->tile_rows; |
| int tc = 0; |
| int first_tile_in_tg = 0; |
| int hdr_offset; |
| struct aom_read_bit_buffer rb_tg_hdr; |
| uint8_t clear_data[MAX_AV1_HEADER_SIZE]; |
| const int num_tiles = tile_rows * tile_cols; |
| const int num_bits = OD_ILOG(num_tiles) - 1; |
| const int hdr_size = pbi->uncomp_hdr_size + pbi->first_partition_size; |
| const int tg_size_bit_offset = pbi->tg_size_bit_offset; |
| |
| for (r = 0; r < tile_rows; ++r) { |
| for (c = 0; c < tile_cols; ++c, ++tc) { |
| TileBufferDec *const buf = &tile_buffers[r][c]; |
| hdr_offset = (tc && tc == first_tile_in_tg) ? hdr_size : 0; |
| |
| buf->col = c; |
| if (hdr_offset) { |
| init_read_bit_buffer(pbi, &rb_tg_hdr, data, data_end, clear_data); |
| rb_tg_hdr.bit_offset = tg_size_bit_offset; |
| if (num_tiles) { |
| pbi->tg_start = aom_rb_read_literal(&rb_tg_hdr, num_bits); |
| pbi->tg_size = 1 + aom_rb_read_literal(&rb_tg_hdr, num_bits); |
| } |
| } |
| first_tile_in_tg += tc == first_tile_in_tg ? pbi->tg_size : 0; |
| data += hdr_offset; |
| get_tile_buffer(data_end, pbi->tile_size_bytes, 0, &pbi->common.error, |
| &data, pbi->decrypt_cb, pbi->decrypt_state, buf); |
| } |
| } |
| #else |
| int r, c; |
| const int tile_cols = cm->tile_cols; |
| const int tile_rows = cm->tile_rows; |
| |
| for (r = 0; r < tile_rows; ++r) { |
| for (c = 0; c < tile_cols; ++c) { |
| const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1); |
| TileBufferDec *const buf = &tile_buffers[r][c]; |
| buf->col = c; |
| get_tile_buffer(data_end, pbi->tile_size_bytes, is_last, &cm->error, |
| &data, pbi->decrypt_cb, pbi->decrypt_state, buf); |
| } |
| } |
| #endif |
| } |
| #endif // CONFIG_EXT_TILE |
| |
| #if CONFIG_PVQ |
| static void daala_dec_init(daala_dec_ctx *daala_dec, od_ec_dec *ec) { |
| daala_dec->ec = ec; |
| od_adapt_ctx_reset(&daala_dec->state.adapt, 0); |
| |
| daala_dec->qm = OD_FLAT_QM; |
| |
| od_init_qm(daala_dec->state.qm, daala_dec->state.qm_inv, |
| daala_dec->qm == OD_HVS_QM ? OD_QM8_Q4_HVS : OD_QM8_Q4_FLAT); |
| } |
| #endif |
| |
| static const uint8_t *decode_tiles(AV1Decoder *pbi, const uint8_t *data, |
| const uint8_t *data_end) { |
| AV1_COMMON *const cm = &pbi->common; |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| const int tile_cols = cm->tile_cols; |
| const int tile_rows = cm->tile_rows; |
| const int n_tiles = tile_cols * tile_rows; |
| TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; |
| #if CONFIG_EXT_TILE |
| const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); |
| const int single_row = pbi->dec_tile_row >= 0; |
| const int tile_rows_start = single_row ? dec_tile_row : 0; |
| const int tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; |
| const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); |
| const int single_col = pbi->dec_tile_col >= 0; |
| const int tile_cols_start = single_col ? dec_tile_col : 0; |
| const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; |
| const int inv_col_order = pbi->inv_tile_order && !single_col; |
| const int inv_row_order = pbi->inv_tile_order && !single_row; |
| #else |
| const int tile_rows_start = 0; |
| const int tile_rows_end = tile_rows; |
| const int tile_cols_start = 0; |
| const int tile_cols_end = tile_cols; |
| const int inv_col_order = pbi->inv_tile_order; |
| const int inv_row_order = pbi->inv_tile_order; |
| #endif // CONFIG_EXT_TILE |
| int tile_row, tile_col; |
| |
| #if CONFIG_ENTROPY |
| cm->do_subframe_update = n_tiles == 1; |
| #endif // CONFIG_ENTROPY |
| |
| if (cm->lf.filter_level && !cm->skip_loop_filter && |
| pbi->lf_worker.data1 == NULL) { |
| CHECK_MEM_ERROR(cm, pbi->lf_worker.data1, |
| aom_memalign(32, sizeof(LFWorkerData))); |
| pbi->lf_worker.hook = (AVxWorkerHook)av1_loop_filter_worker; |
| if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) { |
| aom_internal_error(&cm->error, AOM_CODEC_ERROR, |
| "Loop filter thread creation failed"); |
| } |
| } |
| |
| if (cm->lf.filter_level && !cm->skip_loop_filter) { |
| LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; |
| // Be sure to sync as we might be resuming after a failed frame decode. |
| winterface->sync(&pbi->lf_worker); |
| av1_loop_filter_data_reset(lf_data, get_frame_new_buffer(cm), cm, |
| pbi->mb.plane); |
| } |
| |
| assert(tile_rows <= MAX_TILE_ROWS); |
| assert(tile_cols <= MAX_TILE_COLS); |
| |
| get_tile_buffers(pbi, data, data_end, tile_buffers); |
| |
| if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) { |
| aom_free(pbi->tile_data); |
| CHECK_MEM_ERROR(cm, pbi->tile_data, |
| aom_memalign(32, n_tiles * (sizeof(*pbi->tile_data)))); |
| pbi->allocated_tiles = n_tiles; |
| } |
| #if CONFIG_ACCOUNTING |
| if (pbi->acct_enabled) { |
| aom_accounting_reset(&pbi->accounting); |
| } |
| #endif |
| // Load all tile information into tile_data. |
| for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) { |
| for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) { |
| const TileBufferDec *const buf = &tile_buffers[tile_row][tile_col]; |
| TileData *const td = pbi->tile_data + tile_cols * tile_row + tile_col; |
| |
| td->cm = cm; |
| td->xd = pbi->mb; |
| td->xd.corrupted = 0; |
| td->xd.counts = |
| cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD |
| ? &cm->counts |
| : NULL; |
| av1_zero(td->dqcoeff); |
| #if CONFIG_PVQ |
| av1_zero(td->pvq_ref_coeff); |
| #endif |
| av1_tile_init(&td->xd.tile, td->cm, tile_row, tile_col); |
| #if !CONFIG_ANS |
| setup_bool_decoder(buf->data, data_end, buf->size, &cm->error, |
| &td->bit_reader, pbi->decrypt_cb, pbi->decrypt_state); |
| #else |
| setup_token_decoder(buf->data, data_end, buf->size, &cm->error, |
| &td->bit_reader, pbi->decrypt_cb, pbi->decrypt_state); |
| #endif |
| #if CONFIG_ACCOUNTING |
| if (pbi->acct_enabled) { |
| td->bit_reader.accounting = &pbi->accounting; |
| } else { |
| td->bit_reader.accounting = NULL; |
| } |
| #endif |
| av1_init_macroblockd(cm, &td->xd, |
| #if CONFIG_PVQ |
| td->pvq_ref_coeff, |
| #endif |
| td->dqcoeff); |
| #if CONFIG_PVQ |
| daala_dec_init(&td->xd.daala_dec, &td->bit_reader.ec); |
| #endif |
| #if CONFIG_PALETTE |
| td->xd.plane[0].color_index_map = td->color_index_map[0]; |
| td->xd.plane[1].color_index_map = td->color_index_map[1]; |
| #endif // CONFIG_PALETTE |
| } |
| } |
| |
| for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) { |
| const int row = inv_row_order ? tile_rows - 1 - tile_row : tile_row; |
| int mi_row = 0; |
| TileInfo tile_info; |
| |
| av1_tile_set_row(&tile_info, cm, row); |
| |
| for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) { |
| const int col = inv_col_order ? tile_cols - 1 - tile_col : tile_col; |
| TileData *const td = pbi->tile_data + tile_cols * row + col; |
| #if CONFIG_ACCOUNTING |
| if (pbi->acct_enabled) { |
| td->bit_reader.accounting->last_tell_frac = |
| aom_reader_tell_frac(&td->bit_reader); |
| } |
| #endif |
| |
| av1_tile_set_col(&tile_info, cm, col); |
| |
| av1_zero_above_context(cm, tile_info.mi_col_start, tile_info.mi_col_end); |
| |
| for (mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end; |
| mi_row += cm->mib_size) { |
| int mi_col; |
| |
| av1_zero_left_context(&td->xd); |
| |
| for (mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; |
| mi_col += cm->mib_size) { |
| decode_partition(pbi, &td->xd, |
| #if CONFIG_SUPERTX |
| 0, |
| #endif // CONFIG_SUPERTX |
| mi_row, mi_col, &td->bit_reader, cm->sb_size, |
| b_width_log2_lookup[cm->sb_size]); |
| } |
| pbi->mb.corrupted |= td->xd.corrupted; |
| if (pbi->mb.corrupted) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Failed to decode tile data"); |
| #if CONFIG_ENTROPY |
| if (cm->do_subframe_update && |
| cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { |
| if ((mi_row + MI_SIZE) % |
| (MI_SIZE * |
| AOMMAX(cm->mi_rows / MI_SIZE / COEF_PROBS_BUFS, 1)) == |
| 0 && |
| mi_row + MI_SIZE < cm->mi_rows && |
| cm->coef_probs_update_idx < COEF_PROBS_BUFS - 1) { |
| av1_partial_adapt_probs(cm, mi_row, mi_col); |
| ++cm->coef_probs_update_idx; |
| } |
| } |
| #endif // CONFIG_ENTROPY |
| } |
| } |
| |
| assert(mi_row > 0); |
| |
| // when Parallel deblocking is enabled, deblocking should not |
| // be interleaved with decoding. Instead, deblocking should be done |
| // after the entire frame is decoded. |
| #if !CONFIG_VAR_TX && !CONFIG_PARALLEL_DEBLOCKING |
| // Loopfilter one tile row. |
| if (cm->lf.filter_level && !cm->skip_loop_filter) { |
| LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; |
| const int lf_start = AOMMAX(0, tile_info.mi_row_start - cm->mib_size); |
| const int lf_end = tile_info.mi_row_end - cm->mib_size; |
| |
| // Delay the loopfilter if the first tile row is only |
| // a single superblock high. |
| if (lf_end <= 0) continue; |
| |
| // Decoding has completed. Finish up the loop filter in this thread. |
| if (tile_info.mi_row_end >= cm->mi_rows) continue; |
| |
| winterface->sync(&pbi->lf_worker); |
| lf_data->start = lf_start; |
| lf_data->stop = lf_end; |
| if (pbi->max_threads > 1) { |
| winterface->launch(&pbi->lf_worker); |
| } else { |
| winterface->execute(&pbi->lf_worker); |
| } |
| } |
| #endif // !CONFIG_VAR_TX && !CONFIG_PARALLEL_DEBLOCKING |
| |
| // After loopfiltering, the last 7 row pixels in each superblock row may |
| // still be changed by the longest loopfilter of the next superblock row. |
| if (cm->frame_parallel_decode) |
| av1_frameworker_broadcast(pbi->cur_buf, mi_row << cm->mib_size_log2); |
| } |
| |
| #if CONFIG_VAR_TX |
| // Loopfilter the whole frame. |
| av1_loop_filter_frame(get_frame_new_buffer(cm), cm, &pbi->mb, |
| cm->lf.filter_level, 0, 0); |
| #else |
| #if CONFIG_PARALLEL_DEBLOCKING |
| // Loopfilter all rows in the frame in the frame. |
| if (cm->lf.filter_level && !cm->skip_loop_filter) { |
| LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; |
| winterface->sync(&pbi->lf_worker); |
| lf_data->start = 0; |
| lf_data->stop = cm->mi_rows; |
| winterface->execute(&pbi->lf_worker); |
| } |
| #else |
| // Loopfilter remaining rows in the frame. |
| if (cm->lf.filter_level && !cm->skip_loop_filter) { |
| LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; |
| winterface->sync(&pbi->lf_worker); |
| lf_data->start = lf_data->stop; |
| lf_data->stop = cm->mi_rows; |
| winterface->execute(&pbi->lf_worker); |
| } |
| #endif // CONFIG_PARALLEL_DEBLOCKING |
| #endif // CONFIG_VAR_TX |
| if (cm->frame_parallel_decode) |
| av1_frameworker_broadcast(pbi->cur_buf, INT_MAX); |
| |
| #if CONFIG_EXT_TILE |
| if (n_tiles == 1) { |
| #if CONFIG_ANS |
| return data_end; |
| #else |
| // Find the end of the single tile buffer |
| return aom_reader_find_end(&pbi->tile_data->bit_reader); |
| #endif // CONFIG_ANS |
| } else { |
| // Return the end of the last tile buffer |
| return tile_buffers[tile_rows - 1][tile_cols - 1].raw_data_end; |
| } |
| #else |
| #if CONFIG_ANS |
| return data_end; |
| #else |
| { |
| // Get last tile data. |
| TileData *const td = pbi->tile_data + tile_cols * tile_rows - 1; |
| return aom_reader_find_end(&td->bit_reader); |
| } |
| #endif // CONFIG_ANS |
| #endif // CONFIG_EXT_TILE |
| } |
| |
| static int tile_worker_hook(TileWorkerData *const tile_data, |
| const TileInfo *const tile) { |
| AV1Decoder *const pbi = tile_data->pbi; |
| const AV1_COMMON *const cm = &pbi->common; |
| int mi_row, mi_col; |
| |
| if (setjmp(tile_data->error_info.jmp)) { |
| tile_data->error_info.setjmp = 0; |
| tile_data->xd.corrupted = 1; |
| return 0; |
| } |
| |
| tile_data->error_info.setjmp = 1; |
| tile_data->xd.error_info = &tile_data->error_info; |
| |
| av1_zero_above_context(&pbi->common, tile->mi_col_start, tile->mi_col_end); |
| |
| for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; |
| mi_row += cm->mib_size) { |
| av1_zero_left_context(&tile_data->xd); |
| |
| for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; |
| mi_col += cm->mib_size) { |
| decode_partition(pbi, &tile_data->xd, |
| #if CONFIG_SUPERTX |
| 0, |
| #endif |
| mi_row, mi_col, &tile_data->bit_reader, cm->sb_size, |
| b_width_log2_lookup[cm->sb_size]); |
| } |
| } |
| return !tile_data->xd.corrupted; |
| } |
| |
| // sorts in descending order |
| static int compare_tile_buffers(const void *a, const void *b) { |
| const TileBufferDec *const buf1 = (const TileBufferDec *)a; |
| const TileBufferDec *const buf2 = (const TileBufferDec *)b; |
| return (int)(buf2->size - buf1->size); |
| } |
| |
| static const uint8_t *decode_tiles_mt(AV1Decoder *pbi, const uint8_t *data, |
| const uint8_t *data_end) { |
| AV1_COMMON *const cm = &pbi->common; |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| const int tile_cols = cm->tile_cols; |
| const int tile_rows = cm->tile_rows; |
| const int num_workers = AOMMIN(pbi->max_threads & ~1, tile_cols); |
| TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; |
| #if CONFIG_EXT_TILE |
| const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); |
| const int single_row = pbi->dec_tile_row >= 0; |
| const int tile_rows_start = single_row ? dec_tile_row : 0; |
| const int tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; |
| const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); |
| const int single_col = pbi->dec_tile_col >= 0; |
| const int tile_cols_start = single_col ? dec_tile_col : 0; |
| const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; |
| #else |
| const int tile_rows_start = 0; |
| const int tile_rows_end = tile_rows; |
| const int tile_cols_start = 0; |
| const int tile_cols_end = tile_cols; |
| #endif // CONFIG_EXT_TILE |
| int tile_row, tile_col; |
| int i; |
| |
| #if !(CONFIG_ANS || CONFIG_EXT_TILE) |
| int final_worker = -1; |
| #endif // !(CONFIG_ANS || CONFIG_EXT_TILE) |
| |
| assert(tile_rows <= MAX_TILE_ROWS); |
| assert(tile_cols <= MAX_TILE_COLS); |
| |
| assert(tile_cols * tile_rows > 1); |
| |
| // TODO(jzern): See if we can remove the restriction of passing in max |
| // threads to the decoder. |
| if (pbi->num_tile_workers == 0) { |
| const int num_threads = pbi->max_threads & ~1; |
| CHECK_MEM_ERROR(cm, pbi->tile_workers, |
| aom_malloc(num_threads * sizeof(*pbi->tile_workers))); |
| // Ensure tile data offsets will be properly aligned. This may fail on |
| // platforms without DECLARE_ALIGNED(). |
| assert((sizeof(*pbi->tile_worker_data) % 16) == 0); |
| CHECK_MEM_ERROR( |
| cm, pbi->tile_worker_data, |
| aom_memalign(32, num_threads * sizeof(*pbi->tile_worker_data))); |
| CHECK_MEM_ERROR(cm, pbi->tile_worker_info, |
| aom_malloc(num_threads * sizeof(*pbi->tile_worker_info))); |
| for (i = 0; i < num_threads; ++i) { |
| AVxWorker *const worker = &pbi->tile_workers[i]; |
| ++pbi->num_tile_workers; |
| |
| winterface->init(worker); |
| if (i < num_threads - 1 && !winterface->reset(worker)) { |
| aom_internal_error(&cm->error, AOM_CODEC_ERROR, |
| "Tile decoder thread creation failed"); |
| } |
| } |
| } |
| |
| // Reset tile decoding hook |
| for (i = 0; i < num_workers; ++i) { |
| AVxWorker *const worker = &pbi->tile_workers[i]; |
| winterface->sync(worker); |
| worker->hook = (AVxWorkerHook)tile_worker_hook; |
| worker->data1 = &pbi->tile_worker_data[i]; |
| worker->data2 = &pbi->tile_worker_info[i]; |
| } |
| |
| // Initialize thread frame counts. |
| if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { |
| for (i = 0; i < num_workers; ++i) { |
| TileWorkerData *const twd = (TileWorkerData *)pbi->tile_workers[i].data1; |
| av1_zero(twd->counts); |
| } |
| } |
| |
| // Load tile data into tile_buffers |
| get_tile_buffers(pbi, data, data_end, tile_buffers); |
| |
| for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) { |
| // Sort the buffers in this tile row based on size in descending order. |
| qsort(&tile_buffers[tile_row][tile_cols_start], |
| tile_cols_end - tile_cols_start, sizeof(tile_buffers[0][0]), |
| compare_tile_buffers); |
| |
| // Rearrange the tile buffers in this tile row such that per-tile group |
| // the largest, and presumably the most difficult tile will be decoded in |
| // the main thread. This should help minimize the number of instances |
| // where the main thread is waiting for a worker to complete. |
| { |
| int group_start; |
| for (group_start = tile_cols_start; group_start < tile_cols_end; |
| group_start += num_workers) { |
| const int group_end = AOMMIN(group_start + num_workers, tile_cols); |
| const TileBufferDec largest = tile_buffers[tile_row][group_start]; |
| memmove(&tile_buffers[tile_row][group_start], |
| &tile_buffers[tile_row][group_start + 1], |
| (group_end - group_start - 1) * sizeof(tile_buffers[0][0])); |
| tile_buffers[tile_row][group_end - 1] = largest; |
| } |
| } |
| |
| for (tile_col = tile_cols_start; tile_col < tile_cols_end;) { |
| // Launch workers for individual columns |
| for (i = 0; i < num_workers && tile_col < tile_cols_end; |
| ++i, ++tile_col) { |
| TileBufferDec *const buf = &tile_buffers[tile_row][tile_col]; |
| AVxWorker *const worker = &pbi->tile_workers[i]; |
| TileWorkerData *const twd = (TileWorkerData *)worker->data1; |
| TileInfo *const tile_info = (TileInfo *)worker->data2; |
| |
| twd->pbi = pbi; |
| twd->xd = pbi->mb; |
| twd->xd.corrupted = 0; |
| twd->xd.counts = |
| cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD |
| ? &twd->counts |
| : NULL; |
| av1_zero(twd->dqcoeff); |
| av1_tile_init(tile_info, cm, tile_row, buf->col); |
| av1_tile_init(&twd->xd.tile, cm, tile_row, buf->col); |
| #if !CONFIG_ANS |
| setup_bool_decoder(buf->data, data_end, buf->size, &cm->error, |
| &twd->bit_reader, pbi->decrypt_cb, |
| pbi->decrypt_state); |
| #else |
| setup_token_decoder(buf->data, data_end, buf->size, &cm->error, |
| &twd->bit_reader, pbi->decrypt_cb, |
| pbi->decrypt_state); |
| #endif // CONFIG_ANS |
| av1_init_macroblockd(cm, &twd->xd, |
| #if CONFIG_PVQ |
| twd->pvq_ref_coeff, |
| #endif |
| twd->dqcoeff); |
| #if CONFIG_PVQ |
| daala_dec_init(&twd->xd.daala_dec, &twd->bit_reader.ec); |
| #endif |
| #if CONFIG_PALETTE |
| twd->xd.plane[0].color_index_map = twd->color_index_map[0]; |
| twd->xd.plane[1].color_index_map = twd->color_index_map[1]; |
| #endif // CONFIG_PALETTE |
| |
| worker->had_error = 0; |
| if (i == num_workers - 1 || tile_col == tile_cols_end - 1) { |
| winterface->execute(worker); |
| } else { |
| winterface->launch(worker); |
| } |
| |
| #if !(CONFIG_ANS || CONFIG_EXT_TILE) |
| if (tile_row == tile_rows - 1 && buf->col == tile_cols - 1) { |
| final_worker = i; |
| } |
| #endif // !(CONFIG_ANS || CONFIG_EXT_TILE) |
| } |
| |
| // Sync all workers |
| for (; i > 0; --i) { |
| AVxWorker *const worker = &pbi->tile_workers[i - 1]; |
| // TODO(jzern): The tile may have specific error data associated with |
| // its aom_internal_error_info which could be propagated to the main |
| // info in cm. Additionally once the threads have been synced and an |
| // error is detected, there's no point in continuing to decode tiles. |
| pbi->mb.corrupted |= !winterface->sync(worker); |
| } |
| } |
| } |
| |
| // Accumulate thread frame counts. |
| if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { |
| for (i = 0; i < num_workers; ++i) { |
| TileWorkerData *const twd = (TileWorkerData *)pbi->tile_workers[i].data1; |
| av1_accumulate_frame_counts(cm, &twd->counts); |
| } |
| } |
| |
| #if CONFIG_EXT_TILE |
| // Return the end of the last tile buffer |
| return tile_buffers[tile_rows - 1][tile_cols - 1].raw_data_end; |
| #else |
| #if CONFIG_ANS |
| return data_end; |
| #else |
| assert(final_worker != -1); |
| { |
| TileWorkerData *const twd = |
| (TileWorkerData *)pbi->tile_workers[final_worker].data1; |
| return aom_reader_find_end(&twd->bit_reader); |
| } |
| #endif // CONFIG_ANS |
| #endif // CONFIG_EXT_TILE |
| } |
| |
| static void error_handler(void *data) { |
| AV1_COMMON *const cm = (AV1_COMMON *)data; |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Truncated packet"); |
| } |
| |
| static void read_bitdepth_colorspace_sampling(AV1_COMMON *cm, |
| struct aom_read_bit_buffer *rb) { |
| if (cm->profile >= PROFILE_2) { |
| cm->bit_depth = aom_rb_read_bit(rb) ? AOM_BITS_12 : AOM_BITS_10; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| cm->use_highbitdepth = 1; |
| #endif |
| } else { |
| cm->bit_depth = AOM_BITS_8; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| cm->use_highbitdepth = 0; |
| #endif |
| } |
| cm->color_space = aom_rb_read_literal(rb, 3); |
| if (cm->color_space != AOM_CS_SRGB) { |
| // [16,235] (including xvycc) vs [0,255] range |
| cm->color_range = aom_rb_read_bit(rb); |
| if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { |
| cm->subsampling_x = aom_rb_read_bit(rb); |
| cm->subsampling_y = aom_rb_read_bit(rb); |
| if (cm->subsampling_x == 1 && cm->subsampling_y == 1) |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "4:2:0 color not supported in profile 1 or 3"); |
| if (aom_rb_read_bit(rb)) |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Reserved bit set"); |
| } else { |
| cm->subsampling_y = cm->subsampling_x = 1; |
| } |
| } else { |
| if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { |
| // Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed. |
| // 4:2:2 or 4:4:0 chroma sampling is not allowed. |
| cm->subsampling_y = cm->subsampling_x = 0; |
| if (aom_rb_read_bit(rb)) |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Reserved bit set"); |
| } else { |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "4:4:4 color not supported in profile 0 or 2"); |
| } |
| } |
| } |
| |
| #if CONFIG_REFERENCE_BUFFER |
| void read_sequence_header(SequenceHeader *seq_params) { |
| /* Placeholder for actually reading from the bitstream */ |
| seq_params->frame_id_numbers_present_flag = FRAME_ID_NUMBERS_PRESENT_FLAG; |
| seq_params->frame_id_length_minus7 = FRAME_ID_LENGTH_MINUS7; |
| seq_params->delta_frame_id_length_minus2 = DELTA_FRAME_ID_LENGTH_MINUS2; |
| } |
| #endif |
| |
| static size_t read_uncompressed_header(AV1Decoder *pbi, |
| struct aom_read_bit_buffer *rb) { |
| AV1_COMMON *const cm = &pbi->common; |
| MACROBLOCKD *const xd = &pbi->mb; |
| BufferPool *const pool = cm->buffer_pool; |
| RefCntBuffer *const frame_bufs = pool->frame_bufs; |
| int i, mask, ref_index = 0; |
| size_t sz; |
| |
| #if CONFIG_REFERENCE_BUFFER |
| /* TODO: Move outside frame loop or inside key-frame branch */ |
| read_sequence_header(&pbi->seq_params); |
| #endif |
| |
| cm->last_frame_type = cm->frame_type; |
| cm->last_intra_only = cm->intra_only; |
| |
| #if CONFIG_EXT_REFS |
| // NOTE: By default all coded frames to be used as a reference |
| cm->is_reference_frame = 1; |
| #endif // CONFIG_EXT_REFS |
| |
| if (aom_rb_read_literal(rb, 2) != AOM_FRAME_MARKER) |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Invalid frame marker"); |
| |
| cm->profile = av1_read_profile(rb); |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (cm->profile >= MAX_PROFILES) |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Unsupported bitstream profile"); |
| #else |
| if (cm->profile >= PROFILE_2) |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Unsupported bitstream profile"); |
| #endif |
| |
| cm->show_existing_frame = aom_rb_read_bit(rb); |
| |
| if (cm->show_existing_frame) { |
| // Show an existing frame directly. |
| const int frame_to_show = cm->ref_frame_map[aom_rb_read_literal(rb, 3)]; |
| #if CONFIG_REFERENCE_BUFFER |
| if (pbi->seq_params.frame_id_numbers_present_flag) { |
| int FidLen = pbi->seq_params.frame_id_length_minus7 + 7; |
| int display_frame_id = aom_rb_read_literal(rb, FidLen); |
| /* Compare display_frame_id with ref_frame_id and check valid for |
| * referencing */ |
| if (display_frame_id != cm->ref_frame_id[frame_to_show] || |
| cm->valid_for_referencing[frame_to_show] == 0) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Reference buffer frame ID mismatch"); |
| } |
| #endif |
| lock_buffer_pool(pool); |
| if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) { |
| unlock_buffer_pool(pool); |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Buffer %d does not contain a decoded frame", |
| frame_to_show); |
| } |
| ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show); |
| unlock_buffer_pool(pool); |
| |
| cm->lf.filter_level = 0; |
| cm->show_frame = 1; |
| pbi->refresh_frame_flags = 0; |
| |
| if (cm->frame_parallel_decode) { |
| for (i = 0; i < REF_FRAMES; ++i) |
| cm->next_ref_frame_map[i] = cm->ref_frame_map[i]; |
| } |
| |
| return 0; |
| } |
| |
| cm->frame_type = (FRAME_TYPE)aom_rb_read_bit(rb); |
| cm->show_frame = aom_rb_read_bit(rb); |
| cm->error_resilient_mode = aom_rb_read_bit(rb); |
| #if CONFIG_REFERENCE_BUFFER |
| if (pbi->seq_params.frame_id_numbers_present_flag) { |
| int FidLen = pbi->seq_params.frame_id_length_minus7 + 7; |
| int DiffLen = pbi->seq_params.delta_frame_id_length_minus2 + 2; |
| int PrevFrameId = 0; |
| if (cm->frame_type != KEY_FRAME) { |
| PrevFrameId = cm->current_frame_id; |
| } |
| cm->current_frame_id = aom_rb_read_literal(rb, FidLen); |
| |
| if (cm->frame_type != KEY_FRAME) { |
| int DiffFrameID; |
| if (cm->current_frame_id > PrevFrameId) { |
| DiffFrameID = cm->current_frame_id - PrevFrameId; |
| } else { |
| DiffFrameID = (1 << FidLen) + cm->current_frame_id - PrevFrameId; |
| } |
| /* Check current_frame_id for conformance */ |
| if (PrevFrameId == cm->current_frame_id || |
| DiffFrameID >= (1 << (FidLen - 1))) { |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Invalid value of current_frame_id"); |
| } |
| } |
| /* Check if some frames need to be marked as not valid for referencing */ |
| for (i = 0; i < REF_FRAMES; i++) { |
| if (cm->frame_type == KEY_FRAME) { |
| cm->valid_for_referencing[i] = 0; |
| } else if (cm->current_frame_id - (1 << DiffLen) > 0) { |
| if (cm->ref_frame_id[i] > cm->current_frame_id || |
| cm->ref_frame_id[i] < cm->current_frame_id - (1 << DiffLen)) |
| cm->valid_for_referencing[i] = 0; |
| } else { |
| if (cm->ref_frame_id[i] > cm->current_frame_id && |
| cm->ref_frame_id[i] < |
| (1 << FidLen) + cm->current_frame_id - (1 << DiffLen)) |
| cm->valid_for_referencing[i] = 0; |
| } |
| } |
| } |
| #endif |
| if (cm->frame_type == KEY_FRAME) { |
| if (!av1_read_sync_code(rb)) |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Invalid frame sync code"); |
| |
| read_bitdepth_colorspace_sampling(cm, rb); |
| pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1; |
| |
| for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { |
| cm->frame_refs[i].idx = INVALID_IDX; |
| cm->frame_refs[i].buf = NULL; |
| } |
| |
| setup_frame_size(cm, rb); |
| if (pbi->need_resync) { |
| memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map)); |
| pbi->need_resync = 0; |
| } |
| #if CONFIG_PALETTE |
| cm->allow_screen_content_tools = aom_rb_read_bit(rb); |
| #endif // CONFIG_PALETTE |
| } else { |
| cm->intra_only = cm->show_frame ? 0 : aom_rb_read_bit(rb); |
| #if CONFIG_PALETTE |
| if (cm->intra_only) cm->allow_screen_content_tools = aom_rb_read_bit(rb); |
| #endif // CONFIG_PALETTE |
| if (cm->error_resilient_mode) { |
| cm->reset_frame_context = RESET_FRAME_CONTEXT_ALL; |
| } else { |
| if (cm->intra_only) { |
| cm->reset_frame_context = aom_rb_read_bit(rb) |
| ? RESET_FRAME_CONTEXT_ALL |
| : RESET_FRAME_CONTEXT_CURRENT; |
| } else { |
| cm->reset_frame_context = aom_rb_read_bit(rb) |
| ? RESET_FRAME_CONTEXT_CURRENT |
| : RESET_FRAME_CONTEXT_NONE; |
| if (cm->reset_frame_context == RESET_FRAME_CONTEXT_CURRENT) |
| cm->reset_frame_context = aom_rb_read_bit(rb) |
| ? RESET_FRAME_CONTEXT_ALL |
| : RESET_FRAME_CONTEXT_CURRENT; |
| } |
| } |
| |
| if (cm->intra_only) { |
| if (!av1_read_sync_code(rb)) |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Invalid frame sync code"); |
| |
| read_bitdepth_colorspace_sampling(cm, rb); |
| |
| pbi->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES); |
| setup_frame_size(cm, rb); |
| if (pbi->need_resync) { |
| memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map)); |
| pbi->need_resync = 0; |
| } |
| } else if (pbi->need_resync != 1) { /* Skip if need resync */ |
| pbi->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES); |
| |
| #if CONFIG_EXT_REFS |
| if (!pbi->refresh_frame_flags) { |
| // NOTE: "pbi->refresh_frame_flags == 0" indicates that the coded frame |
| // will not be used as a reference |
| cm->is_reference_frame = 0; |
| } |
| #endif // CONFIG_EXT_REFS |
| |
| for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { |
| const int ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2); |
| const int idx = cm->ref_frame_map[ref]; |
| RefBuffer *const ref_frame = &cm->frame_refs[i]; |
| ref_frame->idx = idx; |
| ref_frame->buf = &frame_bufs[idx].buf; |
| cm->ref_frame_sign_bias[LAST_FRAME + i] = aom_rb_read_bit(rb); |
| #if CONFIG_REFERENCE_BUFFER |
| if (pbi->seq_params.frame_id_numbers_present_flag) { |
| int FidLen = pbi->seq_params.frame_id_length_minus7 + 7; |
| int DiffLen = pbi->seq_params.delta_frame_id_length_minus2 + 2; |
| int delta_frame_id_minus1 = aom_rb_read_literal(rb, DiffLen); |
| int refFrameId = ((cm->current_frame_id - |
| (delta_frame_id_minus1 + 1) + (1 << FidLen)) % |
| (1 << FidLen)); |
| /* Compare values derived from delta_frame_id_minus1 and |
| * refresh_frame_flags. Also, check valid for referencing */ |
| if (refFrameId != cm->ref_frame_id[ref] || |
| cm->valid_for_referencing[ref] == 0) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Reference buffer frame ID mismatch"); |
| } |
| #endif |
| } |
| |
| #if CONFIG_FRAME_SIZE |
| if (cm->error_resilient_mode == 0) { |
| setup_frame_size_with_refs(cm, rb); |
| } else { |
| setup_frame_size(cm, rb); |
| } |
| #else |
| setup_frame_size_with_refs(cm, rb); |
| #endif |
| |
| cm->allow_high_precision_mv = aom_rb_read_bit(rb); |
| cm->interp_filter = read_frame_interp_filter(rb); |
| |
| for (i = 0; i < INTER_REFS_PER_FRAME; ++i) { |
| RefBuffer *const ref_buf = &cm->frame_refs[i]; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| av1_setup_scale_factors_for_frame( |
| &ref_buf->sf, ref_buf->buf->y_crop_width, |
| ref_buf->buf->y_crop_height, cm->width, cm->height, |
| cm->use_highbitdepth); |
| #else |
| av1_setup_scale_factors_for_frame( |
| &ref_buf->sf, ref_buf->buf->y_crop_width, |
| ref_buf->buf->y_crop_height, cm->width, cm->height); |
| #endif |
| } |
| } |
| } |
| |
| #if CONFIG_REFERENCE_BUFFER |
| if (pbi->seq_params.frame_id_numbers_present_flag) { |
| /* If bitmask is set, update reference frame id values and |
| mark frames as valid for reference */ |
| int refresh_frame_flags = |
| cm->frame_type == KEY_FRAME ? 0xFF : pbi->refresh_frame_flags; |
| for (i = 0; i < REF_FRAMES; i++) { |
| if ((refresh_frame_flags >> i) & 1) { |
| cm->ref_frame_id[i] = cm->current_frame_id; |
| cm->valid_for_referencing[i] = 1; |
| } |
| } |
| } |
| #endif |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| get_frame_new_buffer(cm)->bit_depth = cm->bit_depth; |
| #endif |
| get_frame_new_buffer(cm)->color_space = cm->color_space; |
| get_frame_new_buffer(cm)->color_range = cm->color_range; |
| get_frame_new_buffer(cm)->render_width = cm->render_width; |
| get_frame_new_buffer(cm)->render_height = cm->render_height; |
| |
| if (pbi->need_resync) { |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Keyframe / intra-only frame required to reset decoder" |
| " state"); |
| } |
| |
| if (!cm->error_resilient_mode) { |
| cm->refresh_frame_context = aom_rb_read_bit(rb) |
| ? REFRESH_FRAME_CONTEXT_FORWARD |
| : REFRESH_FRAME_CONTEXT_BACKWARD; |
| } else { |
| cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_FORWARD; |
| } |
| |
| // This flag will be overridden by the call to av1_setup_past_independence |
| // below, forcing the use of context 0 for those frame types. |
| cm->frame_context_idx = aom_rb_read_literal(rb, FRAME_CONTEXTS_LOG2); |
| |
| // Generate next_ref_frame_map. |
| lock_buffer_pool(pool); |
| for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) { |
| if (mask & 1) { |
| cm->next_ref_frame_map[ref_index] = cm->new_fb_idx; |
| ++frame_bufs[cm->new_fb_idx].ref_count; |
| } else { |
| cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; |
| } |
| // Current thread holds the reference frame. |
| if (cm->ref_frame_map[ref_index] >= 0) |
| ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; |
| ++ref_index; |
| } |
| |
| for (; ref_index < REF_FRAMES; ++ref_index) { |
| cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; |
| |
| // Current thread holds the reference frame. |
| if (cm->ref_frame_map[ref_index] >= 0) |
| ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; |
| } |
| unlock_buffer_pool(pool); |
| pbi->hold_ref_buf = 1; |
| |
| if (frame_is_intra_only(cm) || cm->error_resilient_mode) |
| av1_setup_past_independence(cm); |
| |
| #if CONFIG_EXT_PARTITION |
| set_sb_size(cm, aom_rb_read_bit(rb) ? BLOCK_128X128 : BLOCK_64X64); |
| #else |
| set_sb_size(cm, BLOCK_64X64); |
| #endif // CONFIG_EXT_PARTITION |
| |
| setup_loopfilter(cm, rb); |
| #if CONFIG_DERING |
| setup_dering(cm, rb); |
| #endif |
| #if CONFIG_CLPF |
| setup_clpf(pbi, rb); |
| #endif |
| #if CONFIG_LOOP_RESTORATION |
| decode_restoration_mode(cm, rb); |
| #endif // CONFIG_LOOP_RESTORATION |
| setup_quantization(cm, rb); |
| #if CONFIG_AOM_HIGHBITDEPTH |
| xd->bd = (int)cm->bit_depth; |
| #endif |
| |
| #if CONFIG_ENTROPY |
| av1_default_coef_probs(cm); |
| if (cm->frame_type == KEY_FRAME || cm->error_resilient_mode || |
| cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL) { |
| for (i = 0; i < FRAME_CONTEXTS; ++i) cm->frame_contexts[i] = *cm->fc; |
| } else if (cm->reset_frame_context == RESET_FRAME_CONTEXT_CURRENT) { |
| cm->frame_contexts[cm->frame_context_idx] = *cm->fc; |
| } |
| #endif // CONFIG_ENTROPY |
| |
| setup_segmentation(cm, rb); |
| |
| #if CONFIG_DELTA_Q |
| { |
| struct segmentation *const seg = &cm->seg; |
| int segment_quantizer_active = 0; |
| for (i = 0; i < MAX_SEGMENTS; i++) { |
| if (segfeature_active(seg, i, SEG_LVL_ALT_Q)) { |
| segment_quantizer_active = 1; |
| } |
| } |
| |
| cm->delta_q_res = 1; |
| if (segment_quantizer_active == 0) { |
| cm->delta_q_present_flag = aom_rb_read_bit(rb); |
| } else { |
| cm->delta_q_present_flag = 0; |
| } |
| if (cm->delta_q_present_flag) { |
| xd->prev_qindex = cm->base_qindex; |
| cm->delta_q_res = 1 << aom_rb_read_literal(rb, 2); |
| } |
| } |
| #endif |
| |
| for (i = 0; i < MAX_SEGMENTS; ++i) { |
| const int qindex = cm->seg.enabled |
| ? av1_get_qindex(&cm->seg, i, cm->base_qindex) |
| : cm->base_qindex; |
| xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 && |
| cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; |
| xd->qindex[i] = qindex; |
| } |
| |
| setup_segmentation_dequant(cm); |
| cm->tx_mode = |
| (!cm->seg.enabled && xd->lossless[0]) ? ONLY_4X4 : read_tx_mode(rb); |
| cm->reference_mode = read_frame_reference_mode(cm, rb); |
| |
| read_tile_info(pbi, rb); |
| sz = aom_rb_read_literal(rb, 16); |
| |
| if (sz == 0) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Invalid header size"); |
| return sz; |
| } |
| |
| #if CONFIG_EXT_TX |
| #if !CONFIG_EC_ADAPT || !CONFIG_DAALA_EC |
| static void read_ext_tx_probs(FRAME_CONTEXT *fc, aom_reader *r) { |
| int i, j, k; |
| int s; |
| for (s = 1; s < EXT_TX_SETS_INTER; ++s) { |
| if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) { |
| for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { |
| if (!use_inter_ext_tx_for_txsize[s][i]) continue; |
| for (j = 0; j < num_ext_tx_set_inter[s] - 1; ++j) |
| av1_diff_update_prob(r, &fc->inter_ext_tx_prob[s][i][j], ACCT_STR); |
| } |
| } |
| } |
| |
| for (s = 1; s < EXT_TX_SETS_INTRA; ++s) { |
| if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) { |
| for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { |
| if (!use_intra_ext_tx_for_txsize[s][i]) continue; |
| for (j = 0; j < INTRA_MODES; ++j) |
| for (k = 0; k < num_ext_tx_set_intra[s] - 1; ++k) |
| av1_diff_update_prob(r, &fc->intra_ext_tx_prob[s][i][j][k], |
| ACCT_STR); |
| } |
| } |
| } |
| } |
| #endif // !CONFIG_EC_ADAPT || !CONFIG_DAALA_EC |
| #else |
| |
| #endif // CONFIG_EXT_TX |
| #if CONFIG_SUPERTX |
| static void read_supertx_probs(FRAME_CONTEXT *fc, aom_reader *r) { |
| int i, j; |
| if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) { |
| for (i = 0; i < PARTITION_SUPERTX_CONTEXTS; ++i) { |
| for (j = 1; j < TX_SIZES; ++j) { |
| av1_diff_update_prob(r, &fc->supertx_prob[i][j], ACCT_STR); |
| } |
| } |
| } |
| } |
| #endif // CONFIG_SUPERTX |
| |
| #if CONFIG_GLOBAL_MOTION |
| static void read_global_motion_params(WarpedMotionParams *params, |
| aom_prob *probs, aom_reader *r) { |
| TransformationType type = |
| aom_read_tree(r, av1_global_motion_types_tree, probs, ACCT_STR); |
| set_default_gmparams(params); |
| params->wmtype = type; |
| switch (type) { |
| case HOMOGRAPHY: |
| params->wmmat[6] = aom_read_primitive_symmetric(r, GM_ABS_ROW3HOMO_BITS) * |
| GM_ROW3HOMO_DECODE_FACTOR; |
| params->wmmat[7] = aom_read_primitive_symmetric(r, GM_ABS_ROW3HOMO_BITS) * |
| GM_ROW3HOMO_DECODE_FACTOR; |
| case AFFINE: |
| case ROTZOOM: |
| params->wmmat[2] = aom_read_primitive_symmetric(r, GM_ABS_ALPHA_BITS) * |
| GM_ALPHA_DECODE_FACTOR + |
| (1 << WARPEDMODEL_PREC_BITS); |
| params->wmmat[3] = aom_read_primitive_symmetric(r, GM_ABS_ALPHA_BITS) * |
| GM_ALPHA_DECODE_FACTOR; |
| if (type == AFFINE || type == HOMOGRAPHY) { |
| params->wmmat[4] = aom_read_primitive_symmetric(r, GM_ABS_ALPHA_BITS) * |
| GM_ALPHA_DECODE_FACTOR; |
| params->wmmat[5] = aom_read_primitive_symmetric(r, GM_ABS_ALPHA_BITS) * |
| GM_ALPHA_DECODE_FACTOR + |
| (1 << WARPEDMODEL_PREC_BITS); |
| } else { |
| params->wmmat[4] = -params->wmmat[3]; |
| params->wmmat[5] = params->wmmat[2]; |
| } |
| // fallthrough intended |
| case TRANSLATION: |
| params->wmmat[0] = aom_read_primitive_symmetric(r, GM_ABS_TRANS_BITS) * |
| GM_TRANS_DECODE_FACTOR; |
| params->wmmat[1] = aom_read_primitive_symmetric(r, GM_ABS_TRANS_BITS) * |
| GM_TRANS_DECODE_FACTOR; |
| break; |
| case IDENTITY: break; |
| default: assert(0); |
| } |
| } |
| |
| static void read_global_motion(AV1_COMMON *cm, aom_reader *r) { |
| int frame; |
| for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) { |
| read_global_motion_params(&cm->global_motion[frame], |
| cm->fc->global_motion_types_prob, r); |
| /* |
| printf("Dec Ref %d [%d/%d]: %d %d %d %d\n", |
| frame, cm->current_video_frame, cm->show_frame, |
| cm->global_motion[frame].wmmat[0], |
| cm->global_motion[frame].wmmat[1], |
| cm->global_motion[frame].wmmat[2], |
| cm->global_motion[frame].wmmat[3]); |
| */ |
| } |
| } |
| #endif // CONFIG_GLOBAL_MOTION |
| |
| static int read_compressed_header(AV1Decoder *pbi, const uint8_t *data, |
| size_t partition_size) { |
| AV1_COMMON *const cm = &pbi->common; |
| #if CONFIG_SUPERTX |
| MACROBLOCKD *const xd = &pbi->mb; |
| #endif |
| FRAME_CONTEXT *const fc = cm->fc; |
| aom_reader r; |
| int k, i; |
| #if !CONFIG_EC_ADAPT || CONFIG_EXT_INTRA |
| int j; |
| #endif |
| |
| #if !CONFIG_ANS |
| if (aom_reader_init(&r, data, partition_size, pbi->decrypt_cb, |
| pbi->decrypt_state)) |
| aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate bool decoder 0"); |
| #else |
| if (ans_read_init(&r, data, (int)partition_size)) |
| aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate compressed header ANS decoder"); |
| #endif // !CONFIG_ANS |
| |
| #if CONFIG_LOOP_RESTORATION |
| decode_restoration(cm, &r); |
| #endif |
| |
| if (cm->tx_mode == TX_MODE_SELECT) read_tx_size_probs(fc, &r); |
| |
| #if !CONFIG_PVQ |
| read_coef_probs(fc, cm->tx_mode, &r); |
| |
| #if CONFIG_VAR_TX |
| for (k = 0; k < TXFM_PARTITION_CONTEXTS; ++k) |
| av1_diff_update_prob(&r, &fc->txfm_partition_prob[k], ACCT_STR); |
| #endif // CONFIG_VAR_TX |
| #endif // !CONFIG_PVQ |
| for (k = 0; k < SKIP_CONTEXTS; ++k) |
| av1_diff_update_prob(&r, &fc->skip_probs[k], ACCT_STR); |
| |
| #if CONFIG_DELTA_Q |
| for (k = 0; k < DELTA_Q_CONTEXTS; ++k) |
| av1_diff_update_prob(&r, &fc->delta_q_prob[k], ACCT_STR); |
| #endif |
| |
| #if !CONFIG_EC_ADAPT |
| if (cm->seg.enabled && cm->seg.update_map) { |
| if (cm->seg.temporal_update) { |
| for (k = 0; k < PREDICTION_PROBS; k++) |
| av1_diff_update_prob(&r, &cm->fc->seg.pred_probs[k], ACCT_STR); |
| } |
| for (k = 0; k < MAX_SEGMENTS - 1; k++) |
| av1_diff_update_prob(&r, &cm->fc->seg.tree_probs[k], ACCT_STR); |
| } |
| |
| for (j = 0; j < INTRA_MODES; j++) { |
| for (i = 0; i < INTRA_MODES - 1; ++i) |
| av1_diff_update_prob(&r, &fc->uv_mode_prob[j][i], ACCT_STR); |
| } |
| |
| #if CONFIG_EXT_PARTITION_TYPES |
| for (i = 0; i < PARTITION_TYPES - 1; ++i) |
| av1_diff_update_prob(&r, &fc->partition_prob[0][i], ACCT_STR); |
| for (j = 1; j < PARTITION_CONTEXTS; ++j) |
| for (i = 0; i < EXT_PARTITION_TYPES - 1; ++i) |
| av1_diff_update_prob(&r, &fc->partition_prob[j][i], ACCT_STR); |
| #else |
| for (j = 0; j < PARTITION_CONTEXTS; ++j) |
| for (i = 0; i < PARTITION_TYPES - 1; ++i) |
| av1_diff_update_prob(&r, &fc->partition_prob[j][i], ACCT_STR); |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| #endif // EC_ADAPT, DAALA_EC |
| #if CONFIG_EXT_INTRA |
| for (i = 0; i < INTRA_FILTERS + 1; ++i) |
| for (j = 0; j < INTRA_FILTERS - 1; ++j) |
| av1_diff_update_prob(&r, &fc->intra_filter_probs[i][j], ACCT_STR); |
| #endif // EC_ADAPT, DAALA_EC |
| |
| if (frame_is_intra_only(cm)) { |
| av1_copy(cm->kf_y_prob, av1_kf_y_mode_prob); |
| #if CONFIG_DAALA_EC |
| av1_copy(cm->kf_y_cdf, av1_kf_y_mode_cdf); |
| #endif |
| #if !CONFIG_EC_ADAPT |
| for (k = 0; k < INTRA_MODES; k++) |
| for (j = 0; j < INTRA_MODES; j++) |
| for (i = 0; i < INTRA_MODES - 1; ++i) |
| av1_diff_update_prob(&r, &cm->kf_y_prob[k][j][i], ACCT_STR); |
| #endif |
| } else { |
| #if !CONFIG_REF_MV |
| nmv_context *const nmvc = &fc->nmvc; |
| #endif |
| read_inter_mode_probs(fc, &r); |
| |
| #if CONFIG_EXT_INTER |
| read_inter_compound_mode_probs(fc, &r); |
| if (cm->reference_mode != COMPOUND_REFERENCE) { |
| for (i = 0; i < BLOCK_SIZE_GROUPS; i++) { |
| if (is_interintra_allowed_bsize_group(i)) { |
| av1_diff_update_prob(&r, &fc->interintra_prob[i], ACCT_STR); |
| } |
| } |
| for (i = 0; i < BLOCK_SIZE_GROUPS; i++) { |
| for (j = 0; j < INTERINTRA_MODES - 1; j++) |
| av1_diff_update_prob(&r, &fc->interintra_mode_prob[i][j], ACCT_STR); |
| } |
| for (i = 0; i < BLOCK_SIZES; i++) { |
| if (is_interintra_allowed_bsize(i) && is_interintra_wedge_used(i)) { |
| av1_diff_update_prob(&r, &fc->wedge_interintra_prob[i], ACCT_STR); |
| } |
| } |
| } |
| if (cm->reference_mode != SINGLE_REFERENCE) { |
| for (i = 0; i < BLOCK_SIZES; i++) { |
| if (is_interinter_wedge_used(i)) { |
| for (j = 0; j < COMPOUND_TYPES - 1; j++) { |
| av1_diff_update_prob(&r, &fc->compound_type_prob[i][j], ACCT_STR); |
| } |
| } |
| } |
| } |
| #endif // CONFIG_EXT_INTER |
| |
| #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION |
| for (i = BLOCK_8X8; i < BLOCK_SIZES; ++i) { |
| for (j = 0; j < MOTION_MODES - 1; ++j) |
| av1_diff_update_prob(&r, &fc->motion_mode_prob[i][j], ACCT_STR); |
| } |
| #endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION |
| |
| #if !CONFIG_EC_ADAPT |
| if (cm->interp_filter == SWITCHABLE) read_switchable_interp_probs(fc, &r); |
| #endif |
| |
| for (i = 0; i < INTRA_INTER_CONTEXTS; i++) |
| av1_diff_update_prob(&r, &fc->intra_inter_prob[i], ACCT_STR); |
| |
| if (cm->reference_mode != SINGLE_REFERENCE) |
| setup_compound_reference_mode(cm); |
| read_frame_reference_mode_probs(cm, &r); |
| |
| #if !CONFIG_EC_ADAPT |
| for (j = 0; j < BLOCK_SIZE_GROUPS; j++) { |
| for (i = 0; i < INTRA_MODES - 1; ++i) |
| av1_diff_update_prob(&r, &fc->y_mode_prob[j][i], ACCT_STR); |
| } |
| #endif |
| |
| #if CONFIG_REF_MV |
| for (i = 0; i < NMV_CONTEXTS; ++i) |
| read_mv_probs(&fc->nmvc[i], cm->allow_high_precision_mv, &r); |
| #else |
| read_mv_probs(nmvc, cm->allow_high_precision_mv, &r); |
| #endif |
| #if !CONFIG_EC_ADAPT |
| read_ext_tx_probs(fc, &r); |
| #endif // EC_ADAPT, DAALA_EC |
| #if CONFIG_SUPERTX |
| if (!xd->lossless[0]) read_supertx_probs(fc, &r); |
| #endif |
| #if CONFIG_GLOBAL_MOTION |
| read_global_motion(cm, &r); |
| #endif // EC_ADAPT, DAALA_EC |
| } |
| #if CONFIG_EC_MULTISYMBOL |
| av1_coef_pareto_cdfs(fc); |
| #if CONFIG_REF_MV |
| for (i = 0; i < NMV_CONTEXTS; ++i) av1_set_mv_cdfs(&fc->nmvc[i]); |
| #else |
| av1_set_mv_cdfs(&fc->nmvc); |
| #endif |
| #if CONFIG_DAALA_EC |
| av1_set_mode_cdfs(cm); |
| #endif |
| #endif |
| |
| return aom_reader_has_error(&r); |
| } |
| |
| #ifdef NDEBUG |
| #define debug_check_frame_counts(cm) (void)0 |
| #else // !NDEBUG |
| // Counts should only be incremented when frame_parallel_decoding_mode and |
| // error_resilient_mode are disabled. |
| static void debug_check_frame_counts(const AV1_COMMON *const cm) { |
| FRAME_COUNTS zero_counts; |
| av1_zero(zero_counts); |
| assert(cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_BACKWARD || |
| cm->error_resilient_mode); |
| assert(!memcmp(cm->counts.y_mode, zero_counts.y_mode, |
| sizeof(cm->counts.y_mode))); |
| assert(!memcmp(cm->counts.uv_mode, zero_counts.uv_mode, |
| sizeof(cm->counts.uv_mode))); |
| assert(!memcmp(cm->counts.partition, zero_counts.partition, |
| sizeof(cm->counts.partition))); |
| assert(!memcmp(cm->counts.coef, zero_counts.coef, sizeof(cm->counts.coef))); |
| assert(!memcmp(cm->counts.eob_branch, zero_counts.eob_branch, |
| sizeof(cm->counts.eob_branch))); |
| assert(!memcmp(cm->counts.switchable_interp, zero_counts.switchable_interp, |
| sizeof(cm->counts.switchable_interp))); |
| assert(!memcmp(cm->counts.inter_mode, zero_counts.inter_mode, |
| sizeof(cm->counts.inter_mode))); |
| #if CONFIG_EXT_INTER |
| assert(!memcmp(cm->counts.inter_compound_mode, |
| zero_counts.inter_compound_mode, |
| sizeof(cm->counts.inter_compound_mode))); |
| assert(!memcmp(cm->counts.interintra, zero_counts.interintra, |
| sizeof(cm->counts.interintra))); |
| assert(!memcmp(cm->counts.wedge_interintra, zero_counts.wedge_interintra, |
| sizeof(cm->counts.wedge_interintra))); |
| assert(!memcmp(cm->counts.compound_interinter, |
| zero_counts.compound_interinter, |
| sizeof(cm->counts.compound_interinter))); |
| #endif // CONFIG_EXT_INTER |
| #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION |
| assert(!memcmp(cm->counts.motion_mode, zero_counts.motion_mode, |
| sizeof(cm->counts.motion_mode))); |
| #endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION |
| assert(!memcmp(cm->counts.intra_inter, zero_counts.intra_inter, |
| sizeof(cm->counts.intra_inter))); |
| assert(!memcmp(cm->counts.comp_inter, zero_counts.comp_inter, |
| sizeof(cm->counts.comp_inter))); |
| assert(!memcmp(cm->counts.single_ref, zero_counts.single_ref, |
| sizeof(cm->counts.single_ref))); |
| assert(!memcmp(cm->counts.comp_ref, zero_counts.comp_ref, |
| sizeof(cm->counts.comp_ref))); |
| #if CONFIG_EXT_REFS |
| assert(!memcmp(cm->counts.comp_bwdref, zero_counts.comp_bwdref, |
| sizeof(cm->counts.comp_bwdref))); |
| #endif // CONFIG_EXT_REFS |
| assert(!memcmp(&cm->counts.tx_size, &zero_counts.tx_size, |
| sizeof(cm->counts.tx_size))); |
| assert(!memcmp(cm->counts.skip, zero_counts.skip, sizeof(cm->counts.skip))); |
| #if CONFIG_REF_MV |
| assert( |
| !memcmp(&cm->counts.mv[0], &zero_counts.mv[0], sizeof(cm->counts.mv[0]))); |
| assert( |
| !memcmp(&cm->counts.mv[1], &zero_counts.mv[1], sizeof(cm->counts.mv[0]))); |
| #else |
| assert(!memcmp(&cm->counts.mv, &zero_counts.mv, sizeof(cm->counts.mv))); |
| #endif |
| assert(!memcmp(cm->counts.inter_ext_tx, zero_counts.inter_ext_tx, |
| sizeof(cm->counts.inter_ext_tx))); |
| assert(!memcmp(cm->counts.intra_ext_tx, zero_counts.intra_ext_tx, |
| sizeof(cm->counts.intra_ext_tx))); |
| } |
| #endif // NDEBUG |
| |
| static struct aom_read_bit_buffer *init_read_bit_buffer( |
| AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data, |
| const uint8_t *data_end, uint8_t clear_data[MAX_AV1_HEADER_SIZE]) { |
| rb->bit_offset = 0; |
| rb->error_handler = error_handler; |
| rb->error_handler_data = &pbi->common; |
| if (pbi->decrypt_cb) { |
| const int n = (int)AOMMIN(MAX_AV1_HEADER_SIZE, data_end - data); |
| pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n); |
| rb->bit_buffer = clear_data; |
| rb->bit_buffer_end = clear_data + n; |
| } else { |
| rb->bit_buffer = data; |
| rb->bit_buffer_end = data_end; |
| } |
| return rb; |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| int av1_read_sync_code(struct aom_read_bit_buffer *const rb) { |
| return aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_0 && |
| aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_1 && |
| aom_rb_read_literal(rb, 8) == AV1_SYNC_CODE_2; |
| } |
| |
| void av1_read_frame_size(struct aom_read_bit_buffer *rb, int *width, |
| int *height) { |
| *width = aom_rb_read_literal(rb, 16) + 1; |
| *height = aom_rb_read_literal(rb, 16) + 1; |
| } |
| |
| BITSTREAM_PROFILE av1_read_profile(struct aom_read_bit_buffer *rb) { |
| int profile = aom_rb_read_bit(rb); |
| profile |= aom_rb_read_bit(rb) << 1; |
| if (profile > 2) profile += aom_rb_read_bit(rb); |
| return (BITSTREAM_PROFILE)profile; |
| } |
| |
| void av1_decode_frame(AV1Decoder *pbi, const uint8_t *data, |
| const uint8_t *data_end, const uint8_t **p_data_end) { |
| AV1_COMMON *const cm = &pbi->common; |
| MACROBLOCKD *const xd = &pbi->mb; |
| struct aom_read_bit_buffer rb; |
| int context_updated = 0; |
| uint8_t clear_data[MAX_AV1_HEADER_SIZE]; |
| size_t first_partition_size; |
| YV12_BUFFER_CONFIG *new_fb; |
| |
| #if CONFIG_BITSTREAM_DEBUG |
| bitstream_queue_set_frame_read(cm->current_video_frame * 2 + cm->show_frame); |
| #endif |
| |
| first_partition_size = read_uncompressed_header( |
| pbi, init_read_bit_buffer(pbi, &rb, data, data_end, clear_data)); |
| #if CONFIG_TILE_GROUPS |
| pbi->first_partition_size = first_partition_size; |
| pbi->uncomp_hdr_size = aom_rb_bytes_read(&rb); |
| #endif |
| new_fb = get_frame_new_buffer(cm); |
| xd->cur_buf = new_fb; |
| #if CONFIG_GLOBAL_MOTION |
| xd->global_motion = cm->global_motion; |
| #endif // CONFIG_GLOBAL_MOTION |
| |
| if (!first_partition_size) { |
| // showing a frame directly |
| #if CONFIG_EXT_REFS |
| if (cm->show_existing_frame) |
| *p_data_end = data + aom_rb_bytes_read(&rb); |
| else |
| #endif // CONFIG_EXT_REFS |
| *p_data_end = data + (cm->profile <= PROFILE_2 ? 1 : 2); |
| |
| return; |
| } |
| |
| data += aom_rb_bytes_read(&rb); |
| if (!read_is_valid(data, first_partition_size, data_end)) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Truncated packet or corrupt header length"); |
| |
| #if CONFIG_REF_MV |
| cm->setup_mi(cm); |
| #endif |
| |
| cm->use_prev_frame_mvs = |
| !cm->error_resilient_mode && cm->width == cm->last_width && |
| cm->height == cm->last_height && !cm->last_intra_only && |
| cm->last_show_frame && (cm->last_frame_type != KEY_FRAME); |
| #if CONFIG_EXT_REFS |
| // NOTE(zoeliu): As cm->prev_frame can take neither a frame of |
| // show_exisiting_frame=1, nor can it take a frame not used as |
| // a reference, it is probable that by the time it is being |
| // referred to, the frame buffer it originally points to may |
| // already get expired and have been reassigned to the current |
| // newly coded frame. Hence, we need to check whether this is |
| // the case, and if yes, we have 2 choices: |
| // (1) Simply disable the use of previous frame mvs; or |
| // (2) Have cm->prev_frame point to one reference frame buffer, |
| // e.g. LAST_FRAME. |
| if (cm->use_prev_frame_mvs && !dec_is_ref_frame_buf(pbi, cm->prev_frame)) { |
| // Reassign the LAST_FRAME buffer to cm->prev_frame. |
| RefBuffer *last_fb_ref_buf = &cm->frame_refs[LAST_FRAME - LAST_FRAME]; |
| cm->prev_frame = &cm->buffer_pool->frame_bufs[last_fb_ref_buf->idx]; |
| } |
| #endif // CONFIG_EXT_REFS |
| |
| av1_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y); |
| |
| *cm->fc = cm->frame_contexts[cm->frame_context_idx]; |
| if (!cm->fc->initialized) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Uninitialized entropy context."); |
| |
| av1_zero(cm->counts); |
| |
| xd->corrupted = 0; |
| new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size); |
| if (new_fb->corrupted) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Decode failed. Frame data header is corrupted."); |
| |
| if (cm->lf.filter_level && !cm->skip_loop_filter) { |
| av1_loop_filter_frame_init(cm, cm->lf.filter_level); |
| } |
| |
| // If encoded in frame parallel mode, frame context is ready after decoding |
| // the frame header. |
| if (cm->frame_parallel_decode && |
| cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_BACKWARD) { |
| AVxWorker *const worker = pbi->frame_worker_owner; |
| FrameWorkerData *const frame_worker_data = worker->data1; |
| if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_FORWARD) { |
| context_updated = 1; |
| cm->frame_contexts[cm->frame_context_idx] = *cm->fc; |
| } |
| av1_frameworker_lock_stats(worker); |
| pbi->cur_buf->row = -1; |
| pbi->cur_buf->col = -1; |
| frame_worker_data->frame_context_ready = 1; |
| // Signal the main thread that context is ready. |
| av1_frameworker_signal_stats(worker); |
| av1_frameworker_unlock_stats(worker); |
| } |
| |
| #if CONFIG_ENTROPY |
| av1_copy(cm->starting_coef_probs, cm->fc->coef_probs); |
| cm->coef_probs_update_idx = 0; |
| #endif // CONFIG_ENTROPY |
| |
| if (pbi->max_threads > 1 |
| #if CONFIG_EXT_TILE |
| && pbi->dec_tile_col < 0 // Decoding all columns |
| #endif // CONFIG_EXT_TILE |
| && cm->tile_cols > 1) { |
| // Multi-threaded tile decoder |
| *p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end); |
| if (!xd->corrupted) { |
| if (!cm->skip_loop_filter) { |
| // If multiple threads are used to decode tiles, then we use those |
| // threads to do parallel loopfiltering. |
| av1_loop_filter_frame_mt(new_fb, cm, pbi->mb.plane, cm->lf.filter_level, |
| 0, 0, pbi->tile_workers, pbi->num_tile_workers, |
| &pbi->lf_row_sync); |
| } |
| } else { |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Decode failed. Frame data is corrupted."); |
| } |
| } else { |
| *p_data_end = decode_tiles(pbi, data + first_partition_size, data_end); |
| } |
| #if CONFIG_LOOP_RESTORATION |
| if (cm->rst_info.restoration_type != RESTORE_NONE) { |
| av1_loop_restoration_init(&cm->rst_internal, &cm->rst_info, |
| cm->frame_type == KEY_FRAME, cm->width, |
| cm->height); |
| av1_loop_restoration_rows(new_fb, cm, 0, cm->mi_rows, 0); |
| } |
| #endif // CONFIG_LOOP_RESTORATION |
| |
| #if CONFIG_DERING |
| if (cm->dering_level && !cm->skip_loop_filter) { |
| av1_dering_frame(&pbi->cur_buf->buf, cm, &pbi->mb, cm->dering_level); |
| } |
| #endif // CONFIG_DERING |
| |
| #if CONFIG_CLPF |
| if (!cm->skip_loop_filter) { |
| const YV12_BUFFER_CONFIG *const frame = &pbi->cur_buf->buf; |
| if (cm->clpf_strength_y) { |
| av1_clpf_frame(frame, NULL, cm, cm->clpf_size != CLPF_NOSIZE, |
| cm->clpf_strength_y + (cm->clpf_strength_y == 3), |
| 4 + cm->clpf_size, AOM_PLANE_Y, clpf_bit); |
| } |
| if (cm->clpf_strength_u) { |
| av1_clpf_frame(frame, NULL, cm, 0, // No block signals for chroma |
| cm->clpf_strength_u + (cm->clpf_strength_u == 3), 4, |
| AOM_PLANE_U, NULL); |
| } |
| if (cm->clpf_strength_v) { |
| av1_clpf_frame(frame, NULL, cm, 0, // No block signals for chroma |
| cm->clpf_strength_v + (cm->clpf_strength_v == 3), 4, |
| AOM_PLANE_V, NULL); |
| } |
| } |
| if (cm->clpf_blocks) aom_free(cm->clpf_blocks); |
| #endif |
| |
| if (!xd->corrupted) { |
| if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { |
| #if CONFIG_ENTROPY |
| cm->partial_prob_update = 0; |
| #endif // CONFIG_ENTROPY |
| av1_adapt_coef_probs(cm); |
| av1_adapt_intra_frame_probs(cm); |
| |
| if (!frame_is_intra_only(cm)) { |
| av1_adapt_inter_frame_probs(cm); |
| av1_adapt_mv_probs(cm, cm->allow_high_precision_mv); |
| } |
| } else { |
| debug_check_frame_counts(cm); |
| } |
| } else { |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Decode failed. Frame data is corrupted."); |
| } |
| |
| // Non frame parallel update frame context here. |
| if (!cm->error_resilient_mode && !context_updated) |
| cm->frame_contexts[cm->frame_context_idx] = *cm->fc; |
| } |