blob: e1db4bebe2712048980f73f6a72492e395fc6afd [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/encoder/context_tree.h"
#include "av1/encoder/encoder.h"
static const BLOCK_SIZE square[MAX_SB_SIZE_LOG2 - 2] = {
BLOCK_8X8, BLOCK_16X16, BLOCK_32X32, BLOCK_64X64,
#if CONFIG_EXT_PARTITION
BLOCK_128X128,
#endif // CONFIG_EXT_PARTITION
};
static void alloc_mode_context(AV1_COMMON *cm, int num_4x4_blk,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_TYPE partition,
#endif
PICK_MODE_CONTEXT *ctx) {
const int num_blk = (num_4x4_blk < 4 ? 4 : num_4x4_blk);
const int num_pix = num_blk << 4;
int i;
ctx->num_4x4_blk = num_blk;
#if CONFIG_EXT_PARTITION_TYPES
ctx->partition = partition;
#endif
for (i = 0; i < MAX_MB_PLANE; ++i) {
#if CONFIG_VAR_TX
CHECK_MEM_ERROR(cm, ctx->blk_skip[i], aom_calloc(num_blk, sizeof(uint8_t)));
#endif
CHECK_MEM_ERROR(cm, ctx->coeff[i],
aom_memalign(32, num_pix * sizeof(*ctx->coeff[i])));
CHECK_MEM_ERROR(cm, ctx->qcoeff[i],
aom_memalign(32, num_pix * sizeof(*ctx->qcoeff[i])));
CHECK_MEM_ERROR(cm, ctx->dqcoeff[i],
aom_memalign(32, num_pix * sizeof(*ctx->dqcoeff[i])));
CHECK_MEM_ERROR(cm, ctx->eobs[i],
aom_memalign(32, num_blk * sizeof(*ctx->eobs[i])));
#if CONFIG_PVQ
CHECK_MEM_ERROR(cm, ctx->pvq_ref_coeff[i],
aom_memalign(32, num_pix * sizeof(*ctx->pvq_ref_coeff[i])));
#endif
}
#if CONFIG_PALETTE
if (cm->allow_screen_content_tools) {
for (i = 0; i < 2; ++i) {
CHECK_MEM_ERROR(
cm, ctx->color_index_map[i],
aom_memalign(32, num_pix * sizeof(*ctx->color_index_map[i])));
}
}
#endif // CONFIG_PALETTE
}
static void free_mode_context(PICK_MODE_CONTEXT *ctx) {
int i;
for (i = 0; i < MAX_MB_PLANE; ++i) {
#if CONFIG_VAR_TX
aom_free(ctx->blk_skip[i]);
ctx->blk_skip[i] = 0;
#endif
aom_free(ctx->coeff[i]);
ctx->coeff[i] = 0;
aom_free(ctx->qcoeff[i]);
ctx->qcoeff[i] = 0;
aom_free(ctx->dqcoeff[i]);
ctx->dqcoeff[i] = 0;
#if CONFIG_PVQ
aom_free(ctx->pvq_ref_coeff[i]);
ctx->pvq_ref_coeff[i] = 0;
#endif
aom_free(ctx->eobs[i]);
ctx->eobs[i] = 0;
}
#if CONFIG_PALETTE
for (i = 0; i < 2; ++i) {
aom_free(ctx->color_index_map[i]);
ctx->color_index_map[i] = 0;
}
#endif // CONFIG_PALETTE
}
static void alloc_tree_contexts(AV1_COMMON *cm, PC_TREE *tree,
int num_4x4_blk) {
#if CONFIG_EXT_PARTITION_TYPES
alloc_mode_context(cm, num_4x4_blk, PARTITION_NONE, &tree->none);
alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_HORZ, &tree->horizontal[0]);
alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_VERT, &tree->vertical[0]);
alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_VERT, &tree->horizontal[1]);
alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_VERT, &tree->vertical[1]);
alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_HORZ_A,
&tree->horizontala[0]);
alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_HORZ_A,
&tree->horizontala[1]);
alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_HORZ_A,
&tree->horizontala[2]);
alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_HORZ_B,
&tree->horizontalb[0]);
alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_HORZ_B,
&tree->horizontalb[1]);
alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_HORZ_B,
&tree->horizontalb[2]);
alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_VERT_A,
&tree->verticala[0]);
alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_VERT_A,
&tree->verticala[1]);
alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_VERT_A,
&tree->verticala[2]);
alloc_mode_context(cm, num_4x4_blk / 2, PARTITION_VERT_B,
&tree->verticalb[0]);
alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_VERT_B,
&tree->verticalb[1]);
alloc_mode_context(cm, num_4x4_blk / 4, PARTITION_VERT_B,
&tree->verticalb[2]);
#ifdef CONFIG_SUPERTX
alloc_mode_context(cm, num_4x4_blk, PARTITION_HORZ,
&tree->horizontal_supertx);
alloc_mode_context(cm, num_4x4_blk, PARTITION_VERT, &tree->vertical_supertx);
alloc_mode_context(cm, num_4x4_blk, PARTITION_SPLIT, &tree->split_supertx);
alloc_mode_context(cm, num_4x4_blk, PARTITION_HORZ_A,
&tree->horizontala_supertx);
alloc_mode_context(cm, num_4x4_blk, PARTITION_HORZ_B,
&tree->horizontalb_supertx);
alloc_mode_context(cm, num_4x4_blk, PARTITION_VERT_A,
&tree->verticala_supertx);
alloc_mode_context(cm, num_4x4_blk, PARTITION_VERT_B,
&tree->verticalb_supertx);
#endif // CONFIG_SUPERTX
#else
alloc_mode_context(cm, num_4x4_blk, &tree->none);
alloc_mode_context(cm, num_4x4_blk / 2, &tree->horizontal[0]);
alloc_mode_context(cm, num_4x4_blk / 2, &tree->vertical[0]);
#ifdef CONFIG_SUPERTX
alloc_mode_context(cm, num_4x4_blk, &tree->horizontal_supertx);
alloc_mode_context(cm, num_4x4_blk, &tree->vertical_supertx);
alloc_mode_context(cm, num_4x4_blk, &tree->split_supertx);
#endif
if (num_4x4_blk > 4) {
alloc_mode_context(cm, num_4x4_blk / 2, &tree->horizontal[1]);
alloc_mode_context(cm, num_4x4_blk / 2, &tree->vertical[1]);
} else {
memset(&tree->horizontal[1], 0, sizeof(tree->horizontal[1]));
memset(&tree->vertical[1], 0, sizeof(tree->vertical[1]));
}
#endif // CONFIG_EXT_PARTITION_TYPES
}
static void free_tree_contexts(PC_TREE *tree) {
#if CONFIG_EXT_PARTITION_TYPES
int i;
for (i = 0; i < 3; i++) {
free_mode_context(&tree->horizontala[i]);
free_mode_context(&tree->horizontalb[i]);
free_mode_context(&tree->verticala[i]);
free_mode_context(&tree->verticalb[i]);
}
#endif // CONFIG_EXT_PARTITION_TYPES
free_mode_context(&tree->none);
free_mode_context(&tree->horizontal[0]);
free_mode_context(&tree->horizontal[1]);
free_mode_context(&tree->vertical[0]);
free_mode_context(&tree->vertical[1]);
#ifdef CONFIG_SUPERTX
free_mode_context(&tree->horizontal_supertx);
free_mode_context(&tree->vertical_supertx);
free_mode_context(&tree->split_supertx);
#if CONFIG_EXT_PARTITION_TYPES
free_mode_context(&tree->horizontala_supertx);
free_mode_context(&tree->horizontalb_supertx);
free_mode_context(&tree->verticala_supertx);
free_mode_context(&tree->verticalb_supertx);
#endif // CONFIG_EXT_PARTITION_TYPES
#endif // CONFIG_SUPERTX
}
// This function sets up a tree of contexts such that at each square
// partition level. There are contexts for none, horizontal, vertical, and
// split. Along with a block_size value and a selected block_size which
// represents the state of our search.
void av1_setup_pc_tree(AV1_COMMON *cm, ThreadData *td) {
int i, j;
#if CONFIG_EXT_PARTITION
const int leaf_nodes = 256;
const int tree_nodes = 256 + 64 + 16 + 4 + 1;
#else
const int leaf_nodes = 64;
const int tree_nodes = 64 + 16 + 4 + 1;
#endif // CONFIG_EXT_PARTITION
int pc_tree_index = 0;
PC_TREE *this_pc;
PICK_MODE_CONTEXT *this_leaf;
int square_index = 1;
int nodes;
aom_free(td->leaf_tree);
CHECK_MEM_ERROR(cm, td->leaf_tree,
aom_calloc(leaf_nodes, sizeof(*td->leaf_tree)));
aom_free(td->pc_tree);
CHECK_MEM_ERROR(cm, td->pc_tree,
aom_calloc(tree_nodes, sizeof(*td->pc_tree)));
this_pc = &td->pc_tree[0];
this_leaf = &td->leaf_tree[0];
// 4x4 blocks smaller than 8x8 but in the same 8x8 block share the same
// context so we only need to allocate 1 for each 8x8 block.
for (i = 0; i < leaf_nodes; ++i) {
#if CONFIG_EXT_PARTITION_TYPES
alloc_mode_context(cm, 1, PARTITION_NONE, &td->leaf_tree[i]);
#else
alloc_mode_context(cm, 1, &td->leaf_tree[i]);
#endif
}
// Sets up all the leaf nodes in the tree.
for (pc_tree_index = 0; pc_tree_index < leaf_nodes; ++pc_tree_index) {
PC_TREE *const tree = &td->pc_tree[pc_tree_index];
tree->block_size = square[0];
alloc_tree_contexts(cm, tree, 4);
tree->leaf_split[0] = this_leaf++;
for (j = 1; j < 4; j++) tree->leaf_split[j] = tree->leaf_split[0];
}
// Each node has 4 leaf nodes, fill each block_size level of the tree
// from leafs to the root.
for (nodes = leaf_nodes >> 2; nodes > 0; nodes >>= 2) {
for (i = 0; i < nodes; ++i) {
PC_TREE *const tree = &td->pc_tree[pc_tree_index];
alloc_tree_contexts(cm, tree, 4 << (2 * square_index));
tree->block_size = square[square_index];
for (j = 0; j < 4; j++) tree->split[j] = this_pc++;
++pc_tree_index;
}
++square_index;
}
// Set up the root node for the largest superblock size
i = MAX_MIB_SIZE_LOG2 - MIN_MIB_SIZE_LOG2;
td->pc_root[i] = &td->pc_tree[tree_nodes - 1];
td->pc_root[i]->none.best_mode_index = 2;
// Set up the root nodes for the rest of the possible superblock sizes
while (--i >= 0) {
td->pc_root[i] = td->pc_root[i + 1]->split[0];
td->pc_root[i]->none.best_mode_index = 2;
}
}
void av1_free_pc_tree(ThreadData *td) {
#if CONFIG_EXT_PARTITION
const int leaf_nodes = 256;
const int tree_nodes = 256 + 64 + 16 + 4 + 1;
#else
const int leaf_nodes = 64;
const int tree_nodes = 64 + 16 + 4 + 1;
#endif // CONFIG_EXT_PARTITION
int i;
// Set up all 4x4 mode contexts
for (i = 0; i < leaf_nodes; ++i) free_mode_context(&td->leaf_tree[i]);
// Sets up all the leaf nodes in the tree.
for (i = 0; i < tree_nodes; ++i) free_tree_contexts(&td->pc_tree[i]);
aom_free(td->pc_tree);
td->pc_tree = NULL;
aom_free(td->leaf_tree);
td->leaf_tree = NULL;
}