| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <limits.h> |
| #include <math.h> |
| #include <stdio.h> |
| |
| #include "./av1_rtcd.h" |
| #include "./aom_dsp_rtcd.h" |
| #include "./aom_config.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/aom_timer.h" |
| #include "aom_ports/system_state.h" |
| |
| #include "av1/common/common.h" |
| #include "av1/common/entropy.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/idct.h" |
| #include "av1/common/mvref_common.h" |
| #include "av1/common/pred_common.h" |
| #include "av1/common/quant_common.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/seg_common.h" |
| #include "av1/common/tile_common.h" |
| |
| #include "av1/encoder/aq_complexity.h" |
| #include "av1/encoder/aq_cyclicrefresh.h" |
| #include "av1/encoder/aq_variance.h" |
| #if CONFIG_SUPERTX |
| #include "av1/encoder/cost.h" |
| #endif |
| #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION |
| #include "av1/common/warped_motion.h" |
| #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION |
| #if CONFIG_GLOBAL_MOTION |
| #include "av1/encoder/global_motion.h" |
| #endif // CONFIG_GLOBAL_MOTION |
| #include "av1/encoder/encodeframe.h" |
| #include "av1/encoder/encodemb.h" |
| #include "av1/encoder/encodemv.h" |
| #include "av1/encoder/ethread.h" |
| #include "av1/encoder/extend.h" |
| #include "av1/encoder/rd.h" |
| #include "av1/encoder/rdopt.h" |
| #include "av1/encoder/segmentation.h" |
| #include "av1/encoder/tokenize.h" |
| #if CONFIG_PVQ |
| #include "av1/encoder/pvq_encoder.h" |
| #endif |
| #if CONFIG_AOM_HIGHBITDEPTH |
| #define IF_HBD(...) __VA_ARGS__ |
| #else |
| #define IF_HBD(...) |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| static void encode_superblock(const AV1_COMP *const cpi, ThreadData *td, |
| TOKENEXTRA **t, RUN_TYPE dry_run, int mi_row, |
| int mi_col, BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx, int *rate); |
| |
| #if CONFIG_SUPERTX |
| static int check_intra_b(PICK_MODE_CONTEXT *ctx); |
| |
| static int check_intra_sb(const AV1_COMP *cpi, const TileInfo *const tile, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| PC_TREE *pc_tree); |
| static void predict_superblock(const AV1_COMP *const cpi, ThreadData *td, |
| #if CONFIG_EXT_INTER |
| int mi_row_ori, int mi_col_ori, |
| #endif // CONFIG_EXT_INTER |
| int mi_row_pred, int mi_col_pred, |
| BLOCK_SIZE bsize_pred, int b_sub8x8, int block); |
| static int check_supertx_sb(BLOCK_SIZE bsize, TX_SIZE supertx_size, |
| PC_TREE *pc_tree); |
| static void predict_sb_complex(const AV1_COMP *const cpi, ThreadData *td, |
| const TileInfo *const tile, int mi_row, |
| int mi_col, int mi_row_ori, int mi_col_ori, |
| RUN_TYPE dry_run, BLOCK_SIZE bsize, |
| BLOCK_SIZE top_bsize, uint8_t *dst_buf[3], |
| int dst_stride[3], PC_TREE *pc_tree); |
| static void update_state_sb_supertx(const AV1_COMP *const cpi, ThreadData *td, |
| const TileInfo *const tile, int mi_row, |
| int mi_col, BLOCK_SIZE bsize, |
| RUN_TYPE dry_run, PC_TREE *pc_tree); |
| static void rd_supertx_sb(const AV1_COMP *const cpi, ThreadData *td, |
| const TileInfo *const tile, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, int *tmp_rate, int64_t *tmp_dist, |
| TX_TYPE *best_tx, PC_TREE *pc_tree); |
| #endif // CONFIG_SUPERTX |
| |
| // This is used as a reference when computing the source variance for the |
| // purposes of activity masking. |
| // Eventually this should be replaced by custom no-reference routines, |
| // which will be faster. |
| static const uint8_t AV1_VAR_OFFS[MAX_SB_SIZE] = { |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| #if CONFIG_EXT_PARTITION |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 |
| #endif // CONFIG_EXT_PARTITION |
| }; |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| static const uint16_t AV1_HIGH_VAR_OFFS_8[MAX_SB_SIZE] = { |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| #if CONFIG_EXT_PARTITION |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 |
| #endif // CONFIG_EXT_PARTITION |
| }; |
| |
| static const uint16_t AV1_HIGH_VAR_OFFS_10[MAX_SB_SIZE] = { |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| #if CONFIG_EXT_PARTITION |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4 |
| #endif // CONFIG_EXT_PARTITION |
| }; |
| |
| static const uint16_t AV1_HIGH_VAR_OFFS_12[MAX_SB_SIZE] = { |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, |
| #if CONFIG_EXT_PARTITION |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16 |
| #endif // CONFIG_EXT_PARTITION |
| }; |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| unsigned int av1_get_sby_perpixel_variance(const AV1_COMP *cpi, |
| const struct buf_2d *ref, |
| BLOCK_SIZE bs) { |
| unsigned int sse; |
| const unsigned int var = |
| cpi->fn_ptr[bs].vf(ref->buf, ref->stride, AV1_VAR_OFFS, 0, &sse); |
| return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); |
| } |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| unsigned int av1_high_get_sby_perpixel_variance(const AV1_COMP *cpi, |
| const struct buf_2d *ref, |
| BLOCK_SIZE bs, int bd) { |
| unsigned int var, sse; |
| switch (bd) { |
| case 10: |
| var = |
| cpi->fn_ptr[bs].vf(ref->buf, ref->stride, |
| CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10), 0, &sse); |
| break; |
| case 12: |
| var = |
| cpi->fn_ptr[bs].vf(ref->buf, ref->stride, |
| CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12), 0, &sse); |
| break; |
| case 8: |
| default: |
| var = |
| cpi->fn_ptr[bs].vf(ref->buf, ref->stride, |
| CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8), 0, &sse); |
| break; |
| } |
| return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| static unsigned int get_sby_perpixel_diff_variance(const AV1_COMP *const cpi, |
| const struct buf_2d *ref, |
| int mi_row, int mi_col, |
| BLOCK_SIZE bs) { |
| unsigned int sse, var; |
| uint8_t *last_y; |
| const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME); |
| |
| assert(last != NULL); |
| last_y = |
| &last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE]; |
| var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse); |
| return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); |
| } |
| |
| static BLOCK_SIZE get_rd_var_based_fixed_partition(AV1_COMP *cpi, MACROBLOCK *x, |
| int mi_row, int mi_col) { |
| unsigned int var = get_sby_perpixel_diff_variance( |
| cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64); |
| if (var < 8) |
| return BLOCK_64X64; |
| else if (var < 128) |
| return BLOCK_32X32; |
| else if (var < 2048) |
| return BLOCK_16X16; |
| else |
| return BLOCK_8X8; |
| } |
| |
| // Lighter version of set_offsets that only sets the mode info |
| // pointers. |
| static void set_mode_info_offsets(const AV1_COMP *const cpi, |
| MACROBLOCK *const x, MACROBLOCKD *const xd, |
| int mi_row, int mi_col) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int idx_str = xd->mi_stride * mi_row + mi_col; |
| xd->mi = cm->mi_grid_visible + idx_str; |
| xd->mi[0] = cm->mi + idx_str; |
| x->mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); |
| } |
| |
| static void set_offsets_without_segment_id(const AV1_COMP *const cpi, |
| const TileInfo *const tile, |
| MACROBLOCK *const x, int mi_row, |
| int mi_col, BLOCK_SIZE bsize) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| const int bwl = b_width_log2_lookup[AOMMAX(bsize, BLOCK_8X8)]; |
| const int bhl = b_height_log2_lookup[AOMMAX(bsize, BLOCK_8X8)]; |
| |
| set_skip_context(xd, mi_row, mi_col); |
| |
| set_mode_info_offsets(cpi, x, xd, mi_row, mi_col); |
| |
| #if CONFIG_VAR_TX |
| xd->above_txfm_context = cm->above_txfm_context + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| xd->max_tx_size = max_txsize_lookup[bsize]; |
| #endif |
| |
| // Set up destination pointers. |
| av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); |
| |
| // Set up limit values for MV components. |
| // Mv beyond the range do not produce new/different prediction block. |
| x->mv_row_min = -(((mi_row + mi_height) * MI_SIZE) + AOM_INTERP_EXTEND); |
| x->mv_col_min = -(((mi_col + mi_width) * MI_SIZE) + AOM_INTERP_EXTEND); |
| x->mv_row_max = (cm->mi_rows - mi_row) * MI_SIZE + AOM_INTERP_EXTEND; |
| x->mv_col_max = (cm->mi_cols - mi_col) * MI_SIZE + AOM_INTERP_EXTEND; |
| |
| set_plane_n4(xd, mi_width, mi_height, bwl, bhl); |
| |
| // Set up distance of MB to edge of frame in 1/8th pel units. |
| assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1))); |
| set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows, |
| cm->mi_cols); |
| |
| // Set up source buffers. |
| av1_setup_src_planes(x, cpi->Source, mi_row, mi_col); |
| |
| // R/D setup. |
| x->rddiv = cpi->rd.RDDIV; |
| x->rdmult = cpi->rd.RDMULT; |
| |
| // required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs() |
| xd->tile = *tile; |
| } |
| |
| static void set_offsets(const AV1_COMP *const cpi, const TileInfo *const tile, |
| MACROBLOCK *const x, int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi; |
| const struct segmentation *const seg = &cm->seg; |
| |
| set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize); |
| |
| mbmi = &xd->mi[0]->mbmi; |
| |
| // Setup segment ID. |
| if (seg->enabled) { |
| if (!cpi->vaq_refresh) { |
| const uint8_t *const map = |
| seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; |
| mbmi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); |
| } |
| av1_init_plane_quantizers(cpi, x, mbmi->segment_id); |
| } else { |
| mbmi->segment_id = 0; |
| } |
| |
| #if CONFIG_SUPERTX |
| mbmi->segment_id_supertx = MAX_SEGMENTS; |
| #endif // CONFIG_SUPERTX |
| } |
| |
| #if CONFIG_SUPERTX |
| static void set_offsets_supertx(const AV1_COMP *const cpi, ThreadData *td, |
| const TileInfo *const tile, int mi_row, |
| int mi_col, BLOCK_SIZE bsize) { |
| MACROBLOCK *const x = &td->mb; |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| |
| set_mode_info_offsets(cpi, x, xd, mi_row, mi_col); |
| |
| // Set up distance of MB to edge of frame in 1/8th pel units. |
| assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1))); |
| set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows, |
| cm->mi_cols); |
| } |
| |
| static void set_offsets_extend(const AV1_COMP *const cpi, ThreadData *td, |
| const TileInfo *const tile, int mi_row_pred, |
| int mi_col_pred, int mi_row_ori, int mi_col_ori, |
| BLOCK_SIZE bsize_pred) { |
| // Used in supertx |
| // (mi_row_ori, mi_col_ori, bsize_ori): region for mv |
| // (mi_row_pred, mi_col_pred, bsize_pred): region to predict |
| MACROBLOCK *const x = &td->mb; |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize_pred]; |
| const int mi_height = num_8x8_blocks_high_lookup[bsize_pred]; |
| |
| set_mode_info_offsets(cpi, x, xd, mi_row_ori, mi_col_ori); |
| |
| // Set up limit values for MV components. |
| // Mv beyond the range do not produce new/different prediction block. |
| x->mv_row_min = -(((mi_row_pred + mi_height) * MI_SIZE) + AOM_INTERP_EXTEND); |
| x->mv_col_min = -(((mi_col_pred + mi_width) * MI_SIZE) + AOM_INTERP_EXTEND); |
| x->mv_row_max = (cm->mi_rows - mi_row_pred) * MI_SIZE + AOM_INTERP_EXTEND; |
| x->mv_col_max = (cm->mi_cols - mi_col_pred) * MI_SIZE + AOM_INTERP_EXTEND; |
| |
| // Set up distance of MB to edge of frame in 1/8th pel units. |
| assert(!(mi_col_pred & (mi_width - 1)) && !(mi_row_pred & (mi_height - 1))); |
| set_mi_row_col(xd, tile, mi_row_pred, mi_height, mi_col_pred, mi_width, |
| cm->mi_rows, cm->mi_cols); |
| xd->up_available = (mi_row_ori > tile->mi_row_start); |
| xd->left_available = (mi_col_ori > tile->mi_col_start); |
| |
| // R/D setup. |
| x->rddiv = cpi->rd.RDDIV; |
| x->rdmult = cpi->rd.RDMULT; |
| } |
| |
| static void set_segment_id_supertx(const AV1_COMP *const cpi, |
| MACROBLOCK *const x, const int mi_row, |
| const int mi_col, const BLOCK_SIZE bsize) { |
| const AV1_COMMON *cm = &cpi->common; |
| const struct segmentation *seg = &cm->seg; |
| const int miw = |
| AOMMIN(num_8x8_blocks_wide_lookup[bsize], cm->mi_cols - mi_col); |
| const int mih = |
| AOMMIN(num_8x8_blocks_high_lookup[bsize], cm->mi_rows - mi_row); |
| const int mi_offset = mi_row * cm->mi_stride + mi_col; |
| MODE_INFO **const mip = cm->mi_grid_visible + mi_offset; |
| int r, c; |
| int seg_id_supertx = MAX_SEGMENTS; |
| |
| if (!seg->enabled) { |
| seg_id_supertx = 0; |
| } else { |
| // Find the minimum segment_id |
| for (r = 0; r < mih; r++) |
| for (c = 0; c < miw; c++) |
| seg_id_supertx = |
| AOMMIN(mip[r * cm->mi_stride + c]->mbmi.segment_id, seg_id_supertx); |
| assert(0 <= seg_id_supertx && seg_id_supertx < MAX_SEGMENTS); |
| |
| // Initialize plane quantisers |
| av1_init_plane_quantizers(cpi, x, seg_id_supertx); |
| } |
| |
| // Assign the the segment_id back to segment_id_supertx |
| for (r = 0; r < mih; r++) |
| for (c = 0; c < miw; c++) |
| mip[r * cm->mi_stride + c]->mbmi.segment_id_supertx = seg_id_supertx; |
| } |
| #endif // CONFIG_SUPERTX |
| |
| static void set_block_size(AV1_COMP *const cpi, MACROBLOCK *const x, |
| MACROBLOCKD *const xd, int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) { |
| set_mode_info_offsets(cpi, x, xd, mi_row, mi_col); |
| xd->mi[0]->mbmi.sb_type = bsize; |
| } |
| } |
| |
| static void set_vt_partitioning(AV1_COMP *cpi, MACROBLOCK *const x, |
| MACROBLOCKD *const xd, VAR_TREE *vt, int mi_row, |
| int mi_col, const int64_t *const threshold, |
| const BLOCK_SIZE *const bsize_min) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int hbw = num_8x8_blocks_wide_lookup[vt->bsize] / 2; |
| const int hbh = num_8x8_blocks_high_lookup[vt->bsize] / 2; |
| const int has_cols = mi_col + hbw < cm->mi_cols; |
| const int has_rows = mi_row + hbh < cm->mi_rows; |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| assert(vt->bsize >= BLOCK_8X8); |
| |
| assert(hbh == hbw); |
| |
| if (vt->bsize == BLOCK_8X8 && cm->frame_type != KEY_FRAME) { |
| set_block_size(cpi, x, xd, mi_row, mi_col, BLOCK_8X8); |
| return; |
| } |
| |
| if (vt->force_split || (!has_cols && !has_rows)) goto split; |
| |
| // For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if |
| // variance is below threshold, otherwise split will be selected. |
| // No check for vert/horiz split as too few samples for variance. |
| if (vt->bsize == bsize_min[0]) { |
| if (has_cols && has_rows && vt->variances.none.variance < threshold[0]) { |
| set_block_size(cpi, x, xd, mi_row, mi_col, vt->bsize); |
| return; |
| } else { |
| BLOCK_SIZE subsize = get_subsize(vt->bsize, PARTITION_SPLIT); |
| set_block_size(cpi, x, xd, mi_row, mi_col, subsize); |
| if (vt->bsize > BLOCK_8X8) { |
| set_block_size(cpi, x, xd, mi_row, mi_col + hbw, subsize); |
| set_block_size(cpi, x, xd, mi_row + hbh, mi_col, subsize); |
| set_block_size(cpi, x, xd, mi_row + hbh, mi_col + hbw, subsize); |
| } |
| return; |
| } |
| } else if (vt->bsize > bsize_min[0]) { |
| // For key frame: take split for bsize above 32X32 or very high variance. |
| if (cm->frame_type == KEY_FRAME && |
| (vt->bsize > BLOCK_32X32 || |
| vt->variances.none.variance > (threshold[0] << 4))) { |
| goto split; |
| } |
| // If variance is low, take the bsize (no split). |
| if (has_cols && has_rows && vt->variances.none.variance < threshold[0]) { |
| set_block_size(cpi, x, xd, mi_row, mi_col, vt->bsize); |
| return; |
| } |
| |
| // Check vertical split. |
| if (has_rows) { |
| BLOCK_SIZE subsize = get_subsize(vt->bsize, PARTITION_VERT); |
| if (vt->variances.vert[0].variance < threshold[0] && |
| vt->variances.vert[1].variance < threshold[0] && |
| get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) { |
| set_block_size(cpi, x, xd, mi_row, mi_col, subsize); |
| set_block_size(cpi, x, xd, mi_row, mi_col + hbw, subsize); |
| return; |
| } |
| } |
| // Check horizontal split. |
| if (has_cols) { |
| BLOCK_SIZE subsize = get_subsize(vt->bsize, PARTITION_HORZ); |
| if (vt->variances.horz[0].variance < threshold[0] && |
| vt->variances.horz[1].variance < threshold[0] && |
| get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) { |
| set_block_size(cpi, x, xd, mi_row, mi_col, subsize); |
| set_block_size(cpi, x, xd, mi_row + hbh, mi_col, subsize); |
| return; |
| } |
| } |
| } |
| |
| split : { |
| set_vt_partitioning(cpi, x, xd, vt->split[0], mi_row, mi_col, threshold + 1, |
| bsize_min + 1); |
| set_vt_partitioning(cpi, x, xd, vt->split[1], mi_row, mi_col + hbw, |
| threshold + 1, bsize_min + 1); |
| set_vt_partitioning(cpi, x, xd, vt->split[2], mi_row + hbh, mi_col, |
| threshold + 1, bsize_min + 1); |
| set_vt_partitioning(cpi, x, xd, vt->split[3], mi_row + hbh, mi_col + hbw, |
| threshold + 1, bsize_min + 1); |
| return; |
| } |
| } |
| |
| // Set the variance split thresholds for following the block sizes: |
| // 0 - threshold_64x64, 1 - threshold_32x32, 2 - threshold_16x16, |
| // 3 - vbp_threshold_8x8. vbp_threshold_8x8 (to split to 4x4 partition) is |
| // currently only used on key frame. |
| static void set_vbp_thresholds(AV1_COMP *cpi, int64_t thresholds[], int q) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int is_key_frame = (cm->frame_type == KEY_FRAME); |
| const int threshold_multiplier = is_key_frame ? 20 : 1; |
| const int64_t threshold_base = |
| (int64_t)(threshold_multiplier * cpi->y_dequant[q][1]); |
| if (is_key_frame) { |
| thresholds[1] = threshold_base; |
| thresholds[2] = threshold_base >> 2; |
| thresholds[3] = threshold_base >> 2; |
| thresholds[4] = threshold_base << 2; |
| } else { |
| thresholds[2] = threshold_base; |
| if (cm->width <= 352 && cm->height <= 288) { |
| thresholds[1] = threshold_base >> 2; |
| thresholds[3] = threshold_base << 3; |
| } else { |
| thresholds[1] = threshold_base; |
| thresholds[2] = (5 * threshold_base) >> 2; |
| if (cm->width >= 1920 && cm->height >= 1080) |
| thresholds[2] = (7 * threshold_base) >> 2; |
| thresholds[3] = threshold_base << cpi->oxcf.speed; |
| } |
| } |
| thresholds[0] = INT64_MIN; |
| } |
| |
| void av1_set_variance_partition_thresholds(AV1_COMP *cpi, int q) { |
| AV1_COMMON *const cm = &cpi->common; |
| SPEED_FEATURES *const sf = &cpi->sf; |
| const int is_key_frame = (cm->frame_type == KEY_FRAME); |
| if (sf->partition_search_type != VAR_BASED_PARTITION && |
| sf->partition_search_type != REFERENCE_PARTITION) { |
| return; |
| } else { |
| set_vbp_thresholds(cpi, cpi->vbp_thresholds, q); |
| // The thresholds below are not changed locally. |
| if (is_key_frame) { |
| cpi->vbp_threshold_sad = 0; |
| cpi->vbp_bsize_min = BLOCK_8X8; |
| } else { |
| if (cm->width <= 352 && cm->height <= 288) |
| cpi->vbp_threshold_sad = 100; |
| else |
| cpi->vbp_threshold_sad = (cpi->y_dequant[q][1] << 1) > 1000 |
| ? (cpi->y_dequant[q][1] << 1) |
| : 1000; |
| cpi->vbp_bsize_min = BLOCK_16X16; |
| } |
| cpi->vbp_threshold_minmax = 15 + (q >> 3); |
| } |
| } |
| |
| // Compute the minmax over the 8x8 subblocks. |
| static int compute_minmax_8x8(const uint8_t *src, int src_stride, |
| const uint8_t *ref, int ref_stride, |
| #if CONFIG_AOM_HIGHBITDEPTH |
| int highbd, |
| #endif |
| int pixels_wide, int pixels_high) { |
| int k; |
| int minmax_max = 0; |
| int minmax_min = 255; |
| // Loop over the 4 8x8 subblocks. |
| for (k = 0; k < 4; k++) { |
| const int x8_idx = ((k & 1) << 3); |
| const int y8_idx = ((k >> 1) << 3); |
| int min = 0; |
| int max = 0; |
| if (x8_idx < pixels_wide && y8_idx < pixels_high) { |
| const int src_offset = y8_idx * src_stride + x8_idx; |
| const int ref_offset = y8_idx * ref_stride + x8_idx; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (highbd) { |
| aom_highbd_minmax_8x8(src + src_offset, src_stride, ref + ref_offset, |
| ref_stride, &min, &max); |
| } else { |
| aom_minmax_8x8(src + src_offset, src_stride, ref + ref_offset, |
| ref_stride, &min, &max); |
| } |
| #else |
| aom_minmax_8x8(src + src_offset, src_stride, ref + ref_offset, ref_stride, |
| &min, &max); |
| #endif |
| if ((max - min) > minmax_max) minmax_max = (max - min); |
| if ((max - min) < minmax_min) minmax_min = (max - min); |
| } |
| } |
| return (minmax_max - minmax_min); |
| } |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| static INLINE int avg_4x4(const uint8_t *const src, const int stride, |
| const int highbd) { |
| if (highbd) { |
| return aom_highbd_avg_4x4(src, stride); |
| } else { |
| return aom_avg_4x4(src, stride); |
| } |
| } |
| #else |
| static INLINE int avg_4x4(const uint8_t *const src, const int stride) { |
| return aom_avg_4x4(src, stride); |
| } |
| #endif |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| static INLINE int avg_8x8(const uint8_t *const src, const int stride, |
| const int highbd) { |
| if (highbd) { |
| return aom_highbd_avg_8x8(src, stride); |
| } else { |
| return aom_avg_8x8(src, stride); |
| } |
| } |
| #else |
| static INLINE int avg_8x8(const uint8_t *const src, const int stride) { |
| return aom_avg_8x8(src, stride); |
| } |
| #endif |
| |
| static void init_variance_tree(VAR_TREE *const vt, |
| #if CONFIG_AOM_HIGHBITDEPTH |
| const int highbd, |
| #endif |
| BLOCK_SIZE bsize, BLOCK_SIZE leaf_size, |
| const int width, const int height, |
| const uint8_t *const src, const int src_stride, |
| const uint8_t *const ref, const int ref_stride) { |
| assert(bsize >= leaf_size); |
| |
| vt->bsize = bsize; |
| |
| vt->force_split = 0; |
| |
| vt->src = src; |
| vt->src_stride = src_stride; |
| vt->ref = ref; |
| vt->ref_stride = ref_stride; |
| |
| vt->width = width; |
| vt->height = height; |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| vt->highbd = highbd; |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| if (bsize > leaf_size) { |
| const BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT); |
| const int px = num_4x4_blocks_wide_lookup[subsize] * 4; |
| |
| init_variance_tree(vt->split[0], |
| #if CONFIG_AOM_HIGHBITDEPTH |
| highbd, |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| subsize, leaf_size, AOMMIN(px, width), |
| AOMMIN(px, height), src, src_stride, ref, ref_stride); |
| init_variance_tree(vt->split[1], |
| #if CONFIG_AOM_HIGHBITDEPTH |
| highbd, |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| subsize, leaf_size, width - px, AOMMIN(px, height), |
| src + px, src_stride, ref + px, ref_stride); |
| init_variance_tree(vt->split[2], |
| #if CONFIG_AOM_HIGHBITDEPTH |
| highbd, |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| subsize, leaf_size, AOMMIN(px, width), height - px, |
| src + px * src_stride, src_stride, ref + px * ref_stride, |
| ref_stride); |
| init_variance_tree(vt->split[3], |
| #if CONFIG_AOM_HIGHBITDEPTH |
| highbd, |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| subsize, leaf_size, width - px, height - px, |
| src + px * src_stride + px, src_stride, |
| ref + px * ref_stride + px, ref_stride); |
| } |
| } |
| |
| // Fill the variance tree based on averaging pixel values (sub-sampling), at |
| // the leaf node size. |
| static void fill_variance_tree(VAR_TREE *const vt, const BLOCK_SIZE leaf_size) { |
| if (vt->bsize > leaf_size) { |
| fill_variance_tree(vt->split[0], leaf_size); |
| fill_variance_tree(vt->split[1], leaf_size); |
| fill_variance_tree(vt->split[2], leaf_size); |
| fill_variance_tree(vt->split[3], leaf_size); |
| fill_variance_node(vt); |
| } else if (vt->width <= 0 || vt->height <= 0) { |
| fill_variance(0, 0, 0, &vt->variances.none); |
| } else { |
| unsigned int sse = 0; |
| int sum = 0; |
| int src_avg; |
| int ref_avg; |
| assert(leaf_size == BLOCK_4X4 || leaf_size == BLOCK_8X8); |
| if (leaf_size == BLOCK_4X4) { |
| src_avg = avg_4x4(vt->src, vt->src_stride IF_HBD(, vt->highbd)); |
| ref_avg = avg_4x4(vt->ref, vt->ref_stride IF_HBD(, vt->highbd)); |
| } else { |
| src_avg = avg_8x8(vt->src, vt->src_stride IF_HBD(, vt->highbd)); |
| ref_avg = avg_8x8(vt->ref, vt->ref_stride IF_HBD(, vt->highbd)); |
| } |
| sum = src_avg - ref_avg; |
| sse = sum * sum; |
| fill_variance(sse, sum, 0, &vt->variances.none); |
| } |
| } |
| |
| static void refine_variance_tree(VAR_TREE *const vt, const int64_t threshold) { |
| if (vt->bsize >= BLOCK_8X8) { |
| if (vt->bsize == BLOCK_16X16) { |
| if (vt->variances.none.variance <= threshold) |
| return; |
| else |
| vt->force_split = 0; |
| } |
| |
| refine_variance_tree(vt->split[0], threshold); |
| refine_variance_tree(vt->split[1], threshold); |
| refine_variance_tree(vt->split[2], threshold); |
| refine_variance_tree(vt->split[3], threshold); |
| |
| if (vt->bsize <= BLOCK_16X16) fill_variance_node(vt); |
| } else if (vt->width <= 0 || vt->height <= 0) { |
| fill_variance(0, 0, 0, &vt->variances.none); |
| } else { |
| const int src_avg = avg_4x4(vt->src, vt->src_stride IF_HBD(, vt->highbd)); |
| const int ref_avg = avg_4x4(vt->ref, vt->ref_stride IF_HBD(, vt->highbd)); |
| const int sum = src_avg - ref_avg; |
| const unsigned int sse = sum * sum; |
| assert(vt->bsize == BLOCK_4X4); |
| fill_variance(sse, sum, 0, &vt->variances.none); |
| } |
| } |
| |
| static int check_split_key_frame(VAR_TREE *const vt, const int64_t threshold) { |
| if (vt->bsize == BLOCK_32X32) { |
| vt->force_split = vt->variances.none.variance > threshold; |
| } else { |
| vt->force_split |= check_split_key_frame(vt->split[0], threshold); |
| vt->force_split |= check_split_key_frame(vt->split[1], threshold); |
| vt->force_split |= check_split_key_frame(vt->split[2], threshold); |
| vt->force_split |= check_split_key_frame(vt->split[3], threshold); |
| } |
| return vt->force_split; |
| } |
| |
| static int check_split(AV1_COMP *const cpi, VAR_TREE *const vt, |
| const int segment_id, const int64_t *const thresholds) { |
| if (vt->bsize == BLOCK_16X16) { |
| vt->force_split = vt->variances.none.variance > thresholds[0]; |
| if (!vt->force_split && vt->variances.none.variance > thresholds[-1] && |
| !cyclic_refresh_segment_id_boosted(segment_id)) { |
| // We have some nominal amount of 16x16 variance (based on average), |
| // compute the minmax over the 8x8 sub-blocks, and if above threshold, |
| // force split to 8x8 block for this 16x16 block. |
| int minmax = |
| compute_minmax_8x8(vt->src, vt->src_stride, vt->ref, vt->ref_stride, |
| #if CONFIG_AOM_HIGHBITDEPTH |
| vt->highbd, |
| #endif |
| vt->width, vt->height); |
| vt->force_split = minmax > cpi->vbp_threshold_minmax; |
| } |
| } else { |
| vt->force_split |= |
| check_split(cpi, vt->split[0], segment_id, thresholds + 1); |
| vt->force_split |= |
| check_split(cpi, vt->split[1], segment_id, thresholds + 1); |
| vt->force_split |= |
| check_split(cpi, vt->split[2], segment_id, thresholds + 1); |
| vt->force_split |= |
| check_split(cpi, vt->split[3], segment_id, thresholds + 1); |
| |
| if (vt->bsize == BLOCK_32X32 && !vt->force_split) { |
| vt->force_split = vt->variances.none.variance > thresholds[0]; |
| } |
| } |
| |
| return vt->force_split; |
| } |
| |
| // This function chooses partitioning based on the variance between source and |
| // reconstructed last (or golden), where variance is computed for down-sampled |
| // inputs. |
| static void choose_partitioning(AV1_COMP *const cpi, ThreadData *const td, |
| const TileInfo *const tile, MACROBLOCK *const x, |
| const int mi_row, const int mi_col) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| VAR_TREE *const vt = td->var_root[cm->mib_size_log2 - MIN_MIB_SIZE_LOG2]; |
| #if CONFIG_DUAL_FILTER |
| int i; |
| #endif |
| const uint8_t *src; |
| const uint8_t *ref; |
| int src_stride; |
| int ref_stride; |
| int pixels_wide = 8 * num_8x8_blocks_wide_lookup[cm->sb_size]; |
| int pixels_high = 8 * num_8x8_blocks_high_lookup[cm->sb_size]; |
| int64_t thresholds[5] = { |
| cpi->vbp_thresholds[0], cpi->vbp_thresholds[1], cpi->vbp_thresholds[2], |
| cpi->vbp_thresholds[3], cpi->vbp_thresholds[4], |
| }; |
| BLOCK_SIZE bsize_min[5] = { BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, |
| cpi->vbp_bsize_min, BLOCK_8X8 }; |
| const int start_level = cm->sb_size == BLOCK_64X64 ? 1 : 0; |
| const int64_t *const thre = thresholds + start_level; |
| const BLOCK_SIZE *const bmin = bsize_min + start_level; |
| |
| const int is_key_frame = (cm->frame_type == KEY_FRAME); |
| const int low_res = (cm->width <= 352 && cm->height <= 288); |
| |
| int segment_id = CR_SEGMENT_ID_BASE; |
| |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) { |
| const uint8_t *const map = |
| cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map; |
| segment_id = get_segment_id(cm, map, cm->sb_size, mi_row, mi_col); |
| |
| if (cyclic_refresh_segment_id_boosted(segment_id)) { |
| int q = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex); |
| set_vbp_thresholds(cpi, thresholds, q); |
| } |
| } |
| |
| set_offsets(cpi, tile, x, mi_row, mi_col, cm->sb_size); |
| |
| if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3); |
| if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3); |
| |
| src = x->plane[0].src.buf; |
| src_stride = x->plane[0].src.stride; |
| |
| if (!is_key_frame) { |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); |
| const YV12_BUFFER_CONFIG *yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME); |
| unsigned int y_sad, y_sad_g; |
| |
| const int hbs = cm->mib_size / 2; |
| const int split_vert = mi_col + hbs >= cm->mi_cols; |
| const int split_horz = mi_row + hbs >= cm->mi_rows; |
| BLOCK_SIZE bsize; |
| |
| if (split_vert && split_horz) |
| bsize = get_subsize(cm->sb_size, PARTITION_SPLIT); |
| else if (split_vert) |
| bsize = get_subsize(cm->sb_size, PARTITION_VERT); |
| else if (split_horz) |
| bsize = get_subsize(cm->sb_size, PARTITION_HORZ); |
| else |
| bsize = cm->sb_size; |
| |
| assert(yv12 != NULL); |
| |
| if (yv12_g && yv12_g != yv12) { |
| av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col, |
| &cm->frame_refs[GOLDEN_FRAME - 1].sf); |
| y_sad_g = cpi->fn_ptr[bsize].sdf( |
| x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf, |
| xd->plane[0].pre[0].stride); |
| } else { |
| y_sad_g = UINT_MAX; |
| } |
| |
| av1_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, |
| &cm->frame_refs[LAST_FRAME - 1].sf); |
| mbmi->ref_frame[0] = LAST_FRAME; |
| mbmi->ref_frame[1] = NONE; |
| mbmi->sb_type = cm->sb_size; |
| mbmi->mv[0].as_int = 0; |
| #if CONFIG_DUAL_FILTER |
| for (i = 0; i < 4; ++i) mbmi->interp_filter[i] = BILINEAR; |
| #else |
| mbmi->interp_filter = BILINEAR; |
| #endif |
| |
| y_sad = av1_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col); |
| |
| if (y_sad_g < y_sad) { |
| av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col, |
| &cm->frame_refs[GOLDEN_FRAME - 1].sf); |
| mbmi->ref_frame[0] = GOLDEN_FRAME; |
| mbmi->mv[0].as_int = 0; |
| y_sad = y_sad_g; |
| } else { |
| x->pred_mv[LAST_FRAME] = mbmi->mv[0].as_mv; |
| } |
| |
| av1_build_inter_predictors_sb(xd, mi_row, mi_col, cm->sb_size); |
| |
| ref = xd->plane[0].dst.buf; |
| ref_stride = xd->plane[0].dst.stride; |
| |
| // If the y_sad is very small, take the largest partition and exit. |
| // Don't check on boosted segment for now, as largest is suppressed there. |
| if (segment_id == CR_SEGMENT_ID_BASE && y_sad < cpi->vbp_threshold_sad) { |
| if (!split_vert && !split_horz) { |
| set_block_size(cpi, x, xd, mi_row, mi_col, cm->sb_size); |
| return; |
| } |
| } |
| } else { |
| ref = AV1_VAR_OFFS; |
| ref_stride = 0; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| switch (xd->bd) { |
| case 10: ref = CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10); break; |
| case 12: ref = CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12); break; |
| case 8: |
| default: ref = CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8); break; |
| } |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| } |
| |
| init_variance_tree( |
| vt, |
| #if CONFIG_AOM_HIGHBITDEPTH |
| xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| cm->sb_size, (is_key_frame || low_res) ? BLOCK_4X4 : BLOCK_8X8, |
| pixels_wide, pixels_high, src, src_stride, ref, ref_stride); |
| |
| // Fill in the entire tree of variances and compute splits. |
| if (is_key_frame) { |
| fill_variance_tree(vt, BLOCK_4X4); |
| check_split_key_frame(vt, thre[1]); |
| } else { |
| fill_variance_tree(vt, BLOCK_8X8); |
| check_split(cpi, vt, segment_id, thre); |
| if (low_res) { |
| refine_variance_tree(vt, thre[1] << 1); |
| } |
| } |
| |
| vt->force_split |= mi_col + cm->mib_size > cm->mi_cols || |
| mi_row + cm->mib_size > cm->mi_rows; |
| |
| // Now go through the entire structure, splitting every block size until |
| // we get to one that's got a variance lower than our threshold. |
| set_vt_partitioning(cpi, x, xd, vt, mi_row, mi_col, thre, bmin); |
| } |
| |
| #if CONFIG_DUAL_FILTER |
| static void reset_intmv_filter_type(const AV1_COMMON *const cm, MACROBLOCKD *xd, |
| MB_MODE_INFO *mbmi) { |
| int dir; |
| for (dir = 0; dir < 2; ++dir) { |
| if (!has_subpel_mv_component(xd->mi[0], xd, dir) && |
| (mbmi->ref_frame[1] == NONE || |
| !has_subpel_mv_component(xd->mi[0], xd, dir + 2))) |
| mbmi->interp_filter[dir] = (cm->interp_filter == SWITCHABLE) |
| ? EIGHTTAP_REGULAR |
| : cm->interp_filter; |
| mbmi->interp_filter[dir + 2] = mbmi->interp_filter[dir]; |
| } |
| } |
| |
| static void update_filter_type_count(FRAME_COUNTS *counts, |
| const MACROBLOCKD *xd, |
| const MB_MODE_INFO *mbmi) { |
| int dir; |
| for (dir = 0; dir < 2; ++dir) { |
| if (has_subpel_mv_component(xd->mi[0], xd, dir) || |
| (mbmi->ref_frame[1] > INTRA_FRAME && |
| has_subpel_mv_component(xd->mi[0], xd, dir + 2))) { |
| const int ctx = av1_get_pred_context_switchable_interp(xd, dir); |
| ++counts->switchable_interp[ctx][mbmi->interp_filter[dir]]; |
| } |
| } |
| } |
| #endif |
| #if CONFIG_GLOBAL_MOTION |
| static void update_global_motion_used(PREDICTION_MODE mode, |
| const MB_MODE_INFO *mbmi, AV1_COMP *cpi) { |
| if (mode == ZEROMV) { |
| ++cpi->global_motion_used[mbmi->ref_frame[0]]; |
| if (has_second_ref(mbmi)) ++cpi->global_motion_used[mbmi->ref_frame[1]]; |
| } |
| } |
| #endif // CONFIG_GLOBAL_MOTION |
| |
| static void update_state(const AV1_COMP *const cpi, ThreadData *td, |
| PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, RUN_TYPE dry_run) { |
| int i, x_idx, y; |
| const AV1_COMMON *const cm = &cpi->common; |
| RD_COUNTS *const rdc = &td->rd_counts; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| MODE_INFO *mi = &ctx->mic; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| MODE_INFO *mi_addr = xd->mi[0]; |
| const struct segmentation *const seg = &cm->seg; |
| const int bw = num_8x8_blocks_wide_lookup[mi->mbmi.sb_type]; |
| const int bh = num_8x8_blocks_high_lookup[mi->mbmi.sb_type]; |
| const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col); |
| const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row); |
| MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col; |
| int w, h; |
| |
| const int mis = cm->mi_stride; |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| |
| #if CONFIG_REF_MV |
| int8_t rf_type; |
| #endif |
| |
| #if !CONFIG_SUPERTX |
| assert(mi->mbmi.sb_type == bsize); |
| #endif |
| |
| *mi_addr = *mi; |
| *x->mbmi_ext = ctx->mbmi_ext; |
| |
| #if CONFIG_DUAL_FILTER |
| reset_intmv_filter_type(cm, xd, mbmi); |
| #endif |
| |
| #if CONFIG_REF_MV |
| rf_type = av1_ref_frame_type(mbmi->ref_frame); |
| if (x->mbmi_ext->ref_mv_count[rf_type] > 1 && mbmi->sb_type >= BLOCK_8X8 && |
| mbmi->mode == NEWMV) { |
| for (i = 0; i < 1 + has_second_ref(mbmi); ++i) { |
| int_mv this_mv = |
| (i == 0) |
| ? x->mbmi_ext->ref_mv_stack[rf_type][mbmi->ref_mv_idx].this_mv |
| : x->mbmi_ext->ref_mv_stack[rf_type][mbmi->ref_mv_idx].comp_mv; |
| clamp_mv_ref(&this_mv.as_mv, xd->n8_w << 3, xd->n8_h << 3, xd); |
| x->mbmi_ext->ref_mvs[mbmi->ref_frame[i]][0] = this_mv; |
| mbmi->pred_mv[i] = this_mv; |
| mi->mbmi.pred_mv[i] = this_mv; |
| } |
| } |
| #endif |
| |
| // If segmentation in use |
| if (seg->enabled) { |
| // For in frame complexity AQ copy the segment id from the segment map. |
| if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) { |
| const uint8_t *const map = |
| seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; |
| mi_addr->mbmi.segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); |
| } |
| // Else for cyclic refresh mode update the segment map, set the segment id |
| // and then update the quantizer. |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { |
| av1_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi, mi_row, mi_col, |
| bsize, ctx->rate, ctx->dist, x->skip); |
| } |
| } |
| |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| p[i].coeff = ctx->coeff[i]; |
| p[i].qcoeff = ctx->qcoeff[i]; |
| pd[i].dqcoeff = ctx->dqcoeff[i]; |
| #if CONFIG_PVQ |
| pd[i].pvq_ref_coeff = ctx->pvq_ref_coeff[i]; |
| #endif |
| p[i].eobs = ctx->eobs[i]; |
| } |
| #if CONFIG_PALETTE |
| for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; |
| #endif // CONFIG_PALETTE |
| |
| // Restore the coding context of the MB to that that was in place |
| // when the mode was picked for it |
| for (y = 0; y < mi_height; y++) |
| for (x_idx = 0; x_idx < mi_width; x_idx++) |
| if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx && |
| (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) { |
| xd->mi[x_idx + y * mis] = mi_addr; |
| } |
| |
| #if CONFIG_DELTA_Q |
| if (cpi->oxcf.aq_mode > NO_AQ && cpi->oxcf.aq_mode < DELTA_AQ) |
| av1_init_plane_quantizers(cpi, x, xd->mi[0]->mbmi.segment_id); |
| #else |
| if (cpi->oxcf.aq_mode) |
| av1_init_plane_quantizers(cpi, x, xd->mi[0]->mbmi.segment_id); |
| #endif |
| |
| if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) { |
| mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int; |
| mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int; |
| } |
| |
| x->skip = ctx->skip; |
| |
| #if CONFIG_VAR_TX |
| for (i = 0; i < 1; ++i) |
| memcpy(x->blk_skip[i], ctx->blk_skip[i], |
| sizeof(uint8_t) * ctx->num_4x4_blk); |
| #endif |
| |
| if (dry_run) return; |
| |
| #if CONFIG_INTERNAL_STATS |
| { |
| unsigned int *const mode_chosen_counts = |
| (unsigned int *)cpi->mode_chosen_counts; // Cast const away. |
| if (frame_is_intra_only(cm)) { |
| static const int kf_mode_index[] = { |
| THR_DC /*DC_PRED*/, |
| THR_V_PRED /*V_PRED*/, |
| THR_H_PRED /*H_PRED*/, |
| THR_D45_PRED /*D45_PRED*/, |
| THR_D135_PRED /*D135_PRED*/, |
| THR_D117_PRED /*D117_PRED*/, |
| THR_D153_PRED /*D153_PRED*/, |
| THR_D207_PRED /*D207_PRED*/, |
| THR_D63_PRED /*D63_PRED*/, |
| #if CONFIG_ALT_INTRA |
| THR_SMOOTH, /*SMOOTH_PRED*/ |
| #endif // CONFIG_ALT_INTRA |
| THR_TM /*TM_PRED*/, |
| }; |
| ++mode_chosen_counts[kf_mode_index[mbmi->mode]]; |
| } else { |
| // Note how often each mode chosen as best |
| ++mode_chosen_counts[ctx->best_mode_index]; |
| } |
| } |
| #endif |
| if (!frame_is_intra_only(cm)) { |
| if (is_inter_block(mbmi)) { |
| av1_update_mv_count(td); |
| #if CONFIG_GLOBAL_MOTION |
| if (bsize >= BLOCK_8X8) { |
| // TODO(sarahparker): global motion stats need to be handled per-tile |
| // to be compatible with tile-based threading. |
| update_global_motion_used(mbmi->mode, mbmi, (AV1_COMP *)cpi); |
| } else { |
| const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; |
| int idx, idy; |
| for (idy = 0; idy < 2; idy += num_4x4_h) { |
| for (idx = 0; idx < 2; idx += num_4x4_w) { |
| const int j = idy * 2 + idx; |
| update_global_motion_used(mi->bmi[j].as_mode, mbmi, |
| (AV1_COMP *)cpi); |
| } |
| } |
| } |
| #endif // CONFIG_GLOBAL_MOTION |
| if (cm->interp_filter == SWITCHABLE |
| #if CONFIG_EXT_INTERP |
| && av1_is_interp_needed(xd) |
| #endif |
| #if CONFIG_WARPED_MOTION |
| && mbmi->motion_mode != WARPED_CAUSAL |
| #endif // CONFIG_WARPED_MOTION |
| ) { |
| #if CONFIG_DUAL_FILTER |
| update_filter_type_count(td->counts, xd, mbmi); |
| #else |
| const int switchable_ctx = av1_get_pred_context_switchable_interp(xd); |
| ++td->counts->switchable_interp[switchable_ctx][mbmi->interp_filter]; |
| #endif |
| } |
| } |
| |
| rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff; |
| rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff; |
| rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff; |
| } |
| |
| for (h = 0; h < y_mis; ++h) { |
| MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols; |
| for (w = 0; w < x_mis; ++w) { |
| MV_REF *const mv = frame_mv + w; |
| mv->ref_frame[0] = mi->mbmi.ref_frame[0]; |
| mv->ref_frame[1] = mi->mbmi.ref_frame[1]; |
| mv->mv[0].as_int = mi->mbmi.mv[0].as_int; |
| mv->mv[1].as_int = mi->mbmi.mv[1].as_int; |
| } |
| } |
| } |
| |
| #if CONFIG_SUPERTX |
| static void update_state_supertx(const AV1_COMP *const cpi, ThreadData *td, |
| PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, RUN_TYPE dry_run) { |
| int y, x_idx; |
| #if CONFIG_VAR_TX || CONFIG_REF_MV |
| int i; |
| #endif |
| const AV1_COMMON *const cm = &cpi->common; |
| RD_COUNTS *const rdc = &td->rd_counts; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *mi = &ctx->mic; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| MODE_INFO *mi_addr = xd->mi[0]; |
| const struct segmentation *const seg = &cm->seg; |
| const int mis = cm->mi_stride; |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| const int x_mis = AOMMIN(mi_width, cm->mi_cols - mi_col); |
| const int y_mis = AOMMIN(mi_height, cm->mi_rows - mi_row); |
| MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col; |
| int w, h; |
| |
| #if CONFIG_REF_MV |
| int8_t rf_type; |
| #endif |
| |
| *mi_addr = *mi; |
| *x->mbmi_ext = ctx->mbmi_ext; |
| assert(is_inter_block(mbmi)); |
| assert(mbmi->tx_size == ctx->mic.mbmi.tx_size); |
| |
| #if CONFIG_DUAL_FILTER |
| reset_intmv_filter_type(cm, xd, mbmi); |
| #endif |
| |
| #if CONFIG_REF_MV |
| rf_type = av1_ref_frame_type(mbmi->ref_frame); |
| if (x->mbmi_ext->ref_mv_count[rf_type] > 1 && mbmi->sb_type >= BLOCK_8X8 && |
| mbmi->mode == NEWMV) { |
| for (i = 0; i < 1 + has_second_ref(mbmi); ++i) { |
| int_mv this_mv = |
| (i == 0) |
| ? x->mbmi_ext->ref_mv_stack[rf_type][mbmi->ref_mv_idx].this_mv |
| : x->mbmi_ext->ref_mv_stack[rf_type][mbmi->ref_mv_idx].comp_mv; |
| clamp_mv_ref(&this_mv.as_mv, xd->n8_w << 3, xd->n8_h << 3, xd); |
| lower_mv_precision(&this_mv.as_mv, cm->allow_high_precision_mv); |
| x->mbmi_ext->ref_mvs[mbmi->ref_frame[i]][0] = this_mv; |
| mbmi->pred_mv[i] = this_mv; |
| } |
| } |
| #endif |
| |
| // If segmentation in use |
| if (seg->enabled) { |
| if (cpi->vaq_refresh) { |
| const int energy = |
| bsize <= BLOCK_16X16 ? x->mb_energy : av1_block_energy(cpi, x, bsize); |
| mi_addr->mbmi.segment_id = av1_vaq_segment_id(energy); |
| } else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { |
| // For cyclic refresh mode, now update the segment map |
| // and set the segment id. |
| av1_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi, mi_row, mi_col, |
| bsize, ctx->rate, ctx->dist, 1); |
| } else { |
| // Otherwise just set the segment id based on the current segment map |
| const uint8_t *const map = |
| seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; |
| mi_addr->mbmi.segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); |
| } |
| mi_addr->mbmi.segment_id_supertx = MAX_SEGMENTS; |
| } |
| |
| // Restore the coding context of the MB to that that was in place |
| // when the mode was picked for it |
| for (y = 0; y < mi_height; y++) |
| for (x_idx = 0; x_idx < mi_width; x_idx++) |
| if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx && |
| (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) { |
| xd->mi[x_idx + y * mis] = mi_addr; |
| } |
| |
| if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) { |
| mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int; |
| mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int; |
| } |
| |
| x->skip = ctx->skip; |
| |
| #if CONFIG_VAR_TX |
| for (i = 0; i < 1; ++i) |
| memcpy(x->blk_skip[i], ctx->blk_skip[i], |
| sizeof(uint8_t) * ctx->num_4x4_blk); |
| |
| if (!is_inter_block(mbmi) || mbmi->skip) |
| mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size); |
| #endif // CONFIG_VAR_TX |
| |
| #if CONFIG_VAR_TX |
| { |
| const TX_SIZE mtx = mbmi->tx_size; |
| const int num_4x4_blocks_wide = tx_size_wide_unit[mtx] >> 1; |
| const int num_4x4_blocks_high = tx_size_high_unit[mtx] >> 1; |
| int idy, idx; |
| mbmi->inter_tx_size[0][0] = mtx; |
| for (idy = 0; idy < num_4x4_blocks_high; ++idy) |
| for (idx = 0; idx < num_4x4_blocks_wide; ++idx) |
| mbmi->inter_tx_size[idy][idx] = mtx; |
| } |
| #endif // CONFIG_VAR_TX |
| // Turn motion variation off for supertx |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| |
| if (dry_run) return; |
| |
| if (!frame_is_intra_only(cm)) { |
| av1_update_mv_count(td); |
| |
| #if CONFIG_GLOBAL_MOTION |
| if (is_inter_block(mbmi)) { |
| if (bsize >= BLOCK_8X8) { |
| // TODO(sarahparker): global motion stats need to be handled per-tile |
| // to be compatible with tile-based threading. |
| update_global_motion_used(mbmi->mode, mbmi, (AV1_COMP *)cpi); |
| } else { |
| const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; |
| int idx, idy; |
| for (idy = 0; idy < 2; idy += num_4x4_h) { |
| for (idx = 0; idx < 2; idx += num_4x4_w) { |
| const int j = idy * 2 + idx; |
| update_global_motion_used(mi->bmi[j].as_mode, mbmi, |
| (AV1_COMP *)cpi); |
| } |
| } |
| } |
| } |
| #endif // CONFIG_GLOBAL_MOTION |
| |
| if (cm->interp_filter == SWITCHABLE |
| #if CONFIG_EXT_INTERP |
| && av1_is_interp_needed(xd) |
| #endif |
| ) { |
| #if CONFIG_DUAL_FILTER |
| update_filter_type_count(td->counts, xd, mbmi); |
| #else |
| const int pred_ctx = av1_get_pred_context_switchable_interp(xd); |
| ++td->counts->switchable_interp[pred_ctx][mbmi->interp_filter]; |
| #endif |
| } |
| |
| rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff; |
| rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff; |
| rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff; |
| } |
| |
| for (h = 0; h < y_mis; ++h) { |
| MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols; |
| for (w = 0; w < x_mis; ++w) { |
| MV_REF *const mv = frame_mv + w; |
| mv->ref_frame[0] = mi->mbmi.ref_frame[0]; |
| mv->ref_frame[1] = mi->mbmi.ref_frame[1]; |
| mv->mv[0].as_int = mi->mbmi.mv[0].as_int; |
| mv->mv[1].as_int = mi->mbmi.mv[1].as_int; |
| } |
| } |
| } |
| |
| static void update_state_sb_supertx(const AV1_COMP *const cpi, ThreadData *td, |
| const TileInfo *const tile, int mi_row, |
| int mi_col, BLOCK_SIZE bsize, |
| RUN_TYPE dry_run, PC_TREE *pc_tree) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4; |
| PARTITION_TYPE partition = pc_tree->partitioning; |
| BLOCK_SIZE subsize = get_subsize(bsize, partition); |
| int i; |
| #if CONFIG_EXT_PARTITION_TYPES |
| BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); |
| #endif |
| PICK_MODE_CONTEXT *pmc = NULL; |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| if (bsize == BLOCK_16X16 && cpi->vaq_refresh) |
| x->mb_energy = av1_block_energy(cpi, x, bsize); |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize); |
| update_state_supertx(cpi, td, &pc_tree->none, mi_row, mi_col, subsize, |
| dry_run); |
| break; |
| case PARTITION_VERT: |
| set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize); |
| update_state_supertx(cpi, td, &pc_tree->vertical[0], mi_row, mi_col, |
| subsize, dry_run); |
| if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) { |
| set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize); |
| update_state_supertx(cpi, td, &pc_tree->vertical[1], mi_row, |
| mi_col + hbs, subsize, dry_run); |
| } |
| pmc = &pc_tree->vertical_supertx; |
| break; |
| case PARTITION_HORZ: |
| set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize); |
| update_state_supertx(cpi, td, &pc_tree->horizontal[0], mi_row, mi_col, |
| subsize, dry_run); |
| if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) { |
| set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize); |
| update_state_supertx(cpi, td, &pc_tree->horizontal[1], mi_row + hbs, |
| mi_col, subsize, dry_run); |
| } |
| pmc = &pc_tree->horizontal_supertx; |
| break; |
| case PARTITION_SPLIT: |
| if (bsize == BLOCK_8X8) { |
| set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize); |
| update_state_supertx(cpi, td, pc_tree->leaf_split[0], mi_row, mi_col, |
| subsize, dry_run); |
| } else { |
| set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize); |
| update_state_sb_supertx(cpi, td, tile, mi_row, mi_col, subsize, dry_run, |
| pc_tree->split[0]); |
| set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize); |
| update_state_sb_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize, |
| dry_run, pc_tree->split[1]); |
| set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize); |
| update_state_sb_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize, |
| dry_run, pc_tree->split[2]); |
| set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs, subsize); |
| update_state_sb_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs, |
| subsize, dry_run, pc_tree->split[3]); |
| } |
| pmc = &pc_tree->split_supertx; |
| break; |
| #if CONFIG_EXT_PARTITION_TYPES |
| case PARTITION_HORZ_A: |
| set_offsets_supertx(cpi, td, tile, mi_row, mi_col, bsize2); |
| update_state_supertx(cpi, td, &pc_tree->horizontala[0], mi_row, mi_col, |
| bsize2, dry_run); |
| set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, bsize2); |
| update_state_supertx(cpi, td, &pc_tree->horizontala[1], mi_row, |
| mi_col + hbs, bsize2, dry_run); |
| set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize); |
| update_state_supertx(cpi, td, &pc_tree->horizontala[2], mi_row + hbs, |
| mi_col, subsize, dry_run); |
| pmc = &pc_tree->horizontala_supertx; |
| break; |
| case PARTITION_HORZ_B: |
| set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize); |
| update_state_supertx(cpi, td, &pc_tree->horizontalb[0], mi_row, mi_col, |
| subsize, dry_run); |
| set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, bsize2); |
| update_state_supertx(cpi, td, &pc_tree->horizontalb[1], mi_row + hbs, |
| mi_col, bsize2, dry_run); |
| set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs, bsize2); |
| update_state_supertx(cpi, td, &pc_tree->horizontalb[2], mi_row + hbs, |
| mi_col + hbs, bsize2, dry_run); |
| pmc = &pc_tree->horizontalb_supertx; |
| break; |
| case PARTITION_VERT_A: |
| set_offsets_supertx(cpi, td, tile, mi_row, mi_col, bsize2); |
| update_state_supertx(cpi, td, &pc_tree->verticala[0], mi_row, mi_col, |
| bsize2, dry_run); |
| set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, bsize2); |
| update_state_supertx(cpi, td, &pc_tree->verticala[1], mi_row + hbs, |
| mi_col, bsize2, dry_run); |
| set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize); |
| update_state_supertx(cpi, td, &pc_tree->verticala[2], mi_row, |
| mi_col + hbs, subsize, dry_run); |
| pmc = &pc_tree->verticala_supertx; |
| break; |
| case PARTITION_VERT_B: |
| set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize); |
| update_state_supertx(cpi, td, &pc_tree->verticalb[0], mi_row, mi_col, |
| subsize, dry_run); |
| set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, bsize2); |
| update_state_supertx(cpi, td, &pc_tree->verticalb[1], mi_row, |
| mi_col + hbs, bsize2, dry_run); |
| set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs, bsize2); |
| update_state_supertx(cpi, td, &pc_tree->verticalb[2], mi_row + hbs, |
| mi_col + hbs, bsize2, dry_run); |
| pmc = &pc_tree->verticalb_supertx; |
| break; |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| default: assert(0); |
| } |
| |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| if (pmc != NULL) { |
| p[i].coeff = pmc->coeff[i]; |
| p[i].qcoeff = pmc->qcoeff[i]; |
| pd[i].dqcoeff = pmc->dqcoeff[i]; |
| p[i].eobs = pmc->eobs[i]; |
| } else { |
| // These should never be used |
| p[i].coeff = NULL; |
| p[i].qcoeff = NULL; |
| pd[i].dqcoeff = NULL; |
| p[i].eobs = NULL; |
| } |
| } |
| } |
| |
| static void update_supertx_param(ThreadData *td, PICK_MODE_CONTEXT *ctx, |
| int best_tx, TX_SIZE supertx_size) { |
| MACROBLOCK *const x = &td->mb; |
| #if CONFIG_VAR_TX |
| int i; |
| |
| for (i = 0; i < 1; ++i) |
| memcpy(ctx->blk_skip[i], x->blk_skip[i], |
| sizeof(uint8_t) * ctx->num_4x4_blk); |
| ctx->mic.mbmi.min_tx_size = get_min_tx_size(supertx_size); |
| #endif // CONFIG_VAR_TX |
| ctx->mic.mbmi.tx_size = supertx_size; |
| ctx->skip = x->skip; |
| ctx->mic.mbmi.tx_type = best_tx; |
| } |
| |
| static void update_supertx_param_sb(const AV1_COMP *const cpi, ThreadData *td, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| int best_tx, TX_SIZE supertx_size, |
| PC_TREE *pc_tree) { |
| const AV1_COMMON *const cm = &cpi->common; |
| int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4; |
| PARTITION_TYPE partition = pc_tree->partitioning; |
| BLOCK_SIZE subsize = get_subsize(bsize, partition); |
| #if CONFIG_EXT_PARTITION_TYPES |
| int i; |
| #endif |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| update_supertx_param(td, &pc_tree->none, best_tx, supertx_size); |
| break; |
| case PARTITION_VERT: |
| update_supertx_param(td, &pc_tree->vertical[0], best_tx, supertx_size); |
| if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) |
| update_supertx_param(td, &pc_tree->vertical[1], best_tx, supertx_size); |
| break; |
| case PARTITION_HORZ: |
| update_supertx_param(td, &pc_tree->horizontal[0], best_tx, supertx_size); |
| if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) |
| update_supertx_param(td, &pc_tree->horizontal[1], best_tx, |
| supertx_size); |
| break; |
| case PARTITION_SPLIT: |
| if (bsize == BLOCK_8X8) { |
| update_supertx_param(td, pc_tree->leaf_split[0], best_tx, supertx_size); |
| } else { |
| update_supertx_param_sb(cpi, td, mi_row, mi_col, subsize, best_tx, |
| supertx_size, pc_tree->split[0]); |
| update_supertx_param_sb(cpi, td, mi_row, mi_col + hbs, subsize, best_tx, |
| supertx_size, pc_tree->split[1]); |
| update_supertx_param_sb(cpi, td, mi_row + hbs, mi_col, subsize, best_tx, |
| supertx_size, pc_tree->split[2]); |
| update_supertx_param_sb(cpi, td, mi_row + hbs, mi_col + hbs, subsize, |
| best_tx, supertx_size, pc_tree->split[3]); |
| } |
| break; |
| #if CONFIG_EXT_PARTITION_TYPES |
| case PARTITION_HORZ_A: |
| for (i = 0; i < 3; i++) |
| update_supertx_param(td, &pc_tree->horizontala[i], best_tx, |
| supertx_size); |
| break; |
| case PARTITION_HORZ_B: |
| for (i = 0; i < 3; i++) |
| update_supertx_param(td, &pc_tree->horizontalb[i], best_tx, |
| supertx_size); |
| break; |
| case PARTITION_VERT_A: |
| for (i = 0; i < 3; i++) |
| update_supertx_param(td, &pc_tree->verticala[i], best_tx, supertx_size); |
| break; |
| case PARTITION_VERT_B: |
| for (i = 0; i < 3; i++) |
| update_supertx_param(td, &pc_tree->verticalb[i], best_tx, supertx_size); |
| break; |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| default: assert(0); |
| } |
| } |
| #endif // CONFIG_SUPERTX |
| |
| void av1_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src, |
| int mi_row, int mi_col) { |
| uint8_t *const buffers[3] = { src->y_buffer, src->u_buffer, src->v_buffer }; |
| const int widths[3] = { src->y_crop_width, src->uv_crop_width, |
| src->uv_crop_width }; |
| const int heights[3] = { src->y_crop_height, src->uv_crop_height, |
| src->uv_crop_height }; |
| const int strides[3] = { src->y_stride, src->uv_stride, src->uv_stride }; |
| int i; |
| |
| // Set current frame pointer. |
| x->e_mbd.cur_buf = src; |
| |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| setup_pred_plane(&x->plane[i].src, buffers[i], widths[i], heights[i], |
| strides[i], mi_row, mi_col, NULL, |
| x->e_mbd.plane[i].subsampling_x, |
| x->e_mbd.plane[i].subsampling_y); |
| } |
| |
| static int set_segment_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, |
| int8_t segment_id) { |
| int segment_qindex; |
| const AV1_COMMON *const cm = &cpi->common; |
| av1_init_plane_quantizers(cpi, x, segment_id); |
| aom_clear_system_state(); |
| segment_qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex); |
| return av1_compute_rd_mult(cpi, segment_qindex + cm->y_dc_delta_q); |
| } |
| |
| static void rd_pick_sb_modes(const AV1_COMP *const cpi, TileDataEnc *tile_data, |
| MACROBLOCK *const x, int mi_row, int mi_col, |
| RD_COST *rd_cost, |
| #if CONFIG_SUPERTX |
| int *totalrate_nocoef, |
| #endif |
| #if CONFIG_EXT_PARTITION_TYPES |
| PARTITION_TYPE partition, |
| #endif |
| BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, |
| int64_t best_rd) { |
| const AV1_COMMON *const cm = &cpi->common; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi; |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| const AQ_MODE aq_mode = cpi->oxcf.aq_mode; |
| int i, orig_rdmult; |
| |
| aom_clear_system_state(); |
| |
| // Use the lower precision, but faster, 32x32 fdct for mode selection. |
| x->use_lp32x32fdct = 1; |
| |
| #if CONFIG_PVQ |
| x->pvq_speed = 1; |
| x->pvq_coded = 0; |
| #endif |
| |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| mbmi = &xd->mi[0]->mbmi; |
| mbmi->sb_type = bsize; |
| #if CONFIG_RD_DEBUG |
| mbmi->mi_row = mi_row; |
| mbmi->mi_col = mi_col; |
| #endif |
| #if CONFIG_SUPERTX |
| // We set tx_size here as skip blocks would otherwise not set it. |
| // tx_size needs to be set at this point as supertx_enable in |
| // write_modes_sb is computed based on this, and if the garbage in memory |
| // just happens to be the supertx_size, then the packer will code this |
| // block as a supertx block, even if rdopt did not pick it as such. |
| mbmi->tx_size = max_txsize_lookup[bsize]; |
| #endif |
| #if CONFIG_EXT_PARTITION_TYPES |
| mbmi->partition = partition; |
| #endif |
| |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| p[i].coeff = ctx->coeff[i]; |
| p[i].qcoeff = ctx->qcoeff[i]; |
| pd[i].dqcoeff = ctx->dqcoeff[i]; |
| #if CONFIG_PVQ |
| pd[i].pvq_ref_coeff = ctx->pvq_ref_coeff[i]; |
| #endif |
| p[i].eobs = ctx->eobs[i]; |
| } |
| |
| #if CONFIG_PALETTE |
| for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; |
| #endif // CONFIG_PALETTE |
| |
| ctx->skippable = 0; |
| ctx->pred_pixel_ready = 0; |
| |
| // Set to zero to make sure we do not use the previous encoded frame stats |
| mbmi->skip = 0; |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| x->source_variance = av1_high_get_sby_perpixel_variance( |
| cpi, &x->plane[0].src, bsize, xd->bd); |
| } else { |
| x->source_variance = |
| av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); |
| } |
| #else |
| x->source_variance = |
| av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| // Save rdmult before it might be changed, so it can be restored later. |
| orig_rdmult = x->rdmult; |
| |
| if (aq_mode == VARIANCE_AQ) { |
| if (cpi->vaq_refresh) { |
| const int energy = |
| bsize <= BLOCK_16X16 ? x->mb_energy : av1_block_energy(cpi, x, bsize); |
| mbmi->segment_id = av1_vaq_segment_id(energy); |
| // Re-initialise quantiser |
| av1_init_plane_quantizers(cpi, x, mbmi->segment_id); |
| } |
| x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id); |
| } else if (aq_mode == COMPLEXITY_AQ) { |
| x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id); |
| } else if (aq_mode == CYCLIC_REFRESH_AQ) { |
| // If segment is boosted, use rdmult for that segment. |
| if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) |
| x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh); |
| } |
| |
| // Find best coding mode & reconstruct the MB so it is available |
| // as a predictor for MBs that follow in the SB |
| if (frame_is_intra_only(cm)) { |
| av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd); |
| #if CONFIG_SUPERTX |
| *totalrate_nocoef = 0; |
| #endif // CONFIG_SUPERTX |
| } else { |
| if (bsize >= BLOCK_8X8) { |
| if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, rd_cost, bsize, |
| ctx, best_rd); |
| #if CONFIG_SUPERTX |
| *totalrate_nocoef = rd_cost->rate; |
| #endif // CONFIG_SUPERTX |
| } else { |
| av1_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, rd_cost, |
| #if CONFIG_SUPERTX |
| totalrate_nocoef, |
| #endif // CONFIG_SUPERTX |
| bsize, ctx, best_rd); |
| #if CONFIG_SUPERTX |
| assert(*totalrate_nocoef >= 0); |
| #endif // CONFIG_SUPERTX |
| } |
| } else { |
| if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| // The decoder rejects sub8x8 partitions when SEG_LVL_SKIP is set. |
| rd_cost->rate = INT_MAX; |
| } else { |
| av1_rd_pick_inter_mode_sub8x8(cpi, tile_data, x, mi_row, mi_col, |
| rd_cost, |
| #if CONFIG_SUPERTX |
| totalrate_nocoef, |
| #endif // CONFIG_SUPERTX |
| bsize, ctx, best_rd); |
| #if CONFIG_SUPERTX |
| assert(*totalrate_nocoef >= 0); |
| #endif // CONFIG_SUPERTX |
| } |
| } |
| } |
| |
| // Examine the resulting rate and for AQ mode 2 make a segment choice. |
| if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) && |
| (bsize >= BLOCK_16X16) && |
| (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame || |
| (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) { |
| av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate); |
| } |
| |
| x->rdmult = orig_rdmult; |
| |
| // TODO(jingning) The rate-distortion optimization flow needs to be |
| // refactored to provide proper exit/return handle. |
| if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX; |
| |
| ctx->rate = rd_cost->rate; |
| ctx->dist = rd_cost->dist; |
| } |
| |
| #if CONFIG_REF_MV |
| static void update_inter_mode_stats(FRAME_COUNTS *counts, PREDICTION_MODE mode, |
| #if CONFIG_EXT_INTER |
| int is_compound, |
| #endif // CONFIG_EXT_INTER |
| int16_t mode_context) { |
| int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; |
| #if CONFIG_EXT_INTER |
| if (mode == NEWMV || mode == NEWFROMNEARMV) { |
| if (!is_compound) ++counts->new2mv_mode[mode == NEWFROMNEARMV]; |
| #else |
| if (mode == NEWMV) { |
| #endif // CONFIG_EXT_INTER |
| ++counts->newmv_mode[mode_ctx][0]; |
| return; |
| } else { |
| ++counts->newmv_mode[mode_ctx][1]; |
| |
| if (mode_context & (1 << ALL_ZERO_FLAG_OFFSET)) { |
| return; |
| } |
| |
| mode_ctx = (mode_context >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK; |
| if (mode == ZEROMV) { |
| ++counts->zeromv_mode[mode_ctx][0]; |
| return; |
| } else { |
| ++counts->zeromv_mode[mode_ctx][1]; |
| mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; |
| |
| if (mode_context & (1 << SKIP_NEARESTMV_OFFSET)) mode_ctx = 6; |
| if (mode_context & (1 << SKIP_NEARMV_OFFSET)) mode_ctx = 7; |
| if (mode_context & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) mode_ctx = 8; |
| |
| ++counts->refmv_mode[mode_ctx][mode != NEARESTMV]; |
| } |
| } |
| } |
| #endif |
| |
| static void update_stats(const AV1_COMMON *const cm, ThreadData *td, int mi_row, |
| int mi_col |
| #if CONFIG_SUPERTX |
| , |
| int supertx_enabled |
| #endif |
| ) { |
| #if CONFIG_DELTA_Q |
| MACROBLOCK *x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| #else |
| const MACROBLOCK *x = &td->mb; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| #endif |
| const MODE_INFO *const mi = xd->mi[0]; |
| const MB_MODE_INFO *const mbmi = &mi->mbmi; |
| const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| |
| #if CONFIG_DELTA_Q |
| // delta quant applies to both intra and inter |
| const int super_block_upper_left = ((mi_row & 7) == 0) && ((mi_col & 7) == 0); |
| |
| if (cm->delta_q_present_flag && (bsize != BLOCK_64X64 || !mbmi->skip) && |
| super_block_upper_left) { |
| const int dq = (mbmi->current_q_index - xd->prev_qindex) / cm->delta_q_res; |
| const int absdq = abs(dq); |
| int i; |
| for (i = 0; i < absdq; ++i) { |
| td->counts->delta_q[i][1]++; |
| } |
| if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++; |
| xd->prev_qindex = mbmi->current_q_index; |
| } |
| #else |
| (void)mi_row; |
| (void)mi_col; |
| #endif |
| if (!frame_is_intra_only(cm)) { |
| FRAME_COUNTS *const counts = td->counts; |
| const int inter_block = is_inter_block(mbmi); |
| const int seg_ref_active = |
| segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); |
| if (!seg_ref_active) { |
| #if CONFIG_SUPERTX |
| if (!supertx_enabled) |
| #endif |
| counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++; |
| // If the segment reference feature is enabled we have only a single |
| // reference frame allowed for the segment so exclude it from |
| // the reference frame counts used to work out probabilities. |
| if (inter_block) { |
| const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0]; |
| #if CONFIG_EXT_REFS |
| const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1]; |
| #endif // CONFIG_EXT_REFS |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) |
| counts->comp_inter[av1_get_reference_mode_context(cm, xd)] |
| [has_second_ref(mbmi)]++; |
| |
| if (has_second_ref(mbmi)) { |
| #if CONFIG_EXT_REFS |
| const int bit = (ref0 == GOLDEN_FRAME || ref0 == LAST3_FRAME); |
| |
| counts->comp_ref[av1_get_pred_context_comp_ref_p(cm, xd)][0][bit]++; |
| if (!bit) { |
| counts->comp_ref[av1_get_pred_context_comp_ref_p1(cm, xd)][1] |
| [ref0 == LAST_FRAME]++; |
| } else { |
| counts->comp_ref[av1_get_pred_context_comp_ref_p2(cm, xd)][2] |
| [ref0 == GOLDEN_FRAME]++; |
| } |
| |
| counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p(cm, xd)][0] |
| [ref1 == ALTREF_FRAME]++; |
| #else |
| counts->comp_ref[av1_get_pred_context_comp_ref_p(cm, xd)][0] |
| [ref0 == GOLDEN_FRAME]++; |
| #endif // CONFIG_EXT_REFS |
| } else { |
| #if CONFIG_EXT_REFS |
| const int bit = (ref0 == ALTREF_FRAME || ref0 == BWDREF_FRAME); |
| |
| counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0][bit]++; |
| if (bit) { |
| counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1] |
| [ref0 != BWDREF_FRAME]++; |
| } else { |
| const int bit1 = !(ref0 == LAST2_FRAME || ref0 == LAST_FRAME); |
| counts->single_ref[av1_get_pred_context_single_ref_p3(xd)][2] |
| [bit1]++; |
| if (!bit1) { |
| counts->single_ref[av1_get_pred_context_single_ref_p4(xd)][3] |
| [ref0 != LAST_FRAME]++; |
| } else { |
| counts->single_ref[av1_get_pred_context_single_ref_p5(xd)][4] |
| [ref0 != LAST3_FRAME]++; |
| } |
| } |
| #else |
| counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0] |
| [ref0 != LAST_FRAME]++; |
| if (ref0 != LAST_FRAME) { |
| counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1] |
| [ref0 != GOLDEN_FRAME]++; |
| } |
| #endif // CONFIG_EXT_REFS |
| } |
| |
| #if CONFIG_EXT_INTER |
| if (cm->reference_mode != COMPOUND_REFERENCE && |
| #if CONFIG_SUPERTX |
| !supertx_enabled && |
| #endif |
| is_interintra_allowed(mbmi)) { |
| const int bsize_group = size_group_lookup[bsize]; |
| if (mbmi->ref_frame[1] == INTRA_FRAME) { |
| counts->interintra[bsize_group][1]++; |
| counts->interintra_mode[bsize_group][mbmi->interintra_mode]++; |
| if (is_interintra_wedge_used(bsize)) |
| counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++; |
| } else { |
| counts->interintra[bsize_group][0]++; |
| } |
| } |
| #endif // CONFIG_EXT_INTER |
| |
| #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION |
| #if CONFIG_SUPERTX |
| if (!supertx_enabled) |
| #endif // CONFIG_SUPERTX |
| #if CONFIG_EXT_INTER |
| if (mbmi->ref_frame[1] != INTRA_FRAME) |
| #endif // CONFIG_EXT_INTER |
| #if CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION |
| { |
| if (motion_mode_allowed(mbmi) == WARPED_CAUSAL) |
| counts->motion_mode[mbmi->sb_type][mbmi->motion_mode]++; |
| else if (motion_mode_allowed(mbmi) == OBMC_CAUSAL) |
| counts->obmc[mbmi->sb_type][mbmi->motion_mode == OBMC_CAUSAL]++; |
| } |
| #else |
| if (motion_mode_allowed(mbmi) > SIMPLE_TRANSLATION) |
| counts->motion_mode[mbmi->sb_type][mbmi->motion_mode]++; |
| #endif // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION |
| #endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION |
| |
| #if CONFIG_EXT_INTER |
| if (cm->reference_mode != SINGLE_REFERENCE && |
| is_inter_compound_mode(mbmi->mode) && |
| #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION |
| mbmi->motion_mode == SIMPLE_TRANSLATION && |
| #endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION |
| is_interinter_wedge_used(bsize)) { |
| counts->compound_interinter[bsize][mbmi->interinter_compound]++; |
| } |
| #endif // CONFIG_EXT_INTER |
| } |
| } |
| |
| if (inter_block && |
| !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| int16_t mode_ctx; |
| #if !CONFIG_REF_MV |
| mode_ctx = mbmi_ext->mode_context[mbmi->ref_frame[0]]; |
| #endif |
| if (bsize >= BLOCK_8X8) { |
| const PREDICTION_MODE mode = mbmi->mode; |
| #if CONFIG_REF_MV |
| #if CONFIG_EXT_INTER |
| if (has_second_ref(mbmi)) { |
| mode_ctx = mbmi_ext->compound_mode_context[mbmi->ref_frame[0]]; |
| ++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)]; |
| } else { |
| #endif // CONFIG_EXT_INTER |
| mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context, |
| mbmi->ref_frame, bsize, -1); |
| update_inter_mode_stats(counts, mode, |
| #if CONFIG_EXT_INTER |
| has_second_ref(mbmi), |
| #endif // CONFIG_EXT_INTER |
| mode_ctx); |
| |
| if (mode == NEWMV) { |
| uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); |
| int idx; |
| |
| for (idx = 0; idx < 2; ++idx) { |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { |
| uint8_t drl_ctx = |
| av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); |
| ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx]; |
| |
| if (mbmi->ref_mv_idx == idx) break; |
| } |
| } |
| } |
| |
| if (mode == NEARMV) { |
| uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); |
| int idx; |
| |
| for (idx = 1; idx < 3; ++idx) { |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { |
| uint8_t drl_ctx = |
| av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); |
| ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx - 1]; |
| |
| if (mbmi->ref_mv_idx == idx - 1) break; |
| } |
| } |
| } |
| #if CONFIG_EXT_INTER |
| } |
| #endif // CONFIG_EXT_INTER |
| #else |
| #if CONFIG_EXT_INTER |
| if (is_inter_compound_mode(mode)) |
| ++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)]; |
| else |
| #endif // CONFIG_EXT_INTER |
| ++counts->inter_mode[mode_ctx][INTER_OFFSET(mode)]; |
| #endif |
| } else { |
| const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; |
| int idx, idy; |
| for (idy = 0; idy < 2; idy += num_4x4_h) { |
| for (idx = 0; idx < 2; idx += num_4x4_w) { |
| const int j = idy * 2 + idx; |
| const PREDICTION_MODE b_mode = mi->bmi[j].as_mode; |
| #if CONFIG_REF_MV |
| #if CONFIG_EXT_INTER |
| if (has_second_ref(mbmi)) { |
| mode_ctx = mbmi_ext->compound_mode_context[mbmi->ref_frame[0]]; |
| ++counts->inter_compound_mode[mode_ctx] |
| [INTER_COMPOUND_OFFSET(b_mode)]; |
| } else { |
| #endif // CONFIG_EXT_INTER |
| mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context, |
| mbmi->ref_frame, bsize, j); |
| update_inter_mode_stats(counts, b_mode, |
| #if CONFIG_EXT_INTER |
| has_second_ref(mbmi), |
| #endif // CONFIG_EXT_INTER |
| mode_ctx); |
| #if CONFIG_EXT_INTER |
| } |
| #endif // CONFIG_EXT_INTER |
| #else |
| #if CONFIG_EXT_INTER |
| if (is_inter_compound_mode(b_mode)) |
| ++counts->inter_compound_mode[mode_ctx] |
| [INTER_COMPOUND_OFFSET(b_mode)]; |
| else |
| #endif // CONFIG_EXT_INTER |
| ++counts->inter_mode[mode_ctx][INTER_OFFSET(b_mode)]; |
| #endif |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| typedef struct { |
| ENTROPY_CONTEXT a[2 * MAX_MIB_SIZE * MAX_MB_PLANE]; |
| ENTROPY_CONTEXT l[2 * MAX_MIB_SIZE * MAX_MB_PLANE]; |
| PARTITION_CONTEXT sa[MAX_MIB_SIZE]; |
| PARTITION_CONTEXT sl[MAX_MIB_SIZE]; |
| #if CONFIG_VAR_TX |
| TXFM_CONTEXT *p_ta; |
| TXFM_CONTEXT *p_tl; |
| TXFM_CONTEXT ta[MAX_MIB_SIZE]; |
| TXFM_CONTEXT tl[MAX_MIB_SIZE]; |
| #endif |
| } RD_SEARCH_MACROBLOCK_CONTEXT; |
| |
| static void restore_context(MACROBLOCK *x, |
| const RD_SEARCH_MACROBLOCK_CONTEXT *ctx, int mi_row, |
| int mi_col, |
| #if CONFIG_PVQ |
| od_rollback_buffer *rdo_buf, |
| #endif |
| BLOCK_SIZE bsize) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| int p; |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; |
| int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| for (p = 0; p < MAX_MB_PLANE; p++) { |
| memcpy(xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x), |
| ctx->a + num_4x4_blocks_wide * p, |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> |
| xd->plane[p].subsampling_x); |
| memcpy(xd->left_context[p] + |
| ((mi_row & MAX_MIB_MASK) * 2 >> xd->plane[p].subsampling_y), |
| ctx->l + num_4x4_blocks_high * p, |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> |
| xd->plane[p].subsampling_y); |
| } |
| memcpy(xd->above_seg_context + mi_col, ctx->sa, |
| sizeof(*xd->above_seg_context) * mi_width); |
| memcpy(xd->left_seg_context + (mi_row & MAX_MIB_MASK), ctx->sl, |
| sizeof(xd->left_seg_context[0]) * mi_height); |
| #if CONFIG_VAR_TX |
| xd->above_txfm_context = ctx->p_ta; |
| xd->left_txfm_context = ctx->p_tl; |
| memcpy(xd->above_txfm_context, ctx->ta, |
| sizeof(*xd->above_txfm_context) * mi_width); |
| memcpy(xd->left_txfm_context, ctx->tl, |
| sizeof(*xd->left_txfm_context) * mi_height); |
| #endif |
| #if CONFIG_PVQ |
| od_encode_rollback(&x->daala_enc, rdo_buf); |
| #endif |
| } |
| |
| static void save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx, |
| int mi_row, int mi_col, |
| #if CONFIG_PVQ |
| od_rollback_buffer *rdo_buf, |
| #endif |
| BLOCK_SIZE bsize) { |
| const MACROBLOCKD *xd = &x->e_mbd; |
| int p; |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; |
| int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| |
| // buffer the above/left context information of the block in search. |
| for (p = 0; p < MAX_MB_PLANE; ++p) { |
| memcpy(ctx->a + num_4x4_blocks_wide * p, |
| xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x), |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> |
| xd->plane[p].subsampling_x); |
| memcpy(ctx->l + num_4x4_blocks_high * p, |
| xd->left_context[p] + |
| ((mi_row & MAX_MIB_MASK) * 2 >> xd->plane[p].subsampling_y), |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> |
| xd->plane[p].subsampling_y); |
| } |
| memcpy(ctx->sa, xd->above_seg_context + mi_col, |
| sizeof(*xd->above_seg_context) * mi_width); |
| memcpy(ctx->sl, xd->left_seg_context + (mi_row & MAX_MIB_MASK), |
| sizeof(xd->left_seg_context[0]) * mi_height); |
| #if CONFIG_VAR_TX |
| memcpy(ctx->ta, xd->above_txfm_context, |
| sizeof(*xd->above_txfm_context) * mi_width); |
| memcpy(ctx->tl, xd->left_txfm_context, |
| sizeof(*xd->left_txfm_context) * mi_height); |
| ctx->p_ta = xd->above_txfm_context; |
| ctx->p_tl = xd->left_txfm_context; |
| #endif |
| #if CONFIG_PVQ |
| od_encode_checkpoint(&x->daala_enc, rdo_buf); |
| #endif |
| } |
| |
| static void encode_b(const AV1_COMP *const cpi, const TileInfo *const tile, |
| ThreadData *td, TOKENEXTRA **tp, int mi_row, int mi_col, |
| RUN_TYPE dry_run, BLOCK_SIZE bsize, |
| #if CONFIG_EXT_PARTITION_TYPES |
| PARTITION_TYPE partition, |
| #endif |
| PICK_MODE_CONTEXT *ctx, int *rate) { |
| MACROBLOCK *const x = &td->mb; |
| set_offsets(cpi, tile, x, mi_row, mi_col, bsize); |
| #if CONFIG_EXT_PARTITION_TYPES |
| x->e_mbd.mi[0]->mbmi.partition = partition; |
| #endif |
| update_state(cpi, td, ctx, mi_row, mi_col, bsize, dry_run); |
| encode_superblock(cpi, td, tp, dry_run, mi_row, mi_col, bsize, ctx, rate); |
| |
| if (!dry_run) { |
| #if CONFIG_SUPERTX |
| update_stats(&cpi->common, td, mi_row, mi_col, 0); |
| #else |
| update_stats(&cpi->common, td, mi_row, mi_col); |
| #endif |
| } |
| } |
| |
| static void encode_sb(const AV1_COMP *const cpi, ThreadData *td, |
| const TileInfo *const tile, TOKENEXTRA **tp, int mi_row, |
| int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize, |
| PC_TREE *pc_tree, int *rate) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| |
| const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); |
| const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2; |
| const PARTITION_TYPE partition = pc_tree->partitioning; |
| const BLOCK_SIZE subsize = get_subsize(bsize, partition); |
| #if CONFIG_EXT_PARTITION_TYPES |
| const BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); |
| #endif |
| |
| assert(bsize >= BLOCK_8X8); |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| if (!dry_run) td->counts->partition[ctx][partition]++; |
| |
| #if CONFIG_SUPERTX |
| if (!frame_is_intra_only(cm) && bsize <= MAX_SUPERTX_BLOCK_SIZE && |
| partition != PARTITION_NONE && !xd->lossless[0]) { |
| int supertx_enabled; |
| TX_SIZE supertx_size = max_txsize_lookup[bsize]; |
| supertx_enabled = check_supertx_sb(bsize, supertx_size, pc_tree); |
| if (supertx_enabled) { |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| int x_idx, y_idx, i; |
| uint8_t *dst_buf[3]; |
| int dst_stride[3]; |
| set_skip_context(xd, mi_row, mi_col); |
| set_mode_info_offsets(cpi, x, xd, mi_row, mi_col); |
| update_state_sb_supertx(cpi, td, tile, mi_row, mi_col, bsize, dry_run, |
| pc_tree); |
| |
| av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| dst_buf[i] = xd->plane[i].dst.buf; |
| dst_stride[i] = xd->plane[i].dst.stride; |
| } |
| predict_sb_complex(cpi, td, tile, mi_row, mi_col, mi_row, mi_col, dry_run, |
| bsize, bsize, dst_buf, dst_stride, pc_tree); |
| |
| set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize); |
| set_segment_id_supertx(cpi, x, mi_row, mi_col, bsize); |
| |
| if (!x->skip) { |
| int this_rate = 0; |
| x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct; |
| |
| av1_encode_sb_supertx((AV1_COMMON *)cm, x, bsize); |
| av1_tokenize_sb_supertx(cpi, td, tp, dry_run, bsize, rate); |
| if (rate) *rate += this_rate; |
| } else { |
| xd->mi[0]->mbmi.skip = 1; |
| if (!dry_run) td->counts->skip[av1_get_skip_context(xd)][1]++; |
| reset_skip_context(xd, bsize); |
| } |
| if (!dry_run) { |
| for (y_idx = 0; y_idx < mi_height; y_idx++) |
| for (x_idx = 0; x_idx < mi_width; x_idx++) { |
| if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > |
| x_idx && |
| (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > |
| y_idx) { |
| xd->mi[x_idx + y_idx * cm->mi_stride]->mbmi.skip = |
| xd->mi[0]->mbmi.skip; |
| } |
| } |
| td->counts->supertx[partition_supertx_context_lookup[partition]] |
| [supertx_size][1]++; |
| td->counts->supertx_size[supertx_size]++; |
| #if CONFIG_EXT_TX |
| if (get_ext_tx_types(supertx_size, bsize, 1) > 1 && |
| !xd->mi[0]->mbmi.skip) { |
| int eset = get_ext_tx_set(supertx_size, bsize, 1); |
| if (eset > 0) { |
| ++td->counts->inter_ext_tx[eset][supertx_size] |
| [xd->mi[0]->mbmi.tx_type]; |
| } |
| } |
| #else |
| if (supertx_size < TX_32X32 && !xd->mi[0]->mbmi.skip) { |
| ++td->counts->inter_ext_tx[supertx_size][xd->mi[0]->mbmi.tx_type]; |
| } |
| #endif // CONFIG_EXT_TX |
| } |
| #if CONFIG_EXT_PARTITION_TYPES |
| update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, |
| partition); |
| #else |
| if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8) |
| update_partition_context(xd, mi_row, mi_col, subsize, bsize); |
| #endif |
| #if CONFIG_VAR_TX |
| set_txfm_ctxs(supertx_size, mi_width, mi_height, xd->mi[0]->mbmi.skip, |
| xd); |
| #endif // CONFIG_VAR_TX |
| return; |
| } else { |
| if (!dry_run) { |
| td->counts->supertx[partition_supertx_context_lookup[partition]] |
| [supertx_size][0]++; |
| } |
| } |
| } |
| #endif // CONFIG_SUPERTX |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize, |
| #if CONFIG_EXT_PARTITION_TYPES |
| partition, |
| #endif |
| &pc_tree->none, rate); |
| break; |
| case PARTITION_VERT: |
| encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize, |
| #if CONFIG_EXT_PARTITION_TYPES |
| partition, |
| #endif |
| &pc_tree->vertical[0], rate); |
| if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) { |
| encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, dry_run, subsize, |
| #if CONFIG_EXT_PARTITION_TYPES |
| partition, |
| #endif |
| &pc_tree->vertical[1], rate); |
| } |
| break; |
| case PARTITION_HORZ: |
| encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize, |
| #if CONFIG_EXT_PARTITION_TYPES |
| partition, |
| #endif |
| &pc_tree->horizontal[0], rate); |
| if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) { |
| encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, dry_run, subsize, |
| #if CONFIG_EXT_PARTITION_TYPES |
| partition, |
| #endif |
| &pc_tree->horizontal[1], rate); |
| } |
| break; |
| case PARTITION_SPLIT: |
| if (bsize == BLOCK_8X8) { |
| encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize, |
| #if CONFIG_EXT_PARTITION_TYPES |
| partition, |
| #endif |
| pc_tree->leaf_split[0], rate); |
| } else { |
| encode_sb(cpi, td, tile, tp, mi_row, mi_col, dry_run, subsize, |
| pc_tree->split[0], rate); |
| encode_sb(cpi, td, tile, tp, mi_row, mi_col + hbs, dry_run, subsize, |
| pc_tree->split[1], rate); |
| encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col, dry_run, subsize, |
| pc_tree->split[2], rate); |
| encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, dry_run, |
| subsize, pc_tree->split[3], rate); |
| } |
| break; |
| #if CONFIG_EXT_PARTITION_TYPES |
| case PARTITION_HORZ_A: |
| encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, bsize2, partition, |
| &pc_tree->horizontala[0], rate); |
| encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, dry_run, bsize2, |
| partition, &pc_tree->horizontala[1], rate); |
| encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, dry_run, subsize, |
| partition, &pc_tree->horizontala[2], rate); |
| break; |
| case PARTITION_HORZ_B: |
| encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize, partition, |
| &pc_tree->horizontalb[0], rate); |
| encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, dry_run, bsize2, |
| partition, &pc_tree->horizontalb[1], rate); |
| encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col + hbs, dry_run, bsize2, |
| partition, &pc_tree->horizontalb[2], rate); |
| break; |
| case PARTITION_VERT_A: |
| encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, bsize2, partition, |
| &pc_tree->verticala[0], rate); |
| encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, dry_run, bsize2, |
| partition, &pc_tree->verticala[1], rate); |
| encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, dry_run, subsize, |
| partition, &pc_tree->verticala[2], rate); |
| |
| break; |
| case PARTITION_VERT_B: |
| encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize, partition, |
| &pc_tree->verticalb[0], rate); |
| encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, dry_run, bsize2, |
| partition, &pc_tree->verticalb[1], rate); |
| encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col + hbs, dry_run, bsize2, |
| partition, &pc_tree->verticalb[2], rate); |
| break; |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| default: assert(0 && "Invalid partition type."); break; |
| } |
| |
| #if CONFIG_EXT_PARTITION_TYPES |
| update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); |
| #else |
| if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8) |
| update_partition_context(xd, mi_row, mi_col, subsize, bsize); |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| } |
| |
| // Check to see if the given partition size is allowed for a specified number |
| // of mi block rows and columns remaining in the image. |
| // If not then return the largest allowed partition size |
| static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left, |
| int cols_left, int *bh, int *bw) { |
| if (rows_left <= 0 || cols_left <= 0) { |
| return AOMMIN(bsize, BLOCK_8X8); |
| } else { |
| for (; bsize > 0; bsize -= 3) { |
| *bh = num_8x8_blocks_high_lookup[bsize]; |
| *bw = num_8x8_blocks_wide_lookup[bsize]; |
| if ((*bh <= rows_left) && (*bw <= cols_left)) { |
| break; |
| } |
| } |
| } |
| return bsize; |
| } |
| |
| static void set_partial_sb_partition(const AV1_COMMON *const cm, MODE_INFO *mi, |
| int bh_in, int bw_in, |
| int mi_rows_remaining, |
| int mi_cols_remaining, BLOCK_SIZE bsize, |
| MODE_INFO **mib) { |
| int bh = bh_in; |
| int r, c; |
| for (r = 0; r < cm->mib_size; r += bh) { |
| int bw = bw_in; |
| for (c = 0; c < cm->mib_size; c += bw) { |
| const int index = r * cm->mi_stride + c; |
| mib[index] = mi + index; |
| mib[index]->mbmi.sb_type = find_partition_size( |
| bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw); |
| } |
| } |
| } |
| |
| // This function attempts to set all mode info entries in a given superblock |
| // to the same block partition size. |
| // However, at the bottom and right borders of the image the requested size |
| // may not be allowed in which case this code attempts to choose the largest |
| // allowable partition. |
| static void set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile, |
| MODE_INFO **mib, int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int mi_rows_remaining = tile->mi_row_end - mi_row; |
| const int mi_cols_remaining = tile->mi_col_end - mi_col; |
| int block_row, block_col; |
| MODE_INFO *const mi_upper_left = cm->mi + mi_row * cm->mi_stride + mi_col; |
| int bh = num_8x8_blocks_high_lookup[bsize]; |
| int bw = num_8x8_blocks_wide_lookup[bsize]; |
| |
| assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0)); |
| |
| // Apply the requested partition size to the SB if it is all "in image" |
| if ((mi_cols_remaining >= cm->mib_size) && |
| (mi_rows_remaining >= cm->mib_size)) { |
| for (block_row = 0; block_row < cm->mib_size; block_row += bh) { |
| for (block_col = 0; block_col < cm->mib_size; block_col += bw) { |
| int index = block_row * cm->mi_stride + block_col; |
| mib[index] = mi_upper_left + index; |
| mib[index]->mbmi.sb_type = bsize; |
| } |
| } |
| } else { |
| // Else this is a partial SB. |
| set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining, |
| mi_cols_remaining, bsize, mib); |
| } |
| } |
| |
| static void rd_use_partition(AV1_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, MODE_INFO **mib, |
| TOKENEXTRA **tp, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, int *rate, int64_t *dist, |
| #if CONFIG_SUPERTX |
| int *rate_nocoef, |
| #endif |
| int do_recon, PC_TREE *pc_tree) { |
| AV1_COMMON *const cm = &cpi->common; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int bs = num_8x8_blocks_wide_lookup[bsize]; |
| const int hbs = bs / 2; |
| int i; |
| const int pl = partition_plane_context(xd, mi_row, mi_col, bsize); |
| const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize); |
| const BLOCK_SIZE subsize = get_subsize(bsize, partition); |
| RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; |
| RD_COST last_part_rdc, none_rdc, chosen_rdc; |
| BLOCK_SIZE sub_subsize = BLOCK_4X4; |
| int splits_below = 0; |
| BLOCK_SIZE bs_type = mib[0]->mbmi.sb_type; |
| int do_partition_search = 1; |
| PICK_MODE_CONTEXT *ctx_none = &pc_tree->none; |
| #if CONFIG_SUPERTX |
| int last_part_rate_nocoef = INT_MAX; |
| int none_rate_nocoef = INT_MAX; |
| int chosen_rate_nocoef = INT_MAX; |
| #endif |
| #if CONFIG_PVQ |
| od_rollback_buffer pre_rdo_buf; |
| #endif |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| assert(num_4x4_blocks_wide_lookup[bsize] == |
| num_4x4_blocks_high_lookup[bsize]); |
| |
| av1_rd_cost_reset(&last_part_rdc); |
| av1_rd_cost_reset(&none_rdc); |
| av1_rd_cost_reset(&chosen_rdc); |
| |
| pc_tree->partitioning = partition; |
| |
| #if CONFIG_VAR_TX |
| xd->above_txfm_context = cm->above_txfm_context + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| #endif |
| #if !CONFIG_PVQ |
| save_context(x, &x_ctx, mi_row, mi_col, bsize); |
| #else |
| save_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize); |
| #endif |
| |
| if (bsize == BLOCK_16X16 && cpi->vaq_refresh) { |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| x->mb_energy = av1_block_energy(cpi, x, bsize); |
| } |
| |
| if (do_partition_search && |
| cpi->sf.partition_search_type == SEARCH_PARTITION && |
| cpi->sf.adjust_partitioning_from_last_frame) { |
| // Check if any of the sub blocks are further split. |
| if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) { |
| sub_subsize = get_subsize(subsize, PARTITION_SPLIT); |
| splits_below = 1; |
| for (i = 0; i < 4; i++) { |
| int jj = i >> 1, ii = i & 0x01; |
| MODE_INFO *this_mi = mib[jj * hbs * cm->mi_stride + ii * hbs]; |
| if (this_mi && this_mi->mbmi.sb_type >= sub_subsize) { |
| splits_below = 0; |
| } |
| } |
| } |
| |
| // If partition is not none try none unless each of the 4 splits are split |
| // even further.. |
| if (partition != PARTITION_NONE && !splits_below && |
| mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) { |
| pc_tree->partitioning = PARTITION_NONE; |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, |
| #if CONFIG_SUPERTX |
| &none_rate_nocoef, |
| #endif |
| #if CONFIG_EXT_PARTITION_TYPES |
| PARTITION_NONE, |
| #endif |
| bsize, ctx_none, INT64_MAX); |
| |
| if (none_rdc.rate < INT_MAX) { |
| none_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE]; |
| none_rdc.rdcost = |
| RDCOST(x->rdmult, x->rddiv, none_rdc.rate, none_rdc.dist); |
| #if CONFIG_SUPERTX |
| none_rate_nocoef += cpi->partition_cost[pl][PARTITION_NONE]; |
| #endif |
| } |
| |
| #if !CONFIG_PVQ |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize); |
| #else |
| restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize); |
| #endif |
| mib[0]->mbmi.sb_type = bs_type; |
| pc_tree->partitioning = partition; |
| } |
| } |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, |
| #if CONFIG_SUPERTX |
| &last_part_rate_nocoef, |
| #endif |
| #if CONFIG_EXT_PARTITION_TYPES |
| PARTITION_NONE, |
| #endif |
| bsize, ctx_none, INT64_MAX); |
| break; |
| case PARTITION_HORZ: |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, |
| #if CONFIG_SUPERTX |
| &last_part_rate_nocoef, |
| #endif |
| #if CONFIG_EXT_PARTITION_TYPES |
| PARTITION_HORZ, |
| #endif |
| subsize, &pc_tree->horizontal[0], INT64_MAX); |
| if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && |
| mi_row + hbs < cm->mi_rows) { |
| RD_COST tmp_rdc; |
| #if CONFIG_SUPERTX |
| int rt_nocoef = 0; |
| #endif |
| PICK_MODE_CONTEXT *ctx_h = &pc_tree->horizontal[0]; |
| av1_rd_cost_init(&tmp_rdc); |
| update_state(cpi, td, ctx_h, mi_row, mi_col, subsize, 1); |
| encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, subsize, |
| ctx_h, NULL); |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &tmp_rdc, |
| #if CONFIG_SUPERTX |
| &rt_nocoef, |
| #endif |
| #if CONFIG_EXT_PARTITION_TYPES |
| PARTITION_HORZ, |
| #endif |
| subsize, &pc_tree->horizontal[1], INT64_MAX); |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| av1_rd_cost_reset(&last_part_rdc); |
| #if CONFIG_SUPERTX |
| last_part_rate_nocoef = INT_MAX; |
| #endif |
| break; |
| } |
| last_part_rdc.rate += tmp_rdc.rate; |
| last_part_rdc.dist += tmp_rdc.dist; |
| last_part_rdc.rdcost += tmp_rdc.rdcost; |
| #if CONFIG_SUPERTX |
| last_part_rate_nocoef += rt_nocoef; |
| #endif |
| } |
| break; |
| case PARTITION_VERT: |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, |
| #if CONFIG_SUPERTX |
| &last_part_rate_nocoef, |
| #endif |
| #if CONFIG_EXT_PARTITION_TYPES |
| PARTITION_VERT, |
| #endif |
| subsize, &pc_tree->vertical[0], INT64_MAX); |
| if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && |
| mi_col + hbs < cm->mi_cols) { |
| RD_COST tmp_rdc; |
| #if CONFIG_SUPERTX |
| int rt_nocoef = 0; |
| #endif |
| PICK_MODE_CONTEXT *ctx_v = &pc_tree->vertical[0]; |
| av1_rd_cost_init(&tmp_rdc); |
| update_state(cpi, td, ctx_v, mi_row, mi_col, subsize, 1); |
| encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, subsize, |
| ctx_v, NULL); |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &tmp_rdc, |
| #if CONFIG_SUPERTX |
| &rt_nocoef, |
| #endif |
| #if CONFIG_EXT_PARTITION_TYPES |
| PARTITION_VERT, |
| #endif |
| subsize, &pc_tree->vertical[bsize > BLOCK_8X8], |
| INT64_MAX); |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| av1_rd_cost_reset(&last_part_rdc); |
| #if CONFIG_SUPERTX |
| last_part_rate_nocoef = INT_MAX; |
| #endif |
| break; |
| } |
| last_part_rdc.rate += tmp_rdc.rate; |
| last_part_rdc.dist += tmp_rdc.dist; |
| last_part_rdc.rdcost += tmp_rdc.rdcost; |
| #if CONFIG_SUPERTX |
| last_part_rate_nocoef += rt_nocoef; |
| #endif |
| } |
| break; |
| case PARTITION_SPLIT: |
| if (bsize == BLOCK_8X8) { |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, |
| #if CONFIG_SUPERTX |
| &last_part_rate_nocoef, |
| #endif |
| #if CONFIG_EXT_PARTITION_TYPES |
| PARTITION_SPLIT, |
| #endif |
| subsize, pc_tree->leaf_split[0], INT64_MAX); |
| break; |
| } |
| last_part_rdc.rate = 0; |
| last_part_rdc.dist = 0; |
| last_part_rdc.rdcost = 0; |
| #if CONFIG_SUPERTX |
| last_part_rate_nocoef = 0; |
| #endif |
| for (i = 0; i < 4; i++) { |
| int x_idx = (i & 1) * hbs; |
| int y_idx = (i >> 1) * hbs; |
| int jj = i >> 1, ii = i & 0x01; |
| RD_COST tmp_rdc; |
| #if CONFIG_SUPERTX |
| int rt_nocoef; |
| #endif |
| if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) |
| continue; |
| |
| av1_rd_cost_init(&tmp_rdc); |
| rd_use_partition(cpi, td, tile_data, |
| mib + jj * hbs * cm->mi_stride + ii * hbs, tp, |
| mi_row + y_idx, mi_col + x_idx, subsize, &tmp_rdc.rate, |
| &tmp_rdc.dist, |
| #if CONFIG_SUPERTX |
| &rt_nocoef, |
| #endif |
| i != 3, pc_tree->split[i]); |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| av1_rd_cost_reset(&last_part_rdc); |
| #if CONFIG_SUPERTX |
| last_part_rate_nocoef = INT_MAX; |
| #endif |
| break; |
| } |
| last_part_rdc.rate += tmp_rdc.rate; |
| last_part_rdc.dist += tmp_rdc.dist; |
| #if CONFIG_SUPERTX |
| last_part_rate_nocoef += rt_nocoef; |
| #endif |
| } |
| break; |
| #if CONFIG_EXT_PARTITION_TYPES |
| case PARTITION_VERT_A: |
| case PARTITION_VERT_B: |
| case PARTITION_HORZ_A: |
| case PARTITION_HORZ_B: assert(0 && "Cannot handle extended partiton types"); |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| default: assert(0); break; |
| } |
| |
| if (last_part_rdc.rate < INT_MAX) { |
| last_part_rdc.rate += cpi->partition_cost[pl][partition]; |
| last_part_rdc.rdcost = |
| RDCOST(x->rdmult, x->rddiv, last_part_rdc.rate, last_part_rdc.dist); |
| #if CONFIG_SUPERTX |
| last_part_rate_nocoef += cpi->partition_cost[pl][partition]; |
| #endif |
| } |
| |
| if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame && |
| cpi->sf.partition_search_type == SEARCH_PARTITION && |
| partition != PARTITION_SPLIT && bsize > BLOCK_8X8 && |
| (mi_row + bs < cm->mi_rows || mi_row + hbs == cm->mi_rows) && |
| (mi_col + bs < cm->mi_cols || mi_col + hbs == cm->mi_cols)) { |
| BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT); |
| chosen_rdc.rate = 0; |
| chosen_rdc.dist = 0; |
| #if CONFIG_SUPERTX |
| chosen_rate_nocoef = 0; |
| #endif |
| #if !CONFIG_PVQ |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize); |
| #else |
| restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize); |
| #endif |
| pc_tree->partitioning = PARTITION_SPLIT; |
| |
| // Split partition. |
| for (i = 0; i < 4; i++) { |
| int x_idx = (i & 1) * hbs; |
| int y_idx = (i >> 1) * hbs; |
| RD_COST tmp_rdc; |
| #if CONFIG_SUPERTX |
| int rt_nocoef = 0; |
| #endif |
| #if CONFIG_PVQ |
| od_rollback_buffer buf; |
| #endif |
| if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) |
| continue; |
| |
| #if !CONFIG_PVQ |
| save_context(x, &x_ctx, mi_row, mi_col, bsize); |
| #else |
| save_context(x, &x_ctx, mi_row, mi_col, &buf, bsize); |
| #endif |
| pc_tree->split[i]->partitioning = PARTITION_NONE; |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, |
| &tmp_rdc, |
| #if CONFIG_SUPERTX |
| &rt_nocoef, |
| #endif |
| #if CONFIG_EXT_PARTITION_TYPES |
| PARTITION_SPLIT, |
| #endif |
| split_subsize, &pc_tree->split[i]->none, INT64_MAX); |
| |
| #if !CONFIG_PVQ |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize); |
| #else |
| restore_context(x, &x_ctx, mi_row, mi_col, &buf, bsize); |
| #endif |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| av1_rd_cost_reset(&chosen_rdc); |
| #if CONFIG_SUPERTX |
| chosen_rate_nocoef = INT_MAX; |
| #endif |
| break; |
| } |
| |
| chosen_rdc.rate += tmp_rdc.rate; |
| chosen_rdc.dist += tmp_rdc.dist; |
| #if CONFIG_SUPERTX |
| chosen_rate_nocoef += rt_nocoef; |
| #endif |
| |
| if (i != 3) |
| encode_sb(cpi, td, tile_info, tp, mi_row + y_idx, mi_col + x_idx, |
| OUTPUT_ENABLED, split_subsize, pc_tree->split[i], NULL); |
| |
| chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE]; |
| #if CONFIG_SUPERTX |
| chosen_rate_nocoef += cpi->partition_cost[pl][PARTITION_SPLIT]; |
| #endif |
| } |
| if (chosen_rdc.rate < INT_MAX) { |
| chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT]; |
| chosen_rdc.rdcost = |
| RDCOST(x->rdmult, x->rddiv, chosen_rdc.rate, chosen_rdc.dist); |
| #if CONFIG_SUPERTX |
| chosen_rate_nocoef += cpi->partition_cost[pl][PARTITION_NONE]; |
| #endif |
| } |
| } |
| |
| // If last_part is better set the partitioning to that. |
| if (last_part_rdc.rdcost < chosen_rdc.rdcost) { |
| mib[0]->mbmi.sb_type = bsize; |
| if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition; |
| chosen_rdc = last_part_rdc; |
| #if CONFIG_SUPERTX |
| chosen_rate_nocoef = last_part_rate_nocoef; |
| #endif |
| } |
| // If none was better set the partitioning to that. |
| if (none_rdc.rdcost < chosen_rdc.rdcost) { |
| if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; |
| chosen_rdc = none_rdc; |
| #if CONFIG_SUPERTX |
| chosen_rate_nocoef = none_rate_nocoef; |
| #endif |
| } |
| |
| #if !CONFIG_PVQ |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize); |
| #else |
| restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize); |
| #endif |
| |
| // We must have chosen a partitioning and encoding or we'll fail later on. |
| // No other opportunities for success. |
| if (bsize == cm->sb_size) |
| assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX); |
| |
| if (do_recon) { |
| if (bsize == cm->sb_size) { |
| // NOTE: To get estimate for rate due to the tokens, use: |
| // int rate_coeffs = 0; |
| // encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS, |
| // bsize, pc_tree, &rate_coeffs); |
| encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, |
| pc_tree, NULL); |
| } else { |
| encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, |
| pc_tree, NULL); |
| } |
| } |
| |
| *rate = chosen_rdc.rate; |
| *dist = chosen_rdc.dist; |
| #if CONFIG_SUPERTX |
| *rate_nocoef = chosen_rate_nocoef; |
| #endif |
| } |
| |
| /* clang-format off */ |
| static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = { |
| BLOCK_4X4, // 4x4 |
| BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, // 4x8, 8x4, 8x8 |
| BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 8x16, 16x8, 16x16 |
| BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, // 16x32, 32x16, 32x32 |
| BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, // 32x64, 64x32, 64x64 |
| #if CONFIG_EXT_PARTITION |
| BLOCK_16X16, BLOCK_16X16, BLOCK_16X16 // 64x128, 128x64, 128x128 |
| #endif // CONFIG_EXT_PARTITION |
| }; |
| |
| static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = { |
| BLOCK_8X8, // 4x4 |
| BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, // 4x8, 8x4, 8x8 |
| BLOCK_32X32, BLOCK_32X32, BLOCK_32X32, // 8x16, 16x8, 16x16 |
| BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, // 16x32, 32x16, 32x32 |
| BLOCK_LARGEST, BLOCK_LARGEST, BLOCK_LARGEST, // 32x64, 64x32, 64x64 |
| #if CONFIG_EXT_PARTITION |
| BLOCK_LARGEST, BLOCK_LARGEST, BLOCK_LARGEST // 64x128, 128x64, 128x128 |
| #endif // CONFIG_EXT_PARTITION |
| }; |
| |
| // Next square block size less or equal than current block size. |
| static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = { |
| BLOCK_4X4, // 4x4 |
| BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 4x8, 8x4, 8x8 |
| BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, // 8x16, 16x8, 16x16 |
| BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, // 16x32, 32x16, 32x32 |
| BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, // 32x64, 64x32, 64x64 |
| #if CONFIG_EXT_PARTITION |
| BLOCK_64X64, BLOCK_64X64, BLOCK_128X128 // 64x128, 128x64, 128x128 |
| #endif // CONFIG_EXT_PARTITION |
| }; |
| /* clang-format on */ |
| |
| // Look at all the mode_info entries for blocks that are part of this |
| // partition and find the min and max values for sb_type. |
| // At the moment this is designed to work on a superblock but could be |
| // adjusted to use a size parameter. |
| // |
| // The min and max are assumed to have been initialized prior to calling this |
| // function so repeat calls can accumulate a min and max of more than one |
| // superblock. |
| static void get_sb_partition_size_range(const AV1_COMMON *const cm, |
| MACROBLOCKD *xd, MODE_INFO **mib, |
| BLOCK_SIZE *min_block_size, |
| BLOCK_SIZE *max_block_size) { |
| int i, j; |
| int index = 0; |
| |
| // Check the sb_type for each block that belongs to this region. |
| for (i = 0; i < cm->mib_size; ++i) { |
| for (j = 0; j < cm->mib_size; ++j) { |
| MODE_INFO *mi = mib[index + j]; |
| BLOCK_SIZE sb_type = mi ? mi->mbmi.sb_type : BLOCK_4X4; |
| *min_block_size = AOMMIN(*min_block_size, sb_type); |
| *max_block_size = AOMMAX(*max_block_size, sb_type); |
| } |
| index += xd->mi_stride; |
| } |
| } |
| |
| // Look at neighboring blocks and set a min and max partition size based on |
| // what they chose. |
| static void rd_auto_partition_range(AV1_COMP *cpi, const TileInfo *const tile, |
| MACROBLOCKD *const xd, int mi_row, |
| int mi_col, BLOCK_SIZE *min_block_size, |
| BLOCK_SIZE *max_block_size) { |
| AV1_COMMON *const cm = &cpi->common; |
| MODE_INFO **mi = xd->mi; |
| const int left_in_image = xd->left_available && mi[-1]; |
| const int above_in_image = xd->up_available && mi[-xd->mi_stride]; |
| const int mi_rows_remaining = tile->mi_row_end - mi_row; |
| const int mi_cols_remaining = tile->mi_col_end - mi_col; |
| int bh, bw; |
| BLOCK_SIZE min_size = BLOCK_4X4; |
| BLOCK_SIZE max_size = BLOCK_LARGEST; |
| |
| // Trap case where we do not have a prediction. |
| if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) { |
| // Default "min to max" and "max to min" |
| min_size = BLOCK_LARGEST; |
| max_size = BLOCK_4X4; |
| |
| // NOTE: each call to get_sb_partition_size_range() uses the previous |
| // passed in values for min and max as a starting point. |
| // Find the min and max partition used in previous frame at this location |
| if (cm->frame_type != KEY_FRAME) { |
| MODE_INFO **prev_mi = |
| &cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col]; |
| get_sb_partition_size_range(cm, xd, prev_mi, &min_size, &max_size); |
| } |
| // Find the min and max partition sizes used in the left superblock |
| if (left_in_image) { |
| MODE_INFO **left_sb_mi = &mi[-cm->mib_size]; |
| get_sb_partition_size_range(cm, xd, left_sb_mi, &min_size, &max_size); |
| } |
| // Find the min and max partition sizes used in the above suprblock. |
| if (above_in_image) { |
| MODE_INFO **above_sb_mi = &mi[-xd->mi_stride * cm->mib_size]; |
| get_sb_partition_size_range(cm, xd, above_sb_mi, &min_size, &max_size); |
| } |
| |
| // Adjust observed min and max for "relaxed" auto partition case. |
| if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) { |
| min_size = min_partition_size[min_size]; |
| max_size = max_partition_size[max_size]; |
| } |
| } |
| |
| // Check border cases where max and min from neighbors may not be legal. |
| max_size = find_partition_size(max_size, mi_rows_remaining, mi_cols_remaining, |
| &bh, &bw); |
| min_size = AOMMIN(min_size, max_size); |
| |
| // Test for blocks at the edge of the active image. |
| // This may be the actual edge of the image or where there are formatting |
| // bars. |
| if (av1_active_edge_sb(cpi, mi_row, mi_col)) { |
| min_size = BLOCK_4X4; |
| } else { |
| min_size = AOMMIN(cpi->sf.rd_auto_partition_min_limit, min_size); |
| } |
| |
| // When use_square_partition_only is true, make sure at least one square |
| // partition is allowed by selecting the next smaller square size as |
| // *min_block_size. |
| if (cpi->sf.use_square_partition_only) { |
| min_size = AOMMIN(min_size, next_square_size[max_size]); |
| } |
| |
| *min_block_size = AOMMIN(min_size, cm->sb_size); |
| *max_block_size = AOMMIN(max_size, cm->sb_size); |
| } |
| |
| // TODO(jingning) refactor functions setting partition search range |
| static void set_partition_range(const AV1_COMMON *const cm, |
| const MACROBLOCKD *const xd, int mi_row, |
| int mi_col, BLOCK_SIZE bsize, |
| BLOCK_SIZE *const min_bs, |
| BLOCK_SIZE *const max_bs) { |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| int idx, idy; |
| |
| const int idx_str = cm->mi_stride * mi_row + mi_col; |
| MODE_INFO **const prev_mi = &cm->prev_mi_grid_visible[idx_str]; |
| BLOCK_SIZE min_size = BLOCK_64X64; // default values |
| BLOCK_SIZE max_size = BLOCK_4X4; |
| |
| if (prev_mi) { |
| for (idy = 0; idy < mi_height; ++idy) { |
| for (idx = 0; idx < mi_width; ++idx) { |
| const MODE_INFO *const mi = prev_mi[idy * cm->mi_stride + idx]; |
| const BLOCK_SIZE bs = mi ? mi->mbmi.sb_type : bsize; |
| min_size = AOMMIN(min_size, bs); |
| max_size = AOMMAX(max_size, bs); |
| } |
| } |
| } |
| |
| if (xd->left_available) { |
| for (idy = 0; idy < mi_height; ++idy) { |
| const MODE_INFO *const mi = xd->mi[idy * cm->mi_stride - 1]; |
| const BLOCK_SIZE bs = mi ? mi->mbmi.sb_type : bsize; |
| min_size = AOMMIN(min_size, bs); |
| max_size = AOMMAX(max_size, bs); |
| } |
| } |
| |
| if (xd->up_available) { |
| for (idx = 0; idx < mi_width; ++idx) { |
| const MODE_INFO *const mi = xd->mi[idx - cm->mi_stride]; |
| const BLOCK_SIZE bs = mi ? mi->mbmi.sb_type : bsize; |
| min_size = AOMMIN(min_size, bs); |
| max_size = AOMMAX(max_size, bs); |
| } |
| } |
| |
| if (min_size == max_size) { |
| min_size = min_partition_size[min_size]; |
| max_size = max_partition_size[max_size]; |
| } |
| |
| *min_bs = AOMMIN(min_size, cm->sb_size); |
| *max_bs = AOMMIN(max_size, cm->sb_size); |
| } |
| |
| static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { |
| memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv)); |
| } |
| |
| static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { |
| memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv)); |
| } |
| |
| #if CONFIG_FP_MB_STATS |
| const int qindex_skip_threshold_lookup[BLOCK_SIZES] = { |
| 0, |
| 10, |
| 10, |
| 30, |
| 40, |
| 40, |
| 60, |
| 80, |
| 80, |
| 90, |
| 100, |
| 100, |
| 120, |
| #if CONFIG_EXT_PARTITION |
| // TODO(debargha): What are the correct numbers here? |
| 130, |
| 130, |
| 150 |
| #endif // CONFIG_EXT_PARTITION |
| }; |
| const int qindex_split_threshold_lookup[BLOCK_SIZES] = { |
| 0, |
| 3, |
| 3, |
| 7, |
| 15, |
| 15, |
| 30, |
| 40, |
| 40, |
| 60, |
| 80, |
| 80, |
| 120, |
| #if CONFIG_EXT_PARTITION |
| // TODO(debargha): What are the correct numbers here? |
| 160, |
| 160, |
| 240 |
| #endif // CONFIG_EXT_PARTITION |
| }; |
| const int complexity_16x16_blocks_threshold[BLOCK_SIZES] = { |
| 1, |
| 1, |
| 1, |
| 1, |
| 1, |
| 1, |
| 1, |
| 1, |
| 1, |
| 1, |
| 4, |
| 4, |
| 6, |
| #if CONFIG_EXT_PARTITION |
| // TODO(debargha): What are the correct numbers here? |
| 8, |
| 8, |
| 10 |
| #endif // CONFIG_EXT_PARTITION |
| }; |
| |
| typedef enum { |
| MV_ZERO = 0, |
| MV_LEFT = 1, |
| MV_UP = 2, |
| MV_RIGHT = 3, |
| MV_DOWN = 4, |
| MV_INVALID |
| } MOTION_DIRECTION; |
| |
| static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) { |
| if (fp_byte & FPMB_MOTION_ZERO_MASK) { |
| return MV_ZERO; |
| } else if (fp_byte & FPMB_MOTION_LEFT_MASK) { |
| return MV_LEFT; |
| } else if (fp_byte & FPMB_MOTION_RIGHT_MASK) { |
| return MV_RIGHT; |
| } else if (fp_byte & FPMB_MOTION_UP_MASK) { |
| return MV_UP; |
| } else { |
| return MV_DOWN; |
| } |
| } |
| |
| static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv, |
| MOTION_DIRECTION that_mv) { |
| if (this_mv == that_mv) { |
| return 0; |
| } else { |
| return abs(this_mv - that_mv) == 2 ? 2 : 1; |
| } |
| } |
| #endif |
| |
| #if CONFIG_EXT_PARTITION_TYPES |
| static void rd_test_partition3( |
| const AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, |
| TOKENEXTRA **tp, PC_TREE *pc_tree, RD_COST *best_rdc, |
| PICK_MODE_CONTEXT ctxs[3], PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, PARTITION_TYPE partition, |
| #if CONFIG_SUPERTX |
| int64_t best_rd, int *best_rate_nocoef, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, |
| #endif |
| int mi_row0, int mi_col0, BLOCK_SIZE subsize0, int mi_row1, int mi_col1, |
| BLOCK_SIZE subsize1, int mi_row2, int mi_col2, BLOCK_SIZE subsize2) { |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| RD_COST this_rdc, sum_rdc; |
| #if CONFIG_SUPERTX |
| const AV1_COMMON *const cm = &cpi->common; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| int this_rate_nocoef, sum_rate_nocoef; |
| int abort_flag; |
| const int supertx_allowed = !frame_is_intra_only(cm) && |
| bsize <= MAX_SUPERTX_BLOCK_SIZE && |
| !xd->lossless[0]; |
| #endif |
| if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx); |
| |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row0, mi_col0, &sum_rdc, |
| #if CONFIG_SUPERTX |
| &sum_rate_nocoef, |
| #endif |
| #if CONFIG_EXT_PARTITION_TYPES |
| partition, |
| #endif |
| subsize0, &ctxs[0], best_rdc->rdcost); |
| #if CONFIG_SUPERTX |
| abort_flag = sum_rdc.rdcost >= best_rd; |
| #endif |
| |
| #if CONFIG_SUPERTX |
| if (sum_rdc.rdcost < INT64_MAX) { |
| #else |
| if (sum_rdc.rdcost < best_rdc->rdcost) { |
| #endif |
| PICK_MODE_CONTEXT *ctx_0 = &ctxs[0]; |
| update_state(cpi, td, ctx_0, mi_row0, mi_col0, subsize0, 1); |
| encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row0, mi_col0, subsize0, |
| ctx_0, NULL); |
| |
| if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_0); |
| |
| #if CONFIG_SUPERTX |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row1, mi_col1, &this_rdc, |
| &this_rate_nocoef, |
| #if CONFIG_EXT_PARTITION_TYPES |
| partition, |
| #endif |
| subsize1, &ctxs[1], INT64_MAX - sum_rdc.rdcost); |
| #else |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row1, mi_col1, &this_rdc, |
| #if CONFIG_EXT_PARTITION_TYPES |
| partition, |
| #endif |
| subsize1, &ctxs[1], best_rdc->rdcost - sum_rdc.rdcost); |
| #endif // CONFIG_SUPERTX |
| |
| if (this_rdc.rate == INT_MAX) { |
| sum_rdc.rdcost = INT64_MAX; |
| #if CONFIG_SUPERTX |
| sum_rate_nocoef = INT_MAX; |
| #endif |
| } else { |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| sum_rdc.rdcost += this_rdc.rdcost; |
| #if CONFIG_SUPERTX |
| sum_rate_nocoef += this_rate_nocoef; |
| #endif |
| } |
| |
| #if CONFIG_SUPERTX |
| if (sum_rdc.rdcost < INT64_MAX) { |
| #else |
| if (sum_rdc.rdcost < best_rdc->rdcost) { |
| #endif |
| PICK_MODE_CONTEXT *ctx_1 = &ctxs[1]; |
| update_state(cpi, td, ctx_1, mi_row1, mi_col1, subsize1, 1); |
| encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row1, mi_col1, subsize1, |
| ctx_1, NULL); |
| |
| if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_1); |
| |
| #if CONFIG_SUPERTX |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row2, mi_col2, &this_rdc, |
| &this_rate_nocoef, |
| #if CONFIG_EXT_PARTITION_TYPES |
| partition, |
| #endif |
| subsize2, &ctxs[2], INT64_MAX - sum_rdc.rdcost); |
| #else |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row2, mi_col2, &this_rdc, |
| #if CONFIG_EXT_PARTITION_TYPES |
| partition, |
| #endif |
| subsize2, &ctxs[2], best_rdc->rdcost - sum_rdc.rdcost); |
| #endif // CONFIG_SUPERTX |
| |
| if (this_rdc.rate == INT_MAX) { |
| sum_rdc.rdcost = INT64_MAX; |
| #if CONFIG_SUPERTX |
| sum_rate_nocoef = INT_MAX; |
| #endif |
| } else { |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| sum_rdc.rdcost += this_rdc.rdcost; |
| #if CONFIG_SUPERTX |
| sum_rate_nocoef += this_rate_nocoef; |
| #endif |
| } |
| |
| #if CONFIG_SUPERTX |
| if (supertx_allowed && !abort_flag && sum_rdc.rdcost < INT64_MAX) { |
| TX_SIZE supertx_size = max_txsize_lookup[bsize]; |
| const PARTITION_TYPE best_partition = pc_tree->partitioning; |
| pc_tree->partitioning = partition; |
| sum_rdc.rate += av1_cost_bit( |
| cm->fc->supertx_prob[partition_supertx_context_lookup[partition]] |
| [supertx_size], |
| 0); |
| sum_rdc.rdcost = |
| RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); |
| |
| if (!check_intra_sb(cpi, tile_info, mi_row, mi_col, bsize, pc_tree)) { |
| TX_TYPE best_tx = DCT_DCT; |
| RD_COST tmp_rdc = { sum_rate_nocoef, 0, 0 }; |
| |
| restore_context(x, x_ctx, mi_row, mi_col, bsize); |
| |
| rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize, |
| &tmp_rdc.rate, &tmp_rdc.dist, &best_tx, pc_tree); |
| |
| tmp_rdc.rate += av1_cost_bit( |
| cm->fc->supertx_prob[partition_supertx_context_lookup[partition]] |
| [supertx_size], |
| 1); |
| tmp_rdc.rdcost = |
| RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist); |
| if (tmp_rdc.rdcost < sum_rdc.rdcost) { |
| sum_rdc = tmp_rdc; |
| update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx, |
| supertx_size, pc_tree); |
| } |
| } |
| |
| pc_tree->partitioning = best_partition; |
| } |
| #endif // CONFIG_SUPERTX |
| |
| if (sum_rdc.rdcost < best_rdc->rdcost) { |
| int pl = partition_plane_context(xd, mi_row, mi_col, bsize); |
| sum_rdc.rate += cpi->partition_cost[pl][partition]; |
| sum_rdc.rdcost = |
| RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); |
| #if CONFIG_SUPERTX |
| sum_rate_nocoef += cpi->partition_cost[pl][partition]; |
| #endif |
| if (sum_rdc.rdcost < best_rdc->rdcost) { |
| #if CONFIG_SUPERTX |
| *best_rate_nocoef = sum_rate_nocoef; |
| assert(*best_rate_nocoef >= 0); |
| #endif |
| *best_rdc = sum_rdc; |
| pc_tree->partitioning = partition; |
| } |
| } |
| } |
| } |
| } |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| |
| // TODO(jingning,jimbankoski,rbultje): properly skip partition types that are |
| // unlikely to be selected depending on previous rate-distortion optimization |
| // results, for encoding speed-up. |
| static void rd_pick_partition(const AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, TOKENEXTRA **tp, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| RD_COST *rd_cost, |
| #if CONFIG_SUPERTX |
| int *rate_nocoef, |
| #endif |
| int64_t best_rd, PC_TREE *pc_tree) { |
| const AV1_COMMON *const cm = &cpi->common; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2; |
| RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; |
| const TOKENEXTRA *const tp_orig = *tp; |
| PICK_MODE_CONTEXT *ctx_none = &pc_tree->none; |
| const int pl = partition_plane_context(xd, mi_row, mi_col, bsize); |
| const int *partition_cost = cpi->partition_cost[pl]; |
| int tmp_partition_cost[PARTITION_TYPES]; |
| BLOCK_SIZE subsize; |
| RD_COST this_rdc, sum_rdc, best_rdc; |
| #if CONFIG_SUPERTX |
| int this_rate_nocoef, sum_rate_nocoef = 0, best_rate_nocoef = INT_MAX; |
| int abort_flag; |
| const int supertx_allowed = !frame_is_intra_only(cm) && |
| bsize <= MAX_SUPERTX_BLOCK_SIZE && |
| !xd->lossless[0]; |
| #endif // CONFIG_SUPERTX |
| const int bsize_at_least_8x8 = (bsize >= BLOCK_8X8); |
| int do_square_split = bsize_at_least_8x8; |
| int do_rectangular_split = 1; |
| #if CONFIG_EXT_PARTITION_TYPES |
| BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); |
| #endif |
| |
| // Override skipping rectangular partition operations for edge blocks |
| const int force_horz_split = (mi_row + mi_step >= cm->mi_rows); |
| const int force_vert_split = (mi_col + mi_step >= cm->mi_cols); |
| const int xss = x->e_mbd.plane[1].subsampling_x; |
| const int yss = x->e_mbd.plane[1].subsampling_y; |
| |
| BLOCK_SIZE min_size = x->min_partition_size; |
| BLOCK_SIZE max_size = x->max_partition_size; |
| |
| #if CONFIG_FP_MB_STATS |
| unsigned int src_diff_var = UINT_MAX; |
| int none_complexity = 0; |
| #endif |
| |
| int partition_none_allowed = !force_horz_split && !force_vert_split; |
| int partition_horz_allowed = |
| !force_vert_split && yss <= xss && bsize_at_least_8x8; |
| int partition_vert_allowed = |
| !force_horz_split && xss <= yss && bsize_at_least_8x8; |
| |
| #if CONFIG_PVQ |
| od_rollback_buffer pre_rdo_buf; |
| #endif |
| |
| (void)*tp_orig; |
| |
| if (force_horz_split || force_vert_split) { |
| tmp_partition_cost[PARTITION_NONE] = INT_MAX; |
| |
| if (!force_vert_split) { // force_horz_split only |
| tmp_partition_cost[PARTITION_VERT] = INT_MAX; |
| tmp_partition_cost[PARTITION_HORZ] = |
| av1_cost_bit(cm->fc->partition_prob[pl][PARTITION_HORZ], 0); |
| tmp_partition_cost[PARTITION_SPLIT] = |
| av1_cost_bit(cm->fc->partition_prob[pl][PARTITION_HORZ], 1); |
| } else if (!force_horz_split) { // force_vert_split only |
| tmp_partition_cost[PARTITION_HORZ] = INT_MAX; |
| tmp_partition_cost[PARTITION_VERT] = |
| av1_cost_bit(cm->fc->partition_prob[pl][PARTITION_VERT], 0); |
| tmp_partition_cost[PARTITION_SPLIT] = |
| av1_cost_bit(cm->fc->partition_prob[pl][PARTITION_VERT], 1); |
| } else { // force_ horz_split && force_vert_split horz_split |
| tmp_partition_cost[PARTITION_HORZ] = INT_MAX; |
| tmp_partition_cost[PARTITION_VERT] = INT_MAX; |
| tmp_partition_cost[PARTITION_SPLIT] = 0; |
| } |
| |
| partition_cost = tmp_partition_cost; |
| } |
| |
| #if CONFIG_VAR_TX |
| #ifndef NDEBUG |
| // Nothing should rely on the default value of this array (which is just |
| // leftover from encoding the previous block. Setting it to magic number |
| // when debugging. |
| memset(x->blk_skip[0], 234, sizeof(x->blk_skip[0])); |
| #endif // NDEBUG |
| #endif // CONFIG_VAR_TX |
| |
| assert(num_8x8_blocks_wide_lookup[bsize] == |
| num_8x8_blocks_high_lookup[bsize]); |
| |
| av1_rd_cost_init(&this_rdc); |
| av1_rd_cost_init(&sum_rdc); |
| av1_rd_cost_reset(&best_rdc); |
| best_rdc.rdcost = best_rd; |
| |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| |
| if (bsize == BLOCK_16X16 && cpi->vaq_refresh) |
| x->mb_energy = av1_block_energy(cpi, x, bsize); |
| |
| if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) { |
| const int cb_partition_search_ctrl = |
| ((pc_tree->index == 0 || pc_tree->index == 3) + |
| get_chessboard_index(cm->current_video_frame)) & |
| 0x1; |
| |
| if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size) |
| set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size); |
| } |
| |
| // Determine partition types in search according to the speed features. |
| // The threshold set here has to be of square block size. |
| if (cpi->sf.auto_min_max_partition_size) { |
| const int no_partition_allowed = (bsize <= max_size && bsize >= min_size); |
| // Note: Further partitioning is NOT allowed when bsize == min_size already. |
| const int partition_allowed = (bsize <= max_size && bsize > min_size); |
| partition_none_allowed &= no_partition_allowed; |
| partition_horz_allowed &= partition_allowed || force_horz_split; |
| partition_vert_allowed &= partition_allowed || force_vert_split; |
| do_square_split &= bsize > min_size; |
| } |
| if (cpi->sf.use_square_partition_only) { |
| partition_horz_allowed &= force_horz_split; |
| partition_vert_allowed &= force_vert_split; |
| } |
| |
| #if CONFIG_VAR_TX |
| xd->above_txfm_context = cm->above_txfm_context + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| #endif |
| #if !CONFIG_PVQ |
| save_context(x, &x_ctx, mi_row, mi_col, bsize); |
| #else |
| save_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize); |
| #endif |
| |
| #if CONFIG_FP_MB_STATS |
| if (cpi->use_fp_mb_stats) { |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| src_diff_var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src, mi_row, |
| mi_col, bsize); |
| } |
| #endif |
| |
| #if CONFIG_FP_MB_STATS |
| // Decide whether we shall split directly and skip searching NONE by using |
| // the first pass block statistics |
| if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_square_split && |
| partition_none_allowed && src_diff_var > 4 && |
| cm->base_qindex < qindex_split_threshold_lookup[bsize]) { |
| int mb_row = mi_row >> 1; |
| int mb_col = mi_col >> 1; |
| int mb_row_end = |
| AOMMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows); |
| int mb_col_end = |
| AOMMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols); |
| int r, c; |
| |
| // compute a complexity measure, basically measure inconsistency of motion |
| // vectors obtained from the first pass in the current block |
| for (r = mb_row; r < mb_row_end; r++) { |
| for (c = mb_col; c < mb_col_end; c++) { |
| const int mb_index = r * cm->mb_cols + c; |
| |
| MOTION_DIRECTION this_mv; |
| MOTION_DIRECTION right_mv; |
| MOTION_DIRECTION bottom_mv; |
| |
| this_mv = |
| get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]); |
| |
| // to its right |
| if (c != mb_col_end - 1) { |
| right_mv = get_motion_direction_fp( |
| cpi->twopass.this_frame_mb_stats[mb_index + 1]); |
| none_complexity += get_motion_inconsistency(this_mv, right_mv); |
| } |
| |
| // to its bottom |
| if (r != mb_row_end - 1) { |
| bottom_mv = get_motion_direction_fp( |
| cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]); |
| none_complexity += get_motion_inconsistency(this_mv, bottom_mv); |
| } |
| |
| // do not count its left and top neighbors to avoid double counting |
| } |
| } |
| |
| if (none_complexity > complexity_16x16_blocks_threshold[bsize]) { |
| partition_none_allowed = 0; |
| } |
| } |
| #endif |
| |
| // PARTITION_NONE |
| if (partition_none_allowed) { |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, |
| #if CONFIG_SUPERTX |
| &this_rate_nocoef, |
| #endif |
| #if CONFIG_EXT_PARTITION_TYPES |
| PARTITION_NONE, |
| #endif |
| bsize, ctx_none, best_rdc.rdcost); |
| if (this_rdc.rate != INT_MAX) { |
| if (bsize_at_least_8x8) { |
| this_rdc.rate += partition_cost[PARTITION_NONE]; |
| this_rdc.rdcost = |
| RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist); |
| #if CONFIG_SUPERTX |
| this_rate_nocoef += partition_cost[PARTITION_NONE]; |
| #endif |
| } |
| |
| if (this_rdc.rdcost < best_rdc.rdcost) { |
| // Adjust dist breakout threshold according to the partition size. |
| const int64_t dist_breakout_thr = |
| cpi->sf.partition_search_breakout_dist_thr >> |
| ((2 * (MAX_SB_SIZE_LOG2 - 2)) - |
| (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize])); |
| const int rate_breakout_thr = |
| cpi->sf.partition_search_breakout_rate_thr * |
| num_pels_log2_lookup[bsize]; |
| |
| best_rdc = this_rdc; |
| #if CONFIG_SUPERTX |
| best_rate_nocoef = this_rate_nocoef; |
| assert(best_rate_nocoef >= 0); |
| #endif |
| if (bsize_at_least_8x8) pc_tree->partitioning = PARTITION_NONE; |
| |
| // If all y, u, v transform blocks in this partition are skippable, and |
| // the dist & rate are within the thresholds, the partition search is |
| // terminated for current branch of the partition search tree. |
| // The dist & rate thresholds are set to 0 at speed 0 to disable the |
| // early termination at that speed. |
| if (!x->e_mbd.lossless[xd->mi[0]->mbmi.segment_id] && |
| (ctx_none->skippable && best_rdc.dist < dist_breakout_thr && |
| best_rdc.rate < rate_breakout_thr)) { |
| do_square_split = 0; |
| do_rectangular_split = 0; |
| } |
| |
| #if CONFIG_FP_MB_STATS |
| // Check if every 16x16 first pass block statistics has zero |
| // motion and the corresponding first pass residue is small enough. |
| // If that is the case, check the difference variance between the |
| // current frame and the last frame. If the variance is small enough, |
| // stop further splitting in RD optimization |
| if (cpi->use_fp_mb_stats && do_square_split && |
| cm->base_qindex > qindex_skip_threshold_lookup[bsize]) { |
| int mb_row = mi_row >> 1; |
| int mb_col = mi_col >> 1; |
| int mb_row_end = |
| AOMMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows); |
| int mb_col_end = |
| AOMMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols); |
| int r, c; |
| |
| int skip = 1; |
| for (r = mb_row; r < mb_row_end; r++) { |
| for (c = mb_col; c < mb_col_end; c++) { |
| const int mb_index = r * cm->mb_cols + c; |
| if (!(cpi->twopass.this_frame_mb_stats[mb_index] & |
| FPMB_MOTION_ZERO_MASK) || |
| !(cpi->twopass.this_frame_mb_stats[mb_index] & |
| FPMB_ERROR_SMALL_MASK)) { |
| skip = 0; |
| break; |
| } |
| } |
| if (skip == 0) { |
| break; |
| } |
| } |
| if (skip) { |
| if (src_diff_var == UINT_MAX) { |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| src_diff_var = get_sby_perpixel_diff_variance( |
| cpi, &x->plane[0].src, mi_row, mi_col, bsize); |
| } |
| if (src_diff_var < 8) { |
| do_square_split = 0; |
| do_rectangular_split = 0; |
| } |
| } |
| } |
| #endif |
| } |
| } |
| #if !CONFIG_PVQ |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize); |
| #else |
| restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize); |
| #endif |
| } |
| |
| // store estimated motion vector |
| if (cpi->sf.adaptive_motion_search) store_pred_mv(x, ctx_none); |
| |
| // PARTITION_SPLIT |
| // TODO(jingning): use the motion vectors given by the above search as |
| // the starting point of motion search in the following partition type check. |
| if (do_square_split) { |
| int reached_last_index = 0; |
| subsize = get_subsize(bsize, PARTITION_SPLIT); |
| if (bsize == BLOCK_8X8) { |
| #if CONFIG_DUAL_FILTER |
| if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed) |
| pc_tree->leaf_split[0]->pred_interp_filter = |
| ctx_none->mic.mbmi.interp_filter[0]; |
| #else |
| if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed) |
| pc_tree->leaf_split[0]->pred_interp_filter = |
| ctx_none->mic.mbmi.interp_filter; |
| #endif |
| #if CONFIG_SUPERTX |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, |
| &sum_rate_nocoef, |
| #if CONFIG_EXT_PARTITION_TYPES |
| PARTITION_SPLIT, |
| #endif |
| subsize, pc_tree->leaf_split[0], INT64_MAX); |
| #else |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, |
| #if CONFIG_EXT_PARTITION_TYPES |
| PARTITION_SPLIT, |
| #endif |
| subsize, pc_tree->leaf_split[0], best_rdc.rdcost); |
| #endif // CONFIG_SUPERTX |
| if (sum_rdc.rate == INT_MAX) { |
| sum_rdc.rdcost = INT64_MAX; |
| #if CONFIG_SUPERTX |
| sum_rate_nocoef = INT_MAX; |
| #endif |
| } |
| #if CONFIG_SUPERTX |
| if (supertx_allowed && sum_rdc.rdcost < INT64_MAX) { |
| TX_SIZE supertx_size = max_txsize_lookup[bsize]; |
| const PARTITION_TYPE best_partition = pc_tree->partitioning; |
| |
| pc_tree->partitioning = PARTITION_SPLIT; |
| |
| sum_rdc.rate += |
| av1_cost_bit(cm->fc->supertx_prob |
| [partition_supertx_context_lookup[PARTITION_SPLIT]] |
| [supertx_size], |
| 0); |
| sum_rdc.rdcost = |
| RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); |
| |
| if (is_inter_mode(pc_tree->leaf_split[0]->mic.mbmi.mode)) { |
| TX_TYPE best_tx = DCT_DCT; |
| RD_COST tmp_rdc = { sum_rate_nocoef, 0, 0 }; |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize); |
| |
| rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize, |
| &tmp_rdc.rate, &tmp_rdc.dist, &best_tx, pc_tree); |
| |
| tmp_rdc.rate += av1_cost_bit( |
| cm->fc->supertx_prob |
| [partition_supertx_context_lookup[PARTITION_SPLIT]] |
| [supertx_size], |
| 1); |
| tmp_rdc.rdcost = |
| RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist); |
| if (tmp_rdc.rdcost < sum_rdc.rdcost) { |
| sum_rdc = tmp_rdc; |
| update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx, |
| supertx_size, pc_tree); |
| } |
| } |
| |
| pc_tree->partitioning = best_partition; |
| } |
| #endif // CONFIG_SUPERTX |
| reached_last_index = 1; |
| } else { |
| int idx; |
| #if CONFIG_SUPERTX |
| for (idx = 0; idx < 4 && sum_rdc.rdcost < INT64_MAX; ++idx) { |
| #else |
| for (idx = 0; idx < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++idx) { |
| #endif // CONFIG_SUPERTX |
| const int x_idx = (idx & 1) * mi_step; |
| const int y_idx = (idx >> 1) * mi_step; |
| |
| if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols) |
| continue; |
| |
| if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); |
| |
| pc_tree->split[idx]->index = idx; |
| #if CONFIG_SUPERTX |
| rd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx, |
| mi_col + x_idx, subsize, &this_rdc, &this_rate_nocoef, |
| INT64_MAX - sum_rdc.rdcost, pc_tree->split[idx]); |
| #else |
| rd_pick_partition( |
| cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize, |
| &this_rdc, best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[idx]); |
| #endif // CONFIG_SUPERTX |
| |
| if (this_rdc.rate == INT_MAX) { |
| sum_rdc.rdcost = INT64_MAX; |
| #if CONFIG_SUPERTX |
| sum_rate_nocoef = INT_MAX; |
| #endif // CONFIG_SUPERTX |
| break; |
| } else { |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| sum_rdc.rdcost += this_rdc.rdcost; |
| #if CONFIG_SUPERTX |
| sum_rate_nocoef += this_rate_nocoef; |
| #endif // CONFIG_SUPERTX |
| } |
| } |
| reached_last_index = (idx == 4); |
| #if CONFIG_SUPERTX |
| if (supertx_allowed && sum_rdc.rdcost < INT64_MAX && reached_last_index) { |
| TX_SIZE supertx_size = max_txsize_lookup[bsize]; |
| const PARTITION_TYPE best_partition = pc_tree->partitioning; |
| |
| pc_tree->partitioning = PARTITION_SPLIT; |
| |
| sum_rdc.rate += |
| av1_cost_bit(cm->fc->supertx_prob |
| [partition_supertx_context_lookup[PARTITION_SPLIT]] |
| [supertx_size], |
| 0); |
| sum_rdc.rdcost = |
| RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); |
| |
| if (!check_intra_sb(cpi, tile_info, mi_row, mi_col, bsize, pc_tree)) { |
| TX_TYPE best_tx = DCT_DCT; |
| RD_COST tmp_rdc = { sum_rate_nocoef, 0, 0 }; |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize); |
| |
| rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize, |
| &tmp_rdc.rate, &tmp_rdc.dist, &best_tx, pc_tree); |
| |
| tmp_rdc.rate += av1_cost_bit( |
| cm->fc->supertx_prob |
| [partition_supertx_context_lookup[PARTITION_SPLIT]] |
| [supertx_size], |
| 1); |
| tmp_rdc.rdcost = |
| RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist); |
| if (tmp_rdc.rdcost < sum_rdc.rdcost) { |
| sum_rdc = tmp_rdc; |
| update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx, |
| supertx_size, pc_tree); |
| } |
| } |
| |
| pc_tree->partitioning = best_partition; |
| } |
| #endif // CONFIG_SUPERTX |
| } |
| |
| if (reached_last_index && sum_rdc.rdcost < best_rdc.rdcost) { |
| sum_rdc.rate += partition_cost[PARTITION_SPLIT]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); |
| #if CONFIG_SUPERTX |
| sum_rate_nocoef += partition_cost[PARTITION_SPLIT]; |
| #endif // CONFIG_SUPERTX |
| |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| #if CONFIG_SUPERTX |
| best_rate_nocoef = sum_rate_nocoef; |
| assert(best_rate_nocoef >= 0); |
| #endif // CONFIG_SUPERTX |
| pc_tree->partitioning = PARTITION_SPLIT; |
| } |
| } else if (cpi->sf.less_rectangular_check) { |
| // skip rectangular partition test when larger block size |
| // gives better rd cost |
| do_rectangular_split &= !partition_none_allowed; |
| } |
| #if !CONFIG_PVQ |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize); |
| #else |
| restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize); |
| #endif |
| } // if (do_split) |
| |
| // PARTITION_HORZ |
| if (partition_horz_allowed && |
| (do_rectangular_split || av1_active_h_edge(cpi, mi_row, mi_step))) { |
| subsize = get_subsize(bsize, PARTITION_HORZ); |
| if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); |
| #if CONFIG_DUAL_FILTER |
| if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && |
| partition_none_allowed) |
| pc_tree->horizontal[0].pred_interp_filter = |
| ctx_none->mic.mbmi.interp_filter[0]; |
| #else |
| if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && |
| partition_none_allowed) |
| pc_tree->horizontal[0].pred_interp_filter = |
| ctx_none->mic.mbmi.interp_filter; |
| #endif |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, |
| #if CONFIG_SUPERTX |
| &sum_rate_nocoef, |
| #endif // CONFIG_SUPERTX |
| #if CONFIG_EXT_PARTITION_TYPES |
| PARTITION_HORZ, |
| #endif |
| subsize, &pc_tree->horizontal[0], best_rdc.rdcost); |
| |
| #if CONFIG_SUPERTX |
| abort_flag = (sum_rdc.rdcost >= best_rd && bsize > BLOCK_8X8) || |
| (sum_rdc.rate == INT_MAX && bsize == BLOCK_8X8); |
| if (sum_rdc.rdcost < INT64_MAX && |
| #else |
| if (sum_rdc.rdcost < best_rdc.rdcost && |
| #endif // CONFIG_SUPERTX |
| !force_horz_split && bsize > BLOCK_8X8) { |
| PICK_MODE_CONTEXT *ctx_h = &pc_tree->horizontal[0]; |
| update_state(cpi, td, ctx_h, mi_row, mi_col, subsize, 1); |
| encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, subsize, |
| ctx_h, NULL); |
| |
| if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_h); |
| |
| #if CONFIG_DUAL_FILTER |
| if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && |
| partition_none_allowed) |
| pc_tree->horizontal[1].pred_interp_filter = |
| ctx_h->mic.mbmi.interp_filter[0]; |
| #else |
| if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && |
| partition_none_allowed) |
| pc_tree->horizontal[1].pred_interp_filter = |
| ctx_none->mic.mbmi.interp_filter; |
| #endif |
| #if CONFIG_SUPERTX |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc, |
| &this_rate_nocoef, |
| #if CONFIG_EXT_PARTITION_TYPES |
| PARTITION_HORZ, |
| #endif |
| subsize, &pc_tree->horizontal[1], INT64_MAX); |
| #else |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc, |
| #if CONFIG_EXT_PARTITION_TYPES |
| PARTITION_HORZ, |
| #endif |
| subsize, &pc_tree->horizontal[1], |
| best_rdc.rdcost - sum_rdc.rdcost); |
| #endif // CONFIG_SUPERTX |
| if (this_rdc.rate == INT_MAX) { |
| sum_rdc.rdcost = INT64_MAX; |
| #if CONFIG_SUPERTX |
| sum_rate_nocoef = INT_MAX; |
| #endif // CONFIG_SUPERTX |
| } else { |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| sum_rdc.rdcost += this_rdc.rdcost; |
| #if CONFIG_SUPERTX |
| sum_rate_nocoef += this_rate_nocoef; |
| #endif // CONFIG_SUPERTX |
| } |
| } |
| |
| #if CONFIG_SUPERTX |
| if (supertx_allowed && sum_rdc.rdcost < INT64_MAX && !abort_flag) { |
| TX_SIZE supertx_size = max_txsize_lookup[bsize]; |
| const PARTITION_TYPE best_partition = pc_tree->partitioning; |
| |
| pc_tree->partitioning = PARTITION_HORZ; |
| |
| sum_rdc.rate += av1_cost_bit( |
| cm->fc->supertx_prob[partition_supertx_context_lookup[PARTITION_HORZ]] |
| [supertx_size], |
| 0); |
| sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); |
| |
| if (!check_intra_sb(cpi, tile_info, mi_row, mi_col, bsize, pc_tree)) { |
| TX_TYPE best_tx = DCT_DCT; |
| RD_COST tmp_rdc = { sum_rate_nocoef, 0, 0 }; |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize); |
| |
| rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize, &tmp_rdc.rate, |
| &tmp_rdc.dist, &best_tx, pc_tree); |
| |
| tmp_rdc.rate += av1_cost_bit( |
| cm->fc |
| ->supertx_prob[partition_supertx_context_lookup[PARTITION_HORZ]] |
| [supertx_size], |
| 1); |
| tmp_rdc.rdcost = |
| RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist); |
| if (tmp_rdc.rdcost < sum_rdc.rdcost) { |
| sum_rdc = tmp_rdc; |
| update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx, |
| supertx_size, pc_tree); |
| } |
| } |
| |
| pc_tree->partitioning = best_partition; |
| } |
| #endif // CONFIG_SUPERTX |
| |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| sum_rdc.rate += partition_cost[PARTITION_HORZ]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); |
| #if CONFIG_SUPERTX |
| sum_rate_nocoef += partition_cost[PARTITION_HORZ]; |
| #endif // CONFIG_SUPERTX |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| #if CONFIG_SUPERTX |
| best_rate_nocoef = sum_rate_nocoef; |
| assert(best_rate_nocoef >= 0); |
| #endif // CONFIG_SUPERTX |
| pc_tree->partitioning = PARTITION_HORZ; |
| } |
| } |
| #if !CONFIG_PVQ |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize); |
| #else |
| restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize); |
| #endif |
| } |
| |
| // PARTITION_VERT |
| if (partition_vert_allowed && |
| (do_rectangular_split || av1_active_v_edge(cpi, mi_col, mi_step))) { |
| subsize = get_subsize(bsize, PARTITION_VERT); |
| |
| if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); |
| |
| #if CONFIG_DUAL_FILTER |
| if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && |
| partition_none_allowed) |
| pc_tree->vertical[0].pred_interp_filter = |
| ctx_none->mic.mbmi.interp_filter[0]; |
| #else |
| if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && |
| partition_none_allowed) |
| pc_tree->vertical[0].pred_interp_filter = |
| ctx_none->mic.mbmi.interp_filter; |
| #endif |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, |
| #if CONFIG_SUPERTX |
| &sum_rate_nocoef, |
| #endif // CONFIG_SUPERTX |
| #if CONFIG_EXT_PARTITION_TYPES |
| PARTITION_VERT, |
| #endif |
| subsize, &pc_tree->vertical[0], best_rdc.rdcost); |
| #if CONFIG_SUPERTX |
| abort_flag = (sum_rdc.rdcost >= best_rd && bsize > BLOCK_8X8) || |
| (sum_rdc.rate == INT_MAX && bsize == BLOCK_8X8); |
| if (sum_rdc.rdcost < INT64_MAX && |
| #else |
| if (sum_rdc.rdcost < best_rdc.rdcost && |
| #endif // CONFIG_SUPERTX |
| !force_vert_split && bsize > BLOCK_8X8) { |
| update_state(cpi, td, &pc_tree->vertical[0], mi_row, mi_col, subsize, 1); |
| encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, subsize, |
| &pc_tree->vertical[0], NULL); |
| |
| if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); |
| |
| #if CONFIG_DUAL_FILTER |
| if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && |
| partition_none_allowed) |
| pc_tree->vertical[1].pred_interp_filter = |
| ctx_none->mic.mbmi.interp_filter[0]; |
| #else |
| if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && |
| partition_none_allowed) |
| pc_tree->vertical[1].pred_interp_filter = |
| ctx_none->mic.mbmi.interp_filter; |
| #endif |
| #if CONFIG_SUPERTX |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc, |
| &this_rate_nocoef, |
| #if CONFIG_EXT_PARTITION_TYPES |
| PARTITION_VERT, |
| #endif |
| subsize, &pc_tree->vertical[1], |
| INT64_MAX - sum_rdc.rdcost); |
| #else |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc, |
| #if CONFIG_EXT_PARTITION_TYPES |
| PARTITION_VERT, |
| #endif |
| subsize, &pc_tree->vertical[1], |
| best_rdc.rdcost - sum_rdc.rdcost); |
| #endif // CONFIG_SUPERTX |
| if (this_rdc.rate == INT_MAX) { |
| sum_rdc.rdcost = INT64_MAX; |
| #if CONFIG_SUPERTX |
| sum_rate_nocoef = INT_MAX; |
| #endif // CONFIG_SUPERTX |
| } else { |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| sum_rdc.rdcost += this_rdc.rdcost; |
| #if CONFIG_SUPERTX |
| sum_rate_nocoef += this_rate_nocoef; |
| #endif // CONFIG_SUPERTX |
| } |
| } |
| #if CONFIG_SUPERTX |
| if (supertx_allowed && sum_rdc.rdcost < INT64_MAX && !abort_flag) { |
| TX_SIZE supertx_size = max_txsize_lookup[bsize]; |
| const PARTITION_TYPE best_partition = pc_tree->partitioning; |
| |
| pc_tree->partitioning = PARTITION_VERT; |
| |
| sum_rdc.rate += av1_cost_bit( |
| cm->fc->supertx_prob[partition_supertx_context_lookup[PARTITION_VERT]] |
| [supertx_size], |
| 0); |
| sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); |
| |
| if (!check_intra_sb(cpi, tile_info, mi_row, mi_col, bsize, pc_tree)) { |
| TX_TYPE best_tx = DCT_DCT; |
| RD_COST tmp_rdc = { sum_rate_nocoef, 0, 0 }; |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize); |
| |
| rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize, &tmp_rdc.rate, |
| &tmp_rdc.dist, &best_tx, pc_tree); |
| |
| tmp_rdc.rate += av1_cost_bit( |
| cm->fc |
| ->supertx_prob[partition_supertx_context_lookup[PARTITION_VERT]] |
| [supertx_size], |
| 1); |
| tmp_rdc.rdcost = |
| RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist); |
| if (tmp_rdc.rdcost < sum_rdc.rdcost) { |
| sum_rdc = tmp_rdc; |
| update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx, |
| supertx_size, pc_tree); |
| } |
| } |
| |
| pc_tree->partitioning = best_partition; |
| } |
| #endif // CONFIG_SUPERTX |
| |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| sum_rdc.rate += partition_cost[PARTITION_VERT]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); |
| #if CONFIG_SUPERTX |
| sum_rate_nocoef += partition_cost[PARTITION_VERT]; |
| #endif // CONFIG_SUPERTX |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| #if CONFIG_SUPERTX |
| best_rate_nocoef = sum_rate_nocoef; |
| assert(best_rate_nocoef >= 0); |
| #endif // CONFIG_SUPERTX |
| pc_tree->partitioning = PARTITION_VERT; |
| } |
| } |
| #if !CONFIG_PVQ |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize); |
| #else |
| restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize); |
| #endif |
| } |
| |
| #if CONFIG_EXT_PARTITION_TYPES |
| // PARTITION_HORZ_A |
| if (partition_horz_allowed && do_rectangular_split && bsize > BLOCK_8X8 && |
| partition_none_allowed) { |
| subsize = get_subsize(bsize, PARTITION_HORZ_A); |
| rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc, |
| pc_tree->horizontala, ctx_none, mi_row, mi_col, bsize, |
| PARTITION_HORZ_A, |
| #if CONFIG_SUPERTX |
| best_rd, &best_rate_nocoef, &x_ctx, |
| #endif |
| mi_row, mi_col, bsize2, mi_row, mi_col + mi_step, bsize2, |
| mi_row + mi_step, mi_col, subsize); |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize); |
| } |
| // PARTITION_HORZ_B |
| if (partition_horz_allowed && do_rectangular_split && bsize > BLOCK_8X8 && |
| partition_none_allowed) { |
| subsize = get_subsize(bsize, PARTITION_HORZ_B); |
| rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc, |
| pc_tree->horizontalb, ctx_none, mi_row, mi_col, bsize, |
| PARTITION_HORZ_B, |
| #if CONFIG_SUPERTX |
| best_rd, &best_rate_nocoef, &x_ctx, |
| #endif |
| mi_row, mi_col, subsize, mi_row + mi_step, mi_col, |
| bsize2, mi_row + mi_step, mi_col + mi_step, bsize2); |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize); |
| } |
| // PARTITION_VERT_A |
| if (partition_vert_allowed && do_rectangular_split && bsize > BLOCK_8X8 && |
| partition_none_allowed) { |
| subsize = get_subsize(bsize, PARTITION_VERT_A); |
| rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc, |
| pc_tree->verticala, ctx_none, mi_row, mi_col, bsize, |
| PARTITION_VERT_A, |
| #if CONFIG_SUPERTX |
| best_rd, &best_rate_nocoef, &x_ctx, |
| #endif |
| mi_row, mi_col, bsize2, mi_row + mi_step, mi_col, bsize2, |
| mi_row, mi_col + mi_step, subsize); |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize); |
| } |
| // PARTITION_VERT_B |
| if (partition_vert_allowed && do_rectangular_split && bsize > BLOCK_8X8 && |
| partition_none_allowed) { |
| subsize = get_subsize(bsize, PARTITION_VERT_B); |
| rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc, |
| pc_tree->verticalb, ctx_none, mi_row, mi_col, bsize, |
| PARTITION_VERT_B, |
| #if CONFIG_SUPERTX |
| best_rd, &best_rate_nocoef, &x_ctx, |
| #endif |
| mi_row, mi_col, subsize, mi_row, mi_col + mi_step, |
| bsize2, mi_row + mi_step, mi_col + mi_step, bsize2); |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize); |
| } |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| |
| // TODO(jbb): This code added so that we avoid static analysis |
| // warning related to the fact that best_rd isn't used after this |
| // point. This code should be refactored so that the duplicate |
| // checks occur in some sub function and thus are used... |
| (void)best_rd; |
| *rd_cost = best_rdc; |
| #if CONFIG_SUPERTX |
| *rate_nocoef = best_rate_nocoef; |
| #endif // CONFIG_SUPERTX |
| |
| if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX && |
| pc_tree->index != 3) { |
| if (bsize == cm->sb_size) { |
| encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, |
| pc_tree, NULL); |
| } else { |
| encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, |
| pc_tree, NULL); |
| } |
| } |
| |
| if (bsize == cm->sb_size) { |
| #if !CONFIG_PVQ |
| assert(tp_orig < *tp || (tp_orig == *tp && xd->mi[0]->mbmi.skip)); |
| #endif |
| assert(best_rdc.rate < INT_MAX); |
| assert(best_rdc.dist < INT64_MAX); |
| } else { |
| assert(tp_orig == *tp); |
| } |
| } |
| |
| static void encode_rd_sb_row(AV1_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, int mi_row, |
| TOKENEXTRA **tp) { |
| AV1_COMMON *const cm = &cpi->common; |
| const TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| SPEED_FEATURES *const sf = &cpi->sf; |
| int mi_col; |
| #if CONFIG_EXT_PARTITION |
| const int leaf_nodes = 256; |
| #else |
| const int leaf_nodes = 64; |
| #endif // CONFIG_EXT_PARTITION |
| |
| // Initialize the left context for the new SB row |
| av1_zero_left_context(xd); |
| |
| #if CONFIG_DELTA_Q |
| // Reset delta for every tile |
| if (cm->delta_q_present_flag) |
| if (mi_row == tile_info->mi_row_start) xd->prev_qindex = cm->base_qindex; |
| #endif |
| |
| // Code each SB in the row |
| for (mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end; |
| mi_col += cm->mib_size) { |
| const struct segmentation *const seg = &cm->seg; |
| int dummy_rate; |
| int64_t dummy_dist; |
| RD_COST dummy_rdc; |
| #if CONFIG_SUPERTX |
| int dummy_rate_nocoef; |
| #endif // CONFIG_SUPERTX |
| int i; |
| int seg_skip = 0; |
| |
| const int idx_str = cm->mi_stride * mi_row + mi_col; |
| MODE_INFO **mi = cm->mi_grid_visible + idx_str; |
| PC_TREE *const pc_root = td->pc_root[cm->mib_size_log2 - MIN_MIB_SIZE_LOG2]; |
| |
| if (sf->adaptive_pred_interp_filter) { |
| for (i = 0; i < leaf_nodes; ++i) |
| td->leaf_tree[i].pred_interp_filter = SWITCHABLE; |
| |
| for (i = 0; i < leaf_nodes; ++i) { |
| td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE; |
| td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE; |
| td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE; |
| td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE; |
| } |
| } |
| |
| av1_zero(x->pred_mv); |
| pc_root->index = 0; |
| |
| if (seg->enabled) { |
| const uint8_t *const map = |
| seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; |
| int segment_id = get_segment_id(cm, map, cm->sb_size, mi_row, mi_col); |
| seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP); |
| } |
| |
| #if CONFIG_DELTA_Q |
| if (cpi->oxcf.aq_mode == DELTA_AQ) { |
| // Test mode for delta quantization |
| int sb_row = mi_row >> 3; |
| int sb_col = mi_col >> 3; |
| int sb_stride = (cm->width + MAX_SB_SIZE - 1) >> MAX_SB_SIZE_LOG2; |
| int index = ((sb_row * sb_stride + sb_col + 8) & 31) - 16; |
| |
| // Ensure divisibility of delta_qindex by delta_q_res |
| int offset_qindex = (index < 0 ? -index - 8 : index - 8); |
| int qmask = ~(cm->delta_q_res - 1); |
| int current_qindex = clamp(cm->base_qindex + offset_qindex, |
| cm->delta_q_res, 256 - cm->delta_q_res); |
| current_qindex = |
| ((current_qindex - cm->base_qindex + cm->delta_q_res / 2) & qmask) + |
| cm->base_qindex; |
| |
| xd->delta_qindex = current_qindex - cm->base_qindex; |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64); |
| xd->mi[0]->mbmi.current_q_index = current_qindex; |
| xd->mi[0]->mbmi.segment_id = 0; |
| av1_init_plane_quantizers(cpi, x, xd->mi[0]->mbmi.segment_id); |
| } |
| #endif |
| |
| x->source_variance = UINT_MAX; |
| if (sf->partition_search_type == FIXED_PARTITION || seg_skip) { |
| BLOCK_SIZE bsize; |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->sb_size); |
| bsize = seg_skip ? cm->sb_size : sf->always_this_block_size; |
| set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); |
| rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, cm->sb_size, |
| &dummy_rate, &dummy_dist, |
| #if CONFIG_SUPERTX |
| &dummy_rate_nocoef, |
| #endif // CONFIG_SUPERTX |
| 1, pc_root); |
| } else if (cpi->partition_search_skippable_frame) { |
| BLOCK_SIZE bsize; |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->sb_size); |
| bsize = get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col); |
| set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); |
| rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, cm->sb_size, |
| &dummy_rate, &dummy_dist, |
| #if CONFIG_SUPERTX |
| &dummy_rate_nocoef, |
| #endif // CONFIG_SUPERTX |
| 1, pc_root); |
| } else if (sf->partition_search_type == VAR_BASED_PARTITION) { |
| choose_partitioning(cpi, td, tile_info, x, mi_row, mi_col); |
| rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, cm->sb_size, |
| &dummy_rate, &dummy_dist, |
| #if CONFIG_SUPERTX |
| &dummy_rate_nocoef, |
| #endif // CONFIG_SUPERTX |
| 1, pc_root); |
| } else { |
| // If required set upper and lower partition size limits |
| if (sf->auto_min_max_partition_size) { |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->sb_size); |
| rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col, |
| &x->min_partition_size, &x->max_partition_size); |
| } |
| rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, cm->sb_size, |
| &dummy_rdc, |
| #if CONFIG_SUPERTX |
| &dummy_rate_nocoef, |
| #endif // CONFIG_SUPERTX |
| INT64_MAX, pc_root); |
| } |
| } |
| #if CONFIG_ENTROPY |
| if (cm->do_subframe_update && |
| cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { |
| if ((mi_row + MI_SIZE) % |
| (MI_SIZE * |
| AOMMAX(cm->mi_rows / MI_SIZE / COEF_PROBS_BUFS, 1)) == |
| 0 && |
| mi_row + MI_SIZE < cm->mi_rows && |
| cm->coef_probs_update_idx < COEF_PROBS_BUFS - 1) { |
| TX_SIZE t; |
| SUBFRAME_STATS *subframe_stats = &cpi->subframe_stats; |
| |
| for (t = TX_4X4; t < TX_SIZES; ++t) |
| av1_full_to_model_counts(cpi->td.counts->coef[t], |
| cpi->td.rd_counts.coef_counts[t]); |
| av1_partial_adapt_probs(cm, mi_row, mi_col); |
| ++cm->coef_probs_update_idx; |
| av1_copy(subframe_stats->coef_probs_buf[cm->coef_probs_update_idx], |
| cm->fc->coef_probs); |
| av1_copy(subframe_stats->coef_counts_buf[cm->coef_probs_update_idx], |
| cpi->td.rd_counts.coef_counts); |
| av1_copy(subframe_stats->eob_counts_buf[cm->coef_probs_update_idx], |
| cm->counts.eob_branch); |
| av1_fill_token_costs(x->token_costs, cm->fc->coef_probs); |
| } |
| } |
| #endif // CONFIG_ENTROPY |
| } |
| |
| static void init_encode_frame_mb_context(AV1_COMP *cpi) { |
| MACROBLOCK *const x = &cpi->td.mb; |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| |
| // Copy data over into macro block data structures. |
| av1_setup_src_planes(x, cpi->Source, 0, 0); |
| |
| av1_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y); |
| } |
| |
| static int check_dual_ref_flags(AV1_COMP *cpi) { |
| const int ref_flags = cpi->ref_frame_flags; |
| |
| if (segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) { |
| return 0; |
| } else { |
| return (!!(ref_flags & AOM_GOLD_FLAG) + !!(ref_flags & AOM_LAST_FLAG) + |
| #if CONFIG_EXT_REFS |
| !!(ref_flags & AOM_LAST2_FLAG) + !!(ref_flags & AOM_LAST3_FLAG) + |
| !!(ref_flags & AOM_BWD_FLAG) + |
| #endif // CONFIG_EXT_REFS |
| !!(ref_flags & AOM_ALT_FLAG)) >= 2; |
| } |
| } |
| |
| #if !CONFIG_VAR_TX |
| static void reset_skip_tx_size(AV1_COMMON *cm, TX_SIZE max_tx_size) { |
| int mi_row, mi_col; |
| const int mis = cm->mi_stride; |
| MODE_INFO **mi_ptr = cm->mi_grid_visible; |
| |
| for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) { |
| for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) { |
| if (txsize_sqr_up_map[mi_ptr[mi_col]->mbmi.tx_size] > max_tx_size) |
| mi_ptr[mi_col]->mbmi.tx_size = max_tx_size; |
| } |
| } |
| } |
| #endif |
| |
| static MV_REFERENCE_FRAME get_frame_type(const AV1_COMP *cpi) { |
| if (frame_is_intra_only(&cpi->common)) return INTRA_FRAME; |
| #if CONFIG_EXT_REFS |
| // We will not update the golden frame with an internal overlay frame |
| else if ((cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame) || |
| cpi->rc.is_src_frame_ext_arf) |
| #else |
| else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame) |
| #endif |
| return ALTREF_FRAME; |
| else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) |
| return GOLDEN_FRAME; |
| else |
| // TODO(zoeliu): To investigate whether a frame_type other than |
| // INTRA/ALTREF/GOLDEN/LAST needs to be specified seperately. |
| return LAST_FRAME; |
| } |
| |
| static TX_MODE select_tx_mode(const AV1_COMP *cpi, MACROBLOCKD *const xd) { |
| if (xd->lossless[0]) return ONLY_4X4; |
| if (cpi->sf.tx_size_search_method == USE_LARGESTALL) |
| return ALLOW_32X32 + CONFIG_TX64X64; |
| else if (cpi->sf.tx_size_search_method == USE_FULL_RD || |
| cpi->sf.tx_size_search_method == USE_TX_8X8) |
| return TX_MODE_SELECT; |
| else |
| return cpi->common.tx_mode; |
| } |
| |
| void av1_init_tile_data(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int tile_cols = cm->tile_cols; |
| const int tile_rows = cm->tile_rows; |
| int tile_col, tile_row; |
| TOKENEXTRA *pre_tok = cpi->tile_tok[0][0]; |
| unsigned int tile_tok = 0; |
| |
| if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) { |
| if (cpi->tile_data != NULL) aom_free(cpi->tile_data); |
| CHECK_MEM_ERROR(cm, cpi->tile_data, aom_malloc(tile_cols * tile_rows * |
| sizeof(*cpi->tile_data))); |
| cpi->allocated_tiles = tile_cols * tile_rows; |
| |
| for (tile_row = 0; tile_row < tile_rows; ++tile_row) |
| for (tile_col = 0; tile_col < tile_cols; ++tile_col) { |
| TileDataEnc *const tile_data = |
| &cpi->tile_data[tile_row * tile_cols + tile_col]; |
| int i, j; |
| for (i = 0; i < BLOCK_SIZES; ++i) { |
| for (j = 0; j < MAX_MODES; ++j) { |
| tile_data->thresh_freq_fact[i][j] = 32; |
| tile_data->mode_map[i][j] = j; |
| } |
| } |
| #if CONFIG_PVQ |
| // This will be dynamically increased as more pvq block is encoded. |
| tile_data->pvq_q.buf_len = 1000; |
| CHECK_MEM_ERROR( |
| cm, tile_data->pvq_q.buf, |
| aom_malloc(tile_data->pvq_q.buf_len * sizeof(PVQ_INFO))); |
| tile_data->pvq_q.curr_pos = 0; |
| #endif |
| } |
| } |
| |
| for (tile_row = 0; tile_row < tile_rows; ++tile_row) { |
| for (tile_col = 0; tile_col < tile_cols; ++tile_col) { |
| TileInfo *const tile_info = |
| &cpi->tile_data[tile_row * tile_cols + tile_col].tile_info; |
| av1_tile_init(tile_info, cm, tile_row, tile_col); |
| |
| cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok; |
| pre_tok = cpi->tile_tok[tile_row][tile_col]; |
| tile_tok = allocated_tokens(*tile_info); |
| #if CONFIG_PVQ |
| cpi->tile_data[tile_row * tile_cols + tile_col].pvq_q.curr_pos = 0; |
| #endif |
| } |
| } |
| } |
| |
| void av1_encode_tile(AV1_COMP *cpi, ThreadData *td, int tile_row, |
| int tile_col) { |
| AV1_COMMON *const cm = &cpi->common; |
| TileDataEnc *const this_tile = |
| &cpi->tile_data[tile_row * cm->tile_cols + tile_col]; |
| const TileInfo *const tile_info = &this_tile->tile_info; |
| TOKENEXTRA *tok = cpi->tile_tok[tile_row][tile_col]; |
| int mi_row; |
| #if CONFIG_PVQ |
| od_adapt_ctx *adapt; |
| #endif |
| |
| av1_zero_above_context(cm, tile_info->mi_col_start, tile_info->mi_col_end); |
| |
| // Set up pointers to per thread motion search counters. |
| this_tile->m_search_count = 0; // Count of motion search hits. |
| this_tile->ex_search_count = 0; // Exhaustive mesh search hits. |
| td->mb.m_search_count_ptr = &this_tile->m_search_count; |
| td->mb.ex_search_count_ptr = &this_tile->ex_search_count; |
| |
| #if CONFIG_PVQ |
| td->mb.pvq_q = &this_tile->pvq_q; |
| |
| // TODO(yushin) |
| // If activity masking is enabled, change below to OD_HVS_QM |
| td->mb.daala_enc.qm = OD_FLAT_QM; // Hard coded. Enc/dec required to sync. |
| { |
| // FIXME: Multiple segments support |
| int segment_id = 0; |
| int rdmult = set_segment_rdmult(cpi, &td->mb, segment_id); |
| int qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex); |
| int64_t q_ac = av1_ac_quant(qindex, 0, cpi->common.bit_depth); |
| int64_t q_dc = av1_dc_quant(qindex, 0, cpi->common.bit_depth); |
| /* td->mb.daala_enc.pvq_norm_lambda = OD_PVQ_LAMBDA; */ |
| td->mb.daala_enc.pvq_norm_lambda = |
| (double)rdmult * (64 / 16) / (q_ac * q_ac * (1 << RDDIV_BITS)); |
| td->mb.daala_enc.pvq_norm_lambda_dc = |
| (double)rdmult * (64 / 16) / (q_dc * q_dc * (1 << RDDIV_BITS)); |
| // printf("%f\n", td->mb.daala_enc.pvq_norm_lambda); |
| } |
| od_init_qm(td->mb.daala_enc.state.qm, td->mb.daala_enc.state.qm_inv, |
| td->mb.daala_enc.qm == OD_HVS_QM ? OD_QM8_Q4_HVS : OD_QM8_Q4_FLAT); |
| od_ec_enc_init(&td->mb.daala_enc.ec, 65025); |
| |
| adapt = &td->mb.daala_enc.state.adapt; |
| od_ec_enc_reset(&td->mb.daala_enc.ec); |
| od_adapt_ctx_reset(adapt, 0); |
| #endif |
| |
| for (mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end; |
| mi_row += cm->mib_size) { |
| encode_rd_sb_row(cpi, td, this_tile, mi_row, &tok); |
| } |
| |
| cpi->tok_count[tile_row][tile_col] = |
| (unsigned int)(tok - cpi->tile_tok[tile_row][tile_col]); |
| assert(cpi->tok_count[tile_row][tile_col] <= allocated_tokens(*tile_info)); |
| #if CONFIG_PVQ |
| od_ec_enc_clear(&td->mb.daala_enc.ec); |
| |
| td->mb.pvq_q->last_pos = td->mb.pvq_q->curr_pos; |
| // rewind current position so that bitstream can be written |
| // from the 1st pvq block |
| td->mb.pvq_q->curr_pos = 0; |
| |
| td->mb.pvq_q = NULL; |
| #endif |
| } |
| |
| static void encode_tiles(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| int tile_col, tile_row; |
| |
| av1_init_tile_data(cpi); |
| |
| for (tile_row = 0; tile_row < cm->tile_rows; ++tile_row) |
| for (tile_col = 0; tile_col < cm->tile_cols; ++tile_col) |
| av1_encode_tile(cpi, &cpi->td, tile_row, tile_col); |
| } |
| |
| #if CONFIG_FP_MB_STATS |
| static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats, |
| AV1_COMMON *cm, uint8_t **this_frame_mb_stats) { |
| uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start + |
| cm->current_video_frame * cm->MBs * sizeof(uint8_t); |
| |
| if (mb_stats_in > firstpass_mb_stats->mb_stats_end) return EOF; |
| |
| *this_frame_mb_stats = mb_stats_in; |
| |
| return 1; |
| } |
| #endif |
| |
| #if CONFIG_GLOBAL_MOTION |
| #define MIN_TRANS_THRESH (1 * GM_TRANS_DECODE_FACTOR) |
| |
| // Border over which to compute the global motion |
| #define ERRORADV_BORDER 0 |
| |
| static const double gm_advantage_thresh[TRANS_TYPES] = { |
| 1.00, // Identity (not used) |
| 0.85, // Translation |
| 0.75, // Rot zoom |
| 0.65, // Affine |
| 0.50, // Homography |
| }; |
| |
| static void convert_to_params(const double *params, int32_t *model) { |
| int i; |
| int alpha_present = 0; |
| model[0] = (int32_t)floor(params[0] * (1 << GM_TRANS_PREC_BITS) + 0.5); |
| model[1] = (int32_t)floor(params[1] * (1 << GM_TRANS_PREC_BITS) + 0.5); |
| model[0] = (int32_t)clamp(model[0], GM_TRANS_MIN, GM_TRANS_MAX) * |
| GM_TRANS_DECODE_FACTOR; |
| model[1] = (int32_t)clamp(model[1], GM_TRANS_MIN, GM_TRANS_MAX) * |
| GM_TRANS_DECODE_FACTOR; |
| |
| for (i = 2; i < 6; ++i) { |
| const int diag_value = ((i == 2 || i == 5) ? (1 << GM_ALPHA_PREC_BITS) : 0); |
| model[i] = (int32_t)floor(params[i] * (1 << GM_ALPHA_PREC_BITS) + 0.5); |
| model[i] = |
| (int32_t)clamp(model[i] - diag_value, GM_ALPHA_MIN, GM_ALPHA_MAX); |
| alpha_present |= (model[i] != 0); |
| model[i] = (model[i] + diag_value) * GM_ALPHA_DECODE_FACTOR; |
| } |
| for (; i < 8; ++i) { |
| model[i] = (int32_t)floor(params[i] * (1 << GM_ROW3HOMO_PREC_BITS) + 0.5); |
| model[i] = (int32_t)clamp(model[i], GM_ROW3HOMO_MIN, GM_ROW3HOMO_MAX) * |
| GM_ROW3HOMO_DECODE_FACTOR; |
| alpha_present |= (model[i] != 0); |
| } |
| |
| if (!alpha_present) { |
| if (abs(model[0]) < MIN_TRANS_THRESH && abs(model[1]) < MIN_TRANS_THRESH) { |
| model[0] = 0; |
| model[1] = 0; |
| } |
| } |
| } |
| |
| static void convert_model_to_params(const double *params, |
| WarpedMotionParams *model) { |
| convert_to_params(params, model->wmmat); |
| model->wmtype = get_gmtype(model); |
| } |
| |
| // Adds some offset to a global motion parameter and handles |
| // all of the necessary precision shifts, clamping, and |
| // zero-centering. |
| static int32_t add_param_offset(int param_index, int32_t param_value, |
| int32_t offset) { |
| const int scale_vals[3] = { GM_TRANS_PREC_DIFF, GM_ALPHA_PREC_DIFF, |
| GM_ROW3HOMO_PREC_DIFF }; |
| const int clamp_vals[3] = { GM_TRANS_MAX, GM_ALPHA_MAX, GM_ROW3HOMO_MAX }; |
| // type of param: 0 - translation, 1 - affine, 2 - homography |
| const int param_type = (param_index < 2 ? 0 : (param_index < 6 ? 1 : 2)); |
| const int is_one_centered = (param_index == 2 || param_index == 5); |
| |
| // Make parameter zero-centered and offset the shift that was done to make |
| // it compatible with the warped model |
| param_value = (param_value - (is_one_centered << WARPEDMODEL_PREC_BITS)) >> |
| scale_vals[param_type]; |
| // Add desired offset to the rescaled/zero-centered parameter |
| param_value += offset; |
| // Clamp the parameter so it does not overflow the number of bits allotted |
| // to it in the bitstream |
| param_value = (int32_t)clamp(param_value, -clamp_vals[param_type], |
| clamp_vals[param_type]); |
| // Rescale the parameter to WARPEDMODEL_PRECISION_BITS so it is compatible |
| // with the warped motion library |
| param_value *= (1 << scale_vals[param_type]); |
| |
| // Undo the zero-centering step if necessary |
| return param_value + (is_one_centered << WARPEDMODEL_PREC_BITS); |
| } |
| |
| static void force_wmtype(WarpedMotionParams *wm, TransformationType wmtype) { |
| switch (wmtype) { |
| case IDENTITY: wm->wmmat[0] = 0; wm->wmmat[1] = 0; |
| case TRANSLATION: |
| wm->wmmat[2] = 1 << WARPEDMODEL_PREC_BITS; |
| wm->wmmat[3] = 0; |
| case ROTZOOM: wm->wmmat[4] = -wm->wmmat[3]; wm->wmmat[5] = wm->wmmat[2]; |
| case AFFINE: wm->wmmat[6] = wm->wmmat[7] = 0; |
| case HOMOGRAPHY: break; |
| default: assert(0); |
| } |
| wm->wmtype = wmtype; |
| } |
| |
| static double refine_integerized_param(WarpedMotionParams *wm, |
| TransformationType wmtype, |
| #if CONFIG_AOM_HIGHBITDEPTH |
| int use_hbd, int bd, |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| uint8_t *ref, int r_width, int r_height, |
| int r_stride, uint8_t *dst, int d_width, |
| int d_height, int d_stride, |
| int n_refinements) { |
| const int border = ERRORADV_BORDER; |
| int i = 0, p; |
| int n_params = n_trans_model_params[wmtype]; |
| int32_t *param_mat = wm->wmmat; |
| double step_error; |
| int32_t step; |
| int32_t *param; |
| int32_t curr_param; |
| int32_t best_param; |
| double best_error; |
| |
| force_wmtype(wm, wmtype); |
| best_error = av1_warp_erroradv(wm, |
| #if CONFIG_AOM_HIGHBITDEPTH |
| use_hbd, bd, |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| ref, r_width, r_height, r_stride, |
| dst + border * d_stride + border, border, |
| border, d_width - 2 * border, |
| d_height - 2 * border, d_stride, 0, 0, 16, 16); |
| for (p = 0; p < n_params; ++p) { |
| param = param_mat + p; |
| step = 1 << (n_refinements + 1); |
| curr_param = *param; |
| best_param = curr_param; |
| for (i = 0; i < n_refinements; i++) { |
| // look to the left |
| *param = add_param_offset(p, curr_param, -step); |
| step_error = av1_warp_erroradv( |
| wm, |
| #if CONFIG_AOM_HIGHBITDEPTH |
| use_hbd, bd, |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| ref, r_width, r_height, r_stride, dst + border * d_stride + border, |
| border, border, d_width - 2 * border, d_height - 2 * border, d_stride, |
| 0, 0, 16, 16); |
| if (step_error < best_error) { |
| step >>= 1; |
| best_error = step_error; |
| best_param = *param; |
| curr_param = best_param; |
| continue; |
| } |
| |
| // look to the right |
| *param = add_param_offset(p, curr_param, step); |
| step_error = av1_warp_erroradv( |
| wm, |
| #if CONFIG_AOM_HIGHBITDEPTH |
| use_hbd, bd, |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| ref, r_width, r_height, r_stride, dst + border * d_stride + border, |
| border, border, d_width - 2 * border, d_height - 2 * border, d_stride, |
| 0, 0, 16, 16); |
| if (step_error < best_error) { |
| step >>= 1; |
| best_error = step_error; |
| best_param = *param; |
| curr_param = best_param; |
| continue; |
| } |
| |
| // no improvement found-> means we're either already at a minimum or |
| // step is too wide |
| step >>= 1; |
| } |
| *param = best_param; |
| } |
| force_wmtype(wm, wmtype); |
| wm->wmtype = get_gmtype(wm); |
| return best_error; |
| } |
| #endif // CONFIG_GLOBAL_MOTION |
| |
| static void encode_frame_internal(AV1_COMP *cpi) { |
| ThreadData *const td = &cpi->td; |
| MACROBLOCK *const x = &td->mb; |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| RD_COUNTS *const rdc = &cpi->td.rd_counts; |
| int i; |
| |
| x->min_partition_size = AOMMIN(x->min_partition_size, cm->sb_size); |
| x->max_partition_size = AOMMIN(x->max_partition_size, cm->sb_size); |
| #if CONFIG_REF_MV |
| cm->setup_mi(cm); |
| #endif |
| |
| xd->mi = cm->mi_grid_visible; |
| xd->mi[0] = cm->mi; |
| |
| av1_zero(*td->counts); |
| av1_zero(rdc->coef_counts); |
| av1_zero(rdc->comp_pred_diff); |
| |
| #if CONFIG_GLOBAL_MOTION |
| av1_zero(cpi->global_motion_used); |
| if (cpi->common.frame_type == INTER_FRAME && cpi->Source && |
| !cpi->global_motion_search_done) { |
| YV12_BUFFER_CONFIG *ref_buf; |
| int frame; |
| double erroradvantage = 0; |
| double params[8] = { 0, 0, 1, 0, 0, 1, 0, 0 }; |
| for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) { |
| ref_buf = get_ref_frame_buffer(cpi, frame); |
| if (ref_buf) { |
| aom_clear_system_state(); |
| if (compute_global_motion_feature_based(GLOBAL_TRANS_TYPES - 1, |
| cpi->Source, ref_buf, |
| #if CONFIG_AOM_HIGHBITDEPTH |
| cpi->common.bit_depth, |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| params)) { |
| convert_model_to_params(params, &cm->global_motion[frame]); |
| if (cm->global_motion[frame].wmtype != IDENTITY) { |
| erroradvantage = refine_integerized_param( |
| &cm->global_motion[frame], cm->global_motion[frame].wmtype, |
| #if CONFIG_AOM_HIGHBITDEPTH |
| xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| ref_buf->y_buffer, ref_buf->y_width, ref_buf->y_height, |
| ref_buf->y_stride, cpi->Source->y_buffer, cpi->Source->y_width, |
| cpi->Source->y_height, cpi->Source->y_stride, 3); |
| if (erroradvantage > |
| gm_advantage_thresh[cm->global_motion[frame].wmtype]) { |
| set_default_gmparams(&cm->global_motion[frame]); |
| } |
| } |
| } |
| aom_clear_system_state(); |
| } |
| } |
| cpi->global_motion_search_done = 1; |
| } |
| #endif // CONFIG_GLOBAL_MOTION |
| |
| for (i = 0; i < MAX_SEGMENTS; ++i) { |
| const int qindex = cm->seg.enabled |
| ? av1_get_qindex(&cm->seg, i, cm->base_qindex) |
| : cm->base_qindex; |
| xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 && |
| cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; |
| } |
| |
| if (!cm->seg.enabled && xd->lossless[0]) x->optimize = 0; |
| |
| cm->tx_mode = select_tx_mode(cpi, xd); |
| av1_frame_init_quantizer(cpi); |
| |
| av1_initialize_rd_consts(cpi); |
| av1_initialize_me_consts(cpi, x, cm->base_qindex); |
| init_encode_frame_mb_context(cpi); |
| |
| cm->use_prev_frame_mvs = |
| !cm->error_resilient_mode && cm->width == cm->last_width && |
| cm->height == cm->last_height && !cm->intra_only && cm->last_show_frame; |
| |
| #if CONFIG_DELTA_Q |
| // Fix delta q resolution for the moment |
| cm->delta_q_res = DEFAULT_DELTA_Q_RES; |
| #endif |
| |
| #if CONFIG_EXT_REFS |
| // NOTE(zoeliu): As cm->prev_frame can take neither a frame of |
| // show_exisiting_frame=1, nor can it take a frame not used as |
| // a reference, it is probable that by the time it is being |
| // referred to, the frame buffer it originally points to may |
| // already get expired and have been reassigned to the current |
| // newly coded frame. Hence, we need to check whether this is |
| // the case, and if yes, we have 2 choices: |
| // (1) Simply disable the use of previous frame mvs; or |
| // (2) Have cm->prev_frame point to one reference frame buffer, |
| // e.g. LAST_FRAME. |
| if (cm->use_prev_frame_mvs && !enc_is_ref_frame_buf(cpi, cm->prev_frame)) { |
| // Reassign the LAST_FRAME buffer to cm->prev_frame. |
| const int last_fb_buf_idx = get_ref_frame_buf_idx(cpi, LAST_FRAME); |
| cm->prev_frame = &cm->buffer_pool->frame_bufs[last_fb_buf_idx]; |
| } |
| #endif // CONFIG_EXT_REFS |
| |
| // Special case: set prev_mi to NULL when the previous mode info |
| // context cannot be used. |
| cm->prev_mi = |
| cm->use_prev_frame_mvs ? cm->prev_mip + cm->mi_stride + 1 : NULL; |
| |
| #if CONFIG_VAR_TX |
| x->txb_split_count = 0; |
| #if CONFIG_REF_MV |
| av1_zero(x->blk_skip_drl); |
| #endif |
| #endif |
| |
| if (cpi->sf.partition_search_type == VAR_BASED_PARTITION && |
| cpi->td.var_root[0] == NULL) |
| av1_setup_var_tree(&cpi->common, &cpi->td); |
| |
| { |
| struct aom_usec_timer emr_timer; |
| aom_usec_timer_start(&emr_timer); |
| |
| #if CONFIG_FP_MB_STATS |
| if (cpi->use_fp_mb_stats) { |
| input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm, |
| &cpi->twopass.this_frame_mb_stats); |
| } |
| #endif |
| |
| // If allowed, encoding tiles in parallel with one thread handling one tile. |
| // TODO(geza.lore): The multi-threaded encoder is not safe with more than |
| // 1 tile rows, as it uses the single above_context et al arrays from |
| // cpi->common |
| if (AOMMIN(cpi->oxcf.max_threads, cm->tile_cols) > 1 && cm->tile_rows == 1) |
| av1_encode_tiles_mt(cpi); |
| else |
| encode_tiles(cpi); |
| |
| aom_usec_timer_mark(&emr_timer); |
| cpi->time_encode_sb_row += aom_usec_timer_elapsed(&emr_timer); |
| } |
| |
| #if 0 |
| // Keep record of the total distortion this time around for future use |
| cpi->last_frame_distortion = cpi->frame_distortion; |
| #endif |
| } |
| |
| void av1_encode_frame(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| |
| // In the longer term the encoder should be generalized to match the |
| // decoder such that we allow compound where one of the 3 buffers has a |
| // different sign bias and that buffer is then the fixed ref. However, this |
| // requires further work in the rd loop. For now the only supported encoder |
| // side behavior is where the ALT ref buffer has opposite sign bias to |
| // the other two. |
| if (!frame_is_intra_only(cm)) { |
| if ((cm->ref_frame_sign_bias[ALTREF_FRAME] == |
| cm->ref_frame_sign_bias[GOLDEN_FRAME]) || |
| (cm->ref_frame_sign_bias[ALTREF_FRAME] == |
| cm->ref_frame_sign_bias[LAST_FRAME])) { |
| cpi->allow_comp_inter_inter = 0; |
| } else { |
| cpi->allow_comp_inter_inter = 1; |
| |
| #if CONFIG_EXT_REFS |
| cm->comp_fwd_ref[0] = LAST_FRAME; |
| cm->comp_fwd_ref[1] = LAST2_FRAME; |
| cm->comp_fwd_ref[2] = LAST3_FRAME; |
| cm->comp_fwd_ref[3] = GOLDEN_FRAME; |
| cm->comp_bwd_ref[0] = BWDREF_FRAME; |
| cm->comp_bwd_ref[1] = ALTREF_FRAME; |
| #else |
| cm->comp_fixed_ref = ALTREF_FRAME; |
| cm->comp_var_ref[0] = LAST_FRAME; |
| cm->comp_var_ref[1] = GOLDEN_FRAME; |
| #endif // CONFIG_EXT_REFS |
| } |
| } else { |
| cpi->allow_comp_inter_inter = 0; |
| } |
| |
| if (cpi->sf.frame_parameter_update) { |
| int i; |
| RD_OPT *const rd_opt = &cpi->rd; |
| FRAME_COUNTS *counts = cpi->td.counts; |
| RD_COUNTS *const rdc = &cpi->td.rd_counts; |
| |
| // This code does a single RD pass over the whole frame assuming |
| // either compound, single or hybrid prediction as per whatever has |
| // worked best for that type of frame in the past. |
| // It also predicts whether another coding mode would have worked |
| // better than this coding mode. If that is the case, it remembers |
| // that for subsequent frames. |
| // It does the same analysis for transform size selection also. |
| // |
| // TODO(zoeliu): To investigate whether a frame_type other than |
| // INTRA/ALTREF/GOLDEN/LAST needs to be specified seperately. |
| const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi); |
| int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type]; |
| const int is_alt_ref = frame_type == ALTREF_FRAME; |
| |
| /* prediction (compound, single or hybrid) mode selection */ |
| if (is_alt_ref || !cpi->allow_comp_inter_inter) |
| cm->reference_mode = SINGLE_REFERENCE; |
| else if (mode_thrs[COMPOUND_REFERENCE] > mode_thrs[SINGLE_REFERENCE] && |
| mode_thrs[COMPOUND_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT] && |
| check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100) |
| cm->reference_mode = COMPOUND_REFERENCE; |
| else if (mode_thrs[SINGLE_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT]) |
| cm->reference_mode = SINGLE_REFERENCE; |
| else |
| cm->reference_mode = REFERENCE_MODE_SELECT; |
| |
| #if CONFIG_DUAL_FILTER |
| cm->interp_filter = SWITCHABLE; |
| #endif |
| |
| encode_frame_internal(cpi); |
| |
| for (i = 0; i < REFERENCE_MODES; ++i) |
| mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2; |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) { |
| int single_count_zero = 0; |
| int comp_count_zero = 0; |
| |
| for (i = 0; i < COMP_INTER_CONTEXTS; i++) { |
| single_count_zero += counts->comp_inter[i][0]; |
| comp_count_zero += counts->comp_inter[i][1]; |
| } |
| |
| if (comp_count_zero == 0) { |
| cm->reference_mode = SINGLE_REFERENCE; |
| av1_zero(counts->comp_inter); |
| } else if (single_count_zero == 0) { |
| cm->reference_mode = COMPOUND_REFERENCE; |
| av1_zero(counts->comp_inter); |
| } |
| } |
| |
| #if CONFIG_VAR_TX |
| if (cm->tx_mode == TX_MODE_SELECT && cpi->td.mb.txb_split_count == 0) |
| cm->tx_mode = ALLOW_32X32 + CONFIG_TX64X64; |
| #else |
| if (cm->tx_mode == TX_MODE_SELECT) { |
| #if CONFIG_TX64X64 |
| int count4x4 = 0; |
| int count8x8_8x8p = 0, count8x8_lp = 0; |
| int count16x16_16x16p = 0, count16x16_lp = 0; |
| int count32x32_32x32p = 0, count32x32_lp = 0; |
| int count64x64_64x64p = 0; |
| for (i = 0; i < TX_SIZE_CONTEXTS; ++i) { |
| // counts->tx_size[max_depth][context_idx][this_depth_level] |
| count4x4 += counts->tx_size[0][i][0]; |
| count4x4 += counts->tx_size[1][i][0]; |
| count4x4 += counts->tx_size[2][i][0]; |
| count4x4 += counts->tx_size[3][i][0]; |
| |
| count8x8_8x8p += counts->tx_size[0][i][1]; |
| count8x8_lp += counts->tx_size[1][i][1]; |
| count8x8_lp += counts->tx_size[2][i][1]; |
| count8x8_lp += counts->tx_size[3][i][1]; |
| |
| count16x16_16x16p += counts->tx_size[1][i][2]; |
| count16x16_lp += counts->tx_size[2][i][2]; |
| count16x16_lp += counts->tx_size[3][i][2]; |
| |
| count32x32_32x32p += counts->tx_size[2][i][3]; |
| count32x32_lp += counts->tx_size[3][i][3]; |
| |
| count64x64_64x64p += counts->tx_size[3][i][4]; |
| } |
| #if CONFIG_EXT_TX && CONFIG_RECT_TX |
| count4x4 += counts->tx_size_implied[0][TX_4X4]; |
| count4x4 += counts->tx_size_implied[1][TX_4X4]; |
| count4x4 += counts->tx_size_implied[2][TX_4X4]; |
| count4x4 += counts->tx_size_implied[3][TX_4X4]; |
| count8x8_8x8p += counts->tx_size_implied[1][TX_8X8]; |
| count8x8_lp += counts->tx_size_implied[2][TX_8X8]; |
| count8x8_lp += counts->tx_size_implied[3][TX_8X8]; |
| count8x8_lp += counts->tx_size_implied[4][TX_8X8]; |
| count16x16_16x16p += counts->tx_size_implied[2][TX_16X16]; |
| count16x16_lp += counts->tx_size_implied[3][TX_16X16]; |
| count16x16_lp += counts->tx_size_implied[4][TX_16X16]; |
| count32x32_32x32p += counts->tx_size_implied[3][TX_32X32]; |
| count32x32_lp += counts->tx_size_implied[4][TX_32X32]; |
| count64x64_64x64p += counts->tx_size_implied[4][TX_64X64]; |
| #endif // CONFIG_EXT_TX && CONFIG_RECT_TX |
| if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 && |
| count32x32_lp == 0 && count32x32_32x32p == 0 && |
| #if CONFIG_SUPERTX |
| cm->counts.supertx_size[TX_16X16] == 0 && |
| cm->counts.supertx_size[TX_32X32] == 0 && |
| cm->counts.supertx_size[TX_64X64] == 0 && |
| #endif |
| count64x64_64x64p == 0) { |
| cm->tx_mode = ALLOW_8X8; |
| reset_skip_tx_size(cm, TX_8X8); |
| } else if (count8x8_8x8p == 0 && count8x8_lp == 0 && |
| count16x16_16x16p == 0 && count16x16_lp == 0 && |
| count32x32_32x32p == 0 && count32x32_lp == 0 && |
| #if CONFIG_SUPERTX |
| cm->counts.supertx_size[TX_8X8] == 0 && |
| cm->counts.supertx_size[TX_16X16] == 0 && |
| cm->counts.supertx_size[TX_32X32] == 0 && |
| cm->counts.supertx_size[TX_64X64] == 0 && |
| #endif |
| count64x64_64x64p == 0) { |
| cm->tx_mode = ONLY_4X4; |
| reset_skip_tx_size(cm, TX_4X4); |
| } else if (count4x4 == 0 && count8x8_lp == 0 && count16x16_lp == 0 && |
| count32x32_lp == 0) { |
| cm->tx_mode = ALLOW_64X64; |
| } else if (count4x4 == 0 && count8x8_lp == 0 && count16x16_lp == 0 && |
| #if CONFIG_SUPERTX |
| cm->counts.supertx_size[TX_64X64] == 0 && |
| #endif |
| count64x64_64x64p == 0) { |
| cm->tx_mode = ALLOW_32X32; |
| reset_skip_tx_size(cm, TX_32X32); |
| } else if (count4x4 == 0 && count8x8_lp == 0 && count32x32_lp == 0 && |
| count32x32_32x32p == 0 && |
| #if CONFIG_SUPERTX |
| cm->counts.supertx_size[TX_32X32] == 0 && |
| cm->counts.supertx_size[TX_64X64] == 0 && |
| #endif |
| count64x64_64x64p == 0) { |
| cm->tx_mode = ALLOW_16X16; |
| reset_skip_tx_size(cm, TX_16X16); |
| } |
| |
| #else // CONFIG_TX64X64 |
| |
| int count4x4 = 0; |
| int count8x8_lp = 0, count8x8_8x8p = 0; |
| int count16x16_16x16p = 0, count16x16_lp = 0; |
| int count32x32 = 0; |
| for (i = 0; i < TX_SIZE_CONTEXTS; ++i) { |
| // counts->tx_size[max_depth][context_idx][this_depth_level] |
| count4x4 += counts->tx_size[0][i][0]; |
| count4x4 += counts->tx_size[1][i][0]; |
| count4x4 += counts->tx_size[2][i][0]; |
| |
| count8x8_8x8p += counts->tx_size[0][i][1]; |
| count8x8_lp += counts->tx_size[1][i][1]; |
| count8x8_lp += counts->tx_size[2][i][1]; |
| |
| count16x16_16x16p += counts->tx_size[1][i][2]; |
| count16x16_lp += counts->tx_size[2][i][2]; |
| count32x32 += counts->tx_size[2][i][3]; |
| } |
| #if CONFIG_EXT_TX && CONFIG_RECT_TX |
| count4x4 += counts->tx_size_implied[0][TX_4X4]; |
| count4x4 += counts->tx_size_implied[1][TX_4X4]; |
| count4x4 += counts->tx_size_implied[2][TX_4X4]; |
| count4x4 += counts->tx_size_implied[3][TX_4X4]; |
| count8x8_8x8p += counts->tx_size_implied[1][TX_8X8]; |
| count8x8_lp += counts->tx_size_implied[2][TX_8X8]; |
| count8x8_lp += counts->tx_size_implied[3][TX_8X8]; |
| count16x16_lp += counts->tx_size_implied[3][TX_16X16]; |
| count16x16_16x16p += counts->tx_size_implied[2][TX_16X16]; |
| count32x32 += counts->tx_size_implied[3][TX_32X32]; |
| #endif // CONFIG_EXT_TX && CONFIG_RECT_TX |
| if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 && |
| #if CONFIG_SUPERTX |
| cm->counts.supertx_size[TX_16X16] == 0 && |
| cm->counts.supertx_size[TX_32X32] == 0 && |
| #endif // CONFIG_SUPERTX |
| count32x32 == 0) { |
| cm->tx_mode = ALLOW_8X8; |
| reset_skip_tx_size(cm, TX_8X8); |
| } else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 && |
| count8x8_lp == 0 && count16x16_lp == 0 && |
| #if CONFIG_SUPERTX |
| cm->counts.supertx_size[TX_8X8] == 0 && |
| cm->counts.supertx_size[TX_16X16] == 0 && |
| cm->counts.supertx_size[TX_32X32] == 0 && |
| #endif // CONFIG_SUPERTX |
| count32x32 == 0) { |
| cm->tx_mode = ONLY_4X4; |
| reset_skip_tx_size(cm, TX_4X4); |
| } else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) { |
| cm->tx_mode = ALLOW_32X32; |
| } else if (count32x32 == 0 && count8x8_lp == 0 && |
| #if CONFIG_SUPERTX |
| cm->counts.supertx_size[TX_32X32] == 0 && |
| #endif // CONFIG_SUPERTX |
| count4x4 == 0) { |
| cm->tx_mode = ALLOW_16X16; |
| reset_skip_tx_size(cm, TX_16X16); |
| } |
| #endif // CONFIG_TX64X64 |
| } |
| #endif |
| } else { |
| encode_frame_internal(cpi); |
| } |
| } |
| |
| static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi, |
| const MODE_INFO *above_mi, const MODE_INFO *left_mi, |
| const int intraonly) { |
| const PREDICTION_MODE y_mode = mi->mbmi.mode; |
| const PREDICTION_MODE uv_mode = mi->mbmi.uv_mode; |
| const BLOCK_SIZE bsize = mi->mbmi.sb_type; |
| |
| if (bsize < BLOCK_8X8) { |
| int idx, idy; |
| const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; |
| for (idy = 0; idy < 2; idy += num_4x4_h) |
| for (idx = 0; idx < 2; idx += num_4x4_w) { |
| const int bidx = idy * 2 + idx; |
| const PREDICTION_MODE bmode = mi->bmi[bidx].as_mode; |
| if (intraonly) { |
| const PREDICTION_MODE a = av1_above_block_mode(mi, above_mi, bidx); |
| const PREDICTION_MODE l = av1_left_block_mode(mi, left_mi, bidx); |
| ++counts->kf_y_mode[a][l][bmode]; |
| } else { |
| ++counts->y_mode[0][bmode]; |
| } |
| } |
| } else { |
| if (intraonly) { |
| const PREDICTION_MODE above = av1_above_block_mode(mi, above_mi, 0); |
| const PREDICTION_MODE left = av1_left_block_mode(mi, left_mi, 0); |
| ++counts->kf_y_mode[above][left][y_mode]; |
| } else { |
| ++counts->y_mode[size_group_lookup[bsize]][y_mode]; |
| } |
| } |
| |
| ++counts->uv_mode[y_mode][uv_mode]; |
| } |
| |
| #if CONFIG_VAR_TX |
| static void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd, |
| FRAME_COUNTS *counts, TX_SIZE tx_size, int depth, |
| int blk_row, int blk_col) { |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| const int tx_row = blk_row >> 1; |
| const int tx_col = blk_col >> 1; |
| const int max_blocks_high = max_block_high(xd, mbmi->sb_type, 0); |
| const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type, 0); |
| int ctx = txfm_partition_context(xd->above_txfm_context + tx_col, |
| xd->left_txfm_context + tx_row, |
| mbmi->sb_type, tx_size); |
| const TX_SIZE plane_tx_size = mbmi->inter_tx_size[tx_row][tx_col]; |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| if (tx_size == plane_tx_size) { |
| ++counts->txfm_partition[ctx][0]; |
| mbmi->tx_size = tx_size; |
| txfm_partition_update(xd->above_txfm_context + tx_col, |
| xd->left_txfm_context + tx_row, tx_size); |
| } else { |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bs = tx_size_wide_unit[sub_txs]; |
| int i; |
| |
| ++counts->txfm_partition[ctx][1]; |
| ++x->txb_split_count; |
| |
| if (tx_size == TX_8X8) { |
| mbmi->inter_tx_size[tx_row][tx_col] = TX_4X4; |
| mbmi->tx_size = TX_4X4; |
| txfm_partition_update(xd->above_txfm_context + tx_col, |
| xd->left_txfm_context + tx_row, TX_4X4); |
| return; |
| } |
| |
| for (i = 0; i < 4; ++i) { |
| int offsetr = (i >> 1) * bs; |
| int offsetc = (i & 0x01) * bs; |
| update_txfm_count(x, xd, counts, sub_txs, depth + 1, blk_row + offsetr, |
| blk_col + offsetc); |
| } |
| } |
| } |
| |
| static void tx_partition_count_update(const AV1_COMMON *const cm, MACROBLOCK *x, |
| BLOCK_SIZE plane_bsize, int mi_row, |
| int mi_col, FRAME_COUNTS *td_counts) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| const int mi_width = num_4x4_blocks_wide_lookup[plane_bsize]; |
| const int mi_height = num_4x4_blocks_high_lookup[plane_bsize]; |
| TX_SIZE max_tx_size = max_txsize_rect_lookup[plane_bsize]; |
| const int bh = tx_size_high_unit[max_tx_size]; |
| const int bw = tx_size_wide_unit[max_tx_size]; |
| int idx, idy; |
| |
| xd->above_txfm_context = cm->above_txfm_context + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| |
| for (idy = 0; idy < mi_height; idy += bh) |
| for (idx = 0; idx < mi_width; idx += bw) |
| update_txfm_count(x, xd, td_counts, max_tx_size, mi_width != mi_height, |
| idy, idx); |
| } |
| |
| static void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size, int blk_row, |
| int blk_col) { |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| const int tx_row = blk_row >> 1; |
| const int tx_col = blk_col >> 1; |
| const int max_blocks_high = max_block_high(xd, mbmi->sb_type, 0); |
| const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type, 0); |
| const TX_SIZE plane_tx_size = mbmi->inter_tx_size[tx_row][tx_col]; |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| if (tx_size == plane_tx_size) { |
| mbmi->tx_size = tx_size; |
| txfm_partition_update(xd->above_txfm_context + tx_col, |
| xd->left_txfm_context + tx_row, tx_size); |
| |
| } else { |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bsl = tx_size_wide_unit[sub_txs]; |
| int i; |
| |
| if (tx_size == TX_8X8) { |
| mbmi->inter_tx_size[tx_row][tx_col] = TX_4X4; |
| mbmi->tx_size = TX_4X4; |
| txfm_partition_update(xd->above_txfm_context + tx_col, |
| xd->left_txfm_context + tx_row, TX_4X4); |
| return; |
| } |
| |
| assert(bsl > 0); |
| for (i = 0; i < 4; ++i) { |
| int offsetr = (i >> 1) * bsl; |
| int offsetc = (i & 0x01) * bsl; |
| set_txfm_context(xd, sub_txs, blk_row + offsetr, blk_col + offsetc); |
| } |
| } |
| } |
| |
| static void tx_partition_set_contexts(const AV1_COMMON *const cm, |
| MACROBLOCKD *xd, BLOCK_SIZE plane_bsize, |
| int mi_row, int mi_col) { |
| const int mi_width = num_4x4_blocks_wide_lookup[plane_bsize]; |
| const int mi_height = num_4x4_blocks_high_lookup[plane_bsize]; |
| TX_SIZE max_tx_size = max_txsize_rect_lookup[plane_bsize]; |
| const int bh = tx_size_high_unit[max_tx_size]; |
| const int bw = tx_size_wide_unit[max_tx_size]; |
| int idx, idy; |
| |
| xd->above_txfm_context = cm->above_txfm_context + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| |
| for (idy = 0; idy < mi_height; idy += bh) |
| for (idx = 0; idx < mi_width; idx += bw) |
| set_txfm_context(xd, max_tx_size, idy, idx); |
| } |
| #endif |
| |
| static void encode_superblock(const AV1_COMP *const cpi, ThreadData *td, |
| TOKENEXTRA **t, RUN_TYPE dry_run, int mi_row, |
| int mi_col, BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx, int *rate) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO **mi_8x8 = xd->mi; |
| MODE_INFO *mi = mi_8x8[0]; |
| MB_MODE_INFO *mbmi = &mi->mbmi; |
| const int seg_skip = |
| segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP); |
| const int mis = cm->mi_stride; |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| const int is_inter = is_inter_block(mbmi); |
| |
| x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct; |
| |
| #if CONFIG_PVQ |
| x->pvq_speed = 0; |
| x->pvq_coded = (dry_run == OUTPUT_ENABLED) ? 1 : 0; |
| #endif |
| |
| if (!is_inter) { |
| int plane; |
| mbmi->skip = 1; |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) |
| av1_encode_intra_block_plane((AV1_COMMON *)cm, x, |
| AOMMAX(bsize, BLOCK_8X8), plane, 1); |
| if (!dry_run) |
| sum_intra_stats(td->counts, mi, xd->above_mi, xd->left_mi, |
| frame_is_intra_only(cm)); |
| |
| // TODO(huisu): move this into sum_intra_stats(). |
| if (!dry_run && bsize >= BLOCK_8X8) { |
| FRAME_COUNTS *counts = td->counts; |
| (void)counts; |
| #if CONFIG_FILTER_INTRA |
| if (mbmi->mode == DC_PRED |
| #if CONFIG_PALETTE |
| && mbmi->palette_mode_info.palette_size[0] == 0 |
| #endif // CONFIG_PALETTE |
| ) { |
| const int use_filter_intra_mode = |
| mbmi->filter_intra_mode_info.use_filter_intra_mode[0]; |
| ++counts->filter_intra[0][use_filter_intra_mode]; |
| } |
| if (mbmi->uv_mode == DC_PRED |
| #if CONFIG_PALETTE |
| && mbmi->palette_mode_info.palette_size[1] == 0 |
| #endif // CONFIG_PALETTE |
| ) { |
| const int use_filter_intra_mode = |
| mbmi->filter_intra_mode_info.use_filter_intra_mode[1]; |
| ++counts->filter_intra[1][use_filter_intra_mode]; |
| } |
| #endif // CONFIG_FILTER_INTRA |
| #if CONFIG_EXT_INTRA |
| if (mbmi->mode != DC_PRED && mbmi->mode != TM_PRED) { |
| int p_angle; |
| const int intra_filter_ctx = av1_get_pred_context_intra_interp(xd); |
| p_angle = |
| mode_to_angle_map[mbmi->mode] + mbmi->angle_delta[0] * ANGLE_STEP; |
| if (av1_is_intra_filter_switchable(p_angle)) |
| ++counts->intra_filter[intra_filter_ctx][mbmi->intra_filter]; |
| } |
| #endif // CONFIG_EXT_INTRA |
| } |
| |
| #if CONFIG_PALETTE |
| if (bsize >= BLOCK_8X8 && !dry_run) { |
| for (plane = 0; plane <= 1; ++plane) { |
| if (mbmi->palette_mode_info.palette_size[plane] > 0) { |
| mbmi->palette_mode_info.palette_first_color_idx[plane] = |
| xd->plane[plane].color_index_map[0]; |
| // TODO(huisu): this increases the use of token buffer. Needs stretch |
| // test to verify. |
| av1_tokenize_palette_sb(cpi, td, plane, t, dry_run, bsize, rate); |
| } |
| } |
| } |
| #endif // CONFIG_PALETTE |
| #if CONFIG_VAR_TX |
| mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size); |
| #endif |
| av1_tokenize_sb(cpi, td, t, dry_run, AOMMAX(bsize, BLOCK_8X8), rate); |
| } else { |
| int ref; |
| const int is_compound = has_second_ref(mbmi); |
| |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mbmi->ref_frame[ref]); |
| assert(cfg != NULL); |
| av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col, |
| &xd->block_refs[ref]->sf); |
| } |
| #if CONFIG_WARPED_MOTION |
| if (mbmi->motion_mode == WARPED_CAUSAL) { |
| int i; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| int use_hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| for (i = 0; i < 3; ++i) { |
| const struct macroblockd_plane *pd = &xd->plane[i]; |
| |
| av1_warp_plane(&mbmi->wm_params[0], |
| #if CONFIG_AOM_HIGHBITDEPTH |
| xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| pd->pre[0].buf0, pd->pre[0].width, pd->pre[0].height, |
| pd->pre[0].stride, pd->dst.buf, |
| ((mi_col * MI_SIZE) >> pd->subsampling_x), |
| ((mi_row * MI_SIZE) >> pd->subsampling_y), |
| xd->n8_w * (8 >> pd->subsampling_x), |
| xd->n8_h * (8 >> pd->subsampling_y), pd->dst.stride, |
| pd->subsampling_x, pd->subsampling_y, 16, 16, 0); |
| } |
| } else { |
| #endif // CONFIG_WARPED_MOTION |
| if (!(cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready) || seg_skip) |
| av1_build_inter_predictors_sby(xd, mi_row, mi_col, |
| AOMMAX(bsize, BLOCK_8X8)); |
| |
| av1_build_inter_predictors_sbuv(xd, mi_row, mi_col, |
| AOMMAX(bsize, BLOCK_8X8)); |
| #if CONFIG_WARPED_MOTION |
| } |
| #endif // CONFIG_WARPED_MOTION |
| |
| #if CONFIG_MOTION_VAR |
| if (mbmi->motion_mode == OBMC_CAUSAL) { |
| av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col); |
| } |
| #endif // CONFIG_MOTION_VAR |
| |
| av1_encode_sb((AV1_COMMON *)cm, x, AOMMAX(bsize, BLOCK_8X8)); |
| #if CONFIG_VAR_TX |
| if (mbmi->skip) mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size); |
| av1_tokenize_sb_vartx(cpi, td, t, dry_run, mi_row, mi_col, |
| AOMMAX(bsize, BLOCK_8X8), rate); |
| #else |
| av1_tokenize_sb(cpi, td, t, dry_run, AOMMAX(bsize, BLOCK_8X8), rate); |
| #endif |
| } |
| |
| if (!dry_run) { |
| #if CONFIG_VAR_TX |
| TX_SIZE tx_size = |
| is_inter && !mbmi->skip ? mbmi->min_tx_size : mbmi->tx_size; |
| #else |
| TX_SIZE tx_size = mbmi->tx_size; |
| #endif |
| if (cm->tx_mode == TX_MODE_SELECT && mbmi->sb_type >= BLOCK_8X8 && |
| !(is_inter && (mbmi->skip || seg_skip))) { |
| const int tx_size_ctx = get_tx_size_context(xd); |
| const int tx_size_cat = is_inter ? inter_tx_size_cat_lookup[bsize] |
| : intra_tx_size_cat_lookup[bsize]; |
| const TX_SIZE coded_tx_size = txsize_sqr_up_map[tx_size]; |
| const int depth = tx_size_to_depth(coded_tx_size); |
| #if CONFIG_EXT_TX && CONFIG_RECT_TX |
| assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi))); |
| #endif // CONFIG_EXT_TX && CONFIG_RECT_TX |
| #if CONFIG_VAR_TX |
| if (is_inter) { |
| tx_partition_count_update(cm, x, bsize, mi_row, mi_col, td->counts); |
| } else { |
| ++td->counts->tx_size[tx_size_cat][tx_size_ctx][depth]; |
| if (tx_size != max_txsize_lookup[bsize]) ++x->txb_split_count; |
| } |
| #else |
| ++td->counts->tx_size[tx_size_cat][tx_size_ctx][depth]; |
| #endif |
| } else { |
| int i, j; |
| TX_SIZE intra_tx_size; |
| // The new intra coding scheme requires no change of transform size |
| if (is_inter) { |
| if (xd->lossless[mbmi->segment_id]) { |
| intra_tx_size = TX_4X4; |
| } else { |
| intra_tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode, 1); |
| } |
| #if CONFIG_EXT_TX && CONFIG_RECT_TX |
| ++td->counts->tx_size_implied[max_txsize_lookup[bsize]] |
| [txsize_sqr_up_map[tx_size]]; |
| #endif // CONFIG_EXT_TX && CONFIG_RECT_TX |
| } else { |
| intra_tx_size = (bsize >= BLOCK_8X8) ? tx_size : TX_4X4; |
| } |
| |
| for (j = 0; j < mi_height; j++) |
| for (i = 0; i < mi_width; i++) |
| if (mi_col + i < cm->mi_cols && mi_row + j < cm->mi_rows) |
| mi_8x8[mis * j + i]->mbmi.tx_size = intra_tx_size; |
| |
| #if CONFIG_VAR_TX |
| mbmi->min_tx_size = get_min_tx_size(intra_tx_size); |
| if (intra_tx_size != max_txsize_lookup[bsize]) ++x->txb_split_count; |
| #endif |
| } |
| |
| ++td->counts->tx_size_totals[txsize_sqr_map[tx_size]]; |
| ++td->counts |
| ->tx_size_totals[txsize_sqr_map[get_uv_tx_size(mbmi, &xd->plane[1])]]; |
| #if CONFIG_EXT_TX |
| if (get_ext_tx_types(tx_size, bsize, is_inter) > 1 && cm->base_qindex > 0 && |
| !mbmi->skip && |
| !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| int eset = get_ext_tx_set(tx_size, bsize, is_inter); |
| if (eset > 0) { |
| if (is_inter) { |
| ++td->counts->inter_ext_tx[eset][txsize_sqr_map[tx_size]] |
| [mbmi->tx_type]; |
| } else { |
| ++td->counts->intra_ext_tx[eset][tx_size][mbmi->mode][mbmi->tx_type]; |
| } |
| } |
| } |
| #else |
| if (tx_size < TX_32X32 && cm->base_qindex > 0 && !mbmi->skip && |
| !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| if (is_inter) { |
| ++td->counts->inter_ext_tx[tx_size][mbmi->tx_type]; |
| } else { |
| ++td->counts->intra_ext_tx[tx_size] |
| [intra_mode_to_tx_type_context[mbmi->mode]] |
| [mbmi->tx_type]; |
| } |
| } |
| #endif // CONFIG_EXT_TX |
| } |
| |
| #if CONFIG_VAR_TX |
| if (cm->tx_mode == TX_MODE_SELECT && mbmi->sb_type >= BLOCK_8X8 && is_inter && |
| !(mbmi->skip || seg_skip)) { |
| if (dry_run) tx_partition_set_contexts(cm, xd, bsize, mi_row, mi_col); |
| } else { |
| TX_SIZE tx_size = mbmi->tx_size; |
| // The new intra coding scheme requires no change of transform size |
| if (is_inter) |
| tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode, is_inter); |
| else |
| tx_size = (bsize >= BLOCK_8X8) ? tx_size : TX_4X4; |
| mbmi->tx_size = tx_size; |
| set_txfm_ctxs(tx_size, xd->n8_w, xd->n8_h, (mbmi->skip || seg_skip), xd); |
| } |
| #endif // CONFIG_VAR_TX |
| } |
| |
| #if CONFIG_SUPERTX |
| static int check_intra_b(PICK_MODE_CONTEXT *ctx) { |
| if (!is_inter_mode((&ctx->mic)->mbmi.mode)) return 1; |
| #if CONFIG_EXT_INTER |
| if (ctx->mic.mbmi.ref_frame[1] == INTRA_FRAME) return 1; |
| #endif // CONFIG_EXT_INTER |
| return 0; |
| } |
| |
| static int check_intra_sb(const AV1_COMP *const cpi, const TileInfo *const tile, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| PC_TREE *pc_tree) { |
| const AV1_COMMON *const cm = &cpi->common; |
| |
| const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2; |
| const PARTITION_TYPE partition = pc_tree->partitioning; |
| const BLOCK_SIZE subsize = get_subsize(bsize, partition); |
| #if CONFIG_EXT_PARTITION_TYPES |
| int i; |
| #endif |
| |
| assert(bsize >= BLOCK_8X8); |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return 1; |
| |
| switch (partition) { |
| case PARTITION_NONE: return check_intra_b(&pc_tree->none); break; |
| case PARTITION_VERT: |
| if (check_intra_b(&pc_tree->vertical[0])) return 1; |
| if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) { |
| if (check_intra_b(&pc_tree->vertical[1])) return 1; |
| } |
| break; |
| case PARTITION_HORZ: |
| if (check_intra_b(&pc_tree->horizontal[0])) return 1; |
| if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) { |
| if (check_intra_b(&pc_tree->horizontal[1])) return 1; |
| } |
| break; |
| case PARTITION_SPLIT: |
| if (bsize == BLOCK_8X8) { |
| if (check_intra_b(pc_tree->leaf_split[0])) return 1; |
| } else { |
| if (check_intra_sb(cpi, tile, mi_row, mi_col, subsize, |
| pc_tree->split[0])) |
| return 1; |
| if (check_intra_sb(cpi, tile, mi_row, mi_col + hbs, subsize, |
| pc_tree->split[1])) |
| return 1; |
| if (check_intra_sb(cpi, tile, mi_row + hbs, mi_col, subsize, |
| pc_tree->split[2])) |
| return 1; |
| if (check_intra_sb(cpi, tile, mi_row + hbs, mi_col + hbs, subsize, |
| pc_tree->split[3])) |
| return 1; |
| } |
| break; |
| #if CONFIG_EXT_PARTITION_TYPES |
| case PARTITION_HORZ_A: |
| for (i = 0; i < 3; i++) { |
| if (check_intra_b(&pc_tree->horizontala[i])) return 1; |
| } |
| break; |
| case PARTITION_HORZ_B: |
| for (i = 0; i < 3; i++) { |
| if (check_intra_b(&pc_tree->horizontalb[i])) return 1; |
| } |
| break; |
| case PARTITION_VERT_A: |
| for (i = 0; i < 3; i++) { |
| if (check_intra_b(&pc_tree->verticala[i])) return 1; |
| } |
| break; |
| case PARTITION_VERT_B: |
| for (i = 0; i < 3; i++) { |
| if (check_intra_b(&pc_tree->verticalb[i])) return 1; |
| } |
| break; |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| default: assert(0); |
| } |
| return 0; |
| } |
| |
| static int check_supertx_b(TX_SIZE supertx_size, PICK_MODE_CONTEXT *ctx) { |
| return ctx->mic.mbmi.tx_size == supertx_size; |
| } |
| |
| static int check_supertx_sb(BLOCK_SIZE bsize, TX_SIZE supertx_size, |
| PC_TREE *pc_tree) { |
| PARTITION_TYPE partition; |
| BLOCK_SIZE subsize; |
| |
| partition = pc_tree->partitioning; |
| subsize = get_subsize(bsize, partition); |
| switch (partition) { |
| case PARTITION_NONE: return check_supertx_b(supertx_size, &pc_tree->none); |
| case PARTITION_VERT: |
| return check_supertx_b(supertx_size, &pc_tree->vertical[0]); |
| case PARTITION_HORZ: |
| return check_supertx_b(supertx_size, &pc_tree->horizontal[0]); |
| case PARTITION_SPLIT: |
| if (bsize == BLOCK_8X8) |
| return check_supertx_b(supertx_size, pc_tree->leaf_split[0]); |
| else |
| return check_supertx_sb(subsize, supertx_size, pc_tree->split[0]); |
| #if CONFIG_EXT_PARTITION_TYPES |
| case PARTITION_HORZ_A: |
| return check_supertx_b(supertx_size, &pc_tree->horizontala[0]); |
| case PARTITION_HORZ_B: |
| return check_supertx_b(supertx_size, &pc_tree->horizontalb[0]); |
| case PARTITION_VERT_A: |
| return check_supertx_b(supertx_size, &pc_tree->verticala[0]); |
| case PARTITION_VERT_B: |
| return check_supertx_b(supertx_size, &pc_tree->verticalb[0]); |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| default: assert(0); return 0; |
| } |
| } |
| |
| static void predict_superblock(const AV1_COMP *const cpi, ThreadData *td, |
| #if CONFIG_EXT_INTER |
| int mi_row_ori, int mi_col_ori, |
| #endif // CONFIG_EXT_INTER |
| int mi_row_pred, int mi_col_pred, |
| BLOCK_SIZE bsize_pred, int b_sub8x8, int block) { |
| // Used in supertx |
| // (mi_row_ori, mi_col_ori): location for mv |
| // (mi_row_pred, mi_col_pred, bsize_pred): region to predict |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *mi_8x8 = xd->mi[0]; |
| MODE_INFO *mi = mi_8x8; |
| MB_MODE_INFO *mbmi = &mi->mbmi; |
| int ref; |
| const int is_compound = has_second_ref(mbmi); |
| |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mbmi->ref_frame[ref]); |
| av1_setup_pre_planes(xd, ref, cfg, mi_row_pred, mi_col_pred, |
| &xd->block_refs[ref]->sf); |
| } |
| |
| if (!b_sub8x8) |
| av1_build_inter_predictors_sb_extend(xd, |
| #if CONFIG_EXT_INTER |
| mi_row_ori, mi_col_ori, |
| #endif // CONFIG_EXT_INTER |
| mi_row_pred, mi_col_pred, bsize_pred); |
| else |
| av1_build_inter_predictors_sb_sub8x8_extend(xd, |
| #if CONFIG_EXT_INTER |
| mi_row_ori, mi_col_ori, |
| #endif // CONFIG_EXT_INTER |
| mi_row_pred, mi_col_pred, |
| bsize_pred, block); |
| } |
| |
| static void predict_b_extend(const AV1_COMP *const cpi, ThreadData *td, |
| const TileInfo *const tile, int block, |
| int mi_row_ori, int mi_col_ori, int mi_row_pred, |
| int mi_col_pred, int mi_row_top, int mi_col_top, |
| uint8_t *dst_buf[3], int dst_stride[3], |
| BLOCK_SIZE bsize_top, BLOCK_SIZE bsize_pred, |
| RUN_TYPE dry_run, int b_sub8x8, int bextend) { |
| // Used in supertx |
| // (mi_row_ori, mi_col_ori): location for mv |
| // (mi_row_pred, mi_col_pred, bsize_pred): region to predict |
| // (mi_row_top, mi_col_top, bsize_top): region of the top partition size |
| // block: sub location of sub8x8 blocks |
| // b_sub8x8: 1: ori is sub8x8; 0: ori is not sub8x8 |
| // bextend: 1: region to predict is an extension of ori; 0: not |
| |
| MACROBLOCK *const x = &td->mb; |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int r = (mi_row_pred - mi_row_top) * MI_SIZE; |
| int c = (mi_col_pred - mi_col_top) * MI_SIZE; |
| const int mi_width_top = num_8x8_blocks_wide_lookup[bsize_top]; |
| const int mi_height_top = num_8x8_blocks_high_lookup[bsize_top]; |
| |
| if (mi_row_pred < mi_row_top || mi_col_pred < mi_col_top || |
| mi_row_pred >= mi_row_top + mi_height_top || |
| mi_col_pred >= mi_col_top + mi_width_top || mi_row_pred >= cm->mi_rows || |
| mi_col_pred >= cm->mi_cols) |
| return; |
| |
| set_offsets_extend(cpi, td, tile, mi_row_pred, mi_col_pred, mi_row_ori, |
| mi_col_ori, bsize_pred); |
| xd->plane[0].dst.stride = dst_stride[0]; |
| xd->plane[1].dst.stride = dst_stride[1]; |
| xd->plane[2].dst.stride = dst_stride[2]; |
| xd->plane[0].dst.buf = dst_buf[0] + |
| (r >> xd->plane[0].subsampling_y) * dst_stride[0] + |
| (c >> xd->plane[0].subsampling_x); |
| xd->plane[1].dst.buf = dst_buf[1] + |
| (r >> xd->plane[1].subsampling_y) * dst_stride[1] + |
| (c >> xd->plane[1].subsampling_x); |
| xd->plane[2].dst.buf = dst_buf[2] + |
| (r >> xd->plane[2].subsampling_y) * dst_stride[2] + |
| (c >> xd->plane[2].subsampling_x); |
| |
| predict_superblock(cpi, td, |
| #if CONFIG_EXT_INTER |
| mi_row_ori, mi_col_ori, |
| #endif // CONFIG_EXT_INTER |
| mi_row_pred, mi_col_pred, bsize_pred, b_sub8x8, block); |
| |
| if (!dry_run && !bextend) { |
| #if CONFIG_SUPERTX |
| update_stats(&cpi->common, td, mi_row_pred, mi_col_pred, 1); |
| #else |
| update_stats(&cpi->common, td, mi_row_pred, mi_col_pred); |
| #endif |
| } |
| } |
| |
| static void extend_dir(const AV1_COMP *const cpi, ThreadData *td, |
| const TileInfo *const tile, int block, BLOCK_SIZE bsize, |
| BLOCK_SIZE top_bsize, int mi_row, int mi_col, |
| int mi_row_top, int mi_col_top, RUN_TYPE dry_run, |
| uint8_t *dst_buf[3], int dst_stride[3], int dir) { |
| // dir: 0-lower, 1-upper, 2-left, 3-right |
| // 4-lowerleft, 5-upperleft, 6-lowerright, 7-upperright |
| MACROBLOCKD *xd = &td->mb.e_mbd; |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| int xss = xd->plane[1].subsampling_x; |
| int yss = xd->plane[1].subsampling_y; |
| int b_sub8x8 = (bsize < BLOCK_8X8) ? 1 : 0; |
| |
| BLOCK_SIZE extend_bsize; |
| int unit, mi_row_pred, mi_col_pred; |
| |
| if (dir == 0 || dir == 1) { // lower and upper |
| extend_bsize = (mi_width == 1 || bsize < BLOCK_8X8 || xss < yss) |
| ? BLOCK_8X8 |
| : BLOCK_16X8; |
| unit = num_8x8_blocks_wide_lookup[extend_bsize]; |
| mi_row_pred = mi_row + ((dir == 0) ? mi_height : -1); |
| mi_col_pred = mi_col; |
| |
| predict_b_extend(cpi, td, tile, block, mi_row, mi_col, mi_row_pred, |
| mi_col_pred, mi_row_top, mi_col_top, dst_buf, dst_stride, |
| top_bsize, extend_bsize, dry_run, b_sub8x8, 1); |
| |
| if (mi_width > unit) { |
| int i; |
| for (i = 0; i < mi_width / unit - 1; i++) { |
| mi_col_pred += unit; |
| predict_b_extend(cpi, td, tile, block, mi_row, mi_col, mi_row_pred, |
| mi_col_pred, mi_row_top, mi_col_top, dst_buf, |
| dst_stride, top_bsize, extend_bsize, dry_run, b_sub8x8, |
| 1); |
| } |
| } |
| } else if (dir == 2 || dir == 3) { // left and right |
| extend_bsize = (mi_height == 1 || bsize < BLOCK_8X8 || yss < xss) |
| ? BLOCK_8X8 |
| : BLOCK_8X16; |
| unit = num_8x8_blocks_high_lookup[extend_bsize]; |
| mi_row_pred = mi_row; |
| mi_col_pred = mi_col + ((dir == 3) ? mi_width : -1); |
| |
| predict_b_extend(cpi, td, tile, block, mi_row, mi_col, mi_row_pred, |
| mi_col_pred, mi_row_top, mi_col_top, dst_buf, dst_stride, |
| top_bsize, extend_bsize, dry_run, b_sub8x8, 1); |
| |
| if (mi_height > unit) { |
| int i; |
| for (i = 0; i < mi_height / unit - 1; i++) { |
| mi_row_pred += unit; |
| predict_b_extend(cpi, td, tile, block, mi_row, mi_col, mi_row_pred, |
| mi_col_pred, mi_row_top, mi_col_top, dst_buf, |
| dst_stride, top_bsize, extend_bsize, dry_run, b_sub8x8, |
| 1); |
| } |
| } |
| } else { |
| extend_bsize = BLOCK_8X8; |
| mi_row_pred = mi_row + ((dir == 4 || dir == 6) ? mi_height : -1); |
| mi_col_pred = mi_col + ((dir == 6 || dir == 7) ? mi_width : -1); |
| |
| predict_b_extend(cpi, td, tile, block, mi_row, mi_col, mi_row_pred, |
| mi_col_pred, mi_row_top, mi_col_top, dst_buf, dst_stride, |
| top_bsize, extend_bsize, dry_run, b_sub8x8, 1); |
| } |
| } |
| |
| static void extend_all(const AV1_COMP *const cpi, ThreadData *td, |
| const TileInfo *const tile, int block, BLOCK_SIZE bsize, |
| BLOCK_SIZE top_bsize, int mi_row, int mi_col, |
| int mi_row_top, int mi_col_top, RUN_TYPE dry_run, |
| uint8_t *dst_buf[3], int dst_stride[3]) { |
| assert(block >= 0 && block < 4); |
| extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, |
| mi_col_top, dry_run, dst_buf, dst_stride, 0); |
| extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, |
| mi_col_top, dry_run, dst_buf, dst_stride, 1); |
| extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, |
| mi_col_top, dry_run, dst_buf, dst_stride, 2); |
| extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, |
| mi_col_top, dry_run, dst_buf, dst_stride, 3); |
| extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, |
| mi_col_top, dry_run, dst_buf, dst_stride, 4); |
| extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, |
| mi_col_top, dry_run, dst_buf, dst_stride, 5); |
| extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, |
| mi_col_top, dry_run, dst_buf, dst_stride, 6); |
| extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top, |
| mi_col_top, dry_run, dst_buf, dst_stride, 7); |
| } |
| |
| // This function generates prediction for multiple blocks, between which |
| // discontinuity around boundary is reduced by smoothing masks. The basic |
| // smoothing mask is a soft step function along horz/vert direction. In more |
| // complicated case when a block is split into 4 subblocks, the basic mask is |
| // first applied to neighboring subblocks (2 pairs) in horizontal direction and |
| // then applied to the 2 masked prediction mentioned above in vertical direction |
| // If the block is split into more than one level, at every stage, masked |
| // prediction is stored in dst_buf[] passed from higher level. |
| static void predict_sb_complex(const AV1_COMP *const cpi, ThreadData *td, |
| const TileInfo *const tile, int mi_row, |
| int mi_col, int mi_row_top, int mi_col_top, |
| RUN_TYPE dry_run, BLOCK_SIZE bsize, |
| BLOCK_SIZE top_bsize, uint8_t *dst_buf[3], |
| int dst_stride[3], PC_TREE *pc_tree) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| |
| const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); |
| const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2; |
| const PARTITION_TYPE partition = pc_tree->partitioning; |
| const BLOCK_SIZE subsize = get_subsize(bsize, partition); |
| #if CONFIG_EXT_PARTITION_TYPES |
| const BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); |
| #endif |
| |
| int i; |
| uint8_t *dst_buf1[3], *dst_buf2[3], *dst_buf3[3]; |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_TX_SQUARE * 2]); |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_TX_SQUARE * 2]); |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf3[MAX_MB_PLANE * MAX_TX_SQUARE * 2]); |
| int dst_stride1[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE }; |
| int dst_stride2[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE }; |
| int dst_stride3[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE }; |
| |
| assert(bsize >= BLOCK_8X8); |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| int len = sizeof(uint16_t); |
| dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1); |
| dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_TX_SQUARE * len); |
| dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + 2 * MAX_TX_SQUARE * len); |
| dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2); |
| dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_TX_SQUARE * len); |
| dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + 2 * MAX_TX_SQUARE * len); |
| dst_buf3[0] = CONVERT_TO_BYTEPTR(tmp_buf3); |
| dst_buf3[1] = CONVERT_TO_BYTEPTR(tmp_buf3 + MAX_TX_SQUARE * len); |
| dst_buf3[2] = CONVERT_TO_BYTEPTR(tmp_buf3 + 2 * MAX_TX_SQUARE * len); |
| } else { |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| dst_buf1[0] = tmp_buf1; |
| dst_buf1[1] = tmp_buf1 + MAX_TX_SQUARE; |
| dst_buf1[2] = tmp_buf1 + 2 * MAX_TX_SQUARE; |
| dst_buf2[0] = tmp_buf2; |
| dst_buf2[1] = tmp_buf2 + MAX_TX_SQUARE; |
| dst_buf2[2] = tmp_buf2 + 2 * MAX_TX_SQUARE; |
| dst_buf3[0] = tmp_buf3; |
| dst_buf3[1] = tmp_buf3 + MAX_TX_SQUARE; |
| dst_buf3[2] = tmp_buf3 + 2 * MAX_TX_SQUARE; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| if (!dry_run && bsize < top_bsize) { |
| // Explicitly cast away const. |
| FRAME_COUNTS *const frame_counts = (FRAME_COUNTS *)&cm->counts; |
| frame_counts->partition[ctx][partition]++; |
| } |
| |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = dst_buf[i]; |
| xd->plane[i].dst.stride = dst_stride[i]; |
| } |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| assert(bsize < top_bsize); |
| predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, |
| bsize, dry_run, 0, 0); |
| extend_all(cpi, td, tile, 0, bsize, top_bsize, mi_row, mi_col, mi_row_top, |
| mi_col_top, dry_run, dst_buf, dst_stride); |
| break; |
| case PARTITION_HORZ: |
| if (bsize == BLOCK_8X8) { |
| // Fisrt half |
| predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, |
| BLOCK_8X8, dry_run, 1, 0); |
| if (bsize < top_bsize) |
| extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride); |
| |
| // Second half |
| predict_b_extend(cpi, td, tile, 2, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf1, dst_stride1, |
| top_bsize, BLOCK_8X8, dry_run, 1, 1); |
| if (bsize < top_bsize) |
| extend_all(cpi, td, tile, 2, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1); |
| |
| // Smooth |
| xd->plane[0].dst.buf = dst_buf[0]; |
| xd->plane[0].dst.stride = dst_stride[0]; |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row, |
| mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, |
| 0); |
| } else { |
| // First half |
| predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, |
| subsize, dry_run, 0, 0); |
| if (bsize < top_bsize) |
| extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride); |
| else |
| extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 0); |
| |
| if (mi_row + hbs < cm->mi_rows) { |
| // Second half |
| predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, |
| mi_col, mi_row_top, mi_col_top, dst_buf1, |
| dst_stride1, top_bsize, subsize, dry_run, 0, 0); |
| if (bsize < top_bsize) |
| extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row + hbs, |
| mi_col, mi_row_top, mi_col_top, dry_run, dst_buf1, |
| dst_stride1); |
| else |
| extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row + hbs, |
| mi_col, mi_row_top, mi_col_top, dry_run, dst_buf1, |
| dst_stride1, 1); |
| |
| // Smooth |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = dst_buf[i]; |
| xd->plane[i].dst.stride = dst_stride[i]; |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], |
| mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, |
| PARTITION_HORZ, i); |
| } |
| } |
| } |
| break; |
| case PARTITION_VERT: |
| if (bsize == BLOCK_8X8) { |
| // First half |
| predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, |
| BLOCK_8X8, dry_run, 1, 0); |
| if (bsize < top_bsize) |
| extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride); |
| |
| // Second half |
| predict_b_extend(cpi, td, tile, 1, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf1, dst_stride1, |
| top_bsize, BLOCK_8X8, dry_run, 1, 1); |
| if (bsize < top_bsize) |
| extend_all(cpi, td, tile, 1, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1); |
| |
| // Smooth |
| xd->plane[0].dst.buf = dst_buf[0]; |
| xd->plane[0].dst.stride = dst_stride[0]; |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row, |
| mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, |
| 0); |
| } else { |
| // bsize: not important, not useful |
| predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, |
| subsize, dry_run, 0, 0); |
| if (bsize < top_bsize) |
| extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride); |
| else |
| extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 3); |
| |
| if (mi_col + hbs < cm->mi_cols) { |
| predict_b_extend(cpi, td, tile, 0, mi_row, mi_col + hbs, mi_row, |
| mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, |
| dst_stride1, top_bsize, subsize, dry_run, 0, 0); |
| if (bsize < top_bsize) |
| extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, |
| mi_col + hbs, mi_row_top, mi_col_top, dry_run, dst_buf1, |
| dst_stride1); |
| else |
| extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, |
| mi_col + hbs, mi_row_top, mi_col_top, dry_run, dst_buf1, |
| dst_stride1, 2); |
| |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = dst_buf[i]; |
| xd->plane[i].dst.stride = dst_stride[i]; |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], |
| mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, |
| PARTITION_VERT, i); |
| } |
| } |
| } |
| break; |
| case PARTITION_SPLIT: |
| if (bsize == BLOCK_8X8) { |
| predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, |
| BLOCK_8X8, dry_run, 1, 0); |
| predict_b_extend(cpi, td, tile, 1, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf1, dst_stride1, |
| top_bsize, BLOCK_8X8, dry_run, 1, 1); |
| predict_b_extend(cpi, td, tile, 2, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf2, dst_stride2, |
| top_bsize, BLOCK_8X8, dry_run, 1, 1); |
| predict_b_extend(cpi, td, tile, 3, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf3, dst_stride3, |
| top_bsize, BLOCK_8X8, dry_run, 1, 1); |
| |
| if (bsize < top_bsize) { |
| extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride); |
| extend_all(cpi, td, tile, 1, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1); |
| extend_all(cpi, td, tile, 2, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dry_run, dst_buf2, dst_stride2); |
| extend_all(cpi, td, tile, 3, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dry_run, dst_buf3, dst_stride3); |
| } |
| } else { |
| predict_sb_complex(cpi, td, tile, mi_row, mi_col, mi_row_top, |
| mi_col_top, dry_run, subsize, top_bsize, dst_buf, |
| dst_stride, pc_tree->split[0]); |
| if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) |
| predict_sb_complex(cpi, td, tile, mi_row, mi_col + hbs, mi_row_top, |
| mi_col_top, dry_run, subsize, top_bsize, dst_buf1, |
| dst_stride1, pc_tree->split[1]); |
| if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) |
| predict_sb_complex(cpi, td, tile, mi_row + hbs, mi_col, mi_row_top, |
| mi_col_top, dry_run, subsize, top_bsize, dst_buf2, |
| dst_stride2, pc_tree->split[2]); |
| if (mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) |
| predict_sb_complex(cpi, td, tile, mi_row + hbs, mi_col + hbs, |
| mi_row_top, mi_col_top, dry_run, subsize, |
| top_bsize, dst_buf3, dst_stride3, |
| pc_tree->split[3]); |
| } |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| if (bsize == BLOCK_8X8 && i != 0) |
| continue; // Skip <4x4 chroma smoothing |
| if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) { |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], |
| mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, |
| PARTITION_VERT, i); |
| if (mi_row + hbs < cm->mi_rows) { |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf2[i], dst_stride2[i], dst_buf3[i], dst_stride3[i], |
| mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, |
| PARTITION_VERT, i); |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], |
| mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, |
| PARTITION_HORZ, i); |
| } |
| } else if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) { |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], |
| mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, |
| PARTITION_HORZ, i); |
| } |
| } |
| break; |
| #if CONFIG_EXT_PARTITION_TYPES |
| case PARTITION_HORZ_A: |
| predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, |
| bsize2, dry_run, 0, 0); |
| extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride); |
| |
| predict_b_extend(cpi, td, tile, 0, mi_row, mi_col + hbs, mi_row, |
| mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, |
| dst_stride1, top_bsize, bsize2, dry_run, 0, 0); |
| extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs, |
| mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1); |
| |
| predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, |
| mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2, |
| top_bsize, subsize, dry_run, 0, 0); |
| if (bsize < top_bsize) |
| extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col, |
| mi_row_top, mi_col_top, dry_run, dst_buf2, dst_stride2); |
| else |
| extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col, |
| mi_row_top, mi_col_top, dry_run, dst_buf2, dst_stride2, 1); |
| |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = dst_buf[i]; |
| xd->plane[i].dst.stride = dst_stride[i]; |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, |
| mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, |
| i); |
| } |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row, |
| mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, |
| i); |
| } |
| |
| break; |
| case PARTITION_VERT_A: |
| |
| predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, |
| bsize2, dry_run, 0, 0); |
| extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride); |
| |
| predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, |
| mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, |
| top_bsize, bsize2, dry_run, 0, 0); |
| extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col, |
| mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1); |
| |
| predict_b_extend(cpi, td, tile, 0, mi_row, mi_col + hbs, mi_row, |
| mi_col + hbs, mi_row_top, mi_col_top, dst_buf2, |
| dst_stride2, top_bsize, subsize, dry_run, 0, 0); |
| if (bsize < top_bsize) |
| extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs, |
| mi_row_top, mi_col_top, dry_run, dst_buf2, dst_stride2); |
| else |
| extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs, |
| mi_row_top, mi_col_top, dry_run, dst_buf2, dst_stride2, 2); |
| |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = dst_buf[i]; |
| xd->plane[i].dst.stride = dst_stride[i]; |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, |
| mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, |
| i); |
| } |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row, |
| mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, |
| i); |
| } |
| break; |
| case PARTITION_HORZ_B: |
| |
| predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, |
| subsize, dry_run, 0, 0); |
| if (bsize < top_bsize) |
| extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride); |
| else |
| extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 0); |
| |
| predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col, mi_row + hbs, |
| mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1, |
| top_bsize, bsize2, dry_run, 0, 0); |
| extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col, |
| mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1); |
| |
| predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col + hbs, |
| mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, |
| dst_buf2, dst_stride2, top_bsize, bsize2, dry_run, 0, 0); |
| extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row + hbs, |
| mi_col + hbs, mi_row_top, mi_col_top, dry_run, dst_buf2, |
| dst_stride2); |
| |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = dst_buf1[i]; |
| xd->plane[i].dst.stride = dst_stride1[i]; |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i], |
| mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, |
| PARTITION_VERT, i); |
| } |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = dst_buf[i]; |
| xd->plane[i].dst.stride = dst_stride[i]; |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, |
| mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ, |
| i); |
| } |
| break; |
| case PARTITION_VERT_B: |
| |
| predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col, |
| mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize, |
| subsize, dry_run, 0, 0); |
| if (bsize < top_bsize) |
| extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride); |
| else |
| extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col, |
| mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 3); |
| |
| predict_b_extend(cpi, td, tile, 0, mi_row, mi_col + hbs, mi_row, |
| mi_col + hbs, mi_row_top, mi_col_top, dst_buf1, |
| dst_stride1, top_bsize, bsize2, dry_run, 0, 0); |
| extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs, |
| mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1); |
| |
| predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col + hbs, |
| mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top, |
| dst_buf2, dst_stride2, top_bsize, bsize2, dry_run, 0, 0); |
| extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row + hbs, |
| mi_col + hbs, mi_row_top, mi_col_top, dry_run, dst_buf2, |
| dst_stride2); |
| |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = dst_buf1[i]; |
| xd->plane[i].dst.stride = dst_stride1[i]; |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i], |
| mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize, |
| PARTITION_HORZ, i); |
| } |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = dst_buf[i]; |
| xd->plane[i].dst.stride = dst_stride[i]; |
| av1_build_masked_inter_predictor_complex( |
| xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row, |
| mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT, |
| i); |
| } |
| break; |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| default: assert(0); |
| } |
| |
| #if CONFIG_EXT_PARTITION_TYPES |
| if (bsize < top_bsize) |
| update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); |
| #else |
| if (bsize < top_bsize && (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)) |
| update_partition_context(xd, mi_row, mi_col, subsize, bsize); |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| } |
| |
| static void rd_supertx_sb(const AV1_COMP *const cpi, ThreadData *td, |
| const TileInfo *const tile, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, int *tmp_rate, int64_t *tmp_dist, |
| TX_TYPE *best_tx, PC_TREE *pc_tree) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int plane, pnskip, skippable, skippable_uv, rate_uv, this_rate, |
| base_rate = *tmp_rate; |
| int64_t sse, pnsse, sse_uv, this_dist, dist_uv; |
| uint8_t *dst_buf[3]; |
| int dst_stride[3]; |
| TX_SIZE tx_size; |
| MB_MODE_INFO *mbmi; |
| TX_TYPE tx_type, best_tx_nostx; |
| #if CONFIG_EXT_TX |
| int ext_tx_set; |
| #endif // CONFIG_EXT_TX |
| int tmp_rate_tx = 0, skip_tx = 0; |
| int64_t tmp_dist_tx = 0, rd_tx, bestrd_tx = INT64_MAX; |
| |
| set_skip_context(xd, mi_row, mi_col); |
| set_mode_info_offsets(cpi, x, xd, mi_row, mi_col); |
| update_state_sb_supertx(cpi, td, tile, mi_row, mi_col, bsize, 1, pc_tree); |
| av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); |
| for (plane = 0; plane < MAX_MB_PLANE; plane++) { |
| dst_buf[plane] = xd->plane[plane].dst.buf; |
| dst_stride[plane] = xd->plane[plane].dst.stride; |
| } |
| predict_sb_complex(cpi, td, tile, mi_row, mi_col, mi_row, mi_col, 1, bsize, |
| bsize, dst_buf, dst_stride, pc_tree); |
| |
| set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize); |
| set_segment_id_supertx(cpi, x, mi_row, mi_col, bsize); |
| |
| mbmi = &xd->mi[0]->mbmi; |
| best_tx_nostx = mbmi->tx_type; |
| |
| *best_tx = DCT_DCT; |
| |
| // chroma |
| skippable_uv = 1; |
| rate_uv = 0; |
| dist_uv = 0; |
| sse_uv = 0; |
| for (plane = 1; plane < MAX_MB_PLANE; ++plane) { |
| #if CONFIG_VAR_TX |
| ENTROPY_CONTEXT ctxa[2 * MAX_MIB_SIZE]; |
| ENTROPY_CONTEXT ctxl[2 * MAX_MIB_SIZE]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| int coeff_ctx = 1; |
| RD_STATS this_rd_stats; |
| av1_init_rd_stats(&this_rd_stats); |
| |
| tx_size = max_txsize_lookup[bsize]; |
| tx_size = |
| uv_txsize_lookup[bsize][tx_size][cm->subsampling_x][cm->subsampling_y]; |
| av1_get_entropy_contexts(bsize, tx_size, pd, ctxa, ctxl); |
| coeff_ctx = combine_entropy_contexts(ctxa[0], ctxl[0]); |
| |
| av1_subtract_plane(x, bsize, plane); |
| av1_tx_block_rd_b(cpi, x, tx_size, 0, 0, plane, 0, |
| get_plane_block_size(bsize, pd), coeff_ctx, |
| &this_rd_stats); |
| |
| this_rate = this_rd_stats.rate; |
| this_dist = this_rd_stats.dist; |
| pnsse = this_rd_stats.sse; |
| pnskip = this_rd_stats.skip; |
| #else |
| tx_size = max_txsize_lookup[bsize]; |
| tx_size = |
| uv_txsize_lookup[bsize][tx_size][cm->subsampling_x][cm->subsampling_y]; |
| av1_subtract_plane(x, bsize, plane); |
| av1_txfm_rd_in_plane_supertx(x, cpi, &this_rate, &this_dist, &pnskip, |
| &pnsse, INT64_MAX, plane, bsize, tx_size, 0); |
| #endif // CONFIG_VAR_TX |
| |
| rate_uv += this_rate; |
| dist_uv += this_dist; |
| sse_uv += pnsse; |
| skippable_uv &= pnskip; |
| } |
| |
| // luma |
| tx_size = max_txsize_lookup[bsize]; |
| av1_subtract_plane(x, bsize, 0); |
| #if CONFIG_EXT_TX |
| ext_tx_set = get_ext_tx_set(tx_size, bsize, 1); |
| #endif // CONFIG_EXT_TX |
| for (tx_type = DCT_DCT; tx_type < TX_TYPES; ++tx_type) { |
| #if CONFIG_VAR_TX |
| ENTROPY_CONTEXT ctxa[2 * MAX_MIB_SIZE]; |
| ENTROPY_CONTEXT ctxl[2 * MAX_MIB_SIZE]; |
| const struct macroblockd_plane *const pd = &xd->plane[0]; |
| int coeff_ctx = 1; |
| RD_STATS this_rd_stats; |
| #endif // CONFIG_VAR_TX |
| |
| #if CONFIG_EXT_TX |
| if (!ext_tx_used_inter[ext_tx_set][tx_type]) continue; |
| #else |
| if (tx_size >= TX_32X32 && tx_type != DCT_DCT) continue; |
| #endif // CONFIG_EXT_TX |
| mbmi->tx_type = tx_type; |
| |
| #if CONFIG_VAR_TX |
| av1_init_rd_stats(&this_rd_stats); |
| |
| av1_get_entropy_contexts(bsize, tx_size, pd, ctxa, ctxl); |
| coeff_ctx = combine_entropy_contexts(ctxa[0], ctxl[0]); |
| av1_tx_block_rd_b(cpi, x, tx_size, 0, 0, 0, 0, bsize, coeff_ctx, |
| &this_rd_stats); |
| |
| this_rate = this_rd_stats.rate; |
| this_dist = this_rd_stats.dist; |
| pnsse = this_rd_stats.sse; |
| pnskip = this_rd_stats.skip; |
| #else |
| av1_txfm_rd_in_plane_supertx(x, cpi, &this_rate, &this_dist, &pnskip, |
| &pnsse, INT64_MAX, 0, bsize, tx_size, 0); |
| #endif // CONFIG_VAR_TX |
| |
| #if CONFIG_EXT_TX |
| if (get_ext_tx_types(tx_size, bsize, 1) > 1 && |
| !xd->lossless[xd->mi[0]->mbmi.segment_id] && this_rate != INT_MAX) { |
| if (ext_tx_set > 0) |
| this_rate += |
| cpi->inter_tx_type_costs[ext_tx_set][mbmi->tx_size][mbmi->tx_type]; |
| } |
| #else |
| if (tx_size < TX_32X32 && !xd->lossless[xd->mi[0]->mbmi.segment_id] && |
| this_rate != INT_MAX) { |
| this_rate += cpi->inter_tx_type_costs[tx_size][mbmi->tx_type]; |
| } |
| #endif // CONFIG_EXT_TX |
| *tmp_rate = rate_uv + this_rate; |
| *tmp_dist = dist_uv + this_dist; |
| sse = sse_uv + pnsse; |
| skippable = skippable_uv && pnskip; |
| if (skippable) { |
| *tmp_rate = av1_cost_bit(av1_get_skip_prob(cm, xd), 1); |
| x->skip = 1; |
| } else { |
| if (RDCOST(x->rdmult, x->rddiv, *tmp_rate, *tmp_dist) < |
| RDCOST(x->rdmult, x->rddiv, 0, sse)) { |
| *tmp_rate += av1_cost_bit(av1_get_skip_prob(cm, xd), 0); |
| x->skip = 0; |
| } else { |
| *tmp_dist = sse; |
| *tmp_rate = av1_cost_bit(av1_get_skip_prob(cm, xd), 1); |
| x->skip = 1; |
| } |
| } |
| *tmp_rate += base_rate; |
| rd_tx = RDCOST(x->rdmult, x->rddiv, *tmp_rate, *tmp_dist); |
| if (rd_tx < bestrd_tx * 0.99 || tx_type == DCT_DCT) { |
| *best_tx = tx_type; |
| bestrd_tx = rd_tx; |
| tmp_rate_tx = *tmp_rate; |
| tmp_dist_tx = *tmp_dist; |
| skip_tx = x->skip; |
| } |
| } |
| *tmp_rate = tmp_rate_tx; |
| *tmp_dist = tmp_dist_tx; |
| x->skip = skip_tx; |
| #if CONFIG_VAR_TX |
| for (plane = 0; plane < 1; ++plane) |
| memset(x->blk_skip[plane], x->skip, |
| sizeof(uint8_t) * pc_tree->none.num_4x4_blk); |
| #endif // CONFIG_VAR_TX |
| xd->mi[0]->mbmi.tx_type = best_tx_nostx; |
| } |
| #endif // CONFIG_SUPERTX |