| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <limits.h> |
| #include <assert.h> |
| |
| #include "math.h" |
| #include "vp8/common/alloccommon.h" |
| #include "vp8/common/common.h" |
| #include "ratectrl.h" |
| #include "vp8/common/entropymode.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "vp8/common/systemdependent.h" |
| #include "encodemv.h" |
| #include "vp8/common/quant_common.h" |
| |
| #define MIN_BPB_FACTOR 0.005 |
| #define MAX_BPB_FACTOR 50 |
| |
| #ifdef MODE_STATS |
| extern unsigned int y_modes[VP9_YMODES]; |
| extern unsigned int uv_modes[VP9_UV_MODES]; |
| extern unsigned int b_modes[B_MODE_COUNT]; |
| |
| extern unsigned int inter_y_modes[MB_MODE_COUNT]; |
| extern unsigned int inter_uv_modes[VP9_UV_MODES]; |
| extern unsigned int inter_b_modes[B_MODE_COUNT]; |
| #endif |
| |
| // Bits Per MB at different Q (Multiplied by 512) |
| #define BPER_MB_NORMBITS 9 |
| |
| // % adjustment to target kf size based on seperation from previous frame |
| static const int kf_boost_seperation_adjustment[16] = { |
| 30, 40, 50, 55, 60, 65, 70, 75, |
| 80, 85, 90, 95, 100, 100, 100, 100, |
| }; |
| |
| static const int gf_adjust_table[101] = { |
| 100, |
| 115, 130, 145, 160, 175, 190, 200, 210, 220, 230, |
| 240, 260, 270, 280, 290, 300, 310, 320, 330, 340, |
| 350, 360, 370, 380, 390, 400, 400, 400, 400, 400, |
| 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
| 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
| 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
| 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
| 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
| 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
| 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, |
| }; |
| |
| static const int gf_intra_usage_adjustment[20] = { |
| 125, 120, 115, 110, 105, 100, 95, 85, 80, 75, |
| 70, 65, 60, 55, 50, 50, 50, 50, 50, 50, |
| }; |
| |
| static const int gf_interval_table[101] = { |
| 7, |
| 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
| 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
| 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
| 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
| 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, |
| 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, |
| 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, |
| }; |
| |
| static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] = { 1, 2, 3, 4, 5 }; |
| |
| // These functions use formulaic calculations to make playing with the |
| // quantizer tables easier. If necessary they can be replaced by lookup |
| // tables if and when things settle down in the experimental bitstream |
| double vp9_convert_qindex_to_q(int qindex) { |
| // Convert the index to a real Q value (scaled down to match old Q values) |
| return (double)vp9_ac_yquant(qindex) / 4.0; |
| } |
| |
| int vp9_gfboost_qadjust(int qindex) { |
| int retval; |
| double q; |
| |
| q = vp9_convert_qindex_to_q(qindex); |
| retval = (int)((0.00000828 * q * q * q) + |
| (-0.0055 * q * q) + |
| (1.32 * q) + 79.3); |
| return retval; |
| } |
| |
| static int kfboost_qadjust(int qindex) { |
| int retval; |
| double q; |
| |
| q = vp9_convert_qindex_to_q(qindex); |
| retval = (int)((0.00000973 * q * q * q) + |
| (-0.00613 * q * q) + |
| (1.316 * q) + 121.2); |
| return retval; |
| } |
| |
| int vp9_bits_per_mb(FRAME_TYPE frame_type, int qindex) { |
| if (frame_type == KEY_FRAME) |
| return (int)(4500000 / vp9_convert_qindex_to_q(qindex)); |
| else |
| return (int)(2850000 / vp9_convert_qindex_to_q(qindex)); |
| } |
| |
| |
| void vp9_save_coding_context(VP9_COMP *cpi) { |
| CODING_CONTEXT *const cc = &cpi->coding_context; |
| VP9_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &cpi->mb.e_mbd; |
| |
| // Stores a snapshot of key state variables which can subsequently be |
| // restored with a call to vp9_restore_coding_context. These functions are |
| // intended for use in a re-code loop in vp9_compress_frame where the |
| // quantizer value is adjusted between loop iterations. |
| |
| cc->nmvc = cm->fc.nmvc; |
| vp9_copy(cc->nmvjointcost, cpi->mb.nmvjointcost); |
| vp9_copy(cc->nmvcosts, cpi->mb.nmvcosts); |
| vp9_copy(cc->nmvcosts_hp, cpi->mb.nmvcosts_hp); |
| |
| vp9_copy(cc->mv_ref_ct, cm->fc.mv_ref_ct); |
| vp9_copy(cc->mode_context, cm->fc.mode_context); |
| vp9_copy(cc->mv_ref_ct_a, cm->fc.mv_ref_ct_a); |
| vp9_copy(cc->mode_context_a, cm->fc.mode_context_a); |
| |
| vp9_copy(cc->ymode_prob, cm->fc.ymode_prob); |
| vp9_copy(cc->bmode_prob, cm->fc.bmode_prob); |
| vp9_copy(cc->uv_mode_prob, cm->fc.uv_mode_prob); |
| vp9_copy(cc->i8x8_mode_prob, cm->fc.i8x8_mode_prob); |
| vp9_copy(cc->sub_mv_ref_prob, cm->fc.sub_mv_ref_prob); |
| vp9_copy(cc->mbsplit_prob, cm->fc.mbsplit_prob); |
| |
| // Stats |
| #ifdef MODE_STATS |
| vp9_copy(cc->y_modes, y_modes); |
| vp9_copy(cc->uv_modes, uv_modes); |
| vp9_copy(cc->b_modes, b_modes); |
| vp9_copy(cc->inter_y_modes, inter_y_modes); |
| vp9_copy(cc->inter_uv_modes, inter_uv_modes); |
| vp9_copy(cc->inter_b_modes, inter_b_modes); |
| #endif |
| |
| vp9_copy(cc->segment_pred_probs, cm->segment_pred_probs); |
| vp9_copy(cc->ref_pred_probs_update, cpi->ref_pred_probs_update); |
| vp9_copy(cc->ref_pred_probs, cm->ref_pred_probs); |
| vp9_copy(cc->prob_comppred, cm->prob_comppred); |
| |
| vpx_memcpy(cpi->coding_context.last_frame_seg_map_copy, |
| cm->last_frame_seg_map, (cm->mb_rows * cm->mb_cols)); |
| |
| vp9_copy(cc->last_ref_lf_deltas, xd->last_ref_lf_deltas); |
| vp9_copy(cc->last_mode_lf_deltas, xd->last_mode_lf_deltas); |
| |
| vp9_copy(cc->coef_probs, cm->fc.coef_probs); |
| vp9_copy(cc->hybrid_coef_probs, cm->fc.hybrid_coef_probs); |
| vp9_copy(cc->coef_probs_8x8, cm->fc.coef_probs_8x8); |
| vp9_copy(cc->hybrid_coef_probs_8x8, cm->fc.hybrid_coef_probs_8x8); |
| vp9_copy(cc->coef_probs_16x16, cm->fc.coef_probs_16x16); |
| vp9_copy(cc->hybrid_coef_probs_16x16, cm->fc.hybrid_coef_probs_16x16); |
| vp9_copy(cc->switchable_interp_prob, cm->fc.switchable_interp_prob); |
| } |
| |
| void vp9_restore_coding_context(VP9_COMP *cpi) { |
| CODING_CONTEXT *const cc = &cpi->coding_context; |
| VP9_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &cpi->mb.e_mbd; |
| |
| // Restore key state variables to the snapshot state stored in the |
| // previous call to vp9_save_coding_context. |
| |
| cm->fc.nmvc = cc->nmvc; |
| vp9_copy(cpi->mb.nmvjointcost, cc->nmvjointcost); |
| vp9_copy(cpi->mb.nmvcosts, cc->nmvcosts); |
| vp9_copy(cpi->mb.nmvcosts_hp, cc->nmvcosts_hp); |
| |
| vp9_copy(cm->fc.mv_ref_ct, cc->mv_ref_ct); |
| vp9_copy(cm->fc.mode_context, cc->mode_context); |
| vp9_copy(cm->fc.mv_ref_ct_a, cc->mv_ref_ct_a); |
| vp9_copy(cm->fc.mode_context_a, cc->mode_context_a); |
| |
| vp9_copy(cm->fc.ymode_prob, cc->ymode_prob); |
| vp9_copy(cm->fc.bmode_prob, cc->bmode_prob); |
| vp9_copy(cm->fc.i8x8_mode_prob, cc->i8x8_mode_prob); |
| vp9_copy(cm->fc.uv_mode_prob, cc->uv_mode_prob); |
| vp9_copy(cm->fc.sub_mv_ref_prob, cc->sub_mv_ref_prob); |
| vp9_copy(cm->fc.mbsplit_prob, cc->mbsplit_prob); |
| |
| // Stats |
| #ifdef MODE_STATS |
| vp9_copy(y_modes, cc->y_modes); |
| vp9_copy(uv_modes, cc->uv_modes); |
| vp9_copy(b_modes, cc->b_modes); |
| vp9_copy(inter_y_modes, cc->inter_y_modes); |
| vp9_copy(inter_uv_modes, cc->inter_uv_modes); |
| vp9_copy(inter_b_modes, cc->inter_b_modes); |
| #endif |
| |
| vp9_copy(cm->segment_pred_probs, cc->segment_pred_probs); |
| vp9_copy(cpi->ref_pred_probs_update, cc->ref_pred_probs_update); |
| vp9_copy(cm->ref_pred_probs, cc->ref_pred_probs); |
| vp9_copy(cm->prob_comppred, cc->prob_comppred); |
| |
| vpx_memcpy(cm->last_frame_seg_map, |
| cpi->coding_context.last_frame_seg_map_copy, |
| (cm->mb_rows * cm->mb_cols)); |
| |
| vp9_copy(xd->last_ref_lf_deltas, cc->last_ref_lf_deltas); |
| vp9_copy(xd->last_mode_lf_deltas, cc->last_mode_lf_deltas); |
| |
| vp9_copy(cm->fc.coef_probs, cc->coef_probs); |
| vp9_copy(cm->fc.hybrid_coef_probs, cc->hybrid_coef_probs); |
| vp9_copy(cm->fc.coef_probs_8x8, cc->coef_probs_8x8); |
| vp9_copy(cm->fc.hybrid_coef_probs_8x8, cc->hybrid_coef_probs_8x8); |
| vp9_copy(cm->fc.coef_probs_16x16, cc->coef_probs_16x16); |
| vp9_copy(cm->fc.hybrid_coef_probs_16x16, cc->hybrid_coef_probs_16x16); |
| vp9_copy(cm->fc.switchable_interp_prob, cc->switchable_interp_prob); |
| } |
| |
| |
| void vp9_setup_key_frame(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| // Setup for Key frame: |
| vp9_default_coef_probs(& cpi->common); |
| vp9_kf_default_bmode_probs(cpi->common.kf_bmode_prob); |
| vp9_init_mbmode_probs(& cpi->common); |
| vp9_default_bmode_probs(cm->fc.bmode_prob); |
| |
| vp9_init_mv_probs(& cpi->common); |
| |
| // cpi->common.filter_level = 0; // Reset every key frame. |
| cpi->common.filter_level = cpi->common.base_qindex * 3 / 8; |
| |
| // interval before next GF |
| cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
| |
| cpi->common.refresh_golden_frame = TRUE; |
| cpi->common.refresh_alt_ref_frame = TRUE; |
| |
| vp9_init_mode_contexts(&cpi->common); |
| vpx_memcpy(&cpi->common.lfc, &cpi->common.fc, sizeof(cpi->common.fc)); |
| vpx_memcpy(&cpi->common.lfc_a, &cpi->common.fc, sizeof(cpi->common.fc)); |
| |
| vpx_memset(cm->prev_mip, 0, |
| (cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO)); |
| vpx_memset(cm->mip, 0, |
| (cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO)); |
| |
| vp9_update_mode_info_border(cm, cm->mip); |
| vp9_update_mode_info_in_image(cm, cm->mi); |
| } |
| |
| void vp9_setup_inter_frame(VP9_COMP *cpi) { |
| if (cpi->common.refresh_alt_ref_frame) { |
| vpx_memcpy(&cpi->common.fc, |
| &cpi->common.lfc_a, |
| sizeof(cpi->common.fc)); |
| vpx_memcpy(cpi->common.fc.vp8_mode_contexts, |
| cpi->common.fc.mode_context_a, |
| sizeof(cpi->common.fc.vp8_mode_contexts)); |
| } else { |
| vpx_memcpy(&cpi->common.fc, |
| &cpi->common.lfc, |
| sizeof(cpi->common.fc)); |
| vpx_memcpy(cpi->common.fc.vp8_mode_contexts, |
| cpi->common.fc.mode_context, |
| sizeof(cpi->common.fc.vp8_mode_contexts)); |
| } |
| } |
| |
| |
| static int estimate_bits_at_q(int frame_kind, int Q, int MBs, |
| double correction_factor) { |
| int Bpm = (int)(.5 + correction_factor * vp9_bits_per_mb(frame_kind, Q)); |
| |
| /* Attempt to retain reasonable accuracy without overflow. The cutoff is |
| * chosen such that the maximum product of Bpm and MBs fits 31 bits. The |
| * largest Bpm takes 20 bits. |
| */ |
| if (MBs > (1 << 11)) |
| return (Bpm >> BPER_MB_NORMBITS) * MBs; |
| else |
| return (Bpm * MBs) >> BPER_MB_NORMBITS; |
| } |
| |
| |
| static void calc_iframe_target_size(VP9_COMP *cpi) { |
| // boost defaults to half second |
| int target; |
| |
| // Clear down mmx registers to allow floating point in what follows |
| vp9_clear_system_state(); // __asm emms; |
| |
| // New Two pass RC |
| target = cpi->per_frame_bandwidth; |
| |
| if (cpi->oxcf.rc_max_intra_bitrate_pct) { |
| unsigned int max_rate = cpi->per_frame_bandwidth |
| * cpi->oxcf.rc_max_intra_bitrate_pct / 100; |
| |
| if (target > max_rate) |
| target = max_rate; |
| } |
| |
| cpi->this_frame_target = target; |
| |
| } |
| |
| |
| // Do the best we can to define the parameteres for the next GF based |
| // on what information we have available. |
| // |
| // In this experimental code only two pass is supported |
| // so we just use the interval determined in the two pass code. |
| static void calc_gf_params(VP9_COMP *cpi) { |
| // Set the gf interval |
| cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
| } |
| |
| |
| static void calc_pframe_target_size(VP9_COMP *cpi) { |
| int min_frame_target; |
| |
| min_frame_target = 0; |
| |
| min_frame_target = cpi->min_frame_bandwidth; |
| |
| if (min_frame_target < (cpi->av_per_frame_bandwidth >> 5)) |
| min_frame_target = cpi->av_per_frame_bandwidth >> 5; |
| |
| |
| // Special alt reference frame case |
| if (cpi->common.refresh_alt_ref_frame) { |
| // Per frame bit target for the alt ref frame |
| cpi->per_frame_bandwidth = cpi->twopass.gf_bits; |
| cpi->this_frame_target = cpi->per_frame_bandwidth; |
| } |
| |
| // Normal frames (gf,and inter) |
| else { |
| cpi->this_frame_target = cpi->per_frame_bandwidth; |
| } |
| |
| // Sanity check that the total sum of adjustments is not above the maximum allowed |
| // That is that having allowed for KF and GF penalties we have not pushed the |
| // current interframe target to low. If the adjustment we apply here is not capable of recovering |
| // all the extra bits we have spent in the KF or GF then the remainder will have to be recovered over |
| // a longer time span via other buffer / rate control mechanisms. |
| if (cpi->this_frame_target < min_frame_target) |
| cpi->this_frame_target = min_frame_target; |
| |
| if (!cpi->common.refresh_alt_ref_frame) |
| // Note the baseline target data rate for this inter frame. |
| cpi->inter_frame_target = cpi->this_frame_target; |
| |
| // Adjust target frame size for Golden Frames: |
| if (cpi->frames_till_gf_update_due == 0) { |
| // int Boost = 0; |
| int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; |
| |
| cpi->common.refresh_golden_frame = TRUE; |
| |
| calc_gf_params(cpi); |
| |
| // If we are using alternate ref instead of gf then do not apply the boost |
| // It will instead be applied to the altref update |
| // Jims modified boost |
| if (!cpi->source_alt_ref_active) { |
| if (cpi->oxcf.fixed_q < 0) { |
| // The spend on the GF is defined in the two pass code |
| // for two pass encodes |
| cpi->this_frame_target = cpi->per_frame_bandwidth; |
| } else |
| cpi->this_frame_target = |
| (estimate_bits_at_q(1, Q, cpi->common.MBs, 1.0) |
| * cpi->last_boost) / 100; |
| |
| } |
| // If there is an active ARF at this location use the minimum |
| // bits on this frame even if it is a contructed arf. |
| // The active maximum quantizer insures that an appropriate |
| // number of bits will be spent if needed for contstructed ARFs. |
| else { |
| cpi->this_frame_target = 0; |
| } |
| |
| cpi->current_gf_interval = cpi->frames_till_gf_update_due; |
| } |
| } |
| |
| |
| void vp9_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) { |
| int Q = cpi->common.base_qindex; |
| int correction_factor = 100; |
| double rate_correction_factor; |
| double adjustment_limit; |
| |
| int projected_size_based_on_q = 0; |
| |
| // Clear down mmx registers to allow floating point in what follows |
| vp9_clear_system_state(); // __asm emms; |
| |
| if (cpi->common.frame_type == KEY_FRAME) { |
| rate_correction_factor = cpi->key_frame_rate_correction_factor; |
| } else { |
| if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame) |
| rate_correction_factor = cpi->gf_rate_correction_factor; |
| else |
| rate_correction_factor = cpi->rate_correction_factor; |
| } |
| |
| // Work out how big we would have expected the frame to be at this Q given the current correction factor. |
| // Stay in double to avoid int overflow when values are large |
| projected_size_based_on_q = |
| (int)(((.5 + rate_correction_factor * |
| vp9_bits_per_mb(cpi->common.frame_type, Q)) * |
| cpi->common.MBs) / (1 << BPER_MB_NORMBITS)); |
| |
| // Make some allowance for cpi->zbin_over_quant |
| if (cpi->zbin_over_quant > 0) { |
| int Z = cpi->zbin_over_quant; |
| double Factor = 0.99; |
| double factor_adjustment = 0.01 / 256.0; // (double)ZBIN_OQ_MAX; |
| |
| while (Z > 0) { |
| Z--; |
| projected_size_based_on_q = |
| (int)(Factor * projected_size_based_on_q); |
| Factor += factor_adjustment; |
| |
| if (Factor >= 0.999) |
| Factor = 0.999; |
| } |
| } |
| |
| // Work out a size correction factor. |
| // if ( cpi->this_frame_target > 0 ) |
| // correction_factor = (100 * cpi->projected_frame_size) / cpi->this_frame_target; |
| if (projected_size_based_on_q > 0) |
| correction_factor = (100 * cpi->projected_frame_size) / projected_size_based_on_q; |
| |
| // More heavily damped adjustment used if we have been oscillating either side of target |
| switch (damp_var) { |
| case 0: |
| adjustment_limit = 0.75; |
| break; |
| case 1: |
| adjustment_limit = 0.375; |
| break; |
| case 2: |
| default: |
| adjustment_limit = 0.25; |
| break; |
| } |
| |
| // if ( (correction_factor > 102) && (Q < cpi->active_worst_quality) ) |
| if (correction_factor > 102) { |
| // We are not already at the worst allowable quality |
| correction_factor = (int)(100.5 + ((correction_factor - 100) * adjustment_limit)); |
| rate_correction_factor = ((rate_correction_factor * correction_factor) / 100); |
| |
| // Keep rate_correction_factor within limits |
| if (rate_correction_factor > MAX_BPB_FACTOR) |
| rate_correction_factor = MAX_BPB_FACTOR; |
| } |
| // else if ( (correction_factor < 99) && (Q > cpi->active_best_quality) ) |
| else if (correction_factor < 99) { |
| // We are not already at the best allowable quality |
| correction_factor = (int)(100.5 - ((100 - correction_factor) * adjustment_limit)); |
| rate_correction_factor = ((rate_correction_factor * correction_factor) / 100); |
| |
| // Keep rate_correction_factor within limits |
| if (rate_correction_factor < MIN_BPB_FACTOR) |
| rate_correction_factor = MIN_BPB_FACTOR; |
| } |
| |
| if (cpi->common.frame_type == KEY_FRAME) |
| cpi->key_frame_rate_correction_factor = rate_correction_factor; |
| else { |
| if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame) |
| cpi->gf_rate_correction_factor = rate_correction_factor; |
| else |
| cpi->rate_correction_factor = rate_correction_factor; |
| } |
| } |
| |
| |
| int vp9_regulate_q(VP9_COMP *cpi, int target_bits_per_frame) { |
| int Q = cpi->active_worst_quality; |
| |
| int i; |
| int last_error = INT_MAX; |
| int target_bits_per_mb; |
| int bits_per_mb_at_this_q; |
| double correction_factor; |
| |
| // Reset Zbin OQ value |
| cpi->zbin_over_quant = 0; |
| |
| // Select the appropriate correction factor based upon type of frame. |
| if (cpi->common.frame_type == KEY_FRAME) |
| correction_factor = cpi->key_frame_rate_correction_factor; |
| else { |
| if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame) |
| correction_factor = cpi->gf_rate_correction_factor; |
| else |
| correction_factor = cpi->rate_correction_factor; |
| } |
| |
| // Calculate required scaling factor based on target frame size and size of frame produced using previous Q |
| if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS)) |
| target_bits_per_mb = (target_bits_per_frame / cpi->common.MBs) << BPER_MB_NORMBITS; // Case where we would overflow int |
| else |
| target_bits_per_mb = (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs; |
| |
| i = cpi->active_best_quality; |
| |
| do { |
| bits_per_mb_at_this_q = |
| (int)(.5 + correction_factor * |
| vp9_bits_per_mb(cpi->common.frame_type, i)); |
| |
| if (bits_per_mb_at_this_q <= target_bits_per_mb) { |
| if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error) |
| Q = i; |
| else |
| Q = i - 1; |
| |
| break; |
| } else |
| last_error = bits_per_mb_at_this_q - target_bits_per_mb; |
| } while (++i <= cpi->active_worst_quality); |
| |
| |
| // If we are at MAXQ then enable Q over-run which seeks to claw back additional bits through things like |
| // the RD multiplier and zero bin size. |
| if (Q >= MAXQ) { |
| int zbin_oqmax; |
| |
| double Factor = 0.99; |
| double factor_adjustment = 0.01 / 256.0; // (double)ZBIN_OQ_MAX; |
| |
| if (cpi->common.frame_type == KEY_FRAME) |
| zbin_oqmax = 0; // ZBIN_OQ_MAX/16 |
| else if (cpi->common.refresh_alt_ref_frame || (cpi->common.refresh_golden_frame && !cpi->source_alt_ref_active)) |
| zbin_oqmax = 16; |
| else |
| zbin_oqmax = ZBIN_OQ_MAX; |
| |
| // Each incrment in the zbin is assumed to have a fixed effect on bitrate. This is not of course true. |
| // The effect will be highly clip dependent and may well have sudden steps. |
| // The idea here is to acheive higher effective quantizers than the normal maximum by expanding the zero |
| // bin and hence decreasing the number of low magnitude non zero coefficients. |
| while (cpi->zbin_over_quant < zbin_oqmax) { |
| cpi->zbin_over_quant++; |
| |
| if (cpi->zbin_over_quant > zbin_oqmax) |
| cpi->zbin_over_quant = zbin_oqmax; |
| |
| // Adjust bits_per_mb_at_this_q estimate |
| bits_per_mb_at_this_q = (int)(Factor * bits_per_mb_at_this_q); |
| Factor += factor_adjustment; |
| |
| if (Factor >= 0.999) |
| Factor = 0.999; |
| |
| if (bits_per_mb_at_this_q <= target_bits_per_mb) // Break out if we get down to the target rate |
| break; |
| } |
| |
| } |
| |
| return Q; |
| } |
| |
| |
| static int estimate_keyframe_frequency(VP9_COMP *cpi) { |
| int i; |
| |
| // Average key frame frequency |
| int av_key_frame_frequency = 0; |
| |
| /* First key frame at start of sequence is a special case. We have no |
| * frequency data. |
| */ |
| if (cpi->key_frame_count == 1) { |
| /* Assume a default of 1 kf every 2 seconds, or the max kf interval, |
| * whichever is smaller. |
| */ |
| int key_freq = cpi->oxcf.key_freq > 0 ? cpi->oxcf.key_freq : 1; |
| av_key_frame_frequency = (int)cpi->output_frame_rate * 2; |
| |
| if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq) |
| av_key_frame_frequency = cpi->oxcf.key_freq; |
| |
| cpi->prior_key_frame_distance[KEY_FRAME_CONTEXT - 1] |
| = av_key_frame_frequency; |
| } else { |
| unsigned int total_weight = 0; |
| int last_kf_interval = |
| (cpi->frames_since_key > 0) ? cpi->frames_since_key : 1; |
| |
| /* reset keyframe context and calculate weighted average of last |
| * KEY_FRAME_CONTEXT keyframes |
| */ |
| for (i = 0; i < KEY_FRAME_CONTEXT; i++) { |
| if (i < KEY_FRAME_CONTEXT - 1) |
| cpi->prior_key_frame_distance[i] |
| = cpi->prior_key_frame_distance[i + 1]; |
| else |
| cpi->prior_key_frame_distance[i] = last_kf_interval; |
| |
| av_key_frame_frequency += prior_key_frame_weight[i] |
| * cpi->prior_key_frame_distance[i]; |
| total_weight += prior_key_frame_weight[i]; |
| } |
| |
| av_key_frame_frequency /= total_weight; |
| |
| } |
| return av_key_frame_frequency; |
| } |
| |
| |
| void vp9_adjust_key_frame_context(VP9_COMP *cpi) { |
| // Clear down mmx registers to allow floating point in what follows |
| vp9_clear_system_state(); |
| |
| cpi->frames_since_key = 0; |
| cpi->key_frame_count++; |
| } |
| |
| |
| void vp9_compute_frame_size_bounds(VP9_COMP *cpi, int *frame_under_shoot_limit, |
| int *frame_over_shoot_limit) { |
| // Set-up bounds on acceptable frame size: |
| if (cpi->oxcf.fixed_q >= 0) { |
| // Fixed Q scenario: frame size never outranges target (there is no target!) |
| *frame_under_shoot_limit = 0; |
| *frame_over_shoot_limit = INT_MAX; |
| } else { |
| if (cpi->common.frame_type == KEY_FRAME) { |
| *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8; |
| *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8; |
| } else { |
| if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame) { |
| *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8; |
| *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8; |
| } else { |
| // Stron overshoot limit for constrained quality |
| if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { |
| *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8; |
| *frame_under_shoot_limit = cpi->this_frame_target * 2 / 8; |
| } else { |
| *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8; |
| *frame_under_shoot_limit = cpi->this_frame_target * 5 / 8; |
| } |
| } |
| } |
| |
| // For very small rate targets where the fractional adjustment |
| // (eg * 7/8) may be tiny make sure there is at least a minimum |
| // range. |
| *frame_over_shoot_limit += 200; |
| *frame_under_shoot_limit -= 200; |
| if (*frame_under_shoot_limit < 0) |
| *frame_under_shoot_limit = 0; |
| } |
| } |
| |
| |
| // return of 0 means drop frame |
| int vp9_pick_frame_size(VP9_COMP *cpi) { |
| VP9_COMMON *cm = &cpi->common; |
| |
| if (cm->frame_type == KEY_FRAME) |
| calc_iframe_target_size(cpi); |
| else |
| calc_pframe_target_size(cpi); |
| |
| return 1; |
| } |