| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #include "av1/common/warped_motion.h" |
| |
| #include "av1/encoder/encodeframe.h" |
| #include "av1/encoder/encodeframe_utils.h" |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/encoder_alloc.h" |
| #include "av1/encoder/ethread.h" |
| #include "av1/encoder/firstpass.h" |
| #include "av1/encoder/global_motion.h" |
| #include "av1/encoder/global_motion_facade.h" |
| #include "av1/encoder/rdopt.h" |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "av1/encoder/tpl_model.h" |
| |
| static AOM_INLINE void accumulate_rd_opt(ThreadData *td, ThreadData *td_t) { |
| for (int i = 0; i < REFERENCE_MODES; i++) |
| td->rd_counts.comp_pred_diff[i] += td_t->rd_counts.comp_pred_diff[i]; |
| |
| td->rd_counts.compound_ref_used_flag |= |
| td_t->rd_counts.compound_ref_used_flag; |
| td->rd_counts.skip_mode_used_flag |= td_t->rd_counts.skip_mode_used_flag; |
| |
| for (int i = 0; i < TX_SIZES_ALL; i++) { |
| for (int j = 0; j < TX_TYPES; j++) |
| td->rd_counts.tx_type_used[i][j] += td_t->rd_counts.tx_type_used[i][j]; |
| } |
| |
| for (int i = 0; i < BLOCK_SIZES_ALL; i++) { |
| for (int j = 0; j < 2; j++) { |
| td->rd_counts.obmc_used[i][j] += td_t->rd_counts.obmc_used[i][j]; |
| } |
| } |
| |
| for (int i = 0; i < 2; i++) { |
| td->rd_counts.warped_used[i] += td_t->rd_counts.warped_used[i]; |
| } |
| } |
| |
| static AOM_INLINE void update_delta_lf_for_row_mt(AV1_COMP *cpi) { |
| AV1_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &cpi->td.mb.e_mbd; |
| const int mib_size = cm->mib_size; |
| const int frame_lf_count = |
| av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; |
| for (int row = 0; row < cm->tiles.rows; row++) { |
| for (int col = 0; col < cm->tiles.cols; col++) { |
| TileDataEnc *tile_data = &cpi->tile_data[row * cm->tiles.cols + col]; |
| const TileInfo *const tile_info = &tile_data->tile_info; |
| for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end; |
| mi_row += mib_size) { |
| if (mi_row == tile_info->mi_row_start) |
| av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); |
| for (int mi_col = tile_info->mi_col_start; |
| mi_col < tile_info->mi_col_end; mi_col += mib_size) { |
| const int idx_str = cm->mi_params.mi_stride * mi_row + mi_col; |
| MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + idx_str; |
| MB_MODE_INFO *mbmi = mi[0]; |
| if (mbmi->skip_txfm[xd->tree_type == CHROMA_PART] == 1 && |
| (mbmi->sb_type[xd->tree_type == CHROMA_PART] == cm->sb_size)) { |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) |
| mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id]; |
| mbmi->delta_lf_from_base = xd->delta_lf_from_base; |
| } else { |
| if (cm->delta_q_info.delta_lf_multi) { |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) |
| xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id]; |
| } else { |
| xd->delta_lf_from_base = mbmi->delta_lf_from_base; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void av1_row_mt_sync_read_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r, |
| int c) { |
| (void)row_mt_sync; |
| (void)r; |
| (void)c; |
| return; |
| } |
| |
| void av1_row_mt_sync_write_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r, |
| int c, int cols) { |
| (void)row_mt_sync; |
| (void)r; |
| (void)c; |
| (void)cols; |
| return; |
| } |
| |
| void av1_row_mt_sync_read(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c) { |
| #if CONFIG_MULTITHREAD |
| const int nsync = row_mt_sync->sync_range; |
| |
| if (r) { |
| pthread_mutex_t *const mutex = &row_mt_sync->mutex_[r - 1]; |
| pthread_mutex_lock(mutex); |
| |
| while (c > row_mt_sync->num_finished_cols[r - 1] - nsync) { |
| pthread_cond_wait(&row_mt_sync->cond_[r - 1], mutex); |
| } |
| pthread_mutex_unlock(mutex); |
| } |
| #else |
| (void)row_mt_sync; |
| (void)r; |
| (void)c; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| void av1_row_mt_sync_write(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c, |
| int cols) { |
| #if CONFIG_MULTITHREAD |
| const int nsync = row_mt_sync->sync_range; |
| int cur; |
| // Only signal when there are enough encoded blocks for next row to run. |
| int sig = 1; |
| |
| if (c < cols - 1) { |
| cur = c; |
| if (c % nsync) sig = 0; |
| } else { |
| cur = cols + nsync; |
| } |
| |
| if (sig) { |
| pthread_mutex_lock(&row_mt_sync->mutex_[r]); |
| |
| row_mt_sync->num_finished_cols[r] = cur; |
| |
| pthread_cond_signal(&row_mt_sync->cond_[r]); |
| pthread_mutex_unlock(&row_mt_sync->mutex_[r]); |
| } |
| #else |
| (void)row_mt_sync; |
| (void)r; |
| (void)c; |
| (void)cols; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| // Allocate memory for row synchronization |
| static void row_mt_sync_mem_alloc(AV1EncRowMultiThreadSync *row_mt_sync, |
| AV1_COMMON *cm, int rows) { |
| #if CONFIG_MULTITHREAD |
| int i; |
| |
| CHECK_MEM_ERROR(cm, row_mt_sync->mutex_, |
| aom_malloc(sizeof(*row_mt_sync->mutex_) * rows)); |
| if (row_mt_sync->mutex_) { |
| for (i = 0; i < rows; ++i) { |
| pthread_mutex_init(&row_mt_sync->mutex_[i], NULL); |
| } |
| } |
| |
| CHECK_MEM_ERROR(cm, row_mt_sync->cond_, |
| aom_malloc(sizeof(*row_mt_sync->cond_) * rows)); |
| if (row_mt_sync->cond_) { |
| for (i = 0; i < rows; ++i) { |
| pthread_cond_init(&row_mt_sync->cond_[i], NULL); |
| } |
| } |
| #endif // CONFIG_MULTITHREAD |
| |
| CHECK_MEM_ERROR(cm, row_mt_sync->num_finished_cols, |
| aom_malloc(sizeof(*row_mt_sync->num_finished_cols) * rows)); |
| |
| row_mt_sync->rows = rows; |
| // Set up nsync. |
| row_mt_sync->sync_range = 1; |
| } |
| |
| // Deallocate row based multi-threading synchronization related mutex and data |
| static void row_mt_sync_mem_dealloc(AV1EncRowMultiThreadSync *row_mt_sync) { |
| if (row_mt_sync != NULL) { |
| #if CONFIG_MULTITHREAD |
| int i; |
| |
| if (row_mt_sync->mutex_ != NULL) { |
| for (i = 0; i < row_mt_sync->rows; ++i) { |
| pthread_mutex_destroy(&row_mt_sync->mutex_[i]); |
| } |
| aom_free(row_mt_sync->mutex_); |
| } |
| if (row_mt_sync->cond_ != NULL) { |
| for (i = 0; i < row_mt_sync->rows; ++i) { |
| pthread_cond_destroy(&row_mt_sync->cond_[i]); |
| } |
| aom_free(row_mt_sync->cond_); |
| } |
| #endif // CONFIG_MULTITHREAD |
| aom_free(row_mt_sync->num_finished_cols); |
| |
| // clear the structure as the source of this call may be dynamic change |
| // in tiles in which case this call will be followed by an _alloc() |
| // which may fail. |
| av1_zero(*row_mt_sync); |
| } |
| } |
| |
| static void row_mt_mem_alloc(AV1_COMP *cpi, int max_rows, int max_cols, |
| int alloc_row_ctx) { |
| struct AV1Common *cm = &cpi->common; |
| AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt; |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| int tile_col, tile_row; |
| |
| // Allocate memory for row based multi-threading |
| for (tile_row = 0; tile_row < tile_rows; tile_row++) { |
| for (tile_col = 0; tile_col < tile_cols; tile_col++) { |
| int tile_index = tile_row * tile_cols + tile_col; |
| TileDataEnc *const this_tile = &cpi->tile_data[tile_index]; |
| |
| row_mt_sync_mem_alloc(&this_tile->row_mt_sync, cm, max_rows); |
| |
| this_tile->row_ctx = NULL; |
| if (alloc_row_ctx) { |
| assert(max_cols > 0); |
| const int num_row_ctx = AOMMAX(1, (max_cols - 1)); |
| CHECK_MEM_ERROR(cm, this_tile->row_ctx, |
| (FRAME_CONTEXT *)aom_memalign( |
| 16, num_row_ctx * sizeof(*this_tile->row_ctx))); |
| } |
| } |
| } |
| enc_row_mt->allocated_tile_cols = tile_cols; |
| enc_row_mt->allocated_tile_rows = tile_rows; |
| enc_row_mt->allocated_rows = max_rows; |
| enc_row_mt->allocated_cols = max_cols - 1; |
| } |
| |
| void av1_row_mt_mem_dealloc(AV1_COMP *cpi) { |
| AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt; |
| const int tile_cols = enc_row_mt->allocated_tile_cols; |
| const int tile_rows = enc_row_mt->allocated_tile_rows; |
| int tile_col, tile_row; |
| |
| // Free row based multi-threading sync memory |
| for (tile_row = 0; tile_row < tile_rows; tile_row++) { |
| for (tile_col = 0; tile_col < tile_cols; tile_col++) { |
| int tile_index = tile_row * tile_cols + tile_col; |
| TileDataEnc *const this_tile = &cpi->tile_data[tile_index]; |
| |
| row_mt_sync_mem_dealloc(&this_tile->row_mt_sync); |
| |
| if (cpi->oxcf.algo_cfg.cdf_update_mode) aom_free(this_tile->row_ctx); |
| } |
| } |
| enc_row_mt->allocated_rows = 0; |
| enc_row_mt->allocated_cols = 0; |
| enc_row_mt->allocated_tile_cols = 0; |
| enc_row_mt->allocated_tile_rows = 0; |
| } |
| |
| static AOM_INLINE void assign_tile_to_thread(int *thread_id_to_tile_id, |
| int num_tiles, int num_workers) { |
| int tile_id = 0; |
| int i; |
| |
| for (i = 0; i < num_workers; i++) { |
| thread_id_to_tile_id[i] = tile_id++; |
| if (tile_id == num_tiles) tile_id = 0; |
| } |
| } |
| |
| static AOM_INLINE int get_next_job(TileDataEnc *const tile_data, |
| int *current_mi_row, int mib_size) { |
| AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync; |
| const int mi_row_end = tile_data->tile_info.mi_row_end; |
| |
| if (row_mt_sync->next_mi_row < mi_row_end) { |
| *current_mi_row = row_mt_sync->next_mi_row; |
| row_mt_sync->num_threads_working++; |
| row_mt_sync->next_mi_row += mib_size; |
| return 1; |
| } |
| return 0; |
| } |
| |
| static AOM_INLINE void switch_tile_and_get_next_job( |
| AV1_COMMON *const cm, TileDataEnc *const tile_data, int *cur_tile_id, |
| int *current_mi_row, int *end_of_frame, int is_firstpass) { |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| |
| int tile_id = -1; // Stores the tile ID with minimum proc done |
| int max_mis_to_encode = 0; |
| int min_num_threads_working = INT_MAX; |
| |
| for (int tile_row = 0; tile_row < tile_rows; tile_row++) { |
| for (int tile_col = 0; tile_col < tile_cols; tile_col++) { |
| int tile_index = tile_row * tile_cols + tile_col; |
| TileDataEnc *const this_tile = &tile_data[tile_index]; |
| AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync; |
| |
| int num_b_rows_in_tile = |
| is_firstpass ? av1_get_mb_rows_in_tile(this_tile->tile_info) |
| : av1_get_sb_rows_in_tile(cm, this_tile->tile_info); |
| int num_b_cols_in_tile = |
| is_firstpass ? av1_get_mb_cols_in_tile(this_tile->tile_info) |
| : av1_get_sb_cols_in_tile(cm, this_tile->tile_info); |
| int theoretical_limit_on_threads = |
| AOMMIN((num_b_cols_in_tile + 1) >> 1, num_b_rows_in_tile); |
| int num_threads_working = row_mt_sync->num_threads_working; |
| |
| if (num_threads_working < theoretical_limit_on_threads) { |
| int num_mis_to_encode = |
| this_tile->tile_info.mi_row_end - row_mt_sync->next_mi_row; |
| |
| // Tile to be processed by this thread is selected on the basis of |
| // availability of jobs: |
| // 1) If jobs are available, tile to be processed is chosen on the |
| // basis of minimum number of threads working for that tile. If two or |
| // more tiles have same number of threads working for them, then the |
| // tile with maximum number of jobs available will be chosen. |
| // 2) If no jobs are available, then end_of_frame is reached. |
| if (num_mis_to_encode > 0) { |
| if (num_threads_working < min_num_threads_working) { |
| min_num_threads_working = num_threads_working; |
| max_mis_to_encode = 0; |
| } |
| if (num_threads_working == min_num_threads_working && |
| num_mis_to_encode > max_mis_to_encode) { |
| tile_id = tile_index; |
| max_mis_to_encode = num_mis_to_encode; |
| } |
| } |
| } |
| } |
| } |
| if (tile_id == -1) { |
| *end_of_frame = 1; |
| } else { |
| // Update the current tile id to the tile id that will be processed next, |
| // which will be the least processed tile. |
| *cur_tile_id = tile_id; |
| get_next_job(&tile_data[tile_id], current_mi_row, |
| is_firstpass ? FP_MIB_SIZE : cm->mib_size); |
| } |
| } |
| |
| static int fp_enc_row_mt_worker_hook(void *arg1, void *unused) { |
| EncWorkerData *const thread_data = (EncWorkerData *)arg1; |
| AV1_COMP *const cpi = thread_data->cpi; |
| AV1_COMMON *const cm = &cpi->common; |
| int thread_id = thread_data->thread_id; |
| AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt; |
| int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id]; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_; |
| #endif |
| (void)unused; |
| |
| assert(cur_tile_id != -1); |
| |
| int end_of_frame = 0; |
| while (1) { |
| int current_mi_row = -1; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(enc_row_mt_mutex_); |
| #endif |
| if (!get_next_job(&cpi->tile_data[cur_tile_id], ¤t_mi_row, |
| FP_MIB_SIZE)) { |
| // No jobs are available for the current tile. Query for the status of |
| // other tiles and get the next job if available |
| switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id, |
| ¤t_mi_row, &end_of_frame, 1); |
| } |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(enc_row_mt_mutex_); |
| #endif |
| if (end_of_frame == 1) break; |
| |
| TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id]; |
| AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync; |
| ThreadData *td = thread_data->td; |
| |
| assert(current_mi_row != -1 && |
| current_mi_row <= this_tile->tile_info.mi_row_end); |
| |
| av1_first_pass_row(cpi, td, this_tile, current_mi_row >> FP_MIB_SIZE_LOG2); |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(enc_row_mt_mutex_); |
| #endif |
| row_mt_sync->num_threads_working--; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(enc_row_mt_mutex_); |
| #endif |
| } |
| |
| return 1; |
| } |
| |
| static int enc_row_mt_worker_hook(void *arg1, void *unused) { |
| EncWorkerData *const thread_data = (EncWorkerData *)arg1; |
| AV1_COMP *const cpi = thread_data->cpi; |
| AV1_COMMON *const cm = &cpi->common; |
| int thread_id = thread_data->thread_id; |
| AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt; |
| int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id]; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_; |
| #endif |
| (void)unused; |
| |
| assert(cur_tile_id != -1); |
| |
| int end_of_frame = 0; |
| while (1) { |
| int current_mi_row = -1; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(enc_row_mt_mutex_); |
| #endif |
| if (!get_next_job(&cpi->tile_data[cur_tile_id], ¤t_mi_row, |
| cm->mib_size)) { |
| // No jobs are available for the current tile. Query for the status of |
| // other tiles and get the next job if available |
| switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id, |
| ¤t_mi_row, &end_of_frame, 0); |
| } |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(enc_row_mt_mutex_); |
| #endif |
| if (end_of_frame == 1) break; |
| |
| TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id]; |
| AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync; |
| const TileInfo *const tile_info = &this_tile->tile_info; |
| const int tile_row = tile_info->tile_row; |
| const int tile_col = tile_info->tile_col; |
| ThreadData *td = thread_data->td; |
| |
| assert(current_mi_row != -1 && current_mi_row <= tile_info->mi_row_end); |
| |
| td->mb.e_mbd.tile_ctx = td->tctx; |
| td->mb.tile_pb_ctx = &this_tile->tctx; |
| |
| if (this_tile->allow_update_cdf) { |
| td->mb.row_ctx = this_tile->row_ctx; |
| if (current_mi_row == tile_info->mi_row_start) |
| memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT)); |
| } else { |
| memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT)); |
| } |
| |
| av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row, |
| &td->mb.e_mbd); |
| |
| cfl_init(&td->mb.e_mbd.cfl, &cm->seq_params); |
| av1_crc32c_calculator_init( |
| &td->mb.txfm_search_info.mb_rd_record.crc_calculator); |
| av1_zero(td->mb.e_mbd.ref_mv_bank); |
| #if !CONFIG_MVP_IMPROVEMENT |
| td->mb.e_mbd.ref_mv_bank_pt = &td->mb.e_mbd.ref_mv_bank; |
| #endif |
| |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| av1_zero(td->mb.e_mbd.warp_param_bank); |
| #if !WARP_CU_BANK |
| td->mb.e_mbd.warp_param_bank_pt = &td->mb.e_mbd.warp_param_bank; |
| #endif //! WARP_CU_BANK |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| |
| av1_encode_sb_row(cpi, td, tile_row, tile_col, current_mi_row); |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(enc_row_mt_mutex_); |
| #endif |
| row_mt_sync->num_threads_working--; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(enc_row_mt_mutex_); |
| #endif |
| } |
| |
| return 1; |
| } |
| |
| static int enc_worker_hook(void *arg1, void *unused) { |
| EncWorkerData *const thread_data = (EncWorkerData *)arg1; |
| AV1_COMP *const cpi = thread_data->cpi; |
| const AV1_COMMON *const cm = &cpi->common; |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| int t; |
| |
| (void)unused; |
| |
| for (t = thread_data->start; t < tile_rows * tile_cols; |
| t += cpi->mt_info.num_workers) { |
| int tile_row = t / tile_cols; |
| int tile_col = t % tile_cols; |
| |
| TileDataEnc *const this_tile = |
| &cpi->tile_data[tile_row * cm->tiles.cols + tile_col]; |
| thread_data->td->mb.e_mbd.tile_ctx = &this_tile->tctx; |
| thread_data->td->mb.tile_pb_ctx = &this_tile->tctx; |
| av1_encode_tile(cpi, thread_data->td, tile_row, tile_col); |
| } |
| |
| return 1; |
| } |
| |
| static AOM_INLINE void create_enc_workers(AV1_COMP *cpi, int num_workers) { |
| AV1_COMMON *const cm = &cpi->common; |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| int sb_mi_size = av1_get_sb_mi_size(cm); |
| |
| assert(mt_info->workers != NULL); |
| assert(mt_info->tile_thr_data != NULL); |
| |
| #if CONFIG_MULTITHREAD |
| if (cpi->oxcf.row_mt == 1) { |
| AV1EncRowMultiThreadInfo *enc_row_mt = &mt_info->enc_row_mt; |
| if (enc_row_mt->mutex_ == NULL) { |
| CHECK_MEM_ERROR(cm, enc_row_mt->mutex_, |
| aom_malloc(sizeof(*(enc_row_mt->mutex_)))); |
| if (enc_row_mt->mutex_) pthread_mutex_init(enc_row_mt->mutex_, NULL); |
| } |
| } |
| AV1GlobalMotionSync *gm_sync = &mt_info->gm_sync; |
| if (gm_sync->mutex_ == NULL) { |
| CHECK_MEM_ERROR(cm, gm_sync->mutex_, |
| aom_malloc(sizeof(*(gm_sync->mutex_)))); |
| if (gm_sync->mutex_) pthread_mutex_init(gm_sync->mutex_, NULL); |
| } |
| #endif |
| |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *const worker = &mt_info->workers[i]; |
| EncWorkerData *const thread_data = &mt_info->tile_thr_data[i]; |
| |
| ++mt_info->num_enc_workers; |
| |
| thread_data->cpi = cpi; |
| thread_data->thread_id = i; |
| |
| if (i > 0) { |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| thread_data->td->sb_size = cpi->td.sb_size; |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| // Set up sms_tree. |
| av1_setup_sms_tree(cpi, thread_data->td); |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| av1_setup_sms_bufs(cm, thread_data->td); |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| |
| alloc_obmc_buffers(&thread_data->td->obmc_buffer, cm); |
| |
| for (int x = 0; x < 2; x++) |
| for (int y = 0; y < 2; y++) |
| CHECK_MEM_ERROR( |
| cm, thread_data->td->hash_value_buffer[x][y], |
| (uint32_t *)aom_malloc( |
| AOM_BUFFER_SIZE_FOR_BLOCK_HASH * |
| sizeof(*thread_data->td->hash_value_buffer[0][0]))); |
| |
| // Allocate frame counters in thread data. |
| CHECK_MEM_ERROR(cm, thread_data->td->counts, |
| aom_calloc(1, sizeof(*thread_data->td->counts))); |
| |
| // Allocate buffers used by palette coding mode. |
| CHECK_MEM_ERROR( |
| cm, thread_data->td->palette_buffer, |
| aom_memalign(16, sizeof(*thread_data->td->palette_buffer))); |
| |
| alloc_compound_type_rd_buffers(cm, &thread_data->td->comp_rd_buffer); |
| |
| CHECK_MEM_ERROR( |
| cm, thread_data->td->tmp_conv_dst, |
| aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE * |
| sizeof(*thread_data->td->tmp_conv_dst))); |
| // Temporary buffers used during the DMVR and OPFL processing. |
| CHECK_MEM_ERROR( |
| cm, thread_data->td->opfl_vxy_bufs, |
| aom_memalign( |
| 32, N_OF_OFFSETS * 4 * sizeof(*thread_data->td->opfl_vxy_bufs))); |
| CHECK_MEM_ERROR( |
| cm, thread_data->td->opfl_gxy_bufs, |
| aom_memalign( |
| 32, MAX_SB_SQUARE * 4 * sizeof(*thread_data->td->opfl_gxy_bufs))); |
| CHECK_MEM_ERROR( |
| cm, thread_data->td->opfl_dst_bufs, |
| aom_memalign( |
| 32, MAX_SB_SQUARE * 2 * sizeof(*thread_data->td->opfl_dst_bufs))); |
| |
| CHECK_MEM_ERROR( |
| cm, thread_data->td->upsample_pred, |
| aom_memalign( |
| 16, MAX_SB_SQUARE * sizeof(*thread_data->td->upsample_pred))); |
| |
| for (int j = 0; j < 2; ++j) { |
| CHECK_MEM_ERROR( |
| cm, thread_data->td->tmp_pred_bufs[j], |
| aom_memalign(32, 2 * MAX_MB_PLANE * MAX_SB_SQUARE * |
| sizeof(*thread_data->td->tmp_pred_bufs[j]))); |
| } |
| |
| CHECK_MEM_ERROR( |
| cm, thread_data->td->mbmi_ext, |
| aom_calloc(sb_mi_size, sizeof(*thread_data->td->mbmi_ext))); |
| |
| // Create threads |
| if (!winterface->reset(worker)) |
| aom_internal_error(&cm->error, AOM_CODEC_ERROR, |
| "Tile encoder thread creation failed"); |
| } else { |
| // Main thread acts as a worker and uses the thread data in cpi. |
| thread_data->td = &cpi->td; |
| } |
| if (cpi->oxcf.row_mt == 1) |
| CHECK_MEM_ERROR( |
| cm, thread_data->td->tctx, |
| (FRAME_CONTEXT *)aom_memalign(16, sizeof(*thread_data->td->tctx))); |
| winterface->sync(worker); |
| } |
| } |
| |
| void av1_create_workers(AV1_COMP *cpi, int num_workers) { |
| AV1_COMMON *const cm = &cpi->common; |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| |
| CHECK_MEM_ERROR(cm, mt_info->workers, |
| aom_malloc(num_workers * sizeof(*mt_info->workers))); |
| |
| CHECK_MEM_ERROR(cm, mt_info->tile_thr_data, |
| aom_calloc(num_workers, sizeof(*mt_info->tile_thr_data))); |
| |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *const worker = &mt_info->workers[i]; |
| EncWorkerData *const thread_data = &mt_info->tile_thr_data[i]; |
| |
| winterface->init(worker); |
| worker->thread_name = "aom enc worker"; |
| |
| if (i > 0) { |
| // Allocate thread data. |
| CHECK_MEM_ERROR(cm, thread_data->td, |
| aom_memalign(32, sizeof(*thread_data->td))); |
| av1_zero(*thread_data->td); |
| |
| // Set up shared coeff buffers. |
| av1_setup_shared_coeff_buffer(cm, &thread_data->td->shared_coeff_buf); |
| } |
| ++mt_info->num_workers; |
| } |
| } |
| |
| static AOM_INLINE void fp_create_enc_workers(AV1_COMP *cpi, int num_workers) { |
| AV1_COMMON *const cm = &cpi->common; |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| |
| assert(mt_info->workers != NULL); |
| assert(mt_info->tile_thr_data != NULL); |
| |
| #if CONFIG_MULTITHREAD |
| AV1EncRowMultiThreadInfo *enc_row_mt = &mt_info->enc_row_mt; |
| if (enc_row_mt->mutex_ == NULL) { |
| CHECK_MEM_ERROR(cm, enc_row_mt->mutex_, |
| aom_malloc(sizeof(*(enc_row_mt->mutex_)))); |
| if (enc_row_mt->mutex_) pthread_mutex_init(enc_row_mt->mutex_, NULL); |
| } |
| #endif |
| |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *const worker = &mt_info->workers[i]; |
| EncWorkerData *const thread_data = &mt_info->tile_thr_data[i]; |
| |
| ++mt_info->num_fp_workers; |
| |
| thread_data->cpi = cpi; |
| thread_data->thread_id = i; |
| |
| if (i > 0) { |
| // Set up firstpass PICK_MODE_CONTEXT. |
| thread_data->td->firstpass_ctx = av1_alloc_pmc( |
| cm, SHARED_PART, 0, 0, BLOCK_16X16, NULL, PARTITION_NONE, 0, |
| cm->seq_params.subsampling_x, cm->seq_params.subsampling_y, |
| &thread_data->td->shared_coeff_buf); |
| |
| // Create threads |
| if (!winterface->reset(worker)) |
| aom_internal_error(&cm->error, AOM_CODEC_ERROR, |
| "Tile encoder thread creation failed"); |
| } else { |
| // Main thread acts as a worker and uses the thread data in cpi. |
| thread_data->td = &cpi->td; |
| } |
| winterface->sync(worker); |
| } |
| } |
| |
| static AOM_INLINE void launch_enc_workers(MultiThreadInfo *const mt_info, |
| int num_workers) { |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| // Encode a frame |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *const worker = &mt_info->workers[i]; |
| EncWorkerData *const thread_data = (EncWorkerData *)worker->data1; |
| |
| // Set the starting tile for each thread. |
| thread_data->start = i; |
| |
| if (i == 0) |
| winterface->execute(worker); |
| else |
| winterface->launch(worker); |
| } |
| } |
| |
| static AOM_INLINE void sync_enc_workers(MultiThreadInfo *const mt_info, |
| AV1_COMMON *const cm, int num_workers) { |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| int had_error = 0; |
| |
| // Encoding ends. |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *const worker = &mt_info->workers[i]; |
| had_error |= !winterface->sync(worker); |
| } |
| |
| if (had_error) |
| aom_internal_error(&cm->error, AOM_CODEC_ERROR, |
| "Failed to encode tile data"); |
| } |
| |
| static AOM_INLINE void accumulate_counters_enc_workers(AV1_COMP *cpi, |
| int num_workers) { |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *const worker = &cpi->mt_info.workers[i]; |
| EncWorkerData *const thread_data = (EncWorkerData *)worker->data1; |
| cpi->intrabc_used |= thread_data->td->intrabc_used; |
| cpi->deltaq_used |= thread_data->td->deltaq_used; |
| #if CONFIG_SCC_DETERMINATION |
| cpi->palette_pixel_num += thread_data->td->mb.palette_pixels; |
| #endif // CONFIG_SCC_DETERMINATION |
| dealloc_inter_modes_info_data(&thread_data->td->mb); |
| |
| // Accumulate counters. |
| if (i > 0) { |
| av1_accumulate_frame_counts(&cpi->counts, thread_data->td->counts); |
| accumulate_rd_opt(&cpi->td, thread_data->td); |
| cpi->td.mb.txfm_search_info.txb_split_count += |
| thread_data->td->mb.txfm_search_info.txb_split_count; |
| #if CONFIG_SPEED_STATS |
| cpi->td.mb.txfm_search_info.tx_search_count += |
| thread_data->td->mb.txfm_search_info.tx_search_count; |
| #endif // CONFIG_SPEED_STATS |
| } |
| } |
| } |
| |
| static AOM_INLINE void prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook, |
| int num_workers) { |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *const worker = &mt_info->workers[i]; |
| EncWorkerData *const thread_data = &mt_info->tile_thr_data[i]; |
| |
| worker->hook = hook; |
| worker->data1 = thread_data; |
| worker->data2 = NULL; |
| |
| thread_data->cpi = cpi; |
| if (i == 0) { |
| thread_data->td = &cpi->td; |
| } |
| |
| thread_data->td->intrabc_used = 0; |
| thread_data->td->deltaq_used = 0; |
| |
| // Before encoding a frame, copy the thread data from cpi. |
| if (thread_data->td != &cpi->td) { |
| thread_data->td->mb = cpi->td.mb; |
| thread_data->td->rd_counts = cpi->td.rd_counts; |
| thread_data->td->mb.obmc_buffer = thread_data->td->obmc_buffer; |
| |
| for (int x = 0; x < 2; x++) { |
| for (int y = 0; y < 2; y++) { |
| memcpy(thread_data->td->hash_value_buffer[x][y], |
| cpi->td.mb.intrabc_hash_info.hash_value_buffer[x][y], |
| AOM_BUFFER_SIZE_FOR_BLOCK_HASH * |
| sizeof(*thread_data->td->hash_value_buffer[0][0])); |
| thread_data->td->mb.intrabc_hash_info.hash_value_buffer[x][y] = |
| thread_data->td->hash_value_buffer[x][y]; |
| } |
| } |
| thread_data->td->mb.mbmi_ext = thread_data->td->mbmi_ext; |
| } |
| #if CONFIG_SCC_DETERMINATION |
| thread_data->td->mb.palette_pixels = 0; |
| #endif // CONFIG_SCC_DETERMINATION |
| |
| alloc_inter_modes_info_data(&cpi->common, &thread_data->td->mb); |
| if (thread_data->td->counts != &cpi->counts) { |
| memcpy(thread_data->td->counts, &cpi->counts, sizeof(cpi->counts)); |
| } |
| |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| if (thread_data->td->sb_size != cpi->common.sb_size) { |
| av1_free_sms_tree(thread_data->td); |
| av1_setup_sms_tree(cpi, thread_data->td); |
| } |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| |
| if (i > 0) { |
| thread_data->td->mb.palette_buffer = thread_data->td->palette_buffer; |
| thread_data->td->mb.comp_rd_buffer = thread_data->td->comp_rd_buffer; |
| thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst; |
| thread_data->td->mb.upsample_pred = thread_data->td->upsample_pred; |
| // Temporary buffers used during the DMVR and OPFL processing. |
| thread_data->td->mb.opfl_vxy_bufs = thread_data->td->opfl_vxy_bufs; |
| thread_data->td->mb.opfl_gxy_bufs = thread_data->td->opfl_gxy_bufs; |
| thread_data->td->mb.opfl_dst_bufs = thread_data->td->opfl_dst_bufs; |
| |
| for (int j = 0; j < 2; ++j) { |
| thread_data->td->mb.tmp_pred_bufs[j] = |
| thread_data->td->tmp_pred_bufs[j]; |
| } |
| |
| thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst; |
| thread_data->td->mb.e_mbd.tmp_upsample_pred = |
| thread_data->td->mb.upsample_pred; |
| // Temporary buffers used during the DMVR and OPFL processing. |
| thread_data->td->mb.e_mbd.opfl_vxy_bufs = |
| thread_data->td->mb.opfl_vxy_bufs; |
| thread_data->td->mb.e_mbd.opfl_gxy_bufs = |
| thread_data->td->mb.opfl_gxy_bufs; |
| thread_data->td->mb.e_mbd.opfl_dst_bufs = |
| thread_data->td->mb.opfl_dst_bufs; |
| |
| for (int j = 0; j < 2; ++j) { |
| thread_data->td->mb.e_mbd.tmp_obmc_bufs[j] = |
| thread_data->td->mb.tmp_pred_bufs[j]; |
| } |
| } |
| av1_zero(thread_data->td->mb.e_mbd.ref_mv_bank); |
| #if !CONFIG_MVP_IMPROVEMENT |
| thread_data->td->mb.e_mbd.ref_mv_bank_pt = |
| &thread_data->td->mb.e_mbd.ref_mv_bank; |
| |
| #endif |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| av1_zero(thread_data->td->mb.e_mbd.warp_param_bank); |
| #if !WARP_CU_BANK |
| thread_data->td->mb.e_mbd.warp_param_bank_pt = |
| &thread_data->td->mb.e_mbd.warp_param_bank; |
| #endif //! WARP_CU_BANK |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| } |
| } |
| |
| static AOM_INLINE void fp_prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook, |
| int num_workers) { |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *const worker = &mt_info->workers[i]; |
| EncWorkerData *const thread_data = &mt_info->tile_thr_data[i]; |
| |
| worker->hook = hook; |
| worker->data1 = thread_data; |
| worker->data2 = NULL; |
| |
| thread_data->cpi = cpi; |
| if (i == 0) { |
| thread_data->td = &cpi->td; |
| } |
| |
| // Before encoding a frame, copy the thread data from cpi. |
| if (thread_data->td != &cpi->td) { |
| thread_data->td->mb = cpi->td.mb; |
| } |
| } |
| } |
| |
| // Computes the number of workers for row multi-threading of encoding stage |
| static AOM_INLINE int compute_num_enc_row_mt_workers(AV1_COMMON *const cm, |
| int max_threads) { |
| TileInfo tile_info; |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| int total_num_threads_row_mt = 0; |
| for (int row = 0; row < tile_rows; row++) { |
| for (int col = 0; col < tile_cols; col++) { |
| av1_tile_init(&tile_info, cm, row, col); |
| const int num_sb_rows_in_tile = av1_get_sb_rows_in_tile(cm, tile_info); |
| const int num_sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info); |
| total_num_threads_row_mt += |
| AOMMIN((num_sb_cols_in_tile + 1) >> 1, num_sb_rows_in_tile); |
| } |
| } |
| return AOMMIN(max_threads, total_num_threads_row_mt); |
| } |
| |
| // Computes the number of workers for tile multi-threading of encoding stage |
| static AOM_INLINE int compute_num_enc_tile_mt_workers(AV1_COMMON *const cm, |
| int max_threads) { |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| return AOMMIN(max_threads, tile_cols * tile_rows); |
| } |
| |
| // Computes the number of workers for encoding stage (row/tile multi-threading) |
| int av1_compute_num_enc_workers(AV1_COMP *cpi, int max_workers) { |
| if (max_workers <= 1) return 1; |
| if (cpi->oxcf.row_mt) |
| return compute_num_enc_row_mt_workers(&cpi->common, max_workers); |
| else |
| return compute_num_enc_tile_mt_workers(&cpi->common, max_workers); |
| } |
| |
| void av1_encode_tiles_mt(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| int num_workers = av1_compute_num_enc_workers(cpi, mt_info->num_workers); |
| |
| assert(IMPLIES(cpi->tile_data == NULL, |
| cpi->allocated_tiles < tile_cols * tile_rows)); |
| if (cpi->allocated_tiles < tile_cols * tile_rows) av1_alloc_tile_data(cpi); |
| |
| av1_init_tile_data(cpi); |
| // Only run once to create threads and allocate thread data. |
| if (mt_info->num_enc_workers == 0) { |
| create_enc_workers(cpi, num_workers); |
| } else { |
| num_workers = AOMMIN(num_workers, mt_info->num_enc_workers); |
| } |
| prepare_enc_workers(cpi, enc_worker_hook, num_workers); |
| launch_enc_workers(&cpi->mt_info, num_workers); |
| sync_enc_workers(&cpi->mt_info, cm, num_workers); |
| accumulate_counters_enc_workers(cpi, num_workers); |
| } |
| |
| // Accumulate frame counts. FRAME_COUNTS consist solely of 'unsigned int' |
| // members, so we treat it as an array, and sum over the whole length. |
| void av1_accumulate_frame_counts(FRAME_COUNTS *acc_counts, |
| const FRAME_COUNTS *counts) { |
| unsigned int *const acc = (unsigned int *)acc_counts; |
| const unsigned int *const cnt = (const unsigned int *)counts; |
| |
| const unsigned int n_counts = sizeof(FRAME_COUNTS) / sizeof(unsigned int); |
| |
| for (unsigned int i = 0; i < n_counts; i++) acc[i] += cnt[i]; |
| } |
| |
| // Computes the maximum number of sb_rows for row multi-threading of encoding |
| // stage |
| static AOM_INLINE void compute_max_sb_rows_cols(AV1_COMP *cpi, int *max_sb_rows, |
| int *max_sb_cols) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| for (int row = 0; row < tile_rows; row++) { |
| for (int col = 0; col < tile_cols; col++) { |
| const int tile_index = row * cm->tiles.cols + col; |
| TileInfo tile_info = cpi->tile_data[tile_index].tile_info; |
| const int num_sb_rows_in_tile = av1_get_sb_rows_in_tile(cm, tile_info); |
| const int num_sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info); |
| *max_sb_rows = AOMMAX(*max_sb_rows, num_sb_rows_in_tile); |
| *max_sb_cols = AOMMAX(*max_sb_cols, num_sb_cols_in_tile); |
| } |
| } |
| } |
| |
| // Computes the number of workers for firstpass stage (row/tile multi-threading) |
| int av1_fp_compute_num_enc_workers(AV1_COMP *cpi) { |
| AV1_COMMON *cm = &cpi->common; |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| int total_num_threads_row_mt = 0; |
| TileInfo tile_info; |
| |
| if (cpi->oxcf.max_threads <= 1) return 1; |
| |
| for (int row = 0; row < tile_rows; row++) { |
| for (int col = 0; col < tile_cols; col++) { |
| av1_tile_init(&tile_info, cm, row, col); |
| const int num_mb_rows_in_tile = av1_get_mb_rows_in_tile(tile_info); |
| const int num_mb_cols_in_tile = av1_get_mb_cols_in_tile(tile_info); |
| total_num_threads_row_mt += |
| AOMMIN((num_mb_cols_in_tile + 1) >> 1, num_mb_rows_in_tile); |
| } |
| } |
| return AOMMIN(cpi->oxcf.max_threads, total_num_threads_row_mt); |
| } |
| |
| // Computes the maximum number of mb_rows for row multi-threading of firstpass |
| // stage |
| static AOM_INLINE int fp_compute_max_mb_rows( |
| const AV1_COMMON *const cm, const TileDataEnc *const tile_data) { |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| int max_mb_rows = 0; |
| for (int row = 0; row < tile_rows; row++) { |
| for (int col = 0; col < tile_cols; col++) { |
| const int tile_index = row * cm->tiles.cols + col; |
| TileInfo tile_info = tile_data[tile_index].tile_info; |
| const int num_mb_rows_in_tile = av1_get_mb_rows_in_tile(tile_info); |
| max_mb_rows = AOMMAX(max_mb_rows, num_mb_rows_in_tile); |
| } |
| } |
| return max_mb_rows; |
| } |
| |
| void av1_encode_tiles_row_mt(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt; |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id; |
| int max_sb_rows = 0, max_sb_cols = 0; |
| |
| // TODO(ravi.chaudhary@ittiam.com): Currently the percentage of |
| // post-processing stages in encoder is quiet low, so limiting the number of |
| // threads to the theoretical limit in row-mt does not have much impact on |
| // post-processing multi-threading stage. Need to revisit this when |
| // post-processing time starts shooting up. |
| int num_workers = av1_compute_num_enc_workers(cpi, mt_info->num_workers); |
| |
| assert(IMPLIES(cpi->tile_data == NULL, |
| cpi->allocated_tiles < tile_cols * tile_rows)); |
| if (cpi->allocated_tiles < tile_cols * tile_rows) { |
| av1_row_mt_mem_dealloc(cpi); |
| av1_alloc_tile_data(cpi); |
| } |
| |
| av1_init_tile_data(cpi); |
| |
| compute_max_sb_rows_cols(cpi, &max_sb_rows, &max_sb_cols); |
| |
| if (enc_row_mt->allocated_tile_cols != tile_cols || |
| enc_row_mt->allocated_tile_rows != tile_rows || |
| enc_row_mt->allocated_rows != max_sb_rows || |
| enc_row_mt->allocated_cols != (max_sb_cols - 1)) { |
| av1_row_mt_mem_dealloc(cpi); |
| row_mt_mem_alloc(cpi, max_sb_rows, max_sb_cols, |
| cpi->oxcf.algo_cfg.cdf_update_mode); |
| } |
| |
| memset(thread_id_to_tile_id, -1, |
| sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS); |
| |
| for (int tile_row = 0; tile_row < tile_rows; tile_row++) { |
| for (int tile_col = 0; tile_col < tile_cols; tile_col++) { |
| int tile_index = tile_row * tile_cols + tile_col; |
| TileDataEnc *const this_tile = &cpi->tile_data[tile_index]; |
| AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync; |
| |
| // Initialize num_finished_cols to -1 for all rows. |
| memset(row_mt_sync->num_finished_cols, -1, |
| sizeof(*row_mt_sync->num_finished_cols) * max_sb_rows); |
| row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start; |
| row_mt_sync->num_threads_working = 0; |
| |
| av1_inter_mode_data_init(this_tile); |
| av1_zero_above_context(cm, &cpi->td.mb.e_mbd, |
| this_tile->tile_info.mi_col_start, |
| this_tile->tile_info.mi_col_end, tile_row); |
| } |
| } |
| |
| // Only run once to create threads and allocate thread data. |
| if (mt_info->num_enc_workers == 0) { |
| create_enc_workers(cpi, num_workers); |
| } else { |
| num_workers = AOMMIN(num_workers, mt_info->num_enc_workers); |
| } |
| assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows, |
| num_workers); |
| prepare_enc_workers(cpi, enc_row_mt_worker_hook, num_workers); |
| launch_enc_workers(&cpi->mt_info, num_workers); |
| sync_enc_workers(&cpi->mt_info, cm, num_workers); |
| if (cm->delta_q_info.delta_lf_present_flag) update_delta_lf_for_row_mt(cpi); |
| accumulate_counters_enc_workers(cpi, num_workers); |
| } |
| |
| void av1_fp_encode_tiles_row_mt(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt; |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id; |
| int num_workers = 0; |
| int max_mb_rows = 0; |
| |
| assert(IMPLIES(cpi->tile_data == NULL, |
| cpi->allocated_tiles < tile_cols * tile_rows)); |
| if (cpi->allocated_tiles < tile_cols * tile_rows) { |
| av1_row_mt_mem_dealloc(cpi); |
| av1_alloc_tile_data(cpi); |
| } |
| |
| av1_init_tile_data(cpi); |
| |
| max_mb_rows = fp_compute_max_mb_rows(cm, cpi->tile_data); |
| |
| // TODO(ravi.chaudhary@ittiam.com): Currently the percentage of |
| // post-processing stages in encoder is quiet low, so limiting the number of |
| // threads to the theoretical limit in row-mt does not have much impact on |
| // post-processing multi-threading stage. Need to revisit this when |
| // post-processing time starts shooting up. |
| num_workers = av1_fp_compute_num_enc_workers(cpi); |
| |
| if (enc_row_mt->allocated_tile_cols != tile_cols || |
| enc_row_mt->allocated_tile_rows != tile_rows || |
| enc_row_mt->allocated_rows != max_mb_rows) { |
| av1_row_mt_mem_dealloc(cpi); |
| row_mt_mem_alloc(cpi, max_mb_rows, -1, 0); |
| } |
| |
| memset(thread_id_to_tile_id, -1, |
| sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS); |
| |
| for (int tile_row = 0; tile_row < tile_rows; tile_row++) { |
| for (int tile_col = 0; tile_col < tile_cols; tile_col++) { |
| int tile_index = tile_row * tile_cols + tile_col; |
| TileDataEnc *const this_tile = &cpi->tile_data[tile_index]; |
| AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync; |
| |
| // Initialize num_finished_cols to -1 for all rows. |
| memset(row_mt_sync->num_finished_cols, -1, |
| sizeof(*row_mt_sync->num_finished_cols) * max_mb_rows); |
| row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start; |
| row_mt_sync->num_threads_working = 0; |
| } |
| } |
| |
| num_workers = AOMMIN(num_workers, mt_info->num_workers); |
| // Only run once to create threads and allocate thread data. |
| if (mt_info->num_fp_workers == 0) fp_create_enc_workers(cpi, num_workers); |
| assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows, |
| num_workers); |
| fp_prepare_enc_workers(cpi, fp_enc_row_mt_worker_hook, num_workers); |
| launch_enc_workers(&cpi->mt_info, num_workers); |
| sync_enc_workers(&cpi->mt_info, cm, num_workers); |
| } |
| |
| void av1_tpl_row_mt_sync_read_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync, |
| int r, int c) { |
| (void)tpl_mt_sync; |
| (void)r; |
| (void)c; |
| return; |
| } |
| |
| void av1_tpl_row_mt_sync_write_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync, |
| int r, int c, int cols) { |
| (void)tpl_mt_sync; |
| (void)r; |
| (void)c; |
| (void)cols; |
| return; |
| } |
| |
| void av1_tpl_row_mt_sync_read(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r, |
| int c) { |
| #if CONFIG_MULTITHREAD |
| int nsync = tpl_row_mt_sync->sync_range; |
| |
| if (r) { |
| pthread_mutex_t *const mutex = &tpl_row_mt_sync->mutex_[r - 1]; |
| pthread_mutex_lock(mutex); |
| |
| while (c > tpl_row_mt_sync->num_finished_cols[r - 1] - nsync) |
| pthread_cond_wait(&tpl_row_mt_sync->cond_[r - 1], mutex); |
| pthread_mutex_unlock(mutex); |
| } |
| #else |
| (void)tpl_row_mt_sync; |
| (void)r; |
| (void)c; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| void av1_tpl_row_mt_sync_write(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r, |
| int c, int cols) { |
| #if CONFIG_MULTITHREAD |
| int nsync = tpl_row_mt_sync->sync_range; |
| int cur; |
| // Only signal when there are enough encoded blocks for next row to run. |
| int sig = 1; |
| |
| if (c < cols - 1) { |
| cur = c; |
| if (c % nsync) sig = 0; |
| } else { |
| cur = cols + nsync; |
| } |
| |
| if (sig) { |
| pthread_mutex_lock(&tpl_row_mt_sync->mutex_[r]); |
| |
| tpl_row_mt_sync->num_finished_cols[r] = cur; |
| |
| pthread_cond_signal(&tpl_row_mt_sync->cond_[r]); |
| pthread_mutex_unlock(&tpl_row_mt_sync->mutex_[r]); |
| } |
| #else |
| (void)tpl_row_mt_sync; |
| (void)r; |
| (void)c; |
| (void)cols; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| // Each worker calls tpl_worker_hook() and computes the tpl data. |
| static int tpl_worker_hook(void *arg1, void *unused) { |
| (void)unused; |
| EncWorkerData *thread_data = (EncWorkerData *)arg1; |
| AV1_COMP *cpi = thread_data->cpi; |
| AV1_COMMON *cm = &cpi->common; |
| MACROBLOCK *x = &thread_data->td->mb; |
| MACROBLOCKD *xd = &x->e_mbd; |
| CommonModeInfoParams *mi_params = &cm->mi_params; |
| BLOCK_SIZE bsize = convert_length_to_bsize(cpi->tpl_data.tpl_bsize_1d); |
| TX_SIZE tx_size = max_txsize_lookup[bsize]; |
| int mi_height = mi_size_high[bsize]; |
| int num_active_workers = cpi->tpl_data.tpl_mt_sync.num_threads_working; |
| for (int mi_row = thread_data->start * mi_height; mi_row < mi_params->mi_rows; |
| mi_row += num_active_workers * mi_height) { |
| // Motion estimation row boundary |
| av1_set_mv_row_limits(mi_params, &x->mv_limits, mi_row, mi_height, |
| cpi->oxcf.border_in_pixels); |
| xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE); |
| xd->mb_to_bottom_edge = |
| GET_MV_SUBPEL((mi_params->mi_rows - mi_height - mi_row) * MI_SIZE); |
| av1_mc_flow_dispenser_row(cpi, x, mi_row, bsize, tx_size); |
| } |
| return 1; |
| } |
| |
| // Deallocate tpl synchronization related mutex and data. |
| void av1_tpl_dealloc(AV1TplRowMultiThreadSync *tpl_sync) { |
| assert(tpl_sync != NULL); |
| |
| #if CONFIG_MULTITHREAD |
| if (tpl_sync->mutex_ != NULL) { |
| for (int i = 0; i < tpl_sync->rows; ++i) |
| pthread_mutex_destroy(&tpl_sync->mutex_[i]); |
| aom_free(tpl_sync->mutex_); |
| } |
| if (tpl_sync->cond_ != NULL) { |
| for (int i = 0; i < tpl_sync->rows; ++i) |
| pthread_cond_destroy(&tpl_sync->cond_[i]); |
| aom_free(tpl_sync->cond_); |
| } |
| #endif // CONFIG_MULTITHREAD |
| |
| aom_free(tpl_sync->num_finished_cols); |
| // clear the structure as the source of this call may be a resize in which |
| // case this call will be followed by an _alloc() which may fail. |
| av1_zero(*tpl_sync); |
| } |
| |
| // Allocate memory for tpl row synchronization. |
| void av1_tpl_alloc(AV1TplRowMultiThreadSync *tpl_sync, AV1_COMMON *cm, |
| int mb_rows) { |
| tpl_sync->rows = mb_rows; |
| #if CONFIG_MULTITHREAD |
| { |
| CHECK_MEM_ERROR(cm, tpl_sync->mutex_, |
| aom_malloc(sizeof(*tpl_sync->mutex_) * mb_rows)); |
| if (tpl_sync->mutex_) { |
| for (int i = 0; i < mb_rows; ++i) |
| pthread_mutex_init(&tpl_sync->mutex_[i], NULL); |
| } |
| |
| CHECK_MEM_ERROR(cm, tpl_sync->cond_, |
| aom_malloc(sizeof(*tpl_sync->cond_) * mb_rows)); |
| if (tpl_sync->cond_) { |
| for (int i = 0; i < mb_rows; ++i) |
| pthread_cond_init(&tpl_sync->cond_[i], NULL); |
| } |
| } |
| #endif // CONFIG_MULTITHREAD |
| CHECK_MEM_ERROR(cm, tpl_sync->num_finished_cols, |
| aom_malloc(sizeof(*tpl_sync->num_finished_cols) * mb_rows)); |
| |
| // Set up nsync. |
| tpl_sync->sync_range = 1; |
| } |
| |
| // Each worker is prepared by assigning the hook function and individual thread |
| // data. |
| static AOM_INLINE void prepare_tpl_workers(AV1_COMP *cpi, AVxWorkerHook hook, |
| int num_workers) { |
| MultiThreadInfo *mt_info = &cpi->mt_info; |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *worker = &mt_info->workers[i]; |
| EncWorkerData *thread_data = &mt_info->tile_thr_data[i]; |
| |
| worker->hook = hook; |
| worker->data1 = thread_data; |
| worker->data2 = NULL; |
| |
| thread_data->cpi = cpi; |
| if (i == 0) { |
| thread_data->td = &cpi->td; |
| } |
| |
| // Before encoding a frame, copy the thread data from cpi. |
| if (thread_data->td != &cpi->td) { |
| thread_data->td->mb = cpi->td.mb; |
| thread_data->td->mb.obmc_buffer = thread_data->td->obmc_buffer; |
| thread_data->td->mb.mbmi_ext = thread_data->td->mbmi_ext; |
| } |
| } |
| } |
| |
| // Computes num_workers for tpl multi-threading. |
| static AOM_INLINE int compute_num_tpl_workers(AV1_COMP *cpi) { |
| return av1_compute_num_enc_workers(cpi, cpi->mt_info.num_workers); |
| } |
| |
| // Implements multi-threading for tpl. |
| void av1_mc_flow_dispenser_mt(AV1_COMP *cpi) { |
| AV1_COMMON *cm = &cpi->common; |
| CommonModeInfoParams *mi_params = &cm->mi_params; |
| MultiThreadInfo *mt_info = &cpi->mt_info; |
| TplParams *tpl_data = &cpi->tpl_data; |
| AV1TplRowMultiThreadSync *tpl_sync = &tpl_data->tpl_mt_sync; |
| int mb_rows = mi_params->mb_rows; |
| int num_workers = compute_num_tpl_workers(cpi); |
| |
| if (mt_info->num_enc_workers == 0) |
| create_enc_workers(cpi, num_workers); |
| else |
| num_workers = AOMMIN(num_workers, mt_info->num_enc_workers); |
| |
| if (mb_rows != tpl_sync->rows) { |
| av1_tpl_dealloc(tpl_sync); |
| av1_tpl_alloc(tpl_sync, cm, mb_rows); |
| } |
| tpl_sync->num_threads_working = num_workers; |
| |
| // Initialize cur_mb_col to -1 for all MB rows. |
| memset(tpl_sync->num_finished_cols, -1, |
| sizeof(*tpl_sync->num_finished_cols) * mb_rows); |
| |
| prepare_tpl_workers(cpi, tpl_worker_hook, num_workers); |
| launch_enc_workers(&cpi->mt_info, num_workers); |
| sync_enc_workers(&cpi->mt_info, cm, num_workers); |
| } |
| |
| // Checks if a job is available in the current direction. If a job is available, |
| // frame_idx will be populated and returns 1, else returns 0. |
| static AOM_INLINE int get_next_gm_job(AV1_COMP *cpi, int *frame_idx, |
| int cur_dir) { |
| GlobalMotionInfo *gm_info = &cpi->gm_info; |
| JobInfo *job_info = &cpi->mt_info.gm_sync.job_info; |
| |
| int total_refs = gm_info->num_ref_frames[cur_dir]; |
| int8_t cur_frame_to_process = job_info->next_frame_to_process[cur_dir]; |
| |
| if (cur_frame_to_process < total_refs && !job_info->early_exit[cur_dir]) { |
| *frame_idx = gm_info->reference_frames[cur_dir][cur_frame_to_process].frame; |
| job_info->next_frame_to_process[cur_dir] += 1; |
| return 1; |
| } |
| return 0; |
| } |
| |
| // Switches the current direction and calls the function get_next_gm_job() if |
| // the speed feature 'prune_ref_frame_for_gm_search' is not set. |
| static AOM_INLINE void switch_direction(AV1_COMP *cpi, int *frame_idx, |
| int *cur_dir) { |
| if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search) return; |
| // Switch the direction and get next job |
| *cur_dir = !(*cur_dir); |
| get_next_gm_job(cpi, frame_idx, *(cur_dir)); |
| } |
| |
| // Initializes inliers, num_inliers and segment_map. |
| static AOM_INLINE void init_gm_thread_data( |
| const GlobalMotionInfo *gm_info, GlobalMotionThreadData *thread_data) { |
| for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) { |
| MotionModel motion_params = thread_data->motion_models[m]; |
| av1_zero(motion_params.params); |
| motion_params.num_inliers = 0; |
| } |
| |
| av1_zero_array(thread_data->segment_map, |
| gm_info->segment_map_w * gm_info->segment_map_h); |
| } |
| |
| // Hook function for each thread in global motion multi-threading. |
| static int gm_mt_worker_hook(void *arg1, void *unused) { |
| (void)unused; |
| |
| EncWorkerData *thread_data = (EncWorkerData *)arg1; |
| AV1_COMP *cpi = thread_data->cpi; |
| MACROBLOCKD *const xd = &thread_data->td->mb.e_mbd; |
| GlobalMotionInfo *gm_info = &cpi->gm_info; |
| MultiThreadInfo *mt_info = &cpi->mt_info; |
| JobInfo *job_info = &mt_info->gm_sync.job_info; |
| int thread_id = thread_data->thread_id; |
| GlobalMotionThreadData *gm_thread_data = |
| &mt_info->gm_sync.thread_data[thread_id]; |
| int cur_dir = job_info->thread_id_to_dir[thread_id]; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_t *gm_mt_mutex_ = mt_info->gm_sync.mutex_; |
| #endif |
| |
| while (1) { |
| int ref_buf_idx = -1; |
| int ref_frame_idx = -1; |
| |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(gm_mt_mutex_); |
| #endif |
| |
| // Populates ref_buf_idx(the reference frame type) for which global motion |
| // estimation will be done. |
| if (!get_next_gm_job(cpi, &ref_buf_idx, cur_dir)) { |
| // No jobs are available for the current direction. Switch |
| // to other direction and get the next job, if available. |
| switch_direction(cpi, &ref_buf_idx, &cur_dir); |
| } |
| |
| // 'ref_frame_idx' holds the index of the current reference frame type in |
| // gm_info->reference_frames. job_info->next_frame_to_process will be |
| // incremented in get_next_gm_job() and hence subtracting by 1. |
| ref_frame_idx = job_info->next_frame_to_process[cur_dir] - 1; |
| |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(gm_mt_mutex_); |
| #endif |
| |
| if (ref_buf_idx == -1) break; |
| |
| init_gm_thread_data(gm_info, gm_thread_data); |
| |
| // Compute global motion for the given ref_buf_idx. |
| av1_compute_gm_for_valid_ref_frames( |
| cpi, xd->error_info, gm_info->ref_buf, ref_buf_idx, |
| gm_thread_data->motion_models, gm_thread_data->segment_map, |
| gm_info->segment_map_w, gm_info->segment_map_h); |
| |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(gm_mt_mutex_); |
| #endif |
| assert(ref_frame_idx != -1); |
| // If global motion w.r.t. current ref frame is |
| // INVALID/TRANSLATION/IDENTITY, skip the evaluation of global motion w.r.t |
| // the remaining ref frames in that direction. The below exit is disabled |
| // when ref frame distance w.r.t. current frame is zero. E.g.: |
| // source_alt_ref_frame w.r.t. ARF frames. |
| if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search && |
| gm_info->reference_frames[cur_dir][ref_frame_idx].distance != 0 && |
| cpi->common.global_motion[ref_buf_idx].wmtype <= TRANSLATION) |
| job_info->early_exit[cur_dir] = 1; |
| |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(gm_mt_mutex_); |
| #endif |
| } |
| return 1; |
| } |
| |
| // Assigns global motion hook function and thread data to each worker. |
| static AOM_INLINE void prepare_gm_workers(AV1_COMP *cpi, AVxWorkerHook hook, |
| int num_workers) { |
| MultiThreadInfo *mt_info = &cpi->mt_info; |
| for (int i = num_workers - 1; i >= 0; i--) { |
| AVxWorker *worker = &mt_info->workers[i]; |
| EncWorkerData *thread_data = &mt_info->tile_thr_data[i]; |
| |
| worker->hook = hook; |
| worker->data1 = thread_data; |
| worker->data2 = NULL; |
| |
| thread_data->cpi = cpi; |
| } |
| } |
| |
| // Assigns available threads to past/future direction. |
| static AOM_INLINE void assign_thread_to_dir(int8_t *thread_id_to_dir, |
| int num_workers) { |
| int8_t frame_dir_idx = 0; |
| |
| for (int i = 0; i < num_workers; i++) { |
| thread_id_to_dir[i] = frame_dir_idx++; |
| if (frame_dir_idx == MAX_DIRECTIONS) frame_dir_idx = 0; |
| } |
| } |
| |
| // Computes number of workers for global motion multi-threading. |
| static AOM_INLINE int compute_gm_workers(const AV1_COMP *cpi) { |
| int total_refs = |
| cpi->gm_info.num_ref_frames[0] + cpi->gm_info.num_ref_frames[1]; |
| int max_num_workers = cpi->mt_info.num_workers; |
| int max_allowed_workers = cpi->sf.gm_sf.prune_ref_frame_for_gm_search |
| ? AOMMIN(MAX_DIRECTIONS, max_num_workers) |
| : max_num_workers; |
| |
| return (AOMMIN(total_refs, max_allowed_workers)); |
| } |
| |
| // Frees the memory allocated for each worker in global motion multi-threading. |
| void av1_gm_dealloc(AV1GlobalMotionSync *gm_sync_data) { |
| if (gm_sync_data->thread_data != NULL) { |
| for (int j = 0; j < gm_sync_data->allocated_workers; j++) { |
| GlobalMotionThreadData *thread_data = &gm_sync_data->thread_data[j]; |
| aom_free(thread_data->segment_map); |
| |
| for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) |
| aom_free(thread_data->motion_models[m].inliers); |
| } |
| aom_free(gm_sync_data->thread_data); |
| } |
| } |
| |
| // Allocates memory for inliers and segment_map for each worker in global motion |
| // multi-threading. |
| static AOM_INLINE void gm_alloc(AV1_COMP *cpi, int num_workers) { |
| AV1_COMMON *cm = &cpi->common; |
| AV1GlobalMotionSync *gm_sync = &cpi->mt_info.gm_sync; |
| GlobalMotionInfo *gm_info = &cpi->gm_info; |
| |
| gm_sync->allocated_workers = num_workers; |
| gm_sync->allocated_width = cpi->source->y_width; |
| gm_sync->allocated_height = cpi->source->y_height; |
| |
| CHECK_MEM_ERROR(cm, gm_sync->thread_data, |
| aom_malloc(sizeof(*gm_sync->thread_data) * num_workers)); |
| |
| for (int i = 0; i < num_workers; i++) { |
| GlobalMotionThreadData *thread_data = &gm_sync->thread_data[i]; |
| CHECK_MEM_ERROR( |
| cm, thread_data->segment_map, |
| aom_malloc(sizeof(*thread_data->segment_map) * gm_info->segment_map_w * |
| gm_info->segment_map_h)); |
| |
| for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) { |
| CHECK_MEM_ERROR( |
| cm, thread_data->motion_models[m].inliers, |
| aom_malloc(sizeof(*thread_data->motion_models[m].inliers) * 2 * |
| MAX_CORNERS)); |
| } |
| } |
| } |
| |
| // Implements multi-threading for global motion. |
| void av1_global_motion_estimation_mt(AV1_COMP *cpi) { |
| AV1GlobalMotionSync *gm_sync = &cpi->mt_info.gm_sync; |
| JobInfo *job_info = &gm_sync->job_info; |
| |
| av1_zero(*job_info); |
| |
| int num_workers = compute_gm_workers(cpi); |
| |
| if (num_workers > gm_sync->allocated_workers || |
| cpi->source->y_width != gm_sync->allocated_width || |
| cpi->source->y_height != gm_sync->allocated_height) { |
| av1_gm_dealloc(gm_sync); |
| gm_alloc(cpi, num_workers); |
| } |
| |
| assign_thread_to_dir(job_info->thread_id_to_dir, num_workers); |
| prepare_gm_workers(cpi, gm_mt_worker_hook, num_workers); |
| launch_enc_workers(&cpi->mt_info, num_workers); |
| sync_enc_workers(&cpi->mt_info, &cpi->common, num_workers); |
| } |