blob: ae01f2a57a22cc4f20872c6d1785877f1c5d4951 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
// Inspect Decoder
// ================
//
// This is a simple decoder loop that writes JSON stats to stdout. This tool
// can also be compiled with Emscripten and used as a library.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef __EMSCRIPTEN__
#include <emscripten.h>
#else
#define EMSCRIPTEN_KEEPALIVE
#endif
#include "config/aom_config.h"
#include "aom/aom_decoder.h"
#include "aom/aomdx.h"
#include "av1/common/onyxc_int.h"
#if CONFIG_ACCOUNTING
#include "av1/decoder/accounting.h"
#endif
#include "av1/decoder/inspection.h"
#include "common/args.h"
#include "common/tools_common.h"
#include "common/video_common.h"
#include "common/video_reader.h"
// Max JSON buffer size.
const int MAX_BUFFER = 1024 * 1024 * 256;
typedef enum {
ACCOUNTING_LAYER = 1,
BLOCK_SIZE_LAYER = 1 << 1,
TRANSFORM_SIZE_LAYER = 1 << 2,
TRANSFORM_TYPE_LAYER = 1 << 3,
MODE_LAYER = 1 << 4,
SKIP_LAYER = 1 << 5,
FILTER_LAYER = 1 << 6,
CDEF_LAYER = 1 << 7,
REFERENCE_FRAME_LAYER = 1 << 8,
MOTION_VECTORS_LAYER = 1 << 9,
UV_MODE_LAYER = 1 << 10,
CFL_LAYER = 1 << 11,
DUAL_FILTER_LAYER = 1 << 12,
Q_INDEX_LAYER = 1 << 13,
SEGMENT_ID_LAYER = 1 << 14,
MOTION_MODE_LAYER = 1 << 15,
COMPOUND_TYPE_LAYER = 1 << 16,
INTRABC_LAYER = 1 << 17,
PALETTE_LAYER = 1 << 18,
UV_PALETTE_LAYER = 1 << 19,
ALL_LAYERS = (1 << 20) - 1
} LayerType;
static LayerType layers = 0;
static int stop_after = 0;
static int compress = 0;
static const arg_def_t limit_arg =
ARG_DEF(NULL, "limit", 1, "Stop decoding after n frames");
static const arg_def_t dump_all_arg = ARG_DEF("A", "all", 0, "Dump All");
static const arg_def_t compress_arg =
ARG_DEF("x", "compress", 0, "Compress JSON using RLE");
static const arg_def_t dump_accounting_arg =
ARG_DEF("a", "accounting", 0, "Dump Accounting");
static const arg_def_t dump_block_size_arg =
ARG_DEF("bs", "blockSize", 0, "Dump Block Size");
static const arg_def_t dump_motion_vectors_arg =
ARG_DEF("mv", "motionVectors", 0, "Dump Motion Vectors");
static const arg_def_t dump_transform_size_arg =
ARG_DEF("ts", "transformSize", 0, "Dump Transform Size");
static const arg_def_t dump_transform_type_arg =
ARG_DEF("tt", "transformType", 0, "Dump Transform Type");
static const arg_def_t dump_mode_arg = ARG_DEF("m", "mode", 0, "Dump Mode");
static const arg_def_t dump_motion_mode_arg =
ARG_DEF("mm", "motion_mode", 0, "Dump Motion Modes");
static const arg_def_t dump_compound_type_arg =
ARG_DEF("ct", "compound_type", 0, "Dump Compound Types");
static const arg_def_t dump_uv_mode_arg =
ARG_DEF("uvm", "uv_mode", 0, "Dump UV Intra Prediction Modes");
static const arg_def_t dump_skip_arg = ARG_DEF("s", "skip", 0, "Dump Skip");
static const arg_def_t dump_filter_arg =
ARG_DEF("f", "filter", 0, "Dump Filter");
static const arg_def_t dump_cdef_arg = ARG_DEF("c", "cdef", 0, "Dump CDEF");
static const arg_def_t dump_cfl_arg =
ARG_DEF("cfl", "chroma_from_luma", 0, "Dump Chroma from Luma Alphas");
static const arg_def_t dump_dual_filter_type_arg =
ARG_DEF("df", "dualFilterType", 0, "Dump Dual Filter Type");
static const arg_def_t dump_reference_frame_arg =
ARG_DEF("r", "referenceFrame", 0, "Dump Reference Frame");
static const arg_def_t dump_delta_q_arg =
ARG_DEF("dq", "delta_q", 0, "Dump QIndex");
static const arg_def_t dump_seg_id_arg =
ARG_DEF("si", "seg_id", 0, "Dump Segment ID");
static const arg_def_t dump_intrabc_arg =
ARG_DEF("ibc", "intrabc", 0, "Dump If IntraBC Is Used");
static const arg_def_t dump_palette_arg =
ARG_DEF("plt", "palette", 0, "Dump Palette Size");
static const arg_def_t dump_uv_palette_arg =
ARG_DEF("uvp", "uv_palette", 0, "Dump UV Palette Size");
static const arg_def_t usage_arg = ARG_DEF("h", "help", 0, "Help");
static const arg_def_t skip_non_transform_arg = ARG_DEF(
"snt", "skip_non_transform", 1, "Skip is counted as a non transform.");
static const arg_def_t combined_arg =
ARG_DEF("comb", "combined", 1, "combinining parameters into one output.");
int combined_parm_list[15];
int combined_parm_count = 0;
static const arg_def_t *main_args[] = { &limit_arg,
&dump_all_arg,
&compress_arg,
#if CONFIG_ACCOUNTING
&dump_accounting_arg,
#endif
&dump_block_size_arg,
&dump_transform_size_arg,
&dump_transform_type_arg,
&dump_mode_arg,
&dump_uv_mode_arg,
&dump_motion_mode_arg,
&dump_compound_type_arg,
&dump_skip_arg,
&dump_filter_arg,
&dump_cdef_arg,
&dump_dual_filter_type_arg,
&dump_cfl_arg,
&dump_reference_frame_arg,
&dump_motion_vectors_arg,
&dump_delta_q_arg,
&dump_seg_id_arg,
&dump_intrabc_arg,
&dump_palette_arg,
&dump_uv_palette_arg,
&usage_arg,
&skip_non_transform_arg,
&combined_arg,
NULL };
#define ENUM(name) \
{ #name, name }
#define LAST_ENUM \
{ NULL, 0 }
typedef struct map_entry {
const char *name;
int value;
} map_entry;
const map_entry refs_map[] = {
ENUM(INTRA_FRAME), ENUM(LAST_FRAME), ENUM(LAST2_FRAME),
ENUM(LAST3_FRAME), ENUM(GOLDEN_FRAME), ENUM(BWDREF_FRAME),
ENUM(ALTREF2_FRAME), ENUM(ALTREF_FRAME), LAST_ENUM
};
const map_entry block_size_map[] = {
ENUM(BLOCK_4X4), ENUM(BLOCK_4X8), ENUM(BLOCK_8X4),
ENUM(BLOCK_8X8), ENUM(BLOCK_8X16), ENUM(BLOCK_16X8),
ENUM(BLOCK_16X16), ENUM(BLOCK_16X32), ENUM(BLOCK_32X16),
ENUM(BLOCK_32X32), ENUM(BLOCK_32X64), ENUM(BLOCK_64X32),
ENUM(BLOCK_64X64), ENUM(BLOCK_64X128), ENUM(BLOCK_128X64),
ENUM(BLOCK_128X128), ENUM(BLOCK_4X16), ENUM(BLOCK_16X4),
ENUM(BLOCK_8X32), ENUM(BLOCK_32X8), ENUM(BLOCK_16X64),
ENUM(BLOCK_64X16), LAST_ENUM
};
#define TX_SKIP -1
const map_entry tx_size_map[] = {
ENUM(TX_4X4), ENUM(TX_8X8), ENUM(TX_16X16), ENUM(TX_32X32),
ENUM(TX_64X64), ENUM(TX_4X8), ENUM(TX_8X4), ENUM(TX_8X16),
ENUM(TX_16X8), ENUM(TX_16X32), ENUM(TX_32X16), ENUM(TX_32X64),
ENUM(TX_64X32), ENUM(TX_4X16), ENUM(TX_16X4), ENUM(TX_8X32),
ENUM(TX_32X8), ENUM(TX_16X64), ENUM(TX_64X16), LAST_ENUM
};
const map_entry tx_type_map[] = { ENUM(DCT_DCT),
ENUM(ADST_DCT),
ENUM(DCT_ADST),
ENUM(ADST_ADST),
ENUM(FLIPADST_DCT),
ENUM(DCT_FLIPADST),
ENUM(FLIPADST_FLIPADST),
ENUM(ADST_FLIPADST),
ENUM(FLIPADST_ADST),
ENUM(IDTX),
ENUM(V_DCT),
ENUM(H_DCT),
ENUM(V_ADST),
ENUM(H_ADST),
ENUM(V_FLIPADST),
ENUM(H_FLIPADST),
LAST_ENUM };
const map_entry dual_filter_map[] = { ENUM(REG_REG), ENUM(REG_SMOOTH),
ENUM(REG_SHARP), ENUM(SMOOTH_REG),
ENUM(SMOOTH_SMOOTH), ENUM(SMOOTH_SHARP),
ENUM(SHARP_REG), ENUM(SHARP_SMOOTH),
ENUM(SHARP_SHARP), LAST_ENUM };
#if CONFIG_NEW_INTER_MODES
const map_entry prediction_mode_map[] = { ENUM(DC_PRED),
ENUM(V_PRED),
ENUM(H_PRED),
ENUM(D45_PRED),
ENUM(D135_PRED),
ENUM(D113_PRED),
ENUM(D157_PRED),
ENUM(D203_PRED),
ENUM(D67_PRED),
ENUM(SMOOTH_PRED),
ENUM(SMOOTH_V_PRED),
ENUM(SMOOTH_H_PRED),
ENUM(PAETH_PRED),
ENUM(NEARMV),
ENUM(GLOBALMV),
ENUM(NEWMV),
ENUM(NEAR_NEARMV),
ENUM(NEAR_NEWMV),
ENUM(NEW_NEARMV),
ENUM(GLOBAL_GLOBALMV),
ENUM(NEW_NEWMV),
ENUM(INTRA_INVALID),
LAST_ENUM };
#else
const map_entry prediction_mode_map[] = {
ENUM(DC_PRED), ENUM(V_PRED), ENUM(H_PRED),
ENUM(D45_PRED), ENUM(D135_PRED), ENUM(D113_PRED),
ENUM(D157_PRED), ENUM(D203_PRED), ENUM(D67_PRED),
ENUM(SMOOTH_PRED), ENUM(SMOOTH_V_PRED), ENUM(SMOOTH_H_PRED),
ENUM(PAETH_PRED), ENUM(NEARESTMV), ENUM(NEARMV),
ENUM(GLOBALMV), ENUM(NEWMV), ENUM(NEAREST_NEARESTMV),
ENUM(NEAR_NEARMV), ENUM(NEAREST_NEWMV), ENUM(NEW_NEARESTMV),
ENUM(NEAR_NEWMV), ENUM(NEW_NEARMV), ENUM(GLOBAL_GLOBALMV),
ENUM(NEW_NEWMV), ENUM(INTRA_INVALID), LAST_ENUM
};
#endif // CONFIG_NEW_INTER_MODES
const map_entry motion_mode_map[] = { ENUM(SIMPLE_TRANSLATION),
ENUM(OBMC_CAUSAL), // 2-sided OBMC
ENUM(WARPED_CAUSAL), // 2-sided WARPED
LAST_ENUM };
const map_entry compound_type_map[] = { ENUM(COMPOUND_AVERAGE),
ENUM(COMPOUND_WEDGE),
ENUM(COMPOUND_DIFFWTD), LAST_ENUM };
const map_entry uv_prediction_mode_map[] = {
ENUM(UV_DC_PRED), ENUM(UV_V_PRED),
ENUM(UV_H_PRED), ENUM(UV_D45_PRED),
ENUM(UV_D135_PRED), ENUM(UV_D113_PRED),
ENUM(UV_D157_PRED), ENUM(UV_D203_PRED),
ENUM(UV_D67_PRED), ENUM(UV_SMOOTH_PRED),
ENUM(UV_SMOOTH_V_PRED), ENUM(UV_SMOOTH_H_PRED),
ENUM(UV_PAETH_PRED), ENUM(UV_CFL_PRED),
ENUM(UV_MODE_INVALID), LAST_ENUM
};
#define NO_SKIP 0
#define SKIP 1
const map_entry skip_map[] = { ENUM(SKIP), ENUM(NO_SKIP), LAST_ENUM };
const map_entry intrabc_map[] = { { "INTRABC", 1 },
{ "NO_INTRABC", 0 },
LAST_ENUM };
const map_entry palette_map[] = {
{ "ZERO_COLORS", 0 }, { "TWO_COLORS", 2 }, { "THREE_COLORS", 3 },
{ "FOUR_COLORS", 4 }, { "FIVE_COLORS", 5 }, { "SIX_COLORS", 6 },
{ "SEVEN_COLORS", 7 }, { "EIGHT_COLORS", 8 }, LAST_ENUM
};
const map_entry config_map[] = { ENUM(MI_SIZE), LAST_ENUM };
static const char *exec_name;
struct parm_offset {
char parm[60];
char offset;
};
struct parm_offset parm_offsets[] = {
{ "blockSize", offsetof(insp_mi_data, sb_type) },
{ "transformSize", offsetof(insp_mi_data, tx_size) },
{ "transformType", offsetof(insp_mi_data, tx_type) },
{ "dualFilterType", offsetof(insp_mi_data, dual_filter_type) },
{ "mode", offsetof(insp_mi_data, mode) },
{ "uv_mode", offsetof(insp_mi_data, uv_mode) },
{ "motion_mode", offsetof(insp_mi_data, motion_mode) },
{ "compound_type", offsetof(insp_mi_data, compound_type) },
{ "referenceFrame", offsetof(insp_mi_data, ref_frame) },
{ "skip", offsetof(insp_mi_data, skip) },
};
int parm_count = sizeof(parm_offsets) / sizeof(parm_offsets[0]);
int convert_to_indices(char *str, int *indices, int maxCount, int *count) {
*count = 0;
do {
char *comma = strchr(str, ',');
int length = (comma ? (int)(comma - str) : (int)strlen(str));
int i;
for (i = 0; i < parm_count; ++i) {
if (!strncmp(str, parm_offsets[i].parm, length)) {
break;
}
}
if (i == parm_count) return 0;
indices[(*count)++] = i;
if (*count > maxCount) return 0;
str += length + 1;
} while (strlen(str) > 0);
return 1;
}
insp_frame_data frame_data;
int frame_count = 0;
int decoded_frame_count = 0;
aom_codec_ctx_t codec;
AvxVideoReader *reader = NULL;
const AvxVideoInfo *info = NULL;
aom_image_t *img = NULL;
void on_frame_decoded_dump(char *json) {
#ifdef __EMSCRIPTEN__
EM_ASM_({ Module.on_frame_decoded_json($0); }, json);
#else
printf("%s", json);
#endif
}
// Writing out the JSON buffer using snprintf is very slow, especially when
// compiled with emscripten, these functions speed things up quite a bit.
int put_str(char *buffer, const char *str) {
int i;
for (i = 0; str[i] != '\0'; i++) {
buffer[i] = str[i];
}
return i;
}
int put_str_with_escape(char *buffer, const char *str) {
int i;
int j = 0;
for (i = 0; str[i] != '\0'; i++) {
if (str[i] < ' ') {
continue;
} else if (str[i] == '"' || str[i] == '\\') {
buffer[j++] = '\\';
}
buffer[j++] = str[i];
}
return j;
}
int put_num(char *buffer, char prefix, int num, char suffix) {
int i = 0;
char *buf = buffer;
int is_neg = 0;
if (prefix) {
buf[i++] = prefix;
}
if (num == 0) {
buf[i++] = '0';
} else {
if (num < 0) {
num = -num;
is_neg = 1;
}
int s = i;
while (num != 0) {
buf[i++] = '0' + (num % 10);
num = num / 10;
}
if (is_neg) {
buf[i++] = '-';
}
int e = i - 1;
while (s < e) {
int t = buf[s];
buf[s] = buf[e];
buf[e] = t;
s++;
e--;
}
}
if (suffix) {
buf[i++] = suffix;
}
return i;
}
int put_map(char *buffer, const map_entry *map) {
char *buf = buffer;
const map_entry *entry = map;
while (entry->name != NULL) {
*(buf++) = '"';
buf += put_str(buf, entry->name);
*(buf++) = '"';
buf += put_num(buf, ':', entry->value, 0);
entry++;
if (entry->name != NULL) {
*(buf++) = ',';
}
}
return (int)(buf - buffer);
}
int put_reference_frame(char *buffer) {
const int mi_rows = frame_data.mi_rows;
const int mi_cols = frame_data.mi_cols;
char *buf = buffer;
int r, c, t;
buf += put_str(buf, " \"referenceFrameMap\": {");
buf += put_map(buf, refs_map);
buf += put_str(buf, "},\n");
buf += put_str(buf, " \"referenceFrame\": [");
for (r = 0; r < mi_rows; ++r) {
*(buf++) = '[';
for (c = 0; c < mi_cols; ++c) {
insp_mi_data *mi = &frame_data.mi_grid[r * mi_cols + c];
buf += put_num(buf, '[', mi->ref_frame[0], 0);
buf += put_num(buf, ',', mi->ref_frame[1], ']');
if (compress) { // RLE
for (t = c + 1; t < mi_cols; ++t) {
insp_mi_data *next_mi = &frame_data.mi_grid[r * mi_cols + t];
if (mi->ref_frame[0] != next_mi->ref_frame[0] ||
mi->ref_frame[1] != next_mi->ref_frame[1]) {
break;
}
}
if (t - c > 1) {
*(buf++) = ',';
buf += put_num(buf, '[', t - c - 1, ']');
c = t - 1;
}
}
if (c < mi_cols - 1) *(buf++) = ',';
}
*(buf++) = ']';
if (r < mi_rows - 1) *(buf++) = ',';
}
buf += put_str(buf, "],\n");
return (int)(buf - buffer);
}
int put_motion_vectors(char *buffer) {
const int mi_rows = frame_data.mi_rows;
const int mi_cols = frame_data.mi_cols;
char *buf = buffer;
int r, c, t;
buf += put_str(buf, " \"motionVectors\": [");
for (r = 0; r < mi_rows; ++r) {
*(buf++) = '[';
for (c = 0; c < mi_cols; ++c) {
insp_mi_data *mi = &frame_data.mi_grid[r * mi_cols + c];
buf += put_num(buf, '[', mi->mv[0].col, 0);
buf += put_num(buf, ',', mi->mv[0].row, 0);
buf += put_num(buf, ',', mi->mv[1].col, 0);
buf += put_num(buf, ',', mi->mv[1].row, ']');
if (compress) { // RLE
for (t = c + 1; t < mi_cols; ++t) {
insp_mi_data *next_mi = &frame_data.mi_grid[r * mi_cols + t];
if (mi->mv[0].col != next_mi->mv[0].col ||
mi->mv[0].row != next_mi->mv[0].row ||
mi->mv[1].col != next_mi->mv[1].col ||
mi->mv[1].row != next_mi->mv[1].row) {
break;
}
}
if (t - c > 1) {
*(buf++) = ',';
buf += put_num(buf, '[', t - c - 1, ']');
c = t - 1;
}
}
if (c < mi_cols - 1) *(buf++) = ',';
}
*(buf++) = ']';
if (r < mi_rows - 1) *(buf++) = ',';
}
buf += put_str(buf, "],\n");
return (int)(buf - buffer);
}
int put_combined(char *buffer) {
const int mi_rows = frame_data.mi_rows;
const int mi_cols = frame_data.mi_cols;
char *buf = buffer;
int r, c, p;
buf += put_str(buf, " \"");
for (p = 0; p < combined_parm_count; ++p) {
if (p) buf += put_str(buf, "&");
buf += put_str(buf, parm_offsets[combined_parm_list[p]].parm);
}
buf += put_str(buf, "\": [");
for (r = 0; r < mi_rows; ++r) {
*(buf++) = '[';
for (c = 0; c < mi_cols; ++c) {
insp_mi_data *mi = &frame_data.mi_grid[r * mi_cols + c];
*(buf++) = '[';
for (p = 0; p < combined_parm_count; ++p) {
if (p) *(buf++) = ',';
int16_t *v = (int16_t *)(((int8_t *)mi) +
parm_offsets[combined_parm_list[p]].offset);
buf += put_num(buf, 0, v[0], 0);
}
*(buf++) = ']';
if (c < mi_cols - 1) *(buf++) = ',';
}
*(buf++) = ']';
if (r < mi_rows - 1) *(buf++) = ',';
}
buf += put_str(buf, "],\n");
return (int)(buf - buffer);
}
int put_block_info(char *buffer, const map_entry *map, const char *name,
size_t offset, int len) {
const int mi_rows = frame_data.mi_rows;
const int mi_cols = frame_data.mi_cols;
char *buf = buffer;
int r, c, t, i;
if (compress && len == 1) {
die("Can't encode scalars as arrays when RLE compression is enabled.");
return -1;
}
if (map) {
buf += snprintf(buf, MAX_BUFFER, " \"%sMap\": {", name);
buf += put_map(buf, map);
buf += put_str(buf, "},\n");
}
buf += snprintf(buf, MAX_BUFFER, " \"%s\": [", name);
for (r = 0; r < mi_rows; ++r) {
*(buf++) = '[';
for (c = 0; c < mi_cols; ++c) {
insp_mi_data *mi = &frame_data.mi_grid[r * mi_cols + c];
int16_t *v = (int16_t *)(((int8_t *)mi) + offset);
if (len == 0) {
buf += put_num(buf, 0, v[0], 0);
} else {
buf += put_str(buf, "[");
for (i = 0; i < len; i++) {
buf += put_num(buf, 0, v[i], 0);
if (i < len - 1) {
buf += put_str(buf, ",");
}
}
buf += put_str(buf, "]");
}
if (compress) { // RLE
for (t = c + 1; t < mi_cols; ++t) {
insp_mi_data *next_mi = &frame_data.mi_grid[r * mi_cols + t];
int16_t *nv = (int16_t *)(((int8_t *)next_mi) + offset);
int same = 0;
if (len == 0) {
same = v[0] == nv[0];
} else {
for (i = 0; i < len; i++) {
same = v[i] == nv[i];
if (!same) {
break;
}
}
}
if (!same) {
break;
}
}
if (t - c > 1) {
*(buf++) = ',';
buf += put_num(buf, '[', t - c - 1, ']');
c = t - 1;
}
}
if (c < mi_cols - 1) *(buf++) = ',';
}
*(buf++) = ']';
if (r < mi_rows - 1) *(buf++) = ',';
}
buf += put_str(buf, "],\n");
return (int)(buf - buffer);
}
#if CONFIG_ACCOUNTING
int put_accounting(char *buffer) {
char *buf = buffer;
int i;
const Accounting *accounting = frame_data.accounting;
if (accounting == NULL) {
printf("XXX\n");
return 0;
}
const int num_syms = accounting->syms.num_syms;
const int num_strs = accounting->syms.dictionary.num_strs;
buf += put_str(buf, " \"symbolsMap\": [");
for (i = 0; i < num_strs; i++) {
buf += snprintf(buf, MAX_BUFFER, "\"%s\"",
accounting->syms.dictionary.strs[i]);
if (i < num_strs - 1) *(buf++) = ',';
}
buf += put_str(buf, "],\n");
buf += put_str(buf, " \"symbols\": [\n ");
AccountingSymbolContext context;
context.x = -2;
context.y = -2;
AccountingSymbol *sym;
for (i = 0; i < num_syms; i++) {
sym = &accounting->syms.syms[i];
if (memcmp(&context, &sym->context, sizeof(AccountingSymbolContext)) != 0) {
buf += put_num(buf, '[', sym->context.x, 0);
buf += put_num(buf, ',', sym->context.y, ']');
} else {
buf += put_num(buf, '[', sym->id, 0);
buf += put_num(buf, ',', sym->bits, 0);
buf += put_num(buf, ',', sym->samples, ']');
}
context = sym->context;
if (i < num_syms - 1) *(buf++) = ',';
}
buf += put_str(buf, "],\n");
return (int)(buf - buffer);
}
#endif
int skip_non_transform = 0;
void inspect(void *pbi, void *data) {
/* Fetch frame data. */
ifd_inspect(&frame_data, pbi, skip_non_transform);
// Show existing frames just show a reference buffer we've already decoded.
// There's no information to show.
if (frame_data.show_existing_frame) return;
(void)data;
// We allocate enough space and hope we don't write out of bounds. Totally
// unsafe but this speeds things up, especially when compiled to Javascript.
char *buffer = aom_malloc(MAX_BUFFER);
char *buf = buffer;
buf += put_str(buf, "{\n");
if (layers & BLOCK_SIZE_LAYER) {
buf += put_block_info(buf, block_size_map, "blockSize",
offsetof(insp_mi_data, sb_type), 0);
}
if (layers & TRANSFORM_SIZE_LAYER) {
buf += put_block_info(buf, tx_size_map, "transformSize",
offsetof(insp_mi_data, tx_size), 0);
}
if (layers & TRANSFORM_TYPE_LAYER) {
buf += put_block_info(buf, tx_type_map, "transformType",
offsetof(insp_mi_data, tx_type), 0);
}
if (layers & DUAL_FILTER_LAYER) {
buf += put_block_info(buf, dual_filter_map, "dualFilterType",
offsetof(insp_mi_data, dual_filter_type), 0);
}
if (layers & MODE_LAYER) {
buf += put_block_info(buf, prediction_mode_map, "mode",
offsetof(insp_mi_data, mode), 0);
}
if (layers & UV_MODE_LAYER) {
buf += put_block_info(buf, uv_prediction_mode_map, "uv_mode",
offsetof(insp_mi_data, uv_mode), 0);
}
if (layers & MOTION_MODE_LAYER) {
buf += put_block_info(buf, motion_mode_map, "motion_mode",
offsetof(insp_mi_data, motion_mode), 0);
}
if (layers & COMPOUND_TYPE_LAYER) {
buf += put_block_info(buf, compound_type_map, "compound_type",
offsetof(insp_mi_data, compound_type), 0);
}
if (layers & SKIP_LAYER) {
buf +=
put_block_info(buf, skip_map, "skip", offsetof(insp_mi_data, skip), 0);
}
if (layers & FILTER_LAYER) {
buf +=
put_block_info(buf, NULL, "filter", offsetof(insp_mi_data, filter), 2);
}
if (layers & CDEF_LAYER) {
buf += put_block_info(buf, NULL, "cdef_level",
offsetof(insp_mi_data, cdef_level), 0);
buf += put_block_info(buf, NULL, "cdef_strength",
offsetof(insp_mi_data, cdef_strength), 0);
}
if (layers & CFL_LAYER) {
buf += put_block_info(buf, NULL, "cfl_alpha_idx",
offsetof(insp_mi_data, cfl_alpha_idx), 0);
buf += put_block_info(buf, NULL, "cfl_alpha_sign",
offsetof(insp_mi_data, cfl_alpha_sign), 0);
}
if (layers & Q_INDEX_LAYER) {
buf += put_block_info(buf, NULL, "delta_q",
offsetof(insp_mi_data, current_qindex), 0);
}
if (layers & SEGMENT_ID_LAYER) {
buf += put_block_info(buf, NULL, "seg_id",
offsetof(insp_mi_data, segment_id), 0);
}
if (layers & MOTION_VECTORS_LAYER) {
buf += put_motion_vectors(buf);
}
if (layers & INTRABC_LAYER) {
buf += put_block_info(buf, intrabc_map, "intrabc",
offsetof(insp_mi_data, intrabc), 0);
}
if (layers & PALETTE_LAYER) {
buf += put_block_info(buf, palette_map, "palette",
offsetof(insp_mi_data, palette), 0);
}
if (layers & UV_PALETTE_LAYER) {
buf += put_block_info(buf, palette_map, "uv_palette",
offsetof(insp_mi_data, uv_palette), 0);
}
if (combined_parm_count > 0) buf += put_combined(buf);
if (layers & REFERENCE_FRAME_LAYER) {
buf += put_block_info(buf, refs_map, "referenceFrame",
offsetof(insp_mi_data, ref_frame), 2);
}
#if CONFIG_ACCOUNTING
if (layers & ACCOUNTING_LAYER) {
buf += put_accounting(buf);
}
#endif
buf +=
snprintf(buf, MAX_BUFFER, " \"frame\": %d,\n", frame_data.frame_number);
buf += snprintf(buf, MAX_BUFFER, " \"showFrame\": %d,\n",
frame_data.show_frame);
buf += snprintf(buf, MAX_BUFFER, " \"frameType\": %d,\n",
frame_data.frame_type);
buf += snprintf(buf, MAX_BUFFER, " \"baseQIndex\": %d,\n",
frame_data.base_qindex);
buf += snprintf(buf, MAX_BUFFER, " \"tileCols\": %d,\n",
frame_data.tile_mi_cols);
buf += snprintf(buf, MAX_BUFFER, " \"tileRows\": %d,\n",
frame_data.tile_mi_rows);
buf += snprintf(buf, MAX_BUFFER, " \"deltaQPresentFlag\": %d,\n",
frame_data.delta_q_present_flag);
buf += snprintf(buf, MAX_BUFFER, " \"deltaQRes\": %d,\n",
frame_data.delta_q_res);
buf += put_str(buf, " \"config\": {");
buf += put_map(buf, config_map);
buf += put_str(buf, "},\n");
buf += put_str(buf, " \"configString\": \"");
buf += put_str_with_escape(buf, aom_codec_build_config());
buf += put_str(buf, "\"\n");
decoded_frame_count++;
buf += put_str(buf, "},\n");
*(buf++) = 0;
on_frame_decoded_dump(buffer);
aom_free(buffer);
}
void ifd_init_cb() {
aom_inspect_init ii;
ii.inspect_cb = inspect;
ii.inspect_ctx = NULL;
aom_codec_control(&codec, AV1_SET_INSPECTION_CALLBACK, &ii);
}
EMSCRIPTEN_KEEPALIVE
int open_file(char *file) {
if (file == NULL) {
// The JS analyzer puts the .ivf file at this location.
file = "/tmp/input.ivf";
}
reader = aom_video_reader_open(file);
if (!reader) die("Failed to open %s for reading.", file);
info = aom_video_reader_get_info(reader);
const AvxInterface *decoder = get_aom_decoder_by_fourcc(info->codec_fourcc);
if (!decoder) die("Unknown input codec.");
fprintf(stderr, "Using %s\n",
aom_codec_iface_name(decoder->codec_interface()));
if (aom_codec_dec_init(&codec, decoder->codec_interface(), NULL, 0))
die_codec(&codec, "Failed to initialize decoder.");
ifd_init(&frame_data, info->frame_width, info->frame_height);
ifd_init_cb();
return EXIT_SUCCESS;
}
Av1DecodeReturn adr;
int have_frame = 0;
const unsigned char *frame;
const unsigned char *end_frame;
size_t frame_size = 0;
EMSCRIPTEN_KEEPALIVE
int read_frame() {
img = NULL;
// This loop skips over any frames that are show_existing_frames, as
// there is nothing to analyze.
do {
if (!have_frame) {
if (!aom_video_reader_read_frame(reader)) return EXIT_FAILURE;
frame = aom_video_reader_get_frame(reader, &frame_size);
have_frame = 1;
end_frame = frame + frame_size;
}
if (aom_codec_decode(&codec, frame, (unsigned int)frame_size, &adr) !=
AOM_CODEC_OK) {
die_codec(&codec, "Failed to decode frame.");
}
frame = adr.buf;
if (frame == end_frame) have_frame = 0;
} while (adr.show_existing);
int got_any_frames = 0;
aom_image_t *frame_img;
struct av1_ref_frame ref_dec;
ref_dec.idx = adr.idx;
// ref_dec.idx is the index to the reference buffer idx to AV1_GET_REFERENCE
// if its -1 the decoder didn't update any reference buffer and the only
// way to see the frame is aom_codec_get_frame.
if (ref_dec.idx == -1) {
aom_codec_iter_t iter = NULL;
img = frame_img = aom_codec_get_frame(&codec, &iter);
++frame_count;
got_any_frames = 1;
} else if (!aom_codec_control(&codec, AV1_GET_REFERENCE, &ref_dec)) {
img = frame_img = &ref_dec.img;
++frame_count;
got_any_frames = 1;
}
if (!got_any_frames) {
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
EMSCRIPTEN_KEEPALIVE
const char *get_aom_codec_build_config() { return aom_codec_build_config(); }
EMSCRIPTEN_KEEPALIVE
int get_bit_depth() { return img->bit_depth; }
EMSCRIPTEN_KEEPALIVE
int get_bits_per_sample() { return img->bps; }
EMSCRIPTEN_KEEPALIVE
int get_image_format() { return img->fmt; }
EMSCRIPTEN_KEEPALIVE
unsigned char *get_plane(int plane) { return img->planes[plane]; }
EMSCRIPTEN_KEEPALIVE
int get_plane_stride(int plane) { return img->stride[plane]; }
EMSCRIPTEN_KEEPALIVE
int get_plane_width(int plane) { return aom_img_plane_width(img, plane); }
EMSCRIPTEN_KEEPALIVE
int get_plane_height(int plane) { return aom_img_plane_height(img, plane); }
EMSCRIPTEN_KEEPALIVE
int get_frame_width() { return info->frame_width; }
EMSCRIPTEN_KEEPALIVE
int get_frame_height() { return info->frame_height; }
static void parse_args(char **argv) {
char **argi, **argj;
struct arg arg;
(void)dump_accounting_arg;
(void)dump_cdef_arg;
for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) {
arg.argv_step = 1;
if (arg_match(&arg, &dump_block_size_arg, argi)) layers |= BLOCK_SIZE_LAYER;
#if CONFIG_ACCOUNTING
else if (arg_match(&arg, &dump_accounting_arg, argi))
layers |= ACCOUNTING_LAYER;
#endif
else if (arg_match(&arg, &dump_transform_size_arg, argi))
layers |= TRANSFORM_SIZE_LAYER;
else if (arg_match(&arg, &dump_transform_type_arg, argi))
layers |= TRANSFORM_TYPE_LAYER;
else if (arg_match(&arg, &dump_mode_arg, argi))
layers |= MODE_LAYER;
else if (arg_match(&arg, &dump_uv_mode_arg, argi))
layers |= UV_MODE_LAYER;
else if (arg_match(&arg, &dump_motion_mode_arg, argi))
layers |= MOTION_MODE_LAYER;
else if (arg_match(&arg, &dump_compound_type_arg, argi))
layers |= COMPOUND_TYPE_LAYER;
else if (arg_match(&arg, &dump_skip_arg, argi))
layers |= SKIP_LAYER;
else if (arg_match(&arg, &dump_filter_arg, argi))
layers |= FILTER_LAYER;
else if (arg_match(&arg, &dump_cdef_arg, argi))
layers |= CDEF_LAYER;
else if (arg_match(&arg, &dump_cfl_arg, argi))
layers |= CFL_LAYER;
else if (arg_match(&arg, &dump_reference_frame_arg, argi))
layers |= REFERENCE_FRAME_LAYER;
else if (arg_match(&arg, &dump_motion_vectors_arg, argi))
layers |= MOTION_VECTORS_LAYER;
else if (arg_match(&arg, &dump_dual_filter_type_arg, argi))
layers |= DUAL_FILTER_LAYER;
else if (arg_match(&arg, &dump_delta_q_arg, argi))
layers |= Q_INDEX_LAYER;
else if (arg_match(&arg, &dump_seg_id_arg, argi))
layers |= SEGMENT_ID_LAYER;
else if (arg_match(&arg, &dump_intrabc_arg, argi))
layers |= INTRABC_LAYER;
else if (arg_match(&arg, &dump_palette_arg, argi))
layers |= PALETTE_LAYER;
else if (arg_match(&arg, &dump_uv_palette_arg, argi))
layers |= UV_PALETTE_LAYER;
else if (arg_match(&arg, &dump_all_arg, argi))
layers |= ALL_LAYERS;
else if (arg_match(&arg, &compress_arg, argi))
compress = 1;
else if (arg_match(&arg, &usage_arg, argi))
usage_exit();
else if (arg_match(&arg, &limit_arg, argi))
stop_after = arg_parse_uint(&arg);
else if (arg_match(&arg, &skip_non_transform_arg, argi))
skip_non_transform = arg_parse_uint(&arg);
else if (arg_match(&arg, &combined_arg, argi))
convert_to_indices(
(char *)arg.val, combined_parm_list,
sizeof(combined_parm_list) / sizeof(combined_parm_list[0]),
&combined_parm_count);
else
argj++;
}
}
static const char *exec_name;
void usage_exit(void) {
fprintf(stderr, "Usage: %s src_filename <options>\n", exec_name);
fprintf(stderr, "\nOptions:\n");
arg_show_usage(stderr, main_args);
exit(EXIT_FAILURE);
}
EMSCRIPTEN_KEEPALIVE
int main(int argc, char **argv) {
exec_name = argv[0];
parse_args(argv);
if (argc >= 2) {
open_file(argv[1]);
printf("[\n");
while (1) {
if (stop_after && (decoded_frame_count >= stop_after)) break;
if (read_frame()) break;
}
printf("null\n");
printf("]");
} else {
usage_exit();
}
}
EMSCRIPTEN_KEEPALIVE
void quit() {
if (aom_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec");
aom_video_reader_close(reader);
}
EMSCRIPTEN_KEEPALIVE
void set_layers(LayerType v) { layers = v; }
EMSCRIPTEN_KEEPALIVE
void set_compress(int v) { compress = v; }