blob: 36836090820c40109e41db074c3d18ab6f791dbe [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <assert.h>
#include <stddef.h>
#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/enums.h"
#include "av1/common/filter.h"
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"
#include "config/av1_rtcd.h"
#include "aom/aom_codec.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/binary_codes_reader.h"
#include "aom_dsp/bitreader.h"
#include "aom_dsp/bitreader_buffer.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/mem.h"
#include "aom_ports/mem_ops.h"
#include "aom_scale/aom_scale.h"
#include "aom_util/aom_thread.h"
#if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
#include "aom_util/debug_util.h"
#endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
#include "av1/common/alloccommon.h"
#include "av1/common/cdef.h"
#if CONFIG_CCSO
#include "av1/common/ccso.h"
#endif
#include "av1/common/cfl.h"
#if CONFIG_INSPECTION
#include "av1/decoder/inspection.h"
#endif
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/frame_buffers.h"
#include "av1/common/idct.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/resize.h"
#include "av1/common/seg_common.h"
#include "av1/common/thread_common.h"
#include "av1/common/tile_common.h"
#include "av1/common/tip.h"
#include "av1/common/warped_motion.h"
#include "av1/common/obmc.h"
#include "av1/decoder/decodeframe.h"
#include "av1/decoder/decodemv.h"
#include "av1/decoder/decoder.h"
#include "av1/decoder/decodetxb.h"
#include "av1/decoder/detokenize.h"
#define AOM_MIN_THREADS_PER_TILE 1
#define AOM_MAX_THREADS_PER_TILE 2
// This is needed by ext_tile related unit tests.
#define EXT_TILE_DEBUG 1
#define MC_TEMP_BUF_PELS \
(((MAX_SB_SIZE)*2 + (AOM_INTERP_EXTEND)*2) * \
((MAX_SB_SIZE)*2 + (AOM_INTERP_EXTEND)*2))
#if CONFIG_THROUGHPUT_ANALYSIS
int64_t tot_ctx_syms = { 0 };
int64_t tot_bypass_syms = { 0 };
int64_t max_ctx_syms = { 0 };
int64_t max_bypass_syms = { 0 };
int64_t max_bits = { 0 };
int64_t tot_bits = { 0 };
int64_t tot_frames = { 0 };
#endif // CONFIG_THROUGHPUT_ANALYSIS
// Checks that the remaining bits start with a 1 and ends with 0s.
// It consumes an additional byte, if already byte aligned before the check.
int av1_check_trailing_bits(AV1Decoder *pbi, struct aom_read_bit_buffer *rb) {
AV1_COMMON *const cm = &pbi->common;
// bit_offset is set to 0 (mod 8) when the reader is already byte aligned
int bits_before_alignment = 8 - rb->bit_offset % 8;
int trailing = aom_rb_read_literal(rb, bits_before_alignment);
if (trailing != (1 << (bits_before_alignment - 1))) {
cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
return -1;
}
return 0;
}
// Use only_chroma = 1 to only set the chroma planes
static AOM_INLINE void set_planes_to_neutral_grey(
const SequenceHeader *const seq_params, const YV12_BUFFER_CONFIG *const buf,
int only_chroma) {
const int val = 1 << (seq_params->bit_depth - 1);
for (int plane = only_chroma; plane < MAX_MB_PLANE; plane++) {
const int is_uv = plane > 0;
uint16_t *const base = buf->buffers[plane];
// Set the first row to neutral grey. Then copy the first row to all
// subsequent rows.
if (buf->crop_heights[is_uv] > 0) {
aom_memset16(base, val, buf->crop_widths[is_uv]);
for (int row_idx = 1; row_idx < buf->crop_heights[is_uv]; row_idx++) {
memcpy(&base[row_idx * buf->strides[is_uv]], base,
sizeof(*base) * buf->crop_widths[is_uv]);
}
}
}
}
static AOM_INLINE void loop_restoration_read_sb_coeffs(
#if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
AV1_COMMON *const cm, MACROBLOCKD *xd, aom_reader *const r, int plane,
#else
const AV1_COMMON *const cm, MACROBLOCKD *xd, aom_reader *const r, int plane,
#endif // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
int runit_idx);
static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) {
return len != 0 && len <= (size_t)(end - start);
}
static TX_MODE read_tx_mode(struct aom_read_bit_buffer *rb,
int coded_lossless) {
if (coded_lossless) return ONLY_4X4;
return aom_rb_read_bit(rb) ? TX_MODE_SELECT : TX_MODE_LARGEST;
}
static REFERENCE_MODE read_frame_reference_mode(
const AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
if (frame_is_intra_only(cm)) {
return SINGLE_REFERENCE;
} else {
return aom_rb_read_bit(rb) ? REFERENCE_MODE_SELECT : SINGLE_REFERENCE;
}
}
static AOM_INLINE void inverse_transform_block(DecoderCodingBlock *dcb,
const AV1_COMMON *cm, int plane,
const TX_TYPE tx_type,
const TX_SIZE tx_size,
uint16_t *dst, int stride,
int reduced_tx_set) {
tran_low_t *dqcoeff = dcb->dqcoeff_block[plane] + dcb->cb_offset[plane];
eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane];
uint16_t scan_line = eob_data->max_scan_line;
uint16_t eob = eob_data->eob;
// Update eob and scan_line according to those of the other chroma plane
if (plane && is_cctx_allowed(cm, &dcb->xd)) {
eob_info *eob_data_c1 =
dcb->eob_data[AOM_PLANE_U] + dcb->txb_offset[AOM_PLANE_U];
eob_info *eob_data_c2 =
dcb->eob_data[AOM_PLANE_V] + dcb->txb_offset[AOM_PLANE_V];
scan_line = AOMMAX(eob_data_c1->max_scan_line, eob_data_c2->max_scan_line);
eob = AOMMAX(eob_data_c1->eob, eob_data_c2->eob);
}
av1_inverse_transform_block(&dcb->xd, dqcoeff, plane, tx_type, tx_size, dst,
stride, eob, reduced_tx_set);
const int width = tx_size_wide[tx_size] <= 32 ? tx_size_wide[tx_size] : 32;
const int height = tx_size_high[tx_size] <= 32 ? tx_size_high[tx_size] : 32;
const int sbSize = (width >= 8 && height >= 8) ? 8 : 4;
int32_t nz0 = (sbSize - 1) * tx_size_wide[tx_size] + sbSize;
int32_t nz1 = (scan_line + 1);
memset(dqcoeff, 0, AOMMAX(nz0, nz1) * sizeof(dqcoeff[0]));
}
static AOM_INLINE void read_coeffs_tx_intra_block(
const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r,
const int plane, const int row, const int col, const TX_SIZE tx_size) {
MB_MODE_INFO *mbmi = dcb->xd.mi[0];
if (!mbmi->skip_txfm[dcb->xd.tree_type == CHROMA_PART]) {
#if TXCOEFF_TIMER
struct aom_usec_timer timer;
aom_usec_timer_start(&timer);
#endif
av1_read_coeffs_txb_facade(cm, dcb, r, plane, row, col, tx_size);
#if TXCOEFF_TIMER
aom_usec_timer_mark(&timer);
const int64_t elapsed_time = aom_usec_timer_elapsed(&timer);
cm->txcoeff_timer += elapsed_time;
++cm->txb_count;
#endif
}
#if CONFIG_PC_WIENER
else {
// all tx blocks are skipped.
av1_update_txk_skip_array(cm, dcb->xd.mi_row, dcb->xd.mi_col,
dcb->xd.tree_type, &mbmi->chroma_ref_info, plane,
row, col, tx_size);
}
#endif // CONFIG_PC_WIENER
}
static AOM_INLINE void decode_block_void(const AV1_COMMON *const cm,
DecoderCodingBlock *dcb,
aom_reader *const r, const int plane,
const int row, const int col,
const TX_SIZE tx_size) {
(void)cm;
(void)dcb;
(void)r;
(void)plane;
(void)row;
(void)col;
(void)tx_size;
}
static AOM_INLINE void predict_inter_block_void(AV1_COMMON *const cm,
DecoderCodingBlock *dcb,
BLOCK_SIZE bsize) {
(void)cm;
(void)dcb;
(void)bsize;
}
static AOM_INLINE void cfl_store_inter_block_void(AV1_COMMON *const cm,
MACROBLOCKD *const xd) {
(void)cm;
(void)xd;
}
static AOM_INLINE void predict_and_reconstruct_intra_block(
const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r,
const int plane, const int row, const int col, const TX_SIZE tx_size) {
(void)r;
MACROBLOCKD *const xd = &dcb->xd;
MB_MODE_INFO *mbmi = xd->mi[0];
PLANE_TYPE plane_type = get_plane_type(plane);
av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size);
#if CONFIG_INSPECTION
{
const int txwpx = tx_size_wide[tx_size];
const int txhpx = tx_size_high[tx_size];
struct macroblockd_plane *const pd = &xd->plane[plane];
const int dst_stride = pd->dst.stride;
uint16_t *dst = &pd->dst.buf[(row * dst_stride + col) << MI_SIZE_LOG2];
for (int i = 0; i < txhpx; i++) {
for (int j = 0; j < txwpx; j++) {
uint16_t pixel = dst[i * dst_stride + j];
int stride = cm->predicted_pixels.strides[plane > 0];
int pixel_c, pixel_r;
if (plane) {
mi_to_pixel_loc(&pixel_c, &pixel_r,
mbmi->chroma_ref_info.mi_col_chroma_base,
mbmi->chroma_ref_info.mi_row_chroma_base, col, row,
pd->subsampling_x, pd->subsampling_y);
} else {
mi_to_pixel_loc(&pixel_c, &pixel_r, xd->mi_col, xd->mi_row, col, row,
pd->subsampling_x, pd->subsampling_y);
}
pixel_c += j;
pixel_r += i;
cm->predicted_pixels.buffers[plane][pixel_r * stride + pixel_c] = pixel;
}
}
}
#endif // CONFIG_INSPECTION
#if CONFIG_MISMATCH_DEBUG
const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2);
const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2);
int pixel_c, pixel_r;
BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
int blk_w = block_size_wide[bsize];
int blk_h = block_size_high[bsize];
if (plane == 0 || xd->is_chroma_ref) {
struct macroblockd_plane *const pd = &xd->plane[plane];
if (plane) {
mi_to_pixel_loc(&pixel_c, &pixel_r,
mbmi->chroma_ref_info.mi_col_chroma_base,
mbmi->chroma_ref_info.mi_row_chroma_base, col, row,
pd->subsampling_x, pd->subsampling_y);
} else {
mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, col, row,
pd->subsampling_x, pd->subsampling_y);
}
mismatch_check_block_pre(pd->dst.buf, pd->dst.stride,
#if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
cm->current_frame.display_order_hint,
#else
cm->current_frame.order_hint,
#endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
plane, pixel_c, pixel_r, blk_w, blk_h);
}
#endif // CONFIG_MISMATCH_DEBUG
if (!mbmi->skip_txfm[xd->tree_type == CHROMA_PART]) {
eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane];
// In CCTX, when C2 eob = 0 but C1 eob > 0, plane V reconstruction is
// still needed
int recon_with_cctx = 0;
if (is_cctx_allowed(cm, xd) && plane == AOM_PLANE_V &&
av1_get_cctx_type(xd, row, col) > CCTX_NONE) {
eob_info *eob_data_c1 =
dcb->eob_data[AOM_PLANE_U] + dcb->txb_offset[AOM_PLANE_U];
recon_with_cctx = eob_data_c1->eob > 0;
}
if (eob_data->eob || recon_with_cctx) {
const bool reduced_tx_set_used = cm->features.reduced_tx_set_used;
// tx_type was read out in av1_read_coeffs_txb.
const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, row, col, tx_size,
reduced_tx_set_used);
struct macroblockd_plane *const pd = &xd->plane[plane];
uint16_t *dst =
&pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2];
inverse_transform_block(dcb, cm, plane, tx_type, tx_size, dst,
pd->dst.stride, reduced_tx_set_used);
}
}
#if CONFIG_MISMATCH_DEBUG
{
struct macroblockd_plane *const pd = &xd->plane[plane];
uint16_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2];
if (plane) {
mi_to_pixel_loc(&pixel_c, &pixel_r,
mbmi->chroma_ref_info.mi_col_chroma_base,
mbmi->chroma_ref_info.mi_row_chroma_base, col, row,
pd->subsampling_x, pd->subsampling_y);
} else {
mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, col, row,
pd->subsampling_x, pd->subsampling_y);
}
mismatch_check_block_tx(dst, pd->dst.stride,
#if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
cm->current_frame.display_order_hint,
#else
cm->current_frame.order_hint,
#endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
plane, pixel_c, pixel_r, blk_w, blk_h);
}
#endif // CONFIG_MISMATCH_DEBUG
if (plane == AOM_PLANE_Y && store_cfl_required(cm, xd) &&
xd->tree_type == SHARED_PART) {
#if CONFIG_ADAPTIVE_DS_FILTER
cfl_store_tx(xd, row, col, tx_size, cm->seq_params.enable_cfl_ds_filter);
#else
cfl_store_tx(xd, row, col, tx_size);
#endif // CONFIG_ADAPTIVE_DS_FILTER
}
}
// Facade function for inverse cross chroma component transform
static AOM_INLINE void inverse_cross_chroma_transform_block(
const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r,
const int plane, const int blk_row, const int blk_col,
const TX_SIZE tx_size) {
(void)cm;
(void)r;
(void)plane;
tran_low_t *dqcoeff_c1 =
dcb->dqcoeff_block[AOM_PLANE_U] + dcb->cb_offset[AOM_PLANE_U];
tran_low_t *dqcoeff_c2 =
dcb->dqcoeff_block[AOM_PLANE_V] + dcb->cb_offset[AOM_PLANE_V];
MACROBLOCKD *const xd = &dcb->xd;
const CctxType cctx_type = av1_get_cctx_type(xd, blk_row, blk_col);
av1_inv_cross_chroma_tx_block(dqcoeff_c1, dqcoeff_c2, tx_size, cctx_type);
}
static AOM_INLINE void inverse_transform_inter_block(
const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r,
const int plane, const int blk_row, const int blk_col,
const TX_SIZE tx_size) {
(void)r;
MACROBLOCKD *const xd = &dcb->xd;
PLANE_TYPE plane_type = get_plane_type(plane);
const struct macroblockd_plane *const pd = &xd->plane[plane];
const bool reduced_tx_set_used = cm->features.reduced_tx_set_used;
// tx_type was read out in av1_read_coeffs_txb.
const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col,
tx_size, reduced_tx_set_used);
uint16_t *dst =
&pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2];
inverse_transform_block(dcb, cm, plane, tx_type, tx_size, dst, pd->dst.stride,
reduced_tx_set_used);
#if CONFIG_MISMATCH_DEBUG
int pixel_c, pixel_r;
BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
int blk_w = block_size_wide[bsize];
int blk_h = block_size_high[bsize];
const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2);
const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2);
if (plane) {
MB_MODE_INFO *const mbmi = xd->mi[0];
mi_to_pixel_loc(&pixel_c, &pixel_r,
mbmi->chroma_ref_info.mi_col_chroma_base,
mbmi->chroma_ref_info.mi_row_chroma_base, blk_col, blk_row,
pd->subsampling_x, pd->subsampling_y);
} else {
mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, blk_col, blk_row,
pd->subsampling_x, pd->subsampling_y);
}
mismatch_check_block_tx(dst, pd->dst.stride,
#if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
cm->current_frame.display_order_hint,
#else
cm->current_frame.order_hint,
#endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
plane, pixel_c, pixel_r, blk_w, blk_h);
#endif // CONFIG_MISMATCH_DEBUG
}
static AOM_INLINE void set_cb_buffer_offsets(DecoderCodingBlock *dcb,
TX_SIZE tx_size, int plane) {
dcb->cb_offset[plane] += tx_size_wide[tx_size] * tx_size_high[tx_size];
dcb->txb_offset[plane] =
dcb->cb_offset[plane] / (TX_SIZE_W_MIN * TX_SIZE_H_MIN);
}
static AOM_INLINE void decode_reconstruct_tx(AV1_COMMON *cm,
ThreadData *const td,
aom_reader *r,
MB_MODE_INFO *const mbmi,
int plane, BLOCK_SIZE plane_bsize,
int blk_row, int blk_col,
#if !CONFIG_NEW_TX_PARTITION
int block,
#endif // !CONFIG_NEW_TX_PARTITION
TX_SIZE tx_size, int *eob_total) {
DecoderCodingBlock *const dcb = &td->dcb;
MACROBLOCKD *const xd = &dcb->xd;
if (plane == AOM_PLANE_U && is_cctx_allowed(cm, xd)) return;
const struct macroblockd_plane *const pd = &xd->plane[plane];
#if CONFIG_EXT_RECUR_PARTITIONS
const BLOCK_SIZE bsize_base = get_bsize_base(xd, mbmi, plane);
const TX_SIZE plane_tx_size =
plane ? av1_get_max_uv_txsize(bsize_base, pd->subsampling_x,
pd->subsampling_y)
: mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
blk_col)];
#else
if (xd->tree_type == SHARED_PART)
assert(mbmi->sb_type[PLANE_TYPE_Y] == mbmi->sb_type[PLANE_TYPE_UV]);
const TX_SIZE plane_tx_size =
plane ? av1_get_max_uv_txsize(mbmi->sb_type[plane > 0], pd->subsampling_x,
pd->subsampling_y)
: mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
blk_col)];
#endif // CONFIG_EXT_RECUR_PARTITIONS
// Scale to match transform block unit.
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
if (tx_size == plane_tx_size || plane) {
if (plane == AOM_PLANE_V && is_cctx_allowed(cm, xd)) {
td->read_coeffs_tx_inter_block_visit(cm, dcb, r, AOM_PLANE_U, blk_row,
blk_col, tx_size);
td->read_coeffs_tx_inter_block_visit(cm, dcb, r, AOM_PLANE_V, blk_row,
blk_col, tx_size);
td->inverse_cctx_block_visit(cm, dcb, r, -1, blk_row, blk_col, tx_size);
td->inverse_tx_inter_block_visit(cm, dcb, r, AOM_PLANE_U, blk_row,
blk_col, tx_size);
td->inverse_tx_inter_block_visit(cm, dcb, r, AOM_PLANE_V, blk_row,
blk_col, tx_size);
eob_info *eob_data_c1 =
dcb->eob_data[AOM_PLANE_U] + dcb->txb_offset[AOM_PLANE_U];
eob_info *eob_data_c2 =
dcb->eob_data[AOM_PLANE_V] + dcb->txb_offset[AOM_PLANE_V];
*eob_total += eob_data_c1->eob + eob_data_c2->eob;
set_cb_buffer_offsets(dcb, tx_size, AOM_PLANE_U);
set_cb_buffer_offsets(dcb, tx_size, AOM_PLANE_V);
} else {
assert(plane == AOM_PLANE_Y || !is_cctx_allowed(cm, xd));
td->read_coeffs_tx_inter_block_visit(cm, dcb, r, plane, blk_row, blk_col,
tx_size);
td->inverse_tx_inter_block_visit(cm, dcb, r, plane, blk_row, blk_col,
tx_size);
eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane];
*eob_total += eob_data->eob;
set_cb_buffer_offsets(dcb, tx_size, plane);
}
} else {
#if CONFIG_NEW_TX_PARTITION
TX_SIZE sub_txs[MAX_TX_PARTITIONS] = { 0 };
const int index = av1_get_txb_size_index(plane_bsize, blk_row, blk_col);
get_tx_partition_sizes(mbmi->tx_partition_type[index], tx_size, sub_txs);
int cur_partition = 0;
int bsw = 0, bsh = 0;
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
const TX_SIZE sub_tx = sub_txs[cur_partition];
bsw = tx_size_wide_unit[sub_tx];
bsh = tx_size_high_unit[sub_tx];
const int offsetr = blk_row + row;
const int offsetc = blk_col + col;
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
td->read_coeffs_tx_inter_block_visit(cm, dcb, r, plane, offsetr,
offsetc, sub_tx);
td->inverse_tx_inter_block_visit(cm, dcb, r, plane, offsetr, offsetc,
sub_tx);
eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane];
*eob_total += eob_data->eob;
set_cb_buffer_offsets(dcb, sub_tx, plane);
cur_partition++;
}
}
#else
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size));
assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size));
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
const int sub_step = bsw * bsh;
assert(bsw > 0 && bsh > 0);
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
const int offsetr = blk_row + row;
const int offsetc = blk_col + col;
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
decode_reconstruct_tx(cm, td, r, mbmi, plane, plane_bsize, offsetr,
offsetc, block, sub_txs, eob_total);
block += sub_step;
}
}
#endif // CONFIG_NEW_TX_PARTITION
}
}
static AOM_INLINE void set_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int bw, int bh, int x_inside_boundary,
int y_inside_boundary,
PARTITION_TREE *parent, int index) {
const int num_planes = av1_num_planes(cm);
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const TileInfo *const tile = &xd->tile;
set_mi_offsets(mi_params, xd, mi_row, mi_col
#if CONFIG_C071_SUBBLK_WARPMV
,
x_inside_boundary, y_inside_boundary
#endif // CONFIG_C071_SUBBLK_WARPMV
);
xd->mi[0]->sb_type[xd->tree_type == CHROMA_PART] = bsize;
#if CONFIG_RD_DEBUG
xd->mi[0]->mi_row = mi_row;
xd->mi[0]->mi_col = mi_col;
#endif
if (xd->tree_type == SHARED_PART) {
assert(x_inside_boundary && y_inside_boundary);
for (int x = 1; x < x_inside_boundary; ++x) xd->mi[x] = xd->mi[0];
int idx = mi_params->mi_stride;
for (int y = 1; y < y_inside_boundary; ++y) {
memcpy(&xd->mi[idx], &xd->mi[0], x_inside_boundary * sizeof(xd->mi[0]));
idx += mi_params->mi_stride;
}
}
CHROMA_REF_INFO *chroma_ref_info = &xd->mi[0]->chroma_ref_info;
set_chroma_ref_info(xd->tree_type, mi_row, mi_col, index, bsize,
chroma_ref_info, parent ? &parent->chroma_ref_info : NULL,
parent ? parent->bsize : BLOCK_INVALID,
parent ? parent->partition : PARTITION_NONE,
xd->plane[1].subsampling_x, xd->plane[1].subsampling_y);
set_plane_n4(xd, bw, bh, num_planes, chroma_ref_info);
set_entropy_context(xd, mi_row, mi_col, num_planes, chroma_ref_info);
// Distance of Mb to the various image edges. These are specified to 8th pel
// as they are always compared to values that are in 1/8th pel units
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
mi_params->mi_cols, chroma_ref_info);
av1_setup_dst_planes(xd->plane, &cm->cur_frame->buf, mi_row, mi_col, 0,
num_planes, chroma_ref_info);
}
#if !CONFIG_REFINEMV
typedef struct PadBlock {
int x0;
int x1;
int y0;
int y1;
} PadBlock;
#endif //! CONFIG_REFINEMV
static AOM_INLINE void highbd_build_mc_border(const uint16_t *src,
int src_stride, uint16_t *dst,
int dst_stride, int x, int y,
int b_w, int b_h, int w, int h) {
// Get a pointer to the start of the real data for this row.
const uint16_t *ref_row = src - x - y * src_stride;
if (y >= h)
ref_row += (h - 1) * src_stride;
else if (y > 0)
ref_row += y * src_stride;
do {
int right = 0, copy;
int left = x < 0 ? -x : 0;
if (left > b_w) left = b_w;
if (x + b_w > w) right = x + b_w - w;
if (right > b_w) right = b_w;
copy = b_w - left - right;
if (left) aom_memset16(dst, ref_row[0], left);
if (copy) memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t));
if (right) aom_memset16(dst + left + copy, ref_row[w - 1], right);
dst += dst_stride;
++y;
if (y > 0 && y < h) ref_row += src_stride;
} while (--b_h);
}
#if !CONFIG_REFINEMV
int update_extend_mc_border_params(const struct scale_factors *const sf,
struct buf_2d *const pre_buf, MV32 scaled_mv,
PadBlock *block, int subpel_x_mv,
int subpel_y_mv, int do_warp, int is_intrabc,
int *x_pad, int *y_pad) {
// Get reference width and height.
int frame_width = pre_buf->width;
int frame_height = pre_buf->height;
// Do border extension if there is motion or
// width/height is not a multiple of 8 pixels.
// Extension is needed in optical flow refinement to obtain MV offsets
(void)scaled_mv;
if (!is_intrabc && !do_warp) {
if (subpel_x_mv || (sf->x_step_q4 != SUBPEL_SHIFTS)) {
block->x0 -= AOM_INTERP_EXTEND - 1;
block->x1 += AOM_INTERP_EXTEND;
*x_pad = 1;
}
if (subpel_y_mv || (sf->y_step_q4 != SUBPEL_SHIFTS)) {
block->y0 -= AOM_INTERP_EXTEND - 1;
block->y1 += AOM_INTERP_EXTEND;
*y_pad = 1;
}
// Skip border extension if block is inside the frame.
if (block->x0 < 0 || block->x1 > frame_width - 1 || block->y0 < 0 ||
block->y1 > frame_height - 1) {
return 1;
}
}
return 0;
}
#endif //! CONFIG_REFINEMV
static INLINE void extend_mc_border(const struct scale_factors *const sf,
struct buf_2d *const pre_buf,
MV32 scaled_mv, PadBlock block,
int subpel_x_mv, int subpel_y_mv,
int do_warp, int is_intrabc,
uint16_t *mc_buf, uint16_t **pre,
int *src_stride) {
int x_pad = 0, y_pad = 0;
if (update_extend_mc_border_params(sf, pre_buf, scaled_mv, &block,
subpel_x_mv, subpel_y_mv, do_warp,
is_intrabc, &x_pad, &y_pad
#if CONFIG_REFINEMV
,
NULL
#endif // CONFIG_REFINEMV
)) {
// Get reference block pointer.
const uint16_t *const buf_ptr =
pre_buf->buf0 + block.y0 * pre_buf->stride + block.x0;
int buf_stride = pre_buf->stride;
const int b_w = block.x1 - block.x0;
const int b_h = block.y1 - block.y0;
// Extend the border.
highbd_build_mc_border(buf_ptr, buf_stride, mc_buf, b_w, block.x0, block.y0,
b_w, b_h, pre_buf->width, pre_buf->height);
*src_stride = b_w;
*pre = mc_buf + y_pad * (AOM_INTERP_EXTEND - 1) * b_w +
x_pad * (AOM_INTERP_EXTEND - 1);
}
}
#if !CONFIG_REFINEMV
static void dec_calc_subpel_params(
const MV *const src_mv, InterPredParams *const inter_pred_params,
const MACROBLOCKD *const xd, int mi_x, int mi_y, uint16_t **pre,
SubpelParams *subpel_params, int *src_stride, PadBlock *block,
#if CONFIG_OPTFLOW_REFINEMENT
int use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
MV32 *scaled_mv, int *subpel_x_mv, int *subpel_y_mv) {
const struct scale_factors *sf = inter_pred_params->scale_factors;
struct buf_2d *pre_buf = &inter_pred_params->ref_frame_buf;
#if CONFIG_OPTFLOW_REFINEMENT
// Use original block size to clamp MV and to extend block boundary
const int bw = use_optflow_refinement ? inter_pred_params->orig_block_width
: inter_pred_params->block_width;
const int bh = use_optflow_refinement ? inter_pred_params->orig_block_height
: inter_pred_params->block_height;
#else
const int bw = inter_pred_params->block_width;
const int bh = inter_pred_params->block_height;
#endif // CONFIG_OPTFLOW_REFINEMENT
const int is_scaled = av1_is_scaled(sf);
if (is_scaled) {
int ssx = inter_pred_params->subsampling_x;
int ssy = inter_pred_params->subsampling_y;
int orig_pos_y = inter_pred_params->pix_row << SUBPEL_BITS;
int orig_pos_x = inter_pred_params->pix_col << SUBPEL_BITS;
#if CONFIG_OPTFLOW_REFINEMENT
if (use_optflow_refinement) {
orig_pos_y += ROUND_POWER_OF_TWO_SIGNED(src_mv->row * (1 << SUBPEL_BITS),
MV_REFINE_PREC_BITS + ssy);
orig_pos_x += ROUND_POWER_OF_TWO_SIGNED(src_mv->col * (1 << SUBPEL_BITS),
MV_REFINE_PREC_BITS + ssx);
} else {
orig_pos_y += src_mv->row * (1 << (1 - ssy));
orig_pos_x += src_mv->col * (1 << (1 - ssx));
}
#else
orig_pos_y += src_mv->row * (1 << (1 - ssy));
orig_pos_x += src_mv->col * (1 << (1 - ssx));
#endif // CONFIG_OPTFLOW_REFINEMENT
int pos_y = sf->scale_value_y(orig_pos_y, sf);
int pos_x = sf->scale_value_x(orig_pos_x, sf);
pos_x += SCALE_EXTRA_OFF;
pos_y += SCALE_EXTRA_OFF;
const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy);
const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx);
const int bottom = (pre_buf->height + AOM_INTERP_EXTEND)
<< SCALE_SUBPEL_BITS;
const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS;
pos_y = clamp(pos_y, top, bottom);
pos_x = clamp(pos_x, left, right);
subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK;
subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK;
subpel_params->xs = sf->x_step_q4;
subpel_params->ys = sf->y_step_q4;
// Get reference block top left coordinate.
block->x0 = pos_x >> SCALE_SUBPEL_BITS;
block->y0 = pos_y >> SCALE_SUBPEL_BITS;
// Get reference block bottom right coordinate.
block->x1 =
((pos_x + (inter_pred_params->block_width - 1) * subpel_params->xs) >>
SCALE_SUBPEL_BITS) +
1;
block->y1 =
((pos_y + (inter_pred_params->block_height - 1) * subpel_params->ys) >>
SCALE_SUBPEL_BITS) +
1;
MV temp_mv;
temp_mv = clamp_mv_to_umv_border_sb(xd, src_mv, bw, bh,
#if CONFIG_OPTFLOW_REFINEMENT
use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
inter_pred_params->subsampling_x,
inter_pred_params->subsampling_y);
*scaled_mv = av1_scale_mv(&temp_mv, mi_x, mi_y, sf);
scaled_mv->row += SCALE_EXTRA_OFF;
scaled_mv->col += SCALE_EXTRA_OFF;
*subpel_x_mv = scaled_mv->col & SCALE_SUBPEL_MASK;
*subpel_y_mv = scaled_mv->row & SCALE_SUBPEL_MASK;
} else {
// Get block position in current frame.
int pos_x = inter_pred_params->pix_col << SUBPEL_BITS;
int pos_y = inter_pred_params->pix_row << SUBPEL_BITS;
const MV mv_q4 = clamp_mv_to_umv_border_sb(
xd, src_mv, bw, bh,
#if CONFIG_OPTFLOW_REFINEMENT
use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
inter_pred_params->subsampling_x, inter_pred_params->subsampling_y);
subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS;
subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS;
subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS;
// Get reference block top left coordinate.
pos_x += mv_q4.col;
pos_y += mv_q4.row;
block->x0 = pos_x >> SUBPEL_BITS;
block->y0 = pos_y >> SUBPEL_BITS;
// Get reference block bottom right coordinate.
block->x1 =
(pos_x >> SUBPEL_BITS) + (inter_pred_params->block_width - 1) + 1;
block->y1 =
(pos_y >> SUBPEL_BITS) + (inter_pred_params->block_height - 1) + 1;
scaled_mv->row = mv_q4.row;
scaled_mv->col = mv_q4.col;
*subpel_x_mv = scaled_mv->col & SUBPEL_MASK;
*subpel_y_mv = scaled_mv->row & SUBPEL_MASK;
}
*pre = pre_buf->buf0 + block->y0 * pre_buf->stride + block->x0;
*src_stride = pre_buf->stride;
#if CONFIG_D071_IMP_MSK_BLD
if (inter_pred_params->border_data.enable_bacp) {
subpel_params->x0 = block->x0;
subpel_params->x1 = block->x1;
subpel_params->y0 = block->y0;
subpel_params->y1 = block->y1;
}
#endif // CONFIG_D071_IMP_MSK_BLD
}
#endif //! CONFIG_REFINEMV
static void dec_calc_subpel_params_and_extend(
const MV *const src_mv, InterPredParams *const inter_pred_params,
MACROBLOCKD *const xd, int mi_x, int mi_y, int ref,
#if CONFIG_OPTFLOW_REFINEMENT
int use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
uint16_t **mc_buf, uint16_t **pre, SubpelParams *subpel_params,
int *src_stride) {
#if CONFIG_REFINEMV
if (inter_pred_params->use_ref_padding) {
common_calc_subpel_params_and_extend(
src_mv, inter_pred_params, xd, mi_x, mi_y, ref,
#if CONFIG_OPTFLOW_REFINEMENT
use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
mc_buf, pre, subpel_params, src_stride);
return;
}
#endif
PadBlock block;
MV32 scaled_mv;
int subpel_x_mv, subpel_y_mv;
dec_calc_subpel_params(src_mv, inter_pred_params, xd, mi_x, mi_y, pre,
subpel_params, src_stride, &block,
#if CONFIG_OPTFLOW_REFINEMENT
use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
&scaled_mv, &subpel_x_mv, &subpel_y_mv);
extend_mc_border(inter_pred_params->scale_factors,
&inter_pred_params->ref_frame_buf, scaled_mv, block,
subpel_x_mv, subpel_y_mv,
inter_pred_params->mode == WARP_PRED,
inter_pred_params->is_intrabc, mc_buf[ref], pre, src_stride);
}
#if !CONFIG_REFINEMV
static AOM_INLINE void tip_dec_calc_subpel_params(
const MV *const src_mv, InterPredParams *const inter_pred_params, int mi_x,
int mi_y, uint16_t **pre, SubpelParams *subpel_params, int *src_stride,
PadBlock *block,
#if CONFIG_OPTFLOW_REFINEMENT
int use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
MV32 *scaled_mv, int *subpel_x_mv, int *subpel_y_mv) {
const struct scale_factors *sf = inter_pred_params->scale_factors;
struct buf_2d *pre_buf = &inter_pred_params->ref_frame_buf;
#if CONFIG_REFINEMV
const int bw = inter_pred_params->original_pu_width;
const int bh = inter_pred_params->original_pu_height;
#else
#if CONFIG_OPTFLOW_REFINEMENT
// Use original block size to clamp MV and to extend block boundary
const int bw = use_optflow_refinement ? inter_pred_params->orig_block_width
: inter_pred_params->block_width;
const int bh = use_optflow_refinement ? inter_pred_params->orig_block_height
: inter_pred_params->block_height;
#else
const int bw = inter_pred_params->block_width;
const int bh = inter_pred_params->block_height;
#endif // CONFIG_OPTFLOW_REFINEMENT
#endif // CONFIG_REFINEMV
const int is_scaled = av1_is_scaled(sf);
if (is_scaled) {
const int ssx = inter_pred_params->subsampling_x;
const int ssy = inter_pred_params->subsampling_y;
int orig_pos_y = inter_pred_params->pix_row << SUBPEL_BITS;
int orig_pos_x = inter_pred_params->pix_col << SUBPEL_BITS;
#if CONFIG_OPTFLOW_REFINEMENT
if (use_optflow_refinement) {
orig_pos_y += ROUND_POWER_OF_TWO_SIGNED(src_mv->row * (1 << SUBPEL_BITS),
MV_REFINE_PREC_BITS + ssy);
orig_pos_x += ROUND_POWER_OF_TWO_SIGNED(src_mv->col * (1 << SUBPEL_BITS),
MV_REFINE_PREC_BITS + ssx);
} else {
orig_pos_y += src_mv->row * (1 << (1 - ssy));
orig_pos_x += src_mv->col * (1 << (1 - ssx));
}
#else
orig_pos_y += src_mv->row * (1 << (1 - ssy));
orig_pos_x += src_mv->col * (1 << (1 - ssx));
#endif // CONFIG_OPTFLOW_REFINEMENT
int pos_y = sf->scale_value_y(orig_pos_y, sf);
int pos_x = sf->scale_value_x(orig_pos_x, sf);
pos_x += SCALE_EXTRA_OFF;
pos_y += SCALE_EXTRA_OFF;
const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy);
const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx);
const int bottom = (pre_buf->height + AOM_INTERP_EXTEND)
<< SCALE_SUBPEL_BITS;
const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS;
pos_y = clamp(pos_y, top, bottom);
pos_x = clamp(pos_x, left, right);
subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK;
subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK;
subpel_params->xs = sf->x_step_q4;
subpel_params->ys = sf->y_step_q4;
// Get reference block top left coordinate.
block->x0 = pos_x >> SCALE_SUBPEL_BITS;
block->y0 = pos_y >> SCALE_SUBPEL_BITS;
// Get reference block bottom right coordinate.
#if CONFIG_D071_IMP_MSK_BLD
block->x1 =
((pos_x + (inter_pred_params->block_width - 1) * subpel_params->xs) >>
SCALE_SUBPEL_BITS) +
1;
block->y1 =
((pos_y + (inter_pred_params->block_height - 1) * subpel_params->ys) >>
SCALE_SUBPEL_BITS) +
1;
#else
block->x1 =
((pos_x + (bw - 1) * subpel_params->xs) >> SCALE_SUBPEL_BITS) + 1;
block->y1 =
((pos_y + (bh - 1) * subpel_params->ys) >> SCALE_SUBPEL_BITS) + 1;
#endif // CONFIG_D071_IMP_MSK_BLD
MV temp_mv;
temp_mv = tip_clamp_mv_to_umv_border_sb(inter_pred_params, src_mv, bw, bh,
#if CONFIG_OPTFLOW_REFINEMENT
use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
inter_pred_params->subsampling_x,
inter_pred_params->subsampling_y);
*scaled_mv = av1_scale_mv(&temp_mv, mi_x, mi_y, sf);
scaled_mv->row += SCALE_EXTRA_OFF;
scaled_mv->col += SCALE_EXTRA_OFF;
*subpel_x_mv = scaled_mv->col & SCALE_SUBPEL_MASK;
*subpel_y_mv = scaled_mv->row & SCALE_SUBPEL_MASK;
} else {
// Get block position in current frame.
int pos_x = inter_pred_params->pix_col << SUBPEL_BITS;
int pos_y = inter_pred_params->pix_row << SUBPEL_BITS;
const MV mv_q4 = tip_clamp_mv_to_umv_border_sb(
inter_pred_params, src_mv, bw, bh,
#if CONFIG_OPTFLOW_REFINEMENT
use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
inter_pred_params->subsampling_x, inter_pred_params->subsampling_y);
subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS;
subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS;
subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS;
// Get reference block top left coordinate.
pos_x += mv_q4.col;
pos_y += mv_q4.row;
pos_x = (pos_x >> SUBPEL_BITS);
pos_y = (pos_y >> SUBPEL_BITS);
block->x0 = pos_x;
block->y0 = pos_y;
// Get reference block bottom right coordinate.
#if CONFIG_D071_IMP_MSK_BLD
block->x1 = pos_x + inter_pred_params->block_width;
block->y1 = pos_y + inter_pred_params->block_height;
#else
block->x1 = pos_x + bw;
block->y1 = pos_y + bh;
#endif // CONFIG_D071_IMP_MSK_BLD
scaled_mv->row = mv_q4.row;
scaled_mv->col = mv_q4.col;
*subpel_x_mv = scaled_mv->col & SUBPEL_MASK;
*subpel_y_mv = scaled_mv->row & SUBPEL_MASK;
}
*pre = pre_buf->buf0 + block->y0 * pre_buf->stride + block->x0;
*src_stride = pre_buf->stride;
#if CONFIG_D071_IMP_MSK_BLD
if (inter_pred_params->border_data.enable_bacp) {
subpel_params->x0 = block->x0;
subpel_params->x1 = block->x1;
subpel_params->y0 = block->y0;
subpel_params->y1 = block->y1;
}
#endif // CONFIG_D071_IMP_MSK_BLD
}
#endif
static void tip_dec_calc_subpel_params_and_extend(
const MV *const src_mv, InterPredParams *const inter_pred_params,
MACROBLOCKD *const xd, int mi_x, int mi_y, int ref,
#if CONFIG_OPTFLOW_REFINEMENT
int use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
uint16_t **mc_buf, uint16_t **pre, SubpelParams *subpel_params,
int *src_stride) {
#if CONFIG_REFINEMV
if (inter_pred_params->use_ref_padding) {
// printf(" used pading in the decoder \n");
tip_common_calc_subpel_params_and_extend(
src_mv, inter_pred_params, xd, mi_x, mi_y, ref,
#if CONFIG_OPTFLOW_REFINEMENT
use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
mc_buf, pre, subpel_params, src_stride);
return;
}
#else
(void)xd;
#endif // CONFIG_REFINEMV
PadBlock block;
MV32 scaled_mv;
int subpel_x_mv, subpel_y_mv;
tip_dec_calc_subpel_params(src_mv, inter_pred_params, mi_x, mi_y, pre,
subpel_params, src_stride, &block,
#if CONFIG_OPTFLOW_REFINEMENT
use_optflow_refinement,
#endif // CONFIG_OPTFLOW_REFINEMENT
&scaled_mv, &subpel_x_mv, &subpel_y_mv);
extend_mc_border(inter_pred_params->scale_factors,
&inter_pred_params->ref_frame_buf, scaled_mv, block,
subpel_x_mv, subpel_y_mv,
inter_pred_params->mode == WARP_PRED,
inter_pred_params->is_intrabc, mc_buf[ref], pre, src_stride);
}
static void av1_dec_setup_tip_frame(AV1_COMMON *cm, MACROBLOCKD *xd,
uint16_t **mc_buf,
CONV_BUF_TYPE *tmp_conv_dst) {
av1_setup_tip_motion_field(cm, 0);
av1_setup_tip_frame(cm, xd, mc_buf, tmp_conv_dst,
tip_dec_calc_subpel_params_and_extend);
#if CONFIG_TIP_IMPLICIT_QUANT
if (cm->seq_params.enable_tip_explicit_qp == 0) {
const int avg_u_ac_delta_q =
(cm->tip_ref.ref_frame_buffer[0]->u_ac_delta_q +
cm->tip_ref.ref_frame_buffer[1]->u_ac_delta_q + 1) >>
1;
const int avg_v_ac_delta_q =
(cm->tip_ref.ref_frame_buffer[0]->v_ac_delta_q +
cm->tip_ref.ref_frame_buffer[1]->v_ac_delta_q + 1) >>
1;
const int base_qindex =
(cm->tip_ref.ref_frame_buffer[0]->base_qindex +
cm->tip_ref.ref_frame_buffer[1]->base_qindex + 1) >>
1;
cm->cur_frame->base_qindex = cm->quant_params.base_qindex = base_qindex;
cm->cur_frame->u_ac_delta_q = cm->quant_params.u_ac_delta_q =
avg_u_ac_delta_q;
cm->cur_frame->v_ac_delta_q = cm->quant_params.v_ac_delta_q =
avg_v_ac_delta_q;
#if CONFIG_PEF
if (cm->seq_params.enable_pef && cm->features.allow_pef) {
init_pef_parameter(cm, 0, av1_num_planes(cm));
}
#endif // CONFIG_PEF
}
#endif // CONFIG_TIP_IMPLICIT_QUANT
#if CONFIG_PEF
if (cm->seq_params.enable_pef && cm->features.allow_pef) {
enhance_tip_frame(cm, xd);
aom_extend_frame_borders(&cm->tip_ref.tip_frame->buf, av1_num_planes(cm));
}
#endif // CONFIG_PEF
}
static void av1_dec_tip_on_the_fly(AV1_COMMON *cm, MACROBLOCKD *xd,
uint16_t **mc_buf, CONV_BUF_TYPE *conv_dst) {
const MV *mv = &xd->mi[0]->mv[0].as_mv;
const int mvs_rows =
ROUND_POWER_OF_TWO(cm->mi_params.mi_rows, TMVP_SHIFT_BITS);
const int mvs_cols =
ROUND_POWER_OF_TWO(cm->mi_params.mi_cols, TMVP_SHIFT_BITS);
const int extra_pixel = 1 << TMVP_MI_SZ_LOG2;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int x_inside_boundary = xd->width;
const int y_inside_boundary = xd->height;
// define the block start and end pixel locations
FULLPEL_MV start_mv = get_fullmv_from_mv(mv);
const int bw = (x_inside_boundary << MI_SIZE_LOG2);
const int bh = (y_inside_boundary << MI_SIZE_LOG2);
int start_pixel_row = (mi_row << MI_SIZE_LOG2) + start_mv.row;
int start_pixel_col = (mi_col << MI_SIZE_LOG2) + start_mv.col;
int end_pixel_row = start_pixel_row + bh;
int end_pixel_col = start_pixel_col + bw;
// extend for handling interpolation
if (mv->row != 0) {
start_pixel_row -= extra_pixel;
end_pixel_row += extra_pixel;
}
if (mv->col != 0) {
start_pixel_col -= extra_pixel;
end_pixel_col += extra_pixel;
}
// clamp block start and end locations to make sure the block is in the
// frame
start_pixel_row = AOMMAX(0, start_pixel_row);
start_pixel_col = AOMMAX(0, start_pixel_col);
end_pixel_row = AOMMAX(0, end_pixel_row);
end_pixel_col = AOMMAX(0, end_pixel_col);
start_pixel_row = AOMMIN(cm->mi_params.mi_rows * MI_SIZE, start_pixel_row);
start_pixel_col = AOMMIN(cm->mi_params.mi_cols * MI_SIZE, start_pixel_col);
end_pixel_row = AOMMIN(cm->mi_params.mi_rows * MI_SIZE, end_pixel_row);
end_pixel_col = AOMMIN(cm->mi_params.mi_cols * MI_SIZE, end_pixel_col);
// convert the pixel block location to MV field grid location
int tpl_start_row = start_pixel_row >> TMVP_MI_SZ_LOG2;
int tpl_end_row = (end_pixel_row + TMVP_MI_SIZE - 1) >> TMVP_MI_SZ_LOG2;
int tpl_start_col = start_pixel_col >> TMVP_MI_SZ_LOG2;
int tpl_end_col = (end_pixel_col + TMVP_MI_SIZE - 1) >> TMVP_MI_SZ_LOG2;
// handling the boundary case when start and end locations are the same
if (tpl_start_row == tpl_end_row) {
if (tpl_start_row > 0) {
tpl_start_row -= 1;
} else {
tpl_end_row += 1;
}
}
if (tpl_start_col == tpl_end_col) {
if (tpl_start_col > 0) {
tpl_start_col -= 1;
} else {
tpl_end_col += 1;
}
}
// handle SIMD alignment for the chroma case
tpl_start_row = (tpl_start_row >> 1) << 1;
tpl_start_col = (tpl_start_col >> 1) << 1;
tpl_end_row = ((tpl_end_row + 1) >> 1) << 1;
tpl_end_col = ((tpl_end_col + 1) >> 1) << 1;
tpl_end_row = AOMMIN(mvs_rows, tpl_end_row);
tpl_end_col = AOMMIN(mvs_cols, tpl_end_col);
av1_setup_tip_on_the_fly(cm, xd, tpl_start_row, tpl_start_col, tpl_end_row,
tpl_end_col, mvs_cols, mc_buf, conv_dst,
tip_dec_calc_subpel_params_and_extend);
}
static AOM_INLINE void decode_mbmi_block(AV1Decoder *const pbi,
DecoderCodingBlock *dcb, int mi_row,
int mi_col, aom_reader *r,
PARTITION_TYPE partition,
BLOCK_SIZE bsize,
PARTITION_TREE *parent, int index) {
AV1_COMMON *const cm = &pbi->common;
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
const int x_mis = AOMMIN(bw, cm->mi_params.mi_cols - mi_col);
const int y_mis = AOMMIN(bh, cm->mi_params.mi_rows - mi_row);
MACROBLOCKD *const xd = &dcb->xd;
#if CONFIG_ACCOUNTING
aom_accounting_set_context(&pbi->accounting, mi_col, mi_row, xd->tree_type);
#endif
set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis, parent,
index);
xd->mi[0]->partition = partition;
av1_read_mode_info(pbi, dcb, r, x_mis, y_mis);
#if CONFIG_EXT_RECUR_PARTITIONS
if (xd->tree_type != LUMA_PART) {
#endif // CONFIG_EXT_RECUR_PARTITIONS
const struct macroblockd_plane *const pd_u = &xd->plane[1];
const BLOCK_SIZE chroma_bsize_base =
get_bsize_base(xd, xd->mi[0], AOM_PLANE_U);
assert(chroma_bsize_base < BLOCK_SIZES_ALL);
if (get_plane_block_size(chroma_bsize_base, pd_u->subsampling_x,
pd_u->subsampling_y) == BLOCK_INVALID) {
aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
"Block size %dx%d invalid with this subsampling mode",
block_size_wide[chroma_bsize_base],
block_size_high[chroma_bsize_base]);
}
#if CONFIG_EXT_RECUR_PARTITIONS
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
if (cm->features.tip_frame_mode == TIP_FRAME_AS_REF &&
is_tip_ref_frame(xd->mi[0]->ref_frame[0])) {
av1_dec_tip_on_the_fly(cm, xd, pbi->td.mc_buf, pbi->td.tmp_conv_dst);
}
}
static void dec_build_inter_predictors(const AV1_COMMON *cm,
DecoderCodingBlock *dcb, int plane,
MB_MODE_INFO *mi, int build_for_obmc,
int bw, int bh, int mi_x, int mi_y
#if CONFIG_REFINEMV
,
int build_for_refine_mv_only
#endif // CONFIG_REFINEMV
) {
av1_build_inter_predictors(cm, &dcb->xd, plane, mi,
#if CONFIG_BAWP
NULL,
#endif
#if CONFIG_REFINEMV
build_for_refine_mv_only,
#endif // CONFIG_REFINEMV
build_for_obmc, bw, bh, mi_x, mi_y, dcb->mc_buf,
dec_calc_subpel_params_and_extend);
}
static AOM_INLINE void dec_build_inter_predictor(const AV1_COMMON *cm,
DecoderCodingBlock *dcb,
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &dcb->xd;
const int num_planes = av1_num_planes(cm);
#if CONFIG_REFINEMV
MB_MODE_INFO *mbmi = xd->mi[0];
int need_subblock_mvs = xd->is_chroma_ref && mbmi->refinemv_flag &&
!is_intrabc_block(mbmi, xd->tree_type);
assert(IMPLIES(need_subblock_mvs, !is_interintra_pred(mbmi)));
#if CONFIG_AFFINE_REFINEMENT
if (need_subblock_mvs && default_refinemv_modes(cm, mbmi))
#else
if (need_subblock_mvs && default_refinemv_modes(mbmi))
#endif // CONFIG_AFFINE_REFINEMENT
need_subblock_mvs &= (mbmi->comp_group_idx == 0 &&
mbmi->interinter_comp.type == COMPOUND_AVERAGE);
if (need_subblock_mvs) {
fill_subblock_refine_mv(xd->refinemv_subinfo, xd->plane[0].width,
xd->plane[0].height, mbmi->mv[0].as_mv,
mbmi->mv[1].as_mv);
}
#endif // CONFIG_REFINEMV
for (int plane = 0; plane < num_planes; ++plane) {
if (plane && !xd->is_chroma_ref) break;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
dec_build_inter_predictors(cm, dcb, plane, xd->mi[0], 0,
xd->plane[plane].width, xd->plane[plane].height,
mi_x, mi_y
#if CONFIG_REFINEMV
,
0
#endif // CONFIG_REFINEMV
);
assert(IMPLIES(!is_interintra_allowed(xd->mi[0]),
!is_interintra_mode(xd->mi[0])));
if (is_interintra_pred(xd->mi[0])) {
BUFFER_SET ctx = { { xd->plane[0].dst.buf, xd->plane[1].dst.buf,
xd->plane[2].dst.buf },
{ xd->plane[0].dst.stride, xd->plane[1].dst.stride,
xd->plane[2].dst.stride } };
av1_build_interintra_predictor(cm, xd, xd->plane[plane].dst.buf,
xd->plane[plane].dst.stride, &ctx, plane,
bsize);
}
}
}
static INLINE void dec_build_prediction_by_above_pred(
MACROBLOCKD *const xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
int dir, MB_MODE_INFO *above_mbmi, void *fun_ctxt, const int num_planes) {
struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt;
const int above_mi_col = xd->mi_col + rel_mi_col;
int mi_x, mi_y;
MB_MODE_INFO backup_mbmi = *above_mbmi;
(void)rel_mi_row;
(void)dir;
av1_setup_build_prediction_by_above_pred(xd, rel_mi_col, op_mi_size,
&backup_mbmi, ctxt, num_planes);
mi_x = above_mi_col << MI_SIZE_LOG2;
mi_y = xd->mi_row << MI_SIZE_LOG2;
const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y];
for (int j = 0; j < num_planes; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
int bw = (op_mi_size * MI_SIZE) >> pd->subsampling_x;
int bh = clamp(block_size_high[bsize] >> (pd->subsampling_y + 1), 4,
block_size_high[BLOCK_64X64] >> (pd->subsampling_y + 1));
if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue;
dec_build_inter_predictors(ctxt->cm, (DecoderCodingBlock *)ctxt->dcb, j,
&backup_mbmi, 1, bw, bh, mi_x, mi_y
#if CONFIG_REFINEMV
,
0
#endif // CONFIG_REFINEMV
);
}
}
static AOM_INLINE void dec_build_prediction_by_above_preds(
const AV1_COMMON *cm, DecoderCodingBlock *dcb,
uint16_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE],
int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) {
MACROBLOCKD *const xd = &dcb->xd;
if (!xd->up_available) return;
// Adjust mb_to_bottom_edge to have the correct value for the OBMC
// prediction block. This is half the height of the original block,
// except for 128-wide blocks, where we only use a height of 32.
const int this_height = xd->height * MI_SIZE;
const int pred_height = AOMMIN(this_height / 2, 32);
xd->mb_to_bottom_edge += GET_MV_SUBPEL(this_height - pred_height);
struct build_prediction_ctxt ctxt = {
cm, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_right_edge, dcb
};
const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y];
foreach_overlappable_nb_above(
cm, xd, max_neighbor_obmc[mi_size_wide_log2[bsize]],
dec_build_prediction_by_above_pred, &ctxt, false);
xd->mb_to_left_edge = -GET_MV_SUBPEL(xd->mi_col * MI_SIZE);
xd->mb_to_right_edge = ctxt.mb_to_far_edge;
xd->mb_to_bottom_edge -= GET_MV_SUBPEL(this_height - pred_height);
}
static INLINE void dec_build_prediction_by_left_pred(
MACROBLOCKD *const xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
int dir, MB_MODE_INFO *left_mbmi, void *fun_ctxt, const int num_planes) {
struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt;
const int left_mi_row = xd->mi_row + rel_mi_row;
int mi_x, mi_y;
MB_MODE_INFO backup_mbmi = *left_mbmi;
(void)rel_mi_col;
(void)dir;
av1_setup_build_prediction_by_left_pred(xd, rel_mi_row, op_mi_size,
&backup_mbmi, ctxt, num_planes);
mi_x = xd->mi_col << MI_SIZE_LOG2;
mi_y = left_mi_row << MI_SIZE_LOG2;
const BLOCK_SIZE bsize = xd->mi[0]->sb_type[xd->tree_type == CHROMA_PART];
for (int j = 0; j < num_planes; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
int bw = clamp(block_size_wide[bsize] >> (pd->subsampling_x + 1), 4,
block_size_wide[BLOCK_64X64] >> (pd->subsampling_x + 1));
int bh = (op_mi_size << MI_SIZE_LOG2) >> pd->subsampling_y;
if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue;
dec_build_inter_predictors(ctxt->cm, (DecoderCodingBlock *)ctxt->dcb, j,
&backup_mbmi, 1, bw, bh, mi_x, mi_y
#if CONFIG_REFINEMV
,
0
#endif // CONFIG_REFINEMV
);
}
}
static AOM_INLINE void dec_build_prediction_by_left_preds(
const AV1_COMMON *cm, DecoderCodingBlock *dcb,
uint16_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE],
int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) {
MACROBLOCKD *const xd = &dcb->xd;
if (!xd->left_available) return;
// Adjust mb_to_right_edge to have the correct value for the OBMC
// prediction block. This is half the width of the original block,
// except for 128-wide blocks, where we only use a width of 32.
const int this_width = xd->width * MI_SIZE;
const int pred_width = AOMMIN(this_width / 2, 32);
xd->mb_to_right_edge += GET_MV_SUBPEL(this_width - pred_width);
struct build_prediction_ctxt ctxt = {
cm, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_bottom_edge, dcb
};
const BLOCK_SIZE bsize = xd->mi[0]->sb_type[xd->tree_type == CHROMA_PART];
foreach_overlappable_nb_left(cm, xd,
max_neighbor_obmc[mi_size_high_log2[bsize]],
dec_build_prediction_by_left_pred, &ctxt);
xd->mb_to_top_edge = -GET_MV_SUBPEL(xd->mi_row * MI_SIZE);
xd->mb_to_right_edge -= GET_MV_SUBPEL(this_width - pred_width);
xd->mb_to_bottom_edge = ctxt.mb_to_far_edge;
}
static AOM_INLINE void dec_build_obmc_inter_predictors_sb(
const AV1_COMMON *cm, DecoderCodingBlock *dcb) {
const int num_planes = av1_num_planes(cm);
uint16_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE];
int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
MACROBLOCKD *const xd = &dcb->xd;
av1_setup_obmc_dst_bufs(xd, dst_buf1, dst_buf2);
dec_build_prediction_by_above_preds(cm, dcb, dst_buf1, dst_width1,
dst_height1, dst_stride1);
dec_build_prediction_by_left_preds(cm, dcb, dst_buf2, dst_width2, dst_height2,
dst_stride2);
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
av1_setup_dst_planes(xd->plane, &cm->cur_frame->buf, mi_row, mi_col, 0,
num_planes, &xd->mi[0]->chroma_ref_info);
av1_build_obmc_inter_prediction(cm, xd, dst_buf1, dst_stride1, dst_buf2,
dst_stride2);
}
static AOM_INLINE void cfl_store_inter_block(AV1_COMMON *const cm,
MACROBLOCKD *const xd) {
MB_MODE_INFO *mbmi = xd->mi[0];
if (store_cfl_required(cm, xd) && xd->tree_type == SHARED_PART) {
#if CONFIG_ADAPTIVE_DS_FILTER
cfl_store_block(xd, mbmi->sb_type[PLANE_TYPE_Y], mbmi->tx_size,
cm->seq_params.enable_cfl_ds_filter);
#else
cfl_store_block(xd, mbmi->sb_type[PLANE_TYPE_Y], mbmi->tx_size);
#endif // CONFIG_ADAPTIVE_DS_FILTER
}
}
static AOM_INLINE void predict_inter_block(AV1_COMMON *const cm,
DecoderCodingBlock *dcb,
BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &dcb->xd;
MB_MODE_INFO *mbmi = xd->mi[0];
const int num_planes = av1_num_planes(cm);
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
if (frame == INTRA_FRAME) {
assert(is_intrabc_block(mbmi, xd->tree_type));
assert(ref == 0);
} else {
const RefCntBuffer *ref_buf = get_ref_frame_buf(cm, frame);
const struct scale_factors *ref_scale_factors =
get_ref_scale_factors_const(cm, frame);
xd->block_ref_scale_factors[ref] = ref_scale_factors;
av1_setup_pre_planes(xd, ref, &ref_buf->buf, mi_row, mi_col,
ref_scale_factors, num_planes,
&mbmi->chroma_ref_info);
}
}
dec_build_inter_predictor(cm, dcb, mi_row, mi_col, bsize);
if (mbmi->motion_mode == OBMC_CAUSAL) {
dec_build_obmc_inter_predictors_sb(cm, dcb);
}
#if CONFIG_MISMATCH_DEBUG
const int plane_start = get_partition_plane_start(xd->tree_type);
const int plane_end = get_partition_plane_end(xd->tree_type, num_planes);
for (int plane = plane_start; plane < plane_end; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
int pixel_c, pixel_r;
if (plane && !xd->is_chroma_ref) continue;
if (plane) {
mi_to_pixel_loc(&pixel_c, &pixel_r,
mbmi->chroma_ref_info.mi_col_chroma_base,
mbmi->chroma_ref_info.mi_row_chroma_base, 0, 0,
pd->subsampling_x, pd->subsampling_y);
} else {
mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0,
pd->subsampling_x, pd->subsampling_y);
}
mismatch_check_block_pre(pd->dst.buf, pd->dst.stride,
#if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
cm->current_frame.display_order_hint,
#else
cm->current_frame.order_hint,
#endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
plane, pixel_c, pixel_r, pd->width, pd->height);
}
#endif // CONFIG_MISMATCH_DEBUG
#if CONFIG_INSPECTION
for (int plane = 0; plane < num_planes; plane++) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const int dst_stride = pd->dst.stride;
const int plane_block_size =
get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
const int plane_width = mi_size_wide[plane_block_size];
const int plane_height = mi_size_high[plane_block_size];
for (int i = 0; i < plane_height * MI_SIZE; i++) {
for (int j = 0; j < plane_width * MI_SIZE; j++) {
uint16_t pixel = pd->dst.buf[i * dst_stride + j];
int stride = cm->predicted_pixels.strides[plane > 0];
int pixel_c, pixel_r;
if (plane) {
mi_to_pixel_loc(&pixel_c, &pixel_r,
mbmi->chroma_ref_info.mi_col_chroma_base,
mbmi->chroma_ref_info.mi_row_chroma_base, 0, 0,
pd->subsampling_x, pd->subsampling_y);
} else {
mi_to_pixel_loc(&pixel_c, &pixel_r, xd->mi_col, xd->mi_row, 0, 0,
pd->subsampling_x, pd->subsampling_y);
}
pixel_c += j;
pixel_r += i;
cm->predicted_pixels.buffers[plane][pixel_r * stride + pixel_c] = pixel;
}
}
}
#endif // CONFIG_INSPECTION
}
static AOM_INLINE void set_color_index_map_offset(MACROBLOCKD *const xd,
int plane, aom_reader *r) {
(void)r;
Av1ColorMapParam params;
const MB_MODE_INFO *const mbmi = xd->mi[0];
av1_get_block_dimensions(mbmi->sb_type[plane > 0], plane, xd,
&params.plane_width, &params.plane_height, NULL,
NULL);
xd->color_index_map_offset[plane] += params.plane_width * params.plane_height;
}
static AOM_INLINE void decode_token_recon_block(AV1Decoder *const pbi,
ThreadData *const td,
aom_reader *r,
PARTITION_TYPE partition,
BLOCK_SIZE bsize) {
AV1_COMMON *const cm = &pbi->common;
DecoderCodingBlock *const dcb = &td->dcb;
MACROBLOCKD *const xd = &dcb->xd;
MB_MODE_INFO *mbmi = xd->mi[0];
xd->mi[0]->partition = partition;
const int plane_start = get_partition_plane_start(xd->tree_type);
const int plane_end =
get_partition_plane_end(xd->tree_type, av1_num_planes(cm));
if (!is_inter_block(mbmi, xd->tree_type)) {
#if CONFIG_PC_WIENER
// When row_mt is used, this function can be called with
// td->read_coeffs_tx_intra_block_visit == decode_block_void.
// In that case do not reset since it will erase previously set
// values.
if (td->read_coeffs_tx_intra_block_visit != decode_block_void)
av1_init_txk_skip_array(cm, xd->mi_row, xd->mi_col, bsize, 0,
xd->tree_type, &mbmi->chroma_ref_info,
plane_start, plane_end);
#endif // CONFIG_PC_WIENER
int row, col;
assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x,
xd->plane[0].subsampling_y));
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
const int max_blocks_high = max_block_high(xd, bsize, 0);
const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
int mu_blocks_wide = mi_size_wide[max_unit_bsize];
int mu_blocks_high = mi_size_high[max_unit_bsize];
mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide);
mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high);
for (row = 0; row < max_blocks_high; row += mu_blocks_high) {
for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) {
for (int plane = plane_start; plane < plane_end; ++plane) {
if (plane && !xd->is_chroma_ref) break;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
const BLOCK_SIZE plane_bsize =
get_mb_plane_block_size(xd, mbmi, plane, ss_x, ss_y);
const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
if (plane == AOM_PLANE_U && is_cctx_allowed(cm, xd)) continue;
const int stepr = tx_size_high_unit[tx_size];
const int stepc = tx_size_wide_unit[tx_size];
const int plane_unit_height =
get_plane_tx_unit_height(xd, plane_bsize, plane, row, ss_y);
const int plane_unit_width =
get_plane_tx_unit_width(xd, plane_bsize, plane, col, ss_x);
for (int blk_row = row >> ss_y; blk_row < plane_unit_height;
blk_row += stepr) {
for (int blk_col = col >> ss_x; blk_col < plane_unit_width;
blk_col += stepc) {
if (plane == AOM_PLANE_V && is_cctx_allowed(cm, xd)) {
td->read_coeffs_tx_intra_block_visit(cm, dcb, r, AOM_PLANE_U,
blk_row, blk_col, tx_size);
td->read_coeffs_tx_intra_block_visit(cm, dcb, r, AOM_PLANE_V,
blk_row, blk_col, tx_size);
td->inverse_cctx_block_visit(cm, dcb, r, -1, blk_row, blk_col,
tx_size);
td->predict_and_recon_intra_block_visit(
cm, dcb, r, AOM_PLANE_U, blk_row, blk_col, tx_size);
td->predict_and_recon_intra_block_visit(
cm, dcb, r, AOM_PLANE_V, blk_row, blk_col, tx_size);
set_cb_buffer_offsets(dcb, tx_size, AOM_PLANE_U);
set_cb_buffer_offsets(dcb, tx_size, AOM_PLANE_V);
} else {
assert(plane == AOM_PLANE_Y || !is_cctx_allowed(cm, xd));
td->read_coeffs_tx_intra_block_visit(cm, dcb, r, plane, blk_row,
blk_col, tx_size);
td->predict_and_recon_intra_block_visit(
cm, dcb, r, plane, blk_row, blk_col, tx_size);
set_cb_buffer_offsets(dcb, tx_size, plane);
}
}
}
}
}
}
} else {
#if CONFIG_PC_WIENER
// When row_mt is used, this function can be called with
// td->read_coeffs_tx_inter_block_visit == decode_block_void.
// In that case do not reset since it will erase previously set
// values.
if (td->read_coeffs_tx_inter_block_visit != decode_block_void)
av1_init_txk_skip_array(cm, xd->mi_row, xd->mi_col, bsize, 0,
xd->tree_type, &mbmi->chroma_ref_info,
plane_start, plane_end);
#endif // CONFIG_PC_WIENER
td->predict_inter_block_visit(cm, dcb, bsize);
// Reconstruction
if (!mbmi->skip_txfm[xd->tree_type == CHROMA_PART]) {
int eobtotal = 0;
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
const int max_blocks_high = max_block_high(xd, bsize, 0);
int row, col;
const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
assert(max_unit_bsize ==
get_plane_block_size(BLOCK_64X64, xd->plane[0].subsampling_x,
xd->plane[0].subsampling_y));
int mu_blocks_wide = mi_size_wide[max_unit_bsize];
int mu_blocks_high = mi_size_high[max_unit_bsize];
mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide);
mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high);
for (row = 0; row < max_blocks_high; row += mu_blocks_high) {
for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) {
for (int plane = plane_start; plane < plane_end; ++plane) {
if (plane && !xd->is_chroma_ref) break;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
const BLOCK_SIZE plane_bsize =
get_mb_plane_block_size(xd, mbmi, plane, ss_x, ss_y);
#if !CONFIG_EXT_RECUR_PARTITIONS
assert(plane_bsize == get_plane_block_size(bsize, ss_x, ss_y));
#endif // !CONFIG_EXT_RECUR_PARTITIONS
const TX_SIZE max_tx_size =
get_vartx_max_txsize(xd, plane_bsize, plane);
const int bh_var_tx = tx_size_high_unit[max_tx_size];
const int bw_var_tx = tx_size_wide_unit[max_tx_size];
#if !CONFIG_NEW_TX_PARTITION
int block = 0;
int step =
tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
#endif // !CONFIG_NEW_TX_PARTITION
const int plane_unit_height =
get_plane_tx_unit_height(xd, plane_bsize, plane, row, ss_y);
const int plane_unit_width =
get_plane_tx_unit_width(xd, plane_bsize, plane, col, ss_x);
for (int blk_row = row >> ss_y; blk_row < plane_unit_height;
blk_row += bh_var_tx) {
for (int blk_col = col >> ss_x; blk_col < plane_unit_width;
blk_col += bw_var_tx) {
decode_reconstruct_tx(cm, td, r, mbmi, plane, plane_bsize,
blk_row, blk_col,
#if !CONFIG_NEW_TX_PARTITION
block,
#endif // !CONFIG_NEW_TX_PARTITION
max_tx_size, &eobtotal);
#if !CONFIG_NEW_TX_PARTITION
block += step;
#endif // !CONFIG_NEW_TX_PARTITION
}
}
}
}
}
} else if (is_cctx_enabled(cm, xd) && xd->is_chroma_ref &&
xd->tree_type != LUMA_PART) {
#if CONFIG_PC_WIENER
av1_init_txk_skip_array(cm, xd->mi_row, xd->mi_col, bsize, 1,
xd->tree_type, &mbmi->chroma_ref_info,
plane_start, plane_end);
#endif // CONFIG_PC_WIENER
// fill cctx_type_map with CCTX_NONE for skip blocks so their
// neighbors can derive cctx contexts
const struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U];
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
const BLOCK_SIZE uv_plane_bsize =
get_mb_plane_block_size(xd, mbmi, AOM_PLANE_U, ss_x, ss_y);
const TX_SIZE max_tx_size =
get_vartx_max_txsize(xd, uv_plane_bsize, AOM_PLANE_U);
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
const int max_blocks_high = max_block_high(xd, bsize, 0);
const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
int mu_blocks_wide = mi_size_wide[max_unit_bsize];
int mu_blocks_high = mi_size_high[max_unit_bsize];
for (int row = 0; row < max_blocks_high; row += mu_blocks_high) {
for (int col = 0; col < max_blocks_wide; col += mu_blocks_wide) {
int row_offset, col_offset;
#if CONFIG_EXT_RECUR_PARTITIONS
get_chroma_mi_offsets(xd, &row_offset, &col_offset);
#else
get_chroma_mi_offsets(xd, max_tx_size, &row_offset, &col_offset);
#endif // CONFIG_EXT_RECUR_PARTITIONS
update_cctx_array(xd, 0, 0, row_offset, col_offset, max_tx_size,
CCTX_NONE);
}
}
}
#if CONFIG_PC_WIENER
else {
av1_init_txk_skip_array(cm, xd->mi_row, xd->mi_col, bsize, 1,
xd->tree_type, &mbmi->chroma_ref_info,
plane_start, plane_end);
}
#endif // CONFIG_PC_WIENER
td->cfl_store_inter_block_visit(cm, xd);
}
av1_visit_palette(pbi, xd, r, set_color_index_map_offset);
av1_mark_block_as_coded(xd, bsize, cm->sb_size);
}
static AOM_INLINE void set_inter_tx_size(MB_MODE_INFO *mbmi, int stride_log2,
int tx_w_log2, int tx_h_log2,
int min_txs, int split_size, int txs,
int blk_row, int blk_col) {
for (int idy = 0; idy < tx_size_high_unit[split_size];
idy += tx_size_high_unit[min_txs]) {
for (int idx = 0; idx < tx_size_wide_unit[split_size];
idx += tx_size_wide_unit[min_txs]) {
const int index = (((blk_row + idy) >> tx_h_log2) << stride_log2) +
((blk_col + idx) >> tx_w_log2);
mbmi->inter_tx_size[index] = txs;
}
}
}
#if CONFIG_NEW_TX_PARTITION
static TX_SIZE read_tx_partition(MACROBLOCKD *xd, MB_MODE_INFO *mbmi,
TX_SIZE max_tx_size, int blk_row, int blk_col,
aom_reader *r) {
int plane_type = (xd->tree_type == CHROMA_PART);
const BLOCK_SIZE bsize = mbmi->sb_type[plane_type];
const int is_inter = is_inter_block(mbmi, xd->tree_type);
const int max_blocks_high = max_block_high(xd, bsize, 0);
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
if (is_inter && (blk_row >= max_blocks_high || blk_col >= max_blocks_wide))
return TX_INVALID;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
#if !CONFIG_TX_PARTITION_CTX
const int is_rect = is_rect_tx(max_tx_size);
#endif // !CONFIG_TX_PARTITION_CTX
const int allow_horz = allow_tx_horz_split(max_tx_size);
const int allow_vert = allow_tx_vert_split(max_tx_size);
TX_PARTITION_TYPE partition = 0;
#if CONFIG_TX_PARTITION_CTX
const int bsize_group = size_to_tx_part_group_lookup[bsize];
int do_partition = 0;
if (allow_horz || allow_vert) {
aom_cdf_prob *do_partition_cdf =
ec_ctx->txfm_do_partition_cdf[is_inter][bsize_group];
do_partition =
aom_read_symbol(r, do_partition_cdf, 2, ACCT_INFO("do_partition"));
}
if (do_partition) {
if (allow_horz && allow_vert) {
// Read 4way tree type
assert(bsize_group > 0);
aom_cdf_prob *partition_type_cdf =
ec_ctx->txfm_4way_partition_type_cdf[is_inter][bsize_group - 1];
const TX_PARTITION_TYPE partition_type = aom_read_symbol(
r, partition_type_cdf, 3, ACCT_INFO("partition_type"));
partition = partition_type + 1;
} else {
/*
If only one split type (horizontal or vertical) is allowed for this
block, then derive parition type based on the allowed split type
(horizontal or vertical).
*/
partition = allow_horz ? TX_PARTITION_HORZ : TX_PARTITION_VERT;
}
} else {
partition = TX_PARTITION_NONE;
}
#else
/*
If both horizontal and vertical splits are allowed for this block,
first signal using a 4 way tree to indicate TX_PARTITION_NONE,
TX_PARTITION_SPLIT, TX_PARTITION_HORZ or TX_PARTITION_VERT. If the
actual tx partition type is HORZ4 or VERT4, we read an additional
bit to indicate to split further.
*/
if (allow_horz && allow_vert) {
// Read 4way tree type
const int split4_ctx =
is_inter ? txfm_partition_split4_inter_context(
xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, bsize, max_tx_size)
: get_tx_size_context(xd);
aom_cdf_prob *split4_cdf =
is_inter ? ec_ctx->inter_4way_txfm_partition_cdf[is_rect][split4_ctx]
: ec_ctx->intra_4way_txfm_partition_cdf[is_rect][split4_ctx];
const TX_PARTITION_TYPE split4_partition =
aom_read_symbol(r, split4_cdf, 4, ACCT_INFO("split4_partition"));
partition = split4_partition;
/*
If only one split type (horizontal or vertical) is allowed for this block,
first signal a bit indicating whether there is any split at all. If
the partition has a split, and this block is able to be split further,
we send a second bit to indicate if the type should be HORZ4 or VERT4.
*/
} else if (allow_horz || allow_vert) {
// Read bit to indicate if there is any split at all
aom_cdf_prob *split2_cdf = is_inter ? ec_ctx->inter_2way_txfm_partition_cdf
: ec_ctx->intra_2way_txfm_partition_cdf;
const int has_first_split =
aom_read_symbol(r, split2_cdf, 2, ACCT_INFO("has_first_split"));
partition = has_first_split
? (allow_horz ? TX_PARTITION_HORZ : TX_PARTITION_VERT)
: TX_PARTITION_NONE;
} else {
assert(!allow_horz && !allow_vert);
partition = TX_PARTITION_NONE;
}
#endif // CONFIG_TX_PARTITION_CTX
TX_SIZE sub_txs[MAX_TX_PARTITIONS] = { 0 };
get_tx_partition_sizes(partition, max_tx_size, sub_txs);
// TODO(sarahparker) This assumes all of the tx sizes in the partition
// scheme are the same size. This will need to be adjusted to deal with the
// case where they can be different.
mbmi->tx_size = sub_txs[0];
const int index =
is_inter ? av1_get_txb_size_index(bsize, blk_row, blk_col) : 0;
mbmi->tx_partition_type[index] = partition;
if (is_inter) {
const TX_SIZE txs = sub_tx_size_map[max_txsize_rect_lookup[bsize]];
const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
const int bw_log2 = mi_size_wide_log2[bsize];
const int stride_log2 = bw_log2 - tx_w_log2;
set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, max_tx_size,
mbmi->tx_size, blk_row, blk_col);
#if !CONFIG_TX_PARTITION_CTX
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, mbmi->tx_size,
max_tx_size);
#endif // !CONFIG_TX_PARTITION_CTX
}
return sub_txs[0];
}
#else
static AOM_INLINE void read_tx_size_vartx(MACROBLOCKD *xd, MB_MODE_INFO *mbmi,
TX_SIZE tx_size, int depth,
#if CONFIG_LPF_MASK
AV1_COMMON *cm, int mi_row,
int mi_col, int store_bitmask,
#endif
int blk_row, int blk_col,
aom_reader *r) {
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
int is_split = 0;
int plane_type = (xd->tree_type == CHROMA_PART);
const BLOCK_SIZE bsize = mbmi->sb_type[plane_type];
const int max_blocks_high = max_block_high(xd, bsize, 0);
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
assert(tx_size > TX_4X4);
TX_SIZE txs = max_txsize_rect_lookup[bsize];
for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level)
txs = sub_tx_size_map[txs];
const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
const int bw_log2 = mi_size_wide_log2[bsize];
const int stride_log2 = bw_log2 - tx_w_log2;
if (depth == MAX_VARTX_DEPTH) {
set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size,
tx_size, blk_row, blk_col);
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
return;
}
const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row,
mbmi->sb_type[plane_type], tx_size);
is_split = aom_read_symbol(r, ec_ctx->txfm_partition_cdf[ctx], 2,
ACCT_INFO("is_split"));
if (is_split) {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
if (sub_txs == TX_4X4) {
set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size,
sub_txs, blk_row, blk_col);
mbmi->tx_size = sub_txs;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, sub_txs, tx_size);
#if CONFIG_LPF_MASK
if (store_bitmask) {
av1_store_bitmask_vartx(cm, mi_row + blk_row, mi_col + blk_col,
txsize_to_bsize[tx_size], TX_4X4, mbmi);
}
#endif
return;
}
#if CONFIG_LPF_MASK
if (depth + 1 == MAX_VARTX_DEPTH && store_bitmask) {
av1_store_bitmask_vartx(cm, mi_row + blk_row, mi_col + blk_col,
txsize_to_bsize[tx_size], sub_txs, mbmi);
store_bitmask = 0;
}
#endif
assert(bsw > 0 && bsh > 0);
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
int offsetr = blk_row + row;
int offsetc = blk_col + col;
read_tx_size_vartx(xd, mbmi, sub_txs, depth + 1,
#if CONFIG_LPF_MASK
cm, mi_row, mi_col, store_bitmask,
#endif
offsetr, offsetc, r);
}
}
} else {
set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size,
tx_size, blk_row, blk_col);
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
#if CONFIG_LPF_MASK
if (store_bitmask) {
av1_store_bitmask_vartx(cm, mi_row + blk_row, mi_col + blk_col,
txsize_to_bsize[tx_size], tx_size, mbmi);
}
#endif
}
}
static TX_SIZE read_selected_tx_size(const MACROBLOCKD *const xd,
aom_reader *r) {
// TODO(debargha): Clean up the logic here. This function should only
// be called for intra.
const BLOCK_SIZE bsize = xd->mi[0]->sb_type[xd->tree_type == CHROMA_PART];
const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
const int max_depths = bsize_to_max_depth(bsize);
const int ctx = get_tx_size_context(xd);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const int depth = aom_read_symbol(r, ec_ctx->tx_size_cdf[tx_size_cat][ctx],
max_depths + 1, ACCT_INFO("depth"));
assert(depth >= 0 && depth <= max_depths);
const TX_SIZE tx_size = depth_to_tx_size(depth, bsize);
return tx_size;
}
#endif // CONFIG_NEW_TX_PARTITION
static TX_SIZE read_tx_size(MACROBLOCKD *xd, TX_MODE tx_mode, int is_inter,
int allow_select_inter, aom_reader *r) {
const BLOCK_SIZE bsize = xd->mi[0]->sb_type[xd->tree_type == CHROMA_PART];
if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4;
if (block_signals_txsize(bsize)) {
if ((!is_inter || allow_select_inter) && tx_mode == TX_MODE_SELECT) {
#if CONFIG_NEW_TX_PARTITION
MB_MODE_INFO *mbmi = xd->mi[0];
const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
return read_tx_partition(xd, mbmi, max_tx_size, 0, 0, r);
#else
const TX_SIZE coded_tx_size = read_selected_tx_size(xd, r);
return coded_tx_size;
#endif // CONFIG_NEW_TX_PARTITION
} else {
return tx_size_from_tx_mode(bsize, tx_mode);
}
} else {
assert(IMPLIES(tx_mode == ONLY_4X4, bsize == BLOCK_4X4));
return max_txsize_rect_lookup[bsize];
}
}
static AOM_INLINE void parse_decode_block(AV1Decoder *const pbi,
ThreadData *const td, int mi_row,
int mi_col, aom_reader *r,
PARTITION_TYPE partition,
BLOCK_SIZE bsize,
PARTITION_TREE *parent, int index) {
DecoderCodingBlock *const dcb = &td->dcb;
MACROBLOCKD *const xd = &dcb->xd;
decode_mbmi_block(pbi, dcb, mi_row, mi_col, r, partition, bsize, parent,
index);
av1_visit_palette(pbi, xd, r, av1_decode_palette_tokens);
AV1_COMMON *cm = &pbi->common;
const int num_planes = av1_num_planes(cm);
MB_MODE_INFO *mbmi = xd->mi[0];
int inter_block_tx = is_inter_block(mbmi, xd->tree_type) ||
is_intrabc_block(mbmi, xd->tree_type);
if (xd->tree_type != CHROMA_PART) {
if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) &&
!mbmi->skip_txfm[xd->tree_type == CHROMA_PART] && inter_block_tx &&
!xd->lossless[mbmi->segment_id]) {
const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
const int width = mi_size_wide[bsize];
const int height = mi_size_high[bsize];
for (int idy = 0; idy < height; idy += bh)
for (int idx = 0; idx < width; idx += bw)
#if CONFIG_NEW_TX_PARTITION
read_tx_partition(xd, mbmi, max_tx_size, idy, idx, r);
#else
read_tx_size_vartx(xd, mbmi, max_tx_size, 0,
#if CONFIG_LPF_MASK
cm, mi_row, mi_col, 1,
#endif
idy, idx, r);
#endif // CONFIG_NEW_TX_PARTITION
} else {
mbmi->tx_size =
read_tx_size(xd, cm->features.tx_mode, inter_block_tx,
!mbmi->skip_txfm[xd->tree_type == CHROMA_PART], r);
if (inter_block_tx)
memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size));
#if !CONFIG_TX_PARTITION_CTX
set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height,
mbmi->skip_txfm[xd->tree_type == CHROMA_PART] &&
is_inter_block(mbmi, xd->tree_type),
xd);
#endif // !CONFIG_TX_PARTITION_CTX
#if CONFIG_LPF_MASK
const int w = mi_size_wide[bsize];
const int h = mi_size_high[bsize];
if (w <= mi_size_wide[BLOCK_64X64] && h <= mi_size_high[BLOCK_64X64]) {
av1_store_bitmask_univariant_tx(cm, mi_row, mi_col, bsize, mbmi);
} else {
for (int row = 0; row < h; row += mi_size_high[BLOCK_64X64]) {
for (int col = 0; col < w; col += mi_size_wide[BLOCK_64X64]) {
av1_store_bitmask_univariant_tx(cm, mi_row + row, mi_col + col,
BLOCK_64X64, mbmi);
}
}
}
#endif
}
}
#if CONFIG_LPF_MASK
const int w = mi_size_wide[bsize];
const int h = mi_size_high[bsize];
if (w <= mi_size_wide[BLOCK_64X64] && h <= mi_size_high[BLOCK_64X64]) {
av1_store_bitmask_other_info(cm, mi_row, mi_col, bsize, mbmi, 1, 1);
} else {
for (int row = 0; row < h; row += mi_size_high[BLOCK_64X64]) {
for (int col = 0; col < w; col += mi_size_wide[BLOCK_64X64]) {
av1_store_bitmask_other_info(cm, mi_row + row, mi_col + col,
BLOCK_64X64, mbmi, row == 0, col == 0);
}
}
}
#endif
if (cm->delta_q_info.delta_q_present_flag) {
for (int i = 0; i < MAX_SEGMENTS; i++) {
const int current_qindex = av1_get_qindex(
&cm->seg, i, xd->current_base_qindex, cm->seq_params.bit_depth);
const CommonQuantParams *const quant_params = &cm->quant_params;
for (int j = 0; j < num_planes; ++j) {
const int dc_delta_q = j == 0 ? quant_params->y_dc_delta_q
: (j == 1 ? quant_params->u_dc_delta_q
: quant_params->v_dc_delta_q);
const int ac_delta_q = j == 0 ? 0
: (j == 1 ? quant_params->u_ac_delta_q
: quant_params->v_ac_delta_q);
xd->plane[j].seg_dequant_QTX[i][0] =
av1_dc_quant_QTX(current_qindex, dc_delta_q,
j == 0 ? cm->seq_params.base_y_dc_delta_q
: cm->seq_params.base_uv_dc_delta_q,
cm->seq_params.bit_depth);
xd->plane[j].seg_dequant_QTX[i][1] = av1_ac_quant_QTX(
current_qindex, ac_delta_q, cm->seq_params.bit_depth);
}
}
}
assert(bsize == mbmi->sb_type[av1_get_sdp_idx(xd->tree_type)]);
if (mbmi->skip_txfm[xd->tree_type == CHROMA_PART])
av1_reset_entropy_context(xd, bsize, num_planes);
decode_token_recon_block(pbi, td, r, partition, bsize);
#if CONFIG_REFINED_MVS_IN_TMVP
if (!frame_is_intra_only(cm) &&
cm->seq_params.order_hint_info.enable_ref_frame_mvs) {
MB_MODE_INFO *const mi = xd->mi[0];
if (opfl_allowed_for_cur_block(cm, mi)) {
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
const int x_inside_boundary = AOMMIN(bw, cm->mi_params.mi_cols - mi_col);
const int y_inside_boundary = AOMMIN(bh, cm->mi_params.mi_rows - mi_row);
av1_copy_frame_refined_mvs(cm, xd, mi, xd->mi_row, xd->mi_col,
x_inside_boundary, y_inside_boundary);
}
}
#endif // CONFIG_REFINED_MVS_IN_TMVP
if (xd->tree_type != SHARED_PART) {
const int bh = mi_size_high[bsize];
const int bw = mi_size_wide[bsize];
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int x_inside_boundary = AOMMIN(bw, mi_params->mi_cols - mi_col);
const int y_inside_boundary = AOMMIN(bh, mi_params->mi_rows - mi_row);
int idx = mi_params->mi_stride;
assert(x_inside_boundary && y_inside_boundary);
if (xd->tree_type != CHROMA_PART) {
for (int y = 0; y < y_inside_boundary; ++y) {
for (int x = 0; x < x_inside_boundary; ++x) {
if (x == 0 && y == 0) continue;
set_blk_offsets(mi_params, xd, mi_row, mi_col, y, x);
*(xd->mi[y * idx + x]) = *(xd->mi[0]);
}
}
} else {
assert(x_inside_boundary && y_inside_boundary);
for (int y = 0; y < y_inside_boundary; ++y) {
for (int x = 0; x < x_inside_boundary; ++x) {
if (x == 0 && y == 0) continue;
set_blk_offsets(mi_params, xd, mi_row, mi_col, y, x);
xd->mi[y * idx + x]->sb_type[PLANE_TYPE_UV] =
xd->mi[0]->sb_type[PLANE_TYPE_UV];
xd->mi[y * idx + x]->uv_mode = xd->mi[0]->uv_mode;
xd->mi[y * idx + x]->angle_delta[PLANE_TYPE_UV] =
xd->mi[0]->angle_delta[PLANE_TYPE_UV];
if (av1_allow_palette(cm->features.allow_screen_content_tools,
bsize)) {
xd->mi[y * idx + x]->palette_mode_info.palette_size[PLANE_TYPE_UV] =
xd->mi[0]->palette_mode_info.palette_size[PLANE_TYPE_UV];
for (int i = PALETTE_MAX_SIZE; i < 3 * PALETTE_MAX_SIZE; i++)
xd->mi[y * idx + x]->palette_mode_info.palette_colors[i] =
xd->mi[0]->palette_mode_info.palette_colors[i];
}
}
}
}
}
}
static AOM_INLINE void set_offsets_for_pred_and_recon(
AV1Decoder *const pbi, ThreadData *const td, int mi_row, int mi_col,
BLOCK_SIZE bsize, PARTITION_TREE *parent, int index) {
AV1_COMMON *const cm = &pbi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
DecoderCodingBlock *const dcb = &td->dcb;
MACROBLOCKD *const xd = &dcb->xd;
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
const int num_planes = av1_num_planes(cm);
const int offset = mi_row * mi_params->mi_stride + mi_col;
const TileInfo *const tile = &xd->tile;
xd->mi = mi_params->mi_grid_base + offset;
xd->tx_type_map =
&mi_params->tx_type_map[mi_row * mi_params->mi_stride + mi_col];
xd->tx_type_map_stride = mi_params->mi_stride;
xd->cctx_type_map =
&mi_params->cctx_type_map[mi_row * mi_params->mi_stride + mi_col];
xd->cctx_type_map_stride = mi_params->mi_stride;
CHROMA_REF_INFO *chroma_ref_info = &xd->mi[0]->chroma_ref_info;
set_chroma_ref_info(xd->tree_type, mi_row, mi_col, index, bsize,
chroma_ref_info, parent ? &parent->chroma_ref_info : NULL,
parent ? parent->bsize : BLOCK_INVALID,
parent ? parent->partition : PARTITION_NONE,
xd->plane[1].subsampling_x, xd->plane[1].subsampling_y);
set_plane_n4(xd, bw, bh, num_planes, chroma_ref_info);
// Distance of Mb to the various image edges. These are specified to 8th pel
// as they are always compared to values that are in 1/8th pel units
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
mi_params->mi_cols, chroma_ref_info);
av1_setup_dst_planes(xd->plane, &cm->cur_frame->buf, mi_row, mi_col, 0,
num_planes, chroma_ref_info);
}
static AOM_INLINE void decode_block(AV1Decoder *const pbi, ThreadData *const td,
int mi_row, int mi_col, aom_reader *r,
PARTITION_TYPE partition, BLOCK_SIZE bsize,
PARTITION_TREE *parent, int index) {
(void)partition;
set_offsets_for_pred_and_recon(pbi, td, mi_row, mi_col, bsize, parent, index);
decode_token_recon_block(pbi, td, r, partition, bsize);
}
#if CONFIG_EXT_RECUR_PARTITIONS
/*!\brief Maps (ext_part, 4way, 4way_type, rect_type) to partition_type. */
static PARTITION_TYPE
rect_part_table[2][2][NUM_UNEVEN_4WAY_PARTS][NUM_RECT_PARTS] = {
{
// !do_ext_partition
{
// !do_4way
{ // UNEVEN_4A
PARTITION_HORZ, PARTITION_VERT },
{ // UNEVEN_4B
PARTITION_HORZ, PARTITION_VERT },
},
{
// do_4way
{ // UNEVEN_4A
PARTITION_HORZ, PARTITION_VERT },
{ // UNEVEN_4B
PARTITION_HORZ, PARTITION_VERT },
},
},
{
// do_ext_partition
{
// !do_4way
{ // UNEVEN_4A
PARTITION_HORZ_3, PARTITION_VERT_3 },
{ // UNEVEN_4B
PARTITION_HORZ_3, PARTITION_VERT_3 },
},
{
// do_4way
{ // UNEVEN_4A
PARTITION_HORZ_4A, PARTITION_VERT_4A },
{ // UNEVEN_4B
PARTITION_HORZ_4B, PARTITION_VERT_4B },
},
},
};
#endif // CONFIG_EXT_RECUR_PARTITIONS
static PARTITION_TYPE read_partition(const AV1_COMMON *const cm,
MACROBLOCKD *xd, int mi_row, int mi_col,
aom_reader *r, int has_rows, int has_cols,
#if CONFIG_EXT_RECUR_PARTITIONS
const PARTITION_TREE *ptree,
const PARTITION_TREE *ptree_luma,
#endif // CONFIG_EXT_RECUR_PARTITIONS
BLOCK_SIZE bsize) {
const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
assert(ctx >= 0);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
#if CONFIG_EXT_RECUR_PARTITIONS
(void)has_rows;
(void)has_cols;
const int plane = xd->tree_type == CHROMA_PART;
const int ssx = cm->seq_params.subsampling_x;
const int ssy = cm->seq_params.subsampling_y;
const PARTITION_TYPE derived_partition =
av1_get_normative_forced_partition_type(
&cm->mi_params, xd->tree_type, ssx, ssy, mi_row, mi_col, bsize,
ptree_luma, &ptree->chroma_ref_info);
if (derived_partition != PARTITION_INVALID) {
return derived_partition;
}
const bool do_split = aom_read_symbol(r, ec_ctx->do_split_cdf[plane][ctx], 2,
ACCT_INFO("do_split"));
if (!do_split) {
return PARTITION_NONE;
}
#if CONFIG_BLOCK_256
const int square_split_ctx = square_split_context(xd, mi_row, mi_col, bsize);
if (is_square_split_eligible(bsize, cm->sb_size)) {
const bool do_square_split =
aom_read_symbol(r, ec_ctx->do_square_split_cdf[plane][square_split_ctx],
2, ACCT_INFO("do_square_split"));
if (do_square_split) {
return PARTITION_SPLIT;
}
}
#endif // CONFIG_BLOCK_256
RECT_PART_TYPE rect_type = rect_type_implied_by_bsize(bsize, xd->tree_type);
if (rect_type == RECT_INVALID) {
rect_type = aom_read_symbol(r, ec_ctx->rect_type_cdf[plane][ctx],
NUM_RECT_PARTS, ACCT_INFO("rect_type"));
}
bool do_ext_partition = false;
bool do_uneven_4way_partition = false;
UNEVEN_4WAY_PART_TYPE uneven_4way_partition_type = UNEVEN_4A;
const bool ext_partition_allowed =
cm->seq_params.enable_ext_partitions &&
is_ext_partition_allowed(bsize, rect_type, xd->tree_type);
if (ext_partition_allowed) {
do_ext_partition =
aom_read_symbol(r, ec_ctx->do_ext_partition_cdf[plane][rect_type][ctx],
2, ACCT_INFO("do_ext_partition"));
if (do_ext_partition) {
const bool uneven_4way_partition_allowed =
is_uneven_4way_partition_allowed(bsize, rect_type, xd->tree_type);
if (uneven_4way_partition_allowed) {
do_uneven_4way_partition = aom_read_symbol(
r, ec_ctx->do_uneven_4way_partition_cdf[plane][rect_type][ctx], 2,
ACCT_INFO("do_uneven_4way_partition"));
if (do_uneven_4way_partition) {
uneven_4way_partition_type = aom_read_symbol(
r, ec_ctx->uneven_4way_partition_type_cdf[plane][rect_type][ctx],
NUM_UNEVEN_4WAY_PARTS, ACCT_INFO("uneven_4way_partition_type"));
}
}
}
}
return rect_part_table[do_ext_partition][do_uneven_4way_partition]
[uneven_4way_partition_type][rect_type];
#else // !CONFIG_EXT_RECUR_PARTITIONS
if (!has_rows && !has_cols) return PARTITION_SPLIT;
const int plane = xd->tree_type == CHROMA_PART;
if (plane == 1 && bsize == BLOCK_8X8) {
return PARTITION_NONE;
}
int parent_block_width = block_size_wide[bsize];
const CommonModeInfoParams *const mi_params = &cm->mi_params;
if (plane && parent_block_width >= SHARED_PART_SIZE) {
int luma_split_flag = get_luma_split_flag(bsize, mi_params, mi_row, mi_col);
// if luma blocks uses smaller blocks, then chroma will also split
if (luma_split_flag > 3) return PARTITION_SPLIT;
}
assert(ctx >= 0);
aom_cdf_prob *partition_cdf = ec_ctx->partition_cdf[plane][ctx];
if (has_rows && has_cols) {
return (PARTITION_TYPE)aom_read_symbol(r, partition_cdf,
partition_cdf_length(bsize),
ACCT_INFO("partition_cdf"));
} else if (!has_rows && has_cols) {
assert(bsize > BLOCK_8X8);
aom_cdf_prob cdf[2];
partition_gather_vert_alike(cdf, partition_cdf, bsize);
assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP));
return aom_read_cdf(r, cdf, 2, ACCT_INFO("partition_cdf")) ? PARTITION_SPLIT
: PARTITION_HORZ;
} else {
assert(has_rows && !has_cols);
assert(bsize > BLOCK_8X8);
aom_cdf_prob cdf[2];
partition_gather_horz_alike(cdf, partition_cdf, bsize);
assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP));
return aom_read_cdf(r, cdf, 2, ACCT_INFO("partition_cdf")) ? PARTITION_SPLIT
: PARTITION_VERT;
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
}
#if CONFIG_FLEX_MVRES
// Set the superblock level parameters
static void set_sb_mv_precision(SB_INFO *sbi, AV1Decoder *const pbi) {
AV1_COMMON *const cm = &pbi->common;
sbi->sb_mv_precision = cm->features.fr_mv_precision;
}
#endif
// TODO(slavarnway): eliminate bsize and subsize in future commits
static AOM_INLINE void decode_partition(AV1Decoder *const pbi,
ThreadData *const td, int mi_row,
int mi_col, aom_reader *reader,
BLOCK_SIZE bsize,
#if CONFIG_FLEX_MVRES
SB_INFO *sbi,
#endif
PARTITION_TREE *ptree,
#if CONFIG_EXT_RECUR_PARTITIONS
const PARTITION_TREE *ptree_luma,
#endif // CONFIG_EXT_RECUR_PARTITIONS
int parse_decode_flag) {
assert(bsize < BLOCK_SIZES_ALL);
AV1_COMMON *const cm = &pbi->common;
DecoderCodingBlock *const dcb = &td->dcb;
MACROBLOCKD *const xd = &dcb->xd;
const int ss_x = xd->plane[1].subsampling_x;
const int ss_y = xd->plane[1].subsampling_y;
// Half block width/height.
const int hbs_w = mi_size_wide[bsize] / 2;
const int hbs_h = mi_size_high[bsize] / 2;
#if CONFIG_EXT_RECUR_PARTITIONS
// One-eighth block width/height.
const int ebs_w = mi_size_wide[bsize] / 8;
const int ebs_h = mi_size_high[bsize] / 8;
#else
// Quarter block width/height.
const int qbs_w = mi_size_wide[bsize] / 4;
const int qbs_h = mi_size_high[bsize] / 4;
#endif // !CONFIG_EXT_RECUR_PARTITIONS
PARTITION_TYPE partition;
const int has_rows = (mi_row + hbs_h) < cm->mi_params.mi_rows;
const int has_cols = (mi_col + hbs_w) < cm->mi_params.mi_cols;
if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols)
return;
// parse_decode_flag takes the following values :
// 01 - do parse only
// 10 - do decode only
// 11 - do parse and decode
static const block_visitor_fn_t block_visit[4] = { NULL, parse_decode_block,
decode_block,
parse_decode_block };
#if CONFIG_FLEX_MVRES
const int is_sb_root = bsize == cm->sb_size;
#endif
if (parse_decode_flag & 1) {
#if CONFIG_FLEX_MVRES
if (is_sb_root) {
set_sb_mv_precision(sbi, pbi);
}
#endif
const int plane_start = get_partition_plane_start(xd->tree_type);
const int plane_end =
get_partition_plane_end(xd->tree_type, av1_num_planes(cm));
for (int plane = plane_start; plane < plane_end; ++plane) {
int rcol0, rcol1, rrow0, rrow1;
if ((cm->rst_info[plane].frame_restoration_type != RESTORE_NONE
#if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
|| cm->rst_info[plane].frame_cross_restoration_type != RESTORE_NONE
#endif // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
) &&
av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize,
&rcol0, &rcol1, &rrow0, &rrow1)) {
const int rstride = cm->rst_info[plane].horz_units_per_tile;
for (int rrow = rrow0; rrow < rrow1; ++rrow) {
for (int rcol = rcol0; rcol < rcol1; ++rcol) {
const int runit_idx = rcol + rrow * rstride;
loop_restoration_read_sb_coeffs(cm, xd, reader, plane, runit_idx);
}
}
}
}
ptree->bsize = bsize;
ptree->mi_row = mi_row;
ptree->mi_col = mi_col;
ptree->is_settled = 1;
PARTITION_TREE *parent = ptree->parent;
set_chroma_ref_info(
xd->tree_type, mi_row, mi_col, ptree->index, bsize,
&ptree->chroma_ref_info, parent ? &parent->chroma_ref_info : NULL,
parent ? parent->bsize : BLOCK_INVALID,
parent ? parent->partition : PARTITION_NONE, ss_x, ss_y);
partition =
!is_partition_point(bsize)
? PARTITION_NONE
: read_partition(cm, xd, mi_row, mi_col, reader, has_rows, has_cols,
#if CONFIG_EXT_RECUR_PARTITIONS
ptree, ptree_luma,
#endif // CONFIG_EXT_RECUR_PARTITIONS
bsize);
#if CONFIG_EXT_RECUR_PARTITIONS
if (!is_luma_chroma_share_same_partition(xd->tree_type, ptree_luma,
bsize)) {
ptree_luma = NULL;
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
ptree->partition = partition;
switch (partition) {
#if CONFIG_EXT_RECUR_PARTITIONS
case PARTITION_HORZ_4A:
case PARTITION_HORZ_4B:
case PARTITION_VERT_4A:
case PARTITION_VERT_4B:
#endif // CONFIG_EXT_RECUR_PARTITIONS
case PARTITION_SPLIT:
ptree->sub_tree[0] = av1_alloc_ptree_node(ptree, 0);
ptree->sub_tree[1] = av1_alloc_ptree_node(ptree, 1);
ptree->sub_tree[2] = av1_alloc_ptree_node(ptree, 2);
ptree->sub_tree[3] = av1_alloc_ptree_node(ptree, 3);
break;
#if CONFIG_EXT_RECUR_PARTITIONS
case PARTITION_HORZ:
case PARTITION_VERT:
ptree->sub_tree[0] = av1_alloc_ptree_node(ptree, 0);
ptree->sub_tree[1] = av1_alloc_ptree_node(ptree, 1);
break;
case PARTITION_HORZ_3:
case PARTITION_VERT_3:
ptree->sub_tree[0] = av1_alloc_ptree_node(ptree, 0);
ptree->sub_tree[1] = av1_alloc_ptree_node(ptree, 1);
ptree->sub_tree[2] = av1_alloc_ptree_node(ptree, 2);
ptree->sub_tree[3] = av1_alloc_ptree_node(ptree, 3);
break;
#endif // CONFIG_EXT_RECUR_PARTITIONS
default: break;
}
} else {
partition = ptree->partition;
}
const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
if (subsize == BLOCK_INVALID) {
aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
"Partition %d is invalid for block size %dx%d",
partition, block_size_wide[bsize],
block_size_high[bsize]);
assert(0);
}
// Check the bitstream is conformant: if there is subsampling on the
// chroma planes, subsize must subsample to a valid block size.
const struct macroblockd_plane *const pd_u = &xd->plane[1];
#if CONFIG_EXT_RECUR_PARTITIONS
BLOCK_SIZE test_subsize = subsize;
if (xd->tree_type == SHARED_PART) {
const PARTITION_TREE *parent = ptree;
CHROMA_REF_INFO chroma_ref_info;
const int index =
(partition == PARTITION_HORZ || partition == PARTITION_VERT) +
(partition == PARTITION_HORZ_3 || partition == PARTITION_VERT_3);
set_chroma_ref_info(xd->tree_type, mi_row, mi_col, index, bsize,
&chroma_ref_info,
parent ? &parent->chroma_ref_info : NULL,
parent ? parent->bsize : BLOCK_INVALID,
parent ? parent->partition : PARTITION_NONE,
xd->plane[1].subsampling_x, xd->plane[1].subsampling_y);
test_subsize = chroma_ref_info.bsize_base;
assert(test_subsize != BLOCK_INVALID);
}
if (xd->tree_type != LUMA_PART &&
get_plane_block_size(test_subsize, pd_u->subsampling_x,
pd_u->subsampling_y) == BLOCK_INVALID) {
aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
"Block size %dx%d invalid with this subsampling mode",
block_size_wide[test_subsize],
block_size_high[test_subsize]);
}
#else
if (get_plane_block_size(subsize, pd_u->subsampling_x, pd_u->subsampling_y) ==
BLOCK_INVALID) {
aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
"Block size %dx%d invalid with this subsampling mode",
block_size_wide[subsize], block_size_high[subsize]);
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
#define DEC_BLOCK_STX_ARG
#define DEC_BLOCK_EPT_ARG partition,
#define DEC_BLOCK(db_r, db_c, db_subsize, index) \
block_visit[parse_decode_flag](pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), \
reader, DEC_BLOCK_EPT_ARG(db_subsize), ptree, \
index)
#if CONFIG_FLEX_MVRES && CONFIG_EXT_RECUR_PARTITIONS
#define DEC_PARTITION(db_r, db_c, db_subsize, index) \
decode_partition(pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), reader, \
(db_subsize), sbi, ptree->sub_tree[(index)], \
get_partition_subtree_const(ptree_luma, index), \
parse_decode_flag)
#elif CONFIG_FLEX_MVRES
#define DEC_PARTITION(db_r, db_c, db_subsize, index) \
decode_partition(pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), reader, \
(db_subsize), sbi, ptree->sub_tree[(index)], \
parse_decode_flag)
#elif CONFIG_EXT_RECUR_PARTITIONS
#define DEC_PARTITION(db_r, db_c, db_subsize, index) \
decode_partition(pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), reader, \
(db_subsize), ptree->sub_tree[(index)], \
get_partition_subtree_const(ptree_luma, index), \
parse_decode_flag)
#else
#define DEC_PARTITION(db_r, db_c, db_subsize, index) \
decode_partition(pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), reader, \
(db_subsize), ptree->sub_tree[(index)], parse_decode_flag)
#endif // CONFIG_FLEX_MVRES && CONFIG_EXT_RECUR_PARTITIONS
#if !CONFIG_EXT_RECUR_PARTITIONS
const BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
#endif // !CONFIG_EXT_RECUR_PARTITIONS
switch (partition) {
case PARTITION_NONE: DEC_BLOCK(mi_row, mi_col, subsize, 0); break;
case PARTITION_HORZ:
#if CONFIG_EXT_RECUR_PARTITIONS
DEC_PARTITION(mi_row, mi_col, subsize, 0);
if ((mi_row + hbs_h) < cm->mi_params.mi_rows)
DEC_PARTITION(mi_row + hbs_h, mi_col, subsize, 1);
#else
DEC_BLOCK(mi_row, mi_col, subsize, 0);
if (has_rows) DEC_BLOCK(mi_row + hbs_h, mi_col, subsize, 1);
#endif // CONFIG_EXT_RECUR_PARTITIONS
break;
case PARTITION_VERT:
#if CONFIG_EXT_RECUR_PARTITIONS
DEC_PARTITION(mi_row, mi_col, subsize, 0);
if ((mi_col + hbs_w) < cm->mi_params.mi_cols)
DEC_PARTITION(mi_row, mi_col + hbs_w, subsize, 1);
#else
DEC_BLOCK(mi_row, mi_col, subsize, 0);
if (has_cols) DEC_BLOCK(mi_row, mi_col + hbs_w, subsize, 1);
#endif // CONFIG_EXT_RECUR_PARTITIONS
break;
#if CONFIG_EXT_RECUR_PARTITIONS
case PARTITION_HORZ_4A: {
const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_HORZ);
const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_HORZ][bsize_big];
assert(subsize == subsize_lookup[PARTITION_HORZ][bsize_med]);
int this_mi_row = mi_row;
DEC_PARTITION(this_mi_row, mi_col, subsize, 0);
this_mi_row += ebs_h;
if (this_mi_row >= cm->mi_params.mi_rows) break;
DEC_PARTITION(this_mi_row, mi_col, bsize_med, 1);
this_mi_row += 2 * ebs_h;
if (this_mi_row >= cm->mi_params.mi_rows) break;
DEC_PARTITION(this_mi_row, mi_col, bsize_big, 2);
this_mi_row += 4 * ebs_h;
if (this_mi_row >= cm->mi_params.mi_rows) break;
DEC_PARTITION(this_mi_row, mi_col, subsize, 3);
break;
}
case PARTITION_HORZ_4B: {
const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_HORZ);
const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_HORZ][bsize_big];
assert(subsize == subsize_lookup[PARTITION_HORZ][bsize_med]);
int this_mi_row = mi_row;
DEC_PARTITION(this_mi_row, mi_col, subsize, 0);
this_mi_row += ebs_h;
if (this_mi_row >= cm->mi_params.mi_rows) break;
DEC_PARTITION(this_mi_row, mi_col, bsize_big, 1);
this_mi_row += 4 * ebs_h;
if (this_mi_row >= cm->mi_params.mi_rows) break;
DEC_PARTITION(this_mi_row, mi_col, bsize_med, 2);
this_mi_row += 2 * ebs_h;
if (this_mi_row >= cm->mi_params.mi_rows) break;
DEC_PARTITION(this_mi_row, mi_col, subsize, 3);
break;
}
case PARTITION_VERT_4A: {
const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_VERT);
const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_VERT][bsize_big];
assert(subsize == subsize_lookup[PARTITION_VERT][bsize_med]);
int this_mi_col = mi_col;
DEC_PARTITION(mi_row, this_mi_col, subsize, 0);
this_mi_col += ebs_w;
if (this_mi_col >= cm->mi_params.mi_cols) break;
DEC_PARTITION(mi_row, this_mi_col, bsize_med, 1);
this_mi_col += 2 * ebs_w;
if (this_mi_col >= cm->mi_params.mi_cols) break;
DEC_PARTITION(mi_row, this_mi_col, bsize_big, 2);
this_mi_col += 4 * ebs_w;
if (this_mi_col >= cm->mi_params.mi_cols) break;
DEC_PARTITION(mi_row, this_mi_col, subsize, 3);
break;
}
case PARTITION_VERT_4B: {
const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_VERT);
const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_VERT][bsize_big];
assert(subsize == subsize_lookup[PARTITION_VERT][bsize_med]);
int this_mi_col = mi_col;
DEC_PARTITION(mi_row, this_mi_col, subsize, 0);
this_mi_col += ebs_w;
if (this_mi_col >= cm->mi_params.mi_cols) break;
DEC_PARTITION(mi_row, this_mi_col, bsize_big, 1);
this_mi_col += 4 * ebs_w;
if (this_mi_col >= cm->mi_params.mi_cols) break;
DEC_PARTITION(mi_row, this_mi_col, bsize_med, 2);
this_mi_col += 2 * ebs_w;
if (this_mi_col >= cm->mi_params.mi_cols) break;
DEC_PARTITION(mi_row, this_mi_col, subsize, 3);
break;
}
case PARTITION_HORZ_3:
case PARTITION_VERT_3: {
for (int i = 0; i < 4; ++i) {
BLOCK_SIZE this_bsize = get_h_partition_subsize(bsize, i, partition);
const int offset_r = get_h_partition_offset_mi_row(bsize, i, partition);
const int offset_c = get_h_partition_offset_mi_col(bsize, i, partition);
assert(this_bsize != BLOCK_INVALID);
assert(offset_r >= 0 && offset_c >= 0);
const int this_mi_row = mi_row + offset_r;
const int this_mi_col = mi_col + offset_c;
if (partition == PARTITION_HORZ_3) {
if (this_mi_row >= cm->mi_params.mi_rows) break;
} else {
if (this_mi_col >= cm->mi_params.mi_cols) break;
}
DEC_PARTITION(this_mi_row, this_mi_col, this_bsize, i);
}
break;
}
case PARTITION_SPLIT:
DEC_PARTITION(mi_row, mi_col, subsize, 0);
DEC_PARTITION(mi_row, mi_col + hbs_w, subsize, 1);
DEC_PARTITION(mi_row + hbs_h, mi_col, subsize, 2);
DEC_PARTITION(mi_row + hbs_h, mi_col + hbs_w, subsize, 3);
break;
#else // !CONFIG_EXT_RECUR_PARTITIONS
case PARTITION_SPLIT:
DEC_PARTITION(mi_row, mi_col, subsize, 0);
DEC_PARTITION(mi_row, mi_col + hbs_w, subsize, 1);
DEC_PARTITION(mi_row + hbs_h, mi_col, subsize, 2);
DEC_PARTITION(mi_row + hbs_h, mi_col + hbs_w, subsize, 3);
break;
case PARTITION_HORZ_A:
DEC_BLOCK(mi_row, mi_col, bsize2, 0);
DEC_BLOCK(mi_row, mi_col + hbs_w, bsize2, 1);
DEC_BLOCK(mi_row + hbs_h, mi_col, subsize, 2);
break;
case PARTITION_HORZ_B:
DEC_BLOCK(mi_row, mi_col, subsize, 0);
DEC_BLOCK(mi_row + hbs_h, mi_col, bsize2, 1);
DEC_BLOCK(mi_row + hbs_h, mi_col + hbs_w, bsize2, 2);
break;
case PARTITION_VERT_A:
DEC_BLOCK(mi_row, mi_col, bsize2, 0);
DEC_BLOCK(mi_row + hbs_h, mi_col, bsize2, 1);
DEC_BLOCK(mi_row, mi_col + hbs_w, subsize, 2);
break;
case PARTITION_VERT_B:
DEC_BLOCK(mi_row, mi_col, subsize, 0);
DEC_BLOCK(mi_row, mi_col + hbs_w, bsize2, 1);
DEC_BLOCK(mi_row + hbs_h, mi_col + hbs_w, bsize2, 2);
break;
case PARTITION_HORZ_4:
for (int i = 0; i < 4; ++i) {
int this_mi_row = mi_row + i * qbs_h;
if (i > 0 && this_mi_row >= cm->mi_params.mi_rows) break;
DEC_BLOCK(this_mi_row, mi_col, subsize, i);
}
break;
case PARTITION_VERT_4:
for (int i = 0; i < 4; ++i) {
int this_mi_col = mi_col + i * qbs_w;
if (i > 0 && this_mi_col >= cm->mi_params.mi_cols) break;
DEC_BLOCK(mi_row, this_mi_col, subsize, i);
}
break;
#endif // CONFIG_EXT_RECUR_PARTITIONS
default: assert(0 && "Invalid partition type");
}
#undef DEC_PARTITION
#undef DEC_BLOCK
#undef DEC_BLOCK_EPT_ARG
#undef DEC_BLOCK_STX_ARG
if (parse_decode_flag & 1)
update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
}
static AOM_INLINE void setup_bool_decoder(
const uint8_t *data, const uint8_t *data_end, const size_t read_size,
struct aom_internal_error_info *error_info, aom_reader *r,
uint8_t allow_update_cdf) {
// Validate the calculated partition length. If the buffer
// described by the partition can't be fully read, then restrict
// it to the portion that can be (for EC mode) or throw an error.
if (!read_is_valid(data, read_size, data_end))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
if (aom_reader_init(r, data, read_size))
aom_internal_error(error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", 1);
r->allow_update_cdf = allow_update_cdf;
}
static AOM_INLINE void decode_partition_sb(AV1Decoder *const pbi,
ThreadData *const td, int mi_row,
int mi_col, aom_reader *reader,
BLOCK_SIZE bsize,
int parse_decode_flag) {
assert(bsize < BLOCK_SIZES_ALL);
AV1_COMMON *const cm = &pbi->common;
DecoderCodingBlock *const dcb = &td->dcb;
MACROBLOCKD *const xd = &dcb->xd;
const int total_loop_num =
(frame_is_intra_only(cm) && !cm->seq_params.monochrome &&
cm->seq_params.enable_sdp)
? 2
: 1;
xd->tree_type = (total_loop_num == 1 ? SHARED_PART : LUMA_PART);
if (parse_decode_flag & 1) {
av1_reset_ptree_in_sbi(xd->sbi, xd->tree_type);
}
decode_partition(pbi, td, mi_row, mi_col, reader, bsize,
#if CONFIG_FLEX_MVRES
xd->sbi,
#endif // CONFIG_FLEX_MVRES
td->dcb.xd.sbi->ptree_root[av1_get_sdp_idx(xd->tree_type)],
#if CONFIG_EXT_RECUR_PARTITIONS
NULL,
#endif // CONFIG_EXT_RECUR_PARTITIONS
parse_decode_flag);
if (total_loop_num == 2) {
xd->tree_type = CHROMA_PART;
if (parse_decode_flag & 1) {
av1_reset_ptree_in_sbi(xd->sbi, xd->tree_type);
}
decode_partition(pbi, td, mi_row, mi_col, reader, bsize,
#if CONFIG_FLEX_MVRES
xd->sbi,
#endif // CONFIG_FLEX_MVRES
td->dcb.xd.sbi->ptree_root[av1_get_sdp_idx(xd->tree_type)],
#if CONFIG_EXT_RECUR_PARTITIONS
td->dcb.xd.sbi->ptree_root[0],
#endif // CONFIG_EXT_RECUR_PARTITIONS
parse_decode_flag);
xd->tree_type = SHARED_PART;
}
#if CONFIG_INSPECTION
if (pbi->inspect_sb_cb != NULL) {
(*pbi->inspect_sb_cb)(pbi, pbi->inspect_ctx);
}
#endif // CONFIG_INSPECTION
}
static AOM_INLINE void setup_segmentation(AV1_COMMON *const cm,
struct aom_read_bit_buffer *rb) {
struct segmentation *const seg = &cm->seg;
seg->update_map = 0;
seg->update_data = 0;
seg->temporal_update = 0;
seg->enabled = aom_rb_read_bit(rb);
if (!seg->enabled) {
if (cm->cur_frame->seg_map) {
memset(cm->cur_frame->seg_map, 0,
(cm->cur_frame->mi_rows * cm->cur_frame->mi_cols));
}
memset(seg, 0, sizeof(*seg));
segfeatures_copy(&cm->cur_frame->seg, seg);
return;
}
if (cm->seg.enabled && cm->prev_frame &&
(cm->mi_params.mi_rows == cm->prev_frame->mi_rows) &&
(cm->mi_params.mi_cols == cm->prev_frame->mi_cols)) {
cm->last_frame_seg_map = cm->prev_frame->seg_map;
} else {
cm->last_frame_seg_map = NULL;
}
// Read update flags
#if CONFIG_PRIMARY_REF_FRAME_OPT
if (cm->features.derived_primary_ref_frame == PRIMARY_REF_NONE) {
#else
if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) {
#endif // CONFIG_PRIMARY_REF_FRAME_OPT
// These frames can't use previous frames, so must signal map + features
seg->update_map = 1;
seg->temporal_update = 0;
seg->update_data = 1;
} else {
seg->update_map = aom_rb_read_bit(rb);
if (seg->update_map) {
seg->temporal_update = aom_rb_read_bit(rb);
} else {
seg->temporal_update = 0;
}
seg->update_data = aom_rb_read_bit(rb);
}
// Segmentation data update
if (seg->update_data) {
av1_clearall_segfeatures(seg);
for (int i = 0; i < MAX_SEGMENTS; i++) {
for (int j = 0; j < SEG_LVL_MAX; j++) {
int data = 0;
const int feature_enabled = aom_rb_read_bit(rb);
if (feature_enabled) {
av1_enable_segfeature(seg, i, j);
const int data_max = av1_seg_feature_data_max(j);
const int data_min = -data_max;
const int ubits = get_unsigned_bits(data_max);
if (av1_is_segfeature_signed(j)) {
data = aom_rb_read_inv_signed_literal(rb, ubits);
} else {
data = aom_rb_read_literal(rb, ubits);
}
data = clamp(data, data_min, data_max);
}
av1_set_segdata(seg, i, j, data);
}
}
av1_calculate_segdata(seg);
} else if (cm->prev_frame) {
segfeatures_copy(seg, &cm->prev_frame->seg);
}
segfeatures_copy(&cm->cur_frame->seg, seg);
}
// Same function as av1_read_uniform but reading from uncompressed header rb
static int rb_read_uniform(struct aom_read_bit_buffer *const rb, int n) {
const int l = get_unsigned_bits(n);
const int m = (1 << l) - n;
const int v = aom_rb_read_literal(rb, l - 1);
assert(l != 0);
if (v < m)
return v;
else
return (v << 1) - m + aom_rb_read_bit(rb);
}
#if CONFIG_LR_FLEX_SYNTAX
// Converts decoded index to frame restoration type depending on lr tools
// that are enabled for the frame for a given plane.
static RestorationType index_to_frame_restoration_type(
const AV1_COMMON *const cm, int plane, int ndx) {
RestorationType r = RESTORE_NONE;
for (r = RESTORE_NONE; r < RESTORE_TYPES; ++r) {
if (((cm->features.lr_tools_disable_mask[plane] >> r) & 1) == 0) {
ndx--;
if (ndx < 0) break;
}
}
assert(r < RESTORE_TYPES);
return r;
}
#endif // CONFIG_LR_FLEX_SYNTAX
static AOM_INLINE void decode_restoration_mode(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
assert(!cm->features.all_lossless);
const int num_planes = av1_num_planes(cm);
#if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
for (int p = 0; p < num_planes; ++p) {
RestorationInfo *rsi = &cm->rst_info[p];
rsi->frame_restoration_type = RESTORE_NONE;
rsi->frame_cross_restoration_type = RESTORE_NONE;
}
#endif // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
if (is_global_intrabc_allowed(cm)) return;
#if CONFIG_FLEXIBLE_RU_SIZE
int luma_none = 1, chroma_none = 1;
#else
int all_none = 1, chroma_none = 1;
#endif // CONFIG_FLEXIBLE_RU_SIZE
for (int p = 0; p < num_planes; ++p) {
RestorationInfo *rsi = &cm->rst_info[p];
#if CONFIG_LR_FLEX_SYNTAX
uint8_t plane_lr_tools_disable_mask =
cm->seq_params.lr_tools_disable_mask[p > 0];
#if CONFIG_PC_WIENER
// If superres is used turn off PC_WIENER since tx_skip values will
// be misaligned.
if (av1_superres_scaled(cm))
plane_lr_tools_disable_mask |= (1 << RESTORE_PC_WIENER);
#endif // CONFIG_PC_WIENER
av1_set_lr_tools(plane_lr_tools_disable_mask, p, &cm->features);
const int ndx = rb_read_uniform(rb, cm->features.lr_frame_tools_count[p]);
rsi->frame_restoration_type = index_to_frame_restoration_type(cm, p, ndx);
if (rsi->frame_restoration_type == RESTORE_SWITCHABLE &&
cm->features.lr_tools_count[p] > 2) {
if (aom_rb_read_bit(rb)) {
int tools_count = cm->features.lr_tools_count[p];
for (int i = 1; i < RESTORE_SWITCHABLE_TYPES; ++i) {
if (!(plane_lr_tools_disable_mask & (1 << i))) {
const int disable_tool = aom_rb_read_bit(rb);
plane_lr_tools_disable_mask |= (disable_tool << i);
tools_count -= disable_tool;
// if tools_count becomes 2 break from the loop since we
// do not allow any other tool to be disabled.
if (tools_count == 2) break;
}
}
av1_set_lr_tools(plane_lr_tools_disable_mask, p, &cm->features);
}
}
#else
if (aom_rb_read_bit(rb)) {
rsi->frame_restoration_type =
aom_rb_read_bit(rb) ? RESTORE_SGRPROJ : RESTORE_WIENER;
} else {
if (aom_rb_read_bit(rb)) {
rsi->frame_restoration_type = RESTORE_SWITCHABLE;
} else {
#if CONFIG_PC_WIENER
if (aom_rb_read_bit(rb)) {
#if CONFIG_WIENER_NONSEP
if (aom_rb_read_bit(rb)) {
rsi->frame_restoration_type = RESTORE_PC_WIENER;
} else {
rsi->frame_restoration_type = RESTORE_WIENER_NONSEP;
}
#else
rsi->frame_restoration_type = RESTORE_PC_WIENER;
#endif // CONFIG_WIENER_NONSEP
} else {
rsi->frame_restoration_type = RESTORE_NONE;
}
#elif CONFIG_WIENER_NONSEP
rsi->frame_restoration_type =
aom_rb_read_bit(rb) ? RESTORE_WIENER_NONSEP : RESTORE_NONE;
#else
rsi->frame_restoration_type = RESTORE_NONE;
#endif // CONFIG_PC_WIENER
}
}
#endif // CONFIG_LR_FLEX_SYNTAX
#if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
if (p > 0) {
if (aom_rb_read_bit(rb)) {
rsi->frame_cross_restoration_type = RESTORE_WIENER_NONSEP;
}
}
if (rsi->frame_restoration_type != RESTORE_NONE ||
rsi->frame_cross_restoration_type != RESTORE_NONE) {
#else
if (rsi->frame_restoration_type != RESTORE_NONE) {
#endif // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
#if CONFIG_FLEXIBLE_RU_SIZE
luma_none &= p > 0;
#else
all_none = 0;
#endif // CONFIG_FLEXIBLE_RU_SIZE
chroma_none &= p == 0;
}
#if CONFIG_WIENER_NONSEP
const int is_wiener_nonsep_possible =
rsi->frame_restoration_type == RESTORE_WIENER_NONSEP ||
rsi->frame_restoration_type == RESTORE_SWITCHABLE;
if (is_wiener_nonsep_possible)
rsi->num_filter_classes = p == AOM_PLANE_Y
? NUM_WIENERNS_CLASS_INIT_LUMA
: NUM_WIENERNS_CLASS_INIT_CHROMA;
#endif // CONFIG_WIENER_NONSEP
}
#if CONFIG_FLEXIBLE_RU_SIZE
const int frame_width = cm->superres_upscaled_width;
const int frame_height = cm->superres_upscaled_height;
set_restoration_unit_size(frame_width, frame_height,
cm->seq_params.subsampling_x,
cm->seq_params.subsampling_y, cm->rst_info);
int size = cm->rst_info[0].max_restoration_unit_size;
cm->rst_info[0].restoration_unit_size =
cm->rst_info[0].max_restoration_unit_size;
if (!luma_none) {
if (aom_rb_read_bit(rb))
cm->rst_info[0].restoration_unit_size = size >> 1;
else {
if (aom_rb_read_bit(rb))
cm->rst_info[0].restoration_unit_size = size;
else
cm->rst_info[0].restoration_unit_size = size >> 2;
}
}
if (num_planes > 1) {
cm->rst_info[1].restoration_unit_size =
cm->rst_info[1].max_restoration_unit_size;
if (!chroma_none) {
size = cm->rst_info[1].max_restoration_unit_size;
if (aom_rb_read_bit(rb))
cm->rst_info[1].restoration_unit_size = size >> 1;
else {
if (aom_rb_read_bit(rb))
cm->rst_info[1].restoration_unit_size = size;
else
cm->rst_info[1].restoration_unit_size = size >> 2;
}
}
cm->rst_info[2].restoration_unit_size =
cm->rst_info[1].restoration_unit_size;
}
#else
if (!all_none) {
#if CONFIG_BLOCK_256
assert(cm->sb_size == BLOCK_64X64 || cm->sb_size == BLOCK_128X128 ||
cm->sb_size == BLOCK_256X256);
#else
assert(cm->sb_size == BLOCK_64X64 || cm->sb_size == BLOCK_128X128);
#endif // CONFIG_BLOCK_256
const int sb_size =
#if CONFIG_BLOCK_256
cm->sb_size == BLOCK_256X256 ? 256 :
#endif // CONFIG_BLOCK_256
cm->sb_size == BLOCK_128X128 ? 128
: 64;
for (int p = 0; p < num_planes; ++p)
cm->rst_info[p].restoration_unit_size = sb_size;
RestorationInfo *rsi = &cm->rst_info[0];
#if CONFIG_BLOCK_256
if (sb_size <= 128) {
rsi->restoration_unit_size <<= aom_rb_read_bit(rb);
}
if (sb_size == 64) {
rsi->restoration_unit_size <<= aom_rb_read_bit(rb);
}
#else
if (sb_size == 64) {
rsi->restoration_unit_size <<= aom_rb_read_bit(rb);
}
// TODO(any): We could save a bit by adding a special case for sb_size ==
// 128
if (rsi->restoration_unit_size > 64) {
rsi->restoration_unit_size <<= aom_rb_read_bit(rb);
}
#endif // CONFIG_BLOCK_256
} else {
const int size = RESTORATION_UNITSIZE_MAX;
for (int p = 0; p < num_planes; ++p)
cm->rst_info[p].restoration_unit_size = size;
}
if (num_planes > 1) {
int s = AOMMIN(cm->seq_params.subsampling_x, cm->seq_params.subsampling_y);
if (s && !chroma_none) {
cm->rst_info[1].restoration_unit_size =
cm->rst_info[0].restoration_unit_size >> (aom_rb_read_bit(rb) * s);
} else {
cm->rst_info[1].restoration_unit_size =
cm->rst_info[0].restoration_unit_size;
}
cm->rst_info[2].restoration_unit_size =
cm->rst_info[1].restoration_unit_size;
}
#endif // CONFIG_FLEXIBLE_RU_SIZE
}
static AOM_INLINE void read_wiener_filter(MACROBLOCKD *xd, int wiener_win,
WienerInfo *wiener_info,
WienerInfoBank *bank,
aom_reader *rb) {
#if CONFIG_LR_MERGE_COEFFS
const int exact_match = aom_read_symbol(rb, xd->tile_ctx->merged_param_cdf, 2,
ACCT_INFO("exact_match"));
int k;
for (k = 0; k < bank->bank_size - 1; ++k) {
if (aom_read_literal(rb, 1, ACCT_INFO("bank_size"))) break;
}
const int ref = k;
if (exact_match) {
memcpy(wiener_info, av1_constref_from_wiener_bank(bank, ref),
sizeof(*wiener_info));
wiener_info->bank_ref = ref;
if (bank->bank_size == 0) av1_add_to_wiener_bank(bank, wiener_info);
return;
}
#else
const int ref = 0;
(void)xd;
#endif // CONFIG_LR_MERGE_COEFFS
WienerInfo *ref_wiener_info = av1_ref_from_wiener_bank(bank, ref);
memset(wiener_info->vfilter, 0, sizeof(wiener_info->vfilter));
memset(wiener_info->hfilter, 0, sizeof(wiener_info->hfilter));
if (wiener_win == WIENER_WIN)
wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
WIENER_FILT_TAP0_SUBEXP_K,
ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
ACCT_INFO("vfilter[0]")) +
WIENER_FILT_TAP0_MINV;
else
wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] = 0;
wiener_info->vfilter[1] = wiener_info->vfilter[WIENER_WIN - 2] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
WIENER_FILT_TAP1_SUBEXP_K,
ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
ACCT_INFO("vfilter[1]")) +
WIENER_FILT_TAP1_MINV;
wiener_info->vfilter[2] = wiener_info->vfilter[WIENER_WIN - 3] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
WIENER_FILT_TAP2_SUBEXP_K,
ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
ACCT_INFO("vfilter[2]")) +
WIENER_FILT_TAP2_MINV;
// The central element has an implicit +WIENER_FILT_STEP
wiener_info->vfilter[WIENER_HALFWIN] =
-2 * (wiener_info->vfilter[0] + wiener_info->vfilter[1] +
wiener_info->vfilter[2]);
if (wiener_win == WIENER_WIN)
wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
WIENER_FILT_TAP0_SUBEXP_K,
ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
ACCT_INFO("hfilter[0]")) +
WIENER_FILT_TAP0_MINV;
else
wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] = 0;
wiener_info->hfilter[1] = wiener_info->hfilter[WIENER_WIN - 2] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
WIENER_FILT_TAP1_SUBEXP_K,
ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
ACCT_INFO("hfilter[1]")) +
WIENER_FILT_TAP1_MINV;
wiener_info->hfilter[2] = wiener_info->hfilter[WIENER_WIN - 3] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
WIENER_FILT_TAP2_SUBEXP_K,
ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
ACCT_INFO("hfilter[2]")) +
WIENER_FILT_TAP2_MINV;
// The central element has an implicit +WIENER_FILT_STEP
wiener_info->hfilter[WIENER_HALFWIN] =
-2 * (wiener_info->hfilter[0] + wiener_info->hfilter[1] +
wiener_info->hfilter[2]);
av1_add_to_wiener_bank(bank, wiener_info);
}
static AOM_INLINE void read_sgrproj_filter(MACROBLOCKD *xd,
SgrprojInfo *sgrproj_info,
SgrprojInfoBank *bank,
aom_reader *rb) {
#if CONFIG_LR_MERGE_COEFFS
const int exact_match = aom_read_symbol(rb, xd->tile_ctx->merged_param_cdf, 2,
ACCT_INFO("exact_match"));
int k;
for (k = 0; k < bank->bank_size - 1; ++k) {
if (aom_read_literal(rb, 1, ACCT_INFO("bank"))) break;
}
const int ref = k;
if (exact_match) {
memcpy(sgrproj_info, av1_constref_from_sgrproj_bank(bank, ref),
sizeof(*sgrproj_info));
sgrproj_info->bank_ref = ref;
if (bank->bank_size == 0) av1_add_to_sgrproj_bank(bank, sgrproj_info);
return;
}
#else
const int ref = 0;
(void)xd;
#endif // CONFIG_LR_MERGE_COEFFS
SgrprojInfo *ref_sgrproj_info = av1_ref_from_sgrproj_bank(bank, ref);
sgrproj_info->ep = aom_read_literal(rb, SGRPROJ_PARAMS_BITS, ACCT_INFO("ep"));
const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep];
if (params->r[0] == 0) {
sgrproj_info->xqd[0] = 0;
sgrproj_info->xqd[1] =
aom_read_primitive_refsubexpfin(
rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_INFO()) +
SGRPROJ_PRJ_MIN1;
} else if (params->r[1] == 0) {
sgrproj_info->xqd[0] =
aom_read_primitive_refsubexpfin(
rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_INFO()) +
SGRPROJ_PRJ_MIN0;
sgrproj_info->xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - sgrproj_info->xqd[0],
SGRPROJ_PRJ_MIN1, SGRPROJ_PRJ_MAX1);
} else {
sgrproj_info->xqd[0] =
aom_read_primitive_refsubexpfin(
rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_INFO()) +
SGRPROJ_PRJ_MIN0;
sgrproj_info->xqd[1] =
aom_read_primitive_refsubexpfin(
rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_INFO()) +
SGRPROJ_PRJ_MIN1;
}
av1_add_to_sgrproj_bank(bank, sgrproj_info);
}
#if CONFIG_WIENER_NONSEP
static void read_wienerns_filter(MACROBLOCKD *xd, int is_uv,
WienerNonsepInfo *wienerns_info,
WienerNonsepInfoBank *bank, aom_reader *rb) {
int skip_filter_read_for_class[WIENERNS_MAX_CLASSES] = { 0 };
int ref_for_class[WIENERNS_MAX_CLASSES] = { 0 };
const int num_classes = wienerns_info->num_classes;
assert(num_classes <= WIENERNS_MAX_CLASSES);
#if CONFIG_LR_MERGE_COEFFS
for (int c_id = 0; c_id < num_classes; ++c_id) {
const int exact_match = aom_read_symbol(rb, xd->tile_ctx->merged_param_cdf,
2, ACCT_INFO("exact_match"));
int ref;
for (ref = 0; ref < bank->bank_size_for_class[c_id] - 1; ++ref) {
if (aom_read_literal(rb, 1, ACCT_INFO("bank"))) break;
}
if (exact_match) {
copy_nsfilter_taps_for_class(
wienerns_info, av1_constref_from_wienerns_bank(bank, ref, c_id),
c_id);
}
wienerns_info->bank_ref_for_class[c_id] = ref;
skip_filter_read_for_class[c_id] = exact_match;
ref_for_class[c_id] = ref;
}
#else
(void)xd;
#endif // CONFIG_LR_MERGE_COEFFS
const WienernsFilterParameters *nsfilter_params =
#if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
get_wienerns_parameters(xd->current_base_qindex, is_uv,
wienerns_info->is_cross_filter);
#else
get_wienerns_parameters(xd->current_base_qindex, is_uv);
#endif // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
const int beg_feat = 0;
const int end_feat = nsfilter_params->ncoeffs;
const int(*wienerns_coeffs)[WIENERNS_COEFCFG_LEN] = nsfilter_params->coeffs;
int reduce_step[WIENERNS_REDUCE_STEPS];
for (int c_id = 0; c_id < num_classes; ++c_id) {
if (skip_filter_read_for_class[c_id]) continue;
const int ref = ref_for_class[c_id];
const WienerNonsepInfo *ref_wienerns_info =
av1_ref_from_wienerns_bank(bank, ref, c_id);
assert(ref_wienerns_info->num_classes == num_classes);
int16_t *wienerns_info_nsfilter = nsfilter_taps(wienerns_info, c_id);
const int16_t *ref_wienerns_info_nsfilter =
const_nsfilter_taps(ref_wienerns_info, c_id);
memset(reduce_step, 0, sizeof(reduce_step));
memset(wienerns_info_nsfilter + beg_feat, 0,
(end_feat - beg_feat) * sizeof(wienerns_info_nsfilter[0]));
// Whether the number of taps is odd or even. For luma
// the #taps can be either odd or even. If odd, the last
// tap corresponds to dc offset. For chroma, the #taps is
// assumed to be always even.
// if #taps is odd, the exit points for signaling are:
// #total_taps - 1, #total_taps - 3, #total_taps - 5.
// If #taps is even, the exit points for signaling are:
// #total_taps - 2, #total_taps - 4, #total_taps - 6.
const int rodd = is_uv ? 0 : (end_feat & 1);
for (int i = beg_feat; i < end_feat; ++i) {
if (rodd && i == end_feat - 5 && i != beg_feat) {
reduce_step[0] =
aom_read_symbol(rb, xd->tile_ctx->wienerns_reduce_cdf[0], 2,
ACCT_INFO("wienerns_reduce_cdf0"));
if (reduce_step[0]) break;
}
if (!rodd && i == end_feat - 4 && i != beg_feat) {
reduce_step[1] =
aom_read_symbol(rb, xd->tile_ctx->wienerns_reduce_cdf[1], 2,
ACCT_INFO("wienerns_reduce_cdf1"));
if (reduce_step[1]) break;
}
if (rodd && i == end_feat - 3 && i != beg_feat) {
reduce_step[2] =
aom_read_symbol(rb, xd->tile_ctx->wienerns_reduce_cdf[2], 2,
ACCT_INFO("wienerns_reduce_cdf2"));
if (reduce_step[2]) break;
}
if (!rodd && i == end_feat - 2 && i != beg_feat) {
reduce_step[3] =
aom_read_symbol(rb, xd->tile_ctx->wienerns_reduce_cdf[3], 2,
ACCT_INFO("wienerns_reduce_cdf3"));
if (reduce_step[3]) break;
}
if (rodd && i == end_feat - 1 && i != beg_feat) {
reduce_step[4] =
aom_read_symbol(rb, xd->tile_ctx->wienerns_reduce_cdf[4], 2,
ACCT_INFO("wienerns_reduce_cdf4"));
if (reduce_step[4]) break;
}
#if ENABLE_LR_4PART_CODE
wienerns_info_nsfilter[i] =
aom_read_4part_wref(
rb,
ref_wienerns_info_nsfilter[i] -
wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID],
xd->tile_ctx->wienerns_4part_cdf
[wienerns_coeffs[i - beg_feat][WIENERNS_PAR_ID]],
wienerns_coeffs[i - beg_feat][WIENERNS_BIT_ID],
ACCT_INFO("wienerns_info_nsfilter")) +
wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID];
#else
wienerns_info_nsfilter[i] =
aom_read_primitive_refsubexpfin(
rb, (1 << wienerns_coeffs[i - beg_feat][WIENERNS_BIT_ID]),
wienerns_coeffs[i - beg_feat][WIENERNS_PAR_ID],
ref_wienerns_info_nsfilter[i] -
wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID],
ACCT_INFO("wienerns_info_nsfilter")) +
wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID];
#endif // ENABLE_LR_4PART_CODE
}
av1_add_to_wienerns_bank(bank, wienerns_info, c_id);
}
}
#endif // CONFIG_WIENER_NONSEP
static AOM_INLINE void loop_restoration_read_sb_coeffs(
#if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
AV1_COMMON *const cm, MACROBLOCKD *xd, aom_reader *const r, int plane,
#else
const AV1_COMMON *const cm, MACROBLOCKD *xd, aom_reader *const r, int plane,
#endif // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
int runit_idx) {
#if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
RestorationInfo *rsi = &cm->rst_info[plane];
#else
const RestorationInfo *rsi = &cm->rst_info[plane];
#endif // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
RestorationUnitInfo *rui = &rsi->unit_info[runit_idx];
#if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
assert(rsi->frame_restoration_type != RESTORE_NONE ||
rsi->frame_cross_restoration_type != RESTORE_NONE);
rui->restoration_type = RESTORE_NONE;
rui->cross_restoration_type = RESTORE_NONE;
#else
assert(rsi->frame_restoration_type != RESTORE_NONE);
#endif // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
assert(!cm->features.all_lossless);
const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN;
#if CONFIG_WIENER_NONSEP
rui->wienerns_info.num_classes = rsi->num_filter_classes;
#if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
rui->wienerns_cross_info.num_classes =
xd->wienerns_cross_info[plane].filter[0].num_classes;
rui->wienerns_info.is_cross_filter = 0;
rui->wienerns_cross_info.is_cross_filter = 1;
#endif // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
#endif // CONFIG_WIENER_NONSEP
if (rsi->frame_restoration_type == RESTORE_SWITCHABLE) {
#if CONFIG_LR_FLEX_SYNTAX
rui->restoration_type = cm->features.lr_last_switchable_ndx_0_type[plane];
for (int re = 0; re <= cm->features.lr_last_switchable_ndx[plane]; re++) {
if (cm->features.lr_tools_disable_mask[plane] & (1 << re)) continue;
const int found = aom_read_symbol(
r, xd->tile_ctx->switchable_flex_restore_cdf[re][plane], 2,
ACCT_INFO("found"));
if (found) {
rui->restoration_type = re;
break;
}
}
#else
rui->restoration_type = aom_read_symbol(
r, xd->tile_ctx->switchable_restore_cdf, RESTORE_SWITCHABLE_TYPES,
ACCT_INFO("restoration_type"));
#endif // CONFIG_LR_FLEX_SYNTAX
switch (rui->restoration_type) {
case RESTORE_WIENER:
read_wiener_filter(xd, wiener_win, &rui->wiener_info,
&xd->wiener_info[plane], r);
break;
case RESTORE_SGRPROJ:
read_sgrproj_filter(xd, &rui->sgrproj_info, &xd->sgrproj_info[plane],
r);
break;
#if CONFIG_WIENER_NONSEP
case RESTORE_WIENER_NONSEP:
read_wienerns_filter(xd, plane != AOM_PLANE_Y, &rui->wienerns_info,
&xd->wienerns_info[plane], r);
break;
#endif // CONFIG_WIENER_NONSEP
#if CONFIG_PC_WIENER
case RESTORE_PC_WIENER:
// No side-information for now.
break;
#endif // CONFIG_PC_WIENER
default: assert(rui->restoration_type == RESTORE_NONE); break;
}
} else if (rsi->frame_restoration_type == RESTORE_WIENER) {
if (aom_read_symbol(r, xd->tile_ctx->wiener_restore_cdf, 2,
ACCT_INFO("wiener_restore_cdf"))) {
rui->restoration_type = RESTORE_WIENER;
read_wiener_filter(xd, wiener_win, &rui->wiener_info,
&xd->wiener_info[plane], r);
} else {
rui->restoration_type = RESTORE_NONE;
}
} else if (rsi->frame_restoration_type == RESTORE_SGRPROJ) {
if (aom_read_symbol(r, xd->tile_ctx->sgrproj_restore_cdf, 2,
ACCT_INFO("sgrproj_restore_cdf"))) {
rui->restoration_type = RESTORE_SGRPROJ;
read_sgrproj_filter(xd, &rui->sgrproj_info, &xd->sgrproj_info[plane], r);
} else {
rui->restoration_type = RESTORE_NONE;
}
#if CONFIG_WIENER_NONSEP
} else if (rsi->frame_restoration_type == RESTORE_WIENER_NONSEP) {
if (aom_read_symbol(r, xd->tile_ctx->wienerns_restore_cdf, 2,
ACCT_INFO("wienerns_restore_cdf"))) {
rui->restoration_type = RESTORE_WIENER_NONSEP;
read_wienerns_filter(xd, plane != AOM_PLANE_Y, &rui->wienerns_info,
&xd->wienerns_info[plane], r);
} else {
rui->restoration_type = RESTORE_NONE;
}
#endif // CONFIG_WIENER_NONSEP
#if CONFIG_PC_WIENER
} else if (rsi->frame_restoration_type == RESTORE_PC_WIENER) {
if (aom_read_symbol(r, xd->tile_ctx->pc_wiener_restore_cdf, 2,
ACCT_INFO("pc_wiener_restore_cdf"))) {
rui->restoration_type = RESTORE_PC_WIENER;
// No side-information for now.
} else {
rui->restoration_type = RESTORE_NONE;
}
#endif // CONFIG_PC_WIENER
}
#if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
if (rsi->frame_cross_restoration_type == RESTORE_WIENER_NONSEP) {
if (aom_read_symbol(r, xd->tile_ctx->wienerns_restore_cdf, 2,
ACCT_INFO())) {
rui->cross_restoration_type = RESTORE_WIENER_NONSEP;
read_wienerns_filter(xd, plane != AOM_PLANE_Y, &rui->wienerns_cross_info,
&xd->wienerns_cross_info[plane], r);
}
}
#endif // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
#if CONFIG_LR_FLEX_SYNTAX
assert(((cm->features.lr_tools_disable_mask[plane] >> rui->restoration_type) &
1) == 0);
#endif // CONFIG_LR_FLEX_SYNTAX
}
static AOM_INLINE void setup_loopfilter(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
const int num_planes = av1_num_planes(cm);
struct loopfilter *lf = &cm->lf;
if (is_global_intrabc_allowed(cm) || cm->features.coded_lossless) {
// write default deltas to frame buffer
av1_set_default_ref_deltas(cm->cur_frame->ref_deltas);
av1_set_default_mode_deltas(cm->cur_frame->mode_deltas);
return;
}
assert(!cm->features.coded_lossless);
if (cm->prev_frame) {
// write deltas to frame buffer
memcpy(lf->ref_deltas, cm->prev_frame->ref_deltas, SINGLE_REF_FRAMES);
memcpy(lf->mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS);
} else {
av1_set_default_ref_deltas(lf->ref_deltas);
av1_set_default_mode_deltas(lf->mode_deltas);
}
lf->filter_level[0] = aom_rb_read_bit(rb);
#if DF_DUAL
lf->filter_level[1] = aom_rb_read_bit(rb);
#else
lf->filter_level[1] = lf->filter_level[0];
#endif // DF_DUAL
if (num_planes > 1) {
if (lf->filter_level[0] || lf->filter_level[1]) {
lf->filter_level_u = aom_rb_read_bit(rb);
lf->filter_level_v = aom_rb_read_bit(rb);
} else {
lf->filter_level_u = lf->filter_level_v = 0;
}
}
// lf->sharpness_level = 0;
#if DF_DUAL
if (lf->filter_level[0]) {
int luma_delta_q = aom_rb_read_bit(rb);
if (luma_delta_q) {
lf->delta_q_luma[0] =
aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET;
} else {
lf->delta_q_luma[0] = 0;
}
#if DF_TWO_PARAM
int luma_delta_side = aom_rb_read_bit(rb);
if (luma_delta_side) {
lf->delta_side_luma[0] =
aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET;
} else {
lf->delta_side_luma[0] = 0;
}
#else
lf->delta_side_luma[0] = lf->delta_q_luma[0];
#endif // DF_TWO_PARAM
} else {
lf->delta_q_luma[0] = 0;
lf->delta_side_luma[0] = 0;
}
if (lf->filter_level[1]) {
int luma_delta_q = aom_rb_read_bit(rb);
if (luma_delta_q) {
lf->delta_q_luma[1] =
aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET;
} else {
lf->delta_q_luma[1] = lf->delta_q_luma[0];
}
#if DF_TWO_PARAM
int luma_delta_side = aom_rb_read_bit(rb);
if (luma_delta_side) {
lf->delta_side_luma[1] =
aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET;
} else {
lf->delta_side_luma[1] = lf->delta_side_luma[0];
}
#else
lf->delta_side_luma[1] = lf->delta_q_luma[1];
#endif // DF_TWO_PARAM
} else {
lf->delta_q_luma[1] = 0;
lf->delta_side_luma[1] = 0;
}
#else
if (lf->filter_level[0] || lf->filter_level[1]) {
int luma_delta_q = aom_rb_read_bit(rb);
if (luma_delta_q) {
lf->delta_q_luma = aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET;
} else {
lf->delta_q_luma = 0;
}
#if DF_TWO_PARAM
int luma_delta_side = aom_rb_read_bit(rb);
if (luma_delta_side) {
lf->delta_side_luma =
aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET;
} else {
lf->delta_side_luma = 0;
}
#else
lf->delta_side_luma = lf->delta_q_luma;
#endif // DF_TWO_PARAM
} else {
lf->delta_q_luma = 0;
lf->delta_side_luma = 0;
}
#endif // DF_DUAL
if (lf->filter_level_u) {
int u_delta_q = aom_rb_read_bit(rb);
if (u_delta_q) {
lf->delta_q_u = aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET;
} else {
lf->delta_q_u = 0;
}
#if DF_TWO_PARAM
int u_delta_side = aom_rb_read_bit(rb);
if (u_delta_side) {
lf->delta_side_u = aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET;
} else {
lf->delta_side_u = 0;
}
#else
lf->delta_side_u = lf->delta_q_u;
#endif // DF_TWO_PARAM
} else {
lf->delta_q_u = 0;
lf->delta_side_u = 0;
}
if (lf->filter_level_v) {
int v_delta_q = aom_rb_read_bit(rb);
if (v_delta_q) {
lf->delta_q_v = aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET;
} else {
lf->delta_q_v = 0;
}
#if DF_TWO_PARAM
int v_delta_side = aom_rb_read_bit(rb);
if (v_delta_side) {
lf->delta_side_v = aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET;
} else {
lf->delta_side_v = 0;
}
#else
lf->delta_side_v = lf->delta_q_v;
#endif // DF_TWO_PARAM
} else {
lf->delta_q_v = 0;
lf->delta_side_v = 0;
}
lf->mode_ref_delta_update = 0;
lf->mode_ref_delta_enabled = 0;
}
static AOM_INLINE void setup_cdef(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
const int num_planes = av1_num_planes(cm);
CdefInfo *const cdef_info = &cm->cdef_info;
if (is_global_intrabc_allowed(cm)) return;
#if CONFIG_FIX_CDEF_SYNTAX
cdef_info->cdef_frame_enable = aom_rb_read_bit(rb);
if (!cdef_info->cdef_frame_enable) return;
#endif // CONFIG_FIX_CDEF_SYNTAX
cdef_info->cdef_damping = aom_rb_read_literal(rb, 2) + 3;
cdef_info->cdef_bits = aom_rb_read_literal(rb, 2);
cdef_info->nb_cdef_strengths = 1 << cdef_info->cdef_bits;
for (int i = 0; i < cdef_info->nb_cdef_strengths; i++) {
cdef_info->cdef_strengths[i] = aom_rb_read_literal(rb, CDEF_STRENGTH_BITS);
cdef_info->cdef_uv_strengths[i] =
num_planes > 1 ? aom_rb_read_literal(rb, CDEF_STRENGTH_BITS) : 0;
}
}
#if CONFIG_CCSO
#if CONFIG_CCSO_EDGE_CLF
// read offset idx using truncated unary coding
static AOM_INLINE int read_ccso_offset_idx(struct aom_read_bit_buffer *rb) {
int offset_idx = 0;
for (int idx = 0; idx < 7; ++idx) {
const int cur_bit = aom_rb_read_bit(rb);
if (!cur_bit) break;
offset_idx++;
}
return offset_idx;
}
#endif // CONFIG_CCSO_EDGE_CLF
static AOM_INLINE void setup_ccso(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
if (is_global_intrabc_allowed(cm)) return;
#if CONFIG_CCSO_EXT
const int ccso_offset[8] = { 0, 1, -1, 3, -3, 7, -7, -10 };
#if CONFIG_D143_CCSO_FM_FLAG
cm->ccso_info.ccso_frame_flag = aom_rb_read_literal(rb, 1);
if (cm->ccso_info.ccso_frame_flag) {
#endif // CONFIG_D143_CCSO_FM_FLAG
for (int plane = 0; plane < av1_num_planes(cm); plane++) {
#else
const int ccso_offset[8] = { 0, 1, -1, 3, -3, 5, -5, -7 };
for (int plane = 0; plane < 2; plane++) {
#endif
cm->ccso_info.ccso_enable[plane] = aom_rb_read_literal(rb, 1);
if (cm->ccso_info.ccso_enable[plane]) {
#if CONFIG_CCSO_BO_ONLY_OPTION
cm->ccso_info.ccso_bo_only[plane] = aom_rb_read_literal(rb, 1);
#endif // CONFIG_CCSO_BO_ONLY_OPTION
cm->ccso_info.quant_idx[plane] = aom_rb_read_literal(rb, 2);
cm->ccso_info.ext_filter_support[plane] = aom_rb_read_literal(rb, 3);
#if CONFIG_CCSO_EXT
#if CONFIG_CCSO_BO_ONLY_OPTION
if (cm->ccso_info.ccso_bo_only[plane]) {
cm->ccso_info.max_band_log2[plane] = aom_rb_read_literal(rb, 3);
} else {
cm->ccso_info.max_band_log2[plane] = aom_rb_read_literal(rb, 2);
}
#else
cm->ccso_info.max_band_log2[plane] = aom_rb_read_literal(rb, 2);
#endif // CONFIG_CCSO_BO_ONLY_OPTION
const int max_band = 1 << cm->ccso_info.max_band_log2[plane];
#endif
#if CONFIG_CCSO_EDGE_CLF
const int edge_clf = cm->ccso_info.edge_clf[plane] =
aom_rb_read_bit(rb);
const int max_edge_interval = edge_clf_to_edge_interval[edge_clf];
#if CONFIG_CCSO_BO_ONLY_OPTION
const int num_edge_offset_intervals =
cm->ccso_info.ccso_bo_only[plane] ? 1 : max_edge_interval;
for (int d0 = 0; d0 < num_edge_offset_intervals; d0++) {
for (int d1 = 0; d1 < num_edge_offset_intervals; d1++) {
#else
for (int d0 = 0; d0 < max_edge_interval; d0++) {
for (int d1 = 0; d1 < max_edge_interval; d1++) {
#endif // CONFIG_CCSO_BO_ONLY_OPTION
#else
for (int d0 = 0; d0 < CCSO_INPUT_INTERVAL; d0++) {
for (int d1 = 0; d1 < CCSO_INPUT_INTERVAL; d1++) {
#endif // CONFIG_CCSO_EDGE_CLF
#if !CONFIG_CCSO_EXT
const int lut_idx_ext = (d0 << 2) + d1;
#else
for (int band_num = 0; band_num < max_band; band_num++) {
const int lut_idx_ext = (band_num << 4) + (d0 << 2) + d1;
#endif
#if CONFIG_CCSO_EDGE_CLF
const int offset_idx = read_ccso_offset_idx(rb);
#else
const int offset_idx = aom_rb_read_literal(rb, 3);
#endif // CONFIG_CCSO_EDGE_CLF
cm->ccso_info.filter_offset[plane][lut_idx_ext] =
ccso_offset[offset_idx];
}
#if CONFIG_CCSO_EXT
}
#endif
}
}
}
#if CONFIG_D143_CCSO_FM_FLAG
}
else {
cm->ccso_info.ccso_enable[0] = 0;
cm->ccso_info.ccso_enable[1] = 0;
cm->ccso_info.ccso_enable[2] = 0;
}
#endif // CONFIG_D143_CCSO_FM_FLAG
}
#endif
static INLINE int read_delta_q(struct aom_read_bit_buffer *rb) {
return aom_rb_read_bit(rb) ? aom_rb_read_inv_signed_literal(rb, 6) : 0;
}
static AOM_INLINE void setup_quantization(CommonQuantParams *quant_params,
int num_planes,
aom_bit_depth_t bit_depth,
bool separate_uv_delta_q,
struct aom_read_bit_buffer *rb) {
quant_params->base_qindex = aom_rb_read_literal(
rb, bit_depth == AOM_BITS_8 ? QINDEX_BITS_UNEXT : QINDEX_BITS);
quant_params->y_dc_delta_q = read_delta_q(rb);
if (num_planes > 1) {
int diff_uv_delta = 0;
if (separate_uv_delta_q) diff_uv_delta = aom_rb_read_bit(rb);
quant_params->u_dc_delta_q = read_delta_q(rb);
quant_params->u_ac_delta_q = read_delta_q(rb);
if (diff_uv_delta) {
quant_params->v_dc_delta_q = read_delta_q(rb);
quant_params->v_ac_delta_q = read_delta_q(rb);
} else {
quant_params->v_dc_delta_q = quant_params->u_dc_delta_q;
quant_params->v_ac_delta_q = quant_params->u_ac_delta_q;
}
} else {
quant_params->u_dc_delta_q = 0;
quant_params->u_ac_delta_q = 0;
quant_params->v_dc_delta_q = 0;
quant_params->v_ac_delta_q = 0;
}
quant_params->using_qmatrix = aom_rb_read_bit(rb);
if (quant_params->using_qmatrix) {
quant_params->qmatrix_level_y = aom_rb_read_literal(rb, QM_LEVEL_BITS);
quant_params->qmatrix_level_u = aom_rb_read_literal(rb, QM_LEVEL_BITS);
if (!separate_uv_delta_q)
quant_params->qmatrix_level_v = quant_params->qmatrix_level_u;
else
quant_params->qmatrix_level_v = aom_rb_read_literal(rb, QM_LEVEL_BITS);
} else {
quant_params->qmatrix_level_y = 0;
quant_params->qmatrix_level_u = 0;
quant_params->qmatrix_level_v = 0;
}
}
// Build y/uv dequant values based on segmentation.
static AOM_INLINE void setup_segmentation_dequant(AV1_COMMON *const cm,
MACROBLOCKD *const xd) {
const int bit_depth = cm->seq_params.bit_depth;
// When segmentation is disabled, only the first value is used. The
// remaining are don't cares.
const int max_segments = cm->seg.enabled ? MAX_SEGMENTS : 1;
CommonQuantParams *const quant_params = &cm->quant_params;
for (int i = 0; i < max_segments; ++i) {
const int qindex = xd->qindex[i];
quant_params->y_dequant_QTX[i][0] =
av1_dc_quant_QTX(qindex, quant_params->y_dc_delta_q,
cm->seq_params.base_y_dc_delta_q, bit_depth);
quant_params->y_dequant_QTX[i][1] = av1_ac_quant_QTX(qindex, 0, bit_depth);
quant_params->u_dequant_QTX[i][0] =
av1_dc_quant_QTX(qindex, quant_params->u_dc_delta_q,
cm->seq_params.base_uv_dc_delta_q, bit_depth);
quant_params->u_dequant_QTX[i][1] =
av1_ac_quant_QTX(qindex, quant_params->u_ac_delta_q, bit_depth);
quant_params->v_dequant_QTX[i][0] =
av1_dc_quant_QTX(qindex, quant_params->v_dc_delta_q,
cm->seq_params.base_uv_dc_delta_q, bit_depth);
quant_params->v_dequant_QTX[i][1] =
av1_ac_quant_QTX(qindex, quant_params->v_ac_delta_q, bit_depth);
const int use_qmatrix = av1_use_qmatrix(quant_params, xd, i);
// NB: depends on base index so there is only 1 set per frame
// No quant weighting when lossless or signalled not using QM
const int qmlevel_y =
use_qmatrix ? quant_params->qmatrix_level_y : NUM_QM_LEVELS - 1;
for (int j = 0; j < TX_SIZES_ALL; ++j) {
quant_params->y_iqmatrix[i][j] =
av1_iqmatrix(quant_params, qmlevel_y, AOM_PLANE_Y, j);
}
const int qmlevel_u =
use_qmatrix ? quant_params->qmatrix_level_u : NUM_QM_LEVELS - 1;
for (int j = 0; j < TX_SIZES_ALL; ++j) {
quant_params->u_iqmatrix[i][j] =
av1_iqmatrix(quant_params, qmlevel_u, AOM_PLANE_U, j);
}
const int qmlevel_v =
use_qmatrix ? quant_params->qmatrix_level_v : NUM_QM_LEVELS - 1;
for (int j = 0; j < TX_SIZES_ALL; ++j) {
quant_params->v_iqmatrix[i][j] =
av1_iqmatrix(quant_params, qmlevel_v, AOM_PLANE_V, j);
}
}
}
static InterpFilter read_frame_interp_filter(struct aom_read_bit_buffer *rb) {
return aom_rb_read_bit(rb) ? SWITCHABLE
: aom_rb_read_literal(rb, LOG_SWITCHABLE_FILTERS);
}
static AOM_INLINE void setup_render_size(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
cm->render_width = cm->superres_upscaled_width;
cm->render_height = cm->superres_upscaled_height;
if (aom_rb_read_bit(rb))
av1_read_frame_size(rb, 16, 16, &cm->render_width, &cm->render_height);
}
// TODO(afergs): make "struct aom_read_bit_buffer *const rb"?
static AOM_INLINE void setup_superres(AV1_COMMON *const cm,
struct aom_read_bit_buffer *rb,
int *width, int *height) {
cm->superres_upscaled_width = *width;
cm->superres_upscaled_height = *height;
cm->superres_scale_denominator = SCALE_NUMERATOR;
const SequenceHeader *const seq_params = &cm->seq_params;
if (!seq_params->enable_superres) return;
if (aom_rb_read_bit(rb)) {
cm->superres_scale_denominator =
(uint8_t)aom_rb_read_literal(rb, SUPERRES_SCALE_BITS);
cm->superres_scale_denominator += SUPERRES_SCALE_DENOMINATOR_MIN;
// Don't edit cm->width or cm->height directly, or the buffers won't get
// resized correctly
av1_calculate_scaled_superres_size(width, height,
cm->superres_scale_denominator);
} else {
// 1:1 scaling - ie. no scaling, scale not provided
cm->superres_scale_denominator = SCALE_NUMERATOR;
}
}
static AOM_INLINE void resize_context_buffers(AV1_COMMON *cm, int width,
int height) {
#if CONFIG_SIZE_LIMIT
if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Dimensions of %dx%d beyond allowed size of %dx%d.",
width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT);
#endif
if (cm->width != width || cm->height != height) {
const int new_mi_rows =
ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
const int new_mi_cols =
ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
// Allocations in av1_alloc_context_buffers() depend on individual
// dimensions as well as the overall size.
if (new_mi_cols > cm->mi_params.mi_cols ||
new_mi_rows > cm->mi_params.mi_rows) {
if (av1_alloc_context_buffers(cm, width, height)) {
// The cm->mi_* values have been cleared and any existing context
// buffers have been freed. Clear cm->width and cm->height to be
// consistent and to force a realloc next time.
cm->width = 0;
cm->height = 0;
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate context buffers");
}
} else {
cm->mi_params.set_mb_mi(&cm->mi_params, width, height);
}
av1_init_mi_buffers(&cm->mi_params);
cm->width = width;
cm->height = height;
}
ensure_mv_buffer(cm->cur_frame, cm);
cm->cur_frame->width = cm->width;
cm->cur_frame->height = cm->height;
}
static AOM_INLINE void setup_tip_frame_size(AV1_COMMON *cm) {
const SequenceHeader *const seq_params = &cm->seq_params;
YV12_BUFFER_CONFIG *tip_frame_buf = &cm->tip_ref.tip_frame->buf;
if (aom_realloc_frame_buffer(
tip_frame_buf, cm->width, cm->height, seq_params->subsampling_x,
seq_params->subsampling_y, AOM_DEC_BORDER_IN_PIXELS,
cm->features.byte_alignment, NULL, NULL, NULL, 0)) {
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
}
if (tip_frame_buf) {
tip_frame_buf->bit_depth = (unsigned int)seq_params->bit_depth;
tip_frame_buf->color_primaries = seq_params->color_primaries;
tip_frame_buf->transfer_characteristics =
seq_params->transfer_characteristics;
tip_frame_buf->matrix_coefficients = seq_params->matrix_coefficients;
tip_frame_buf->monochrome = seq_params->monochrome;
tip_frame_buf->chroma_sample_position = seq_params->chroma_sample_position;
tip_frame_buf->color_range = seq_params->color_range;
tip_frame_buf->render_width = cm->render_width;
tip_frame_buf->render_height = cm->render_height;
}
#if CONFIG_TIP_DIRECT_FRAME_MV
tip_frame_buf = &cm->tip_ref.tmp_tip_frame->buf;
if (aom_realloc_frame_buffer(
tip_frame_buf, cm->width, cm->height, seq_params->subsampling_x,
seq_params->subsampling_y, AOM_DEC_BORDER_IN_PIXELS,
cm->features.byte_alignment, NULL, NULL, NULL, 0)) {
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
}
if (tip_frame_buf) {
tip_frame_buf->bit_depth = (unsigned int)seq_params->bit_depth;
tip_frame_buf->color_primaries = seq_params->color_primaries;
tip_frame_buf->transfer_characteristics =
seq_params->transfer_characteristics;
tip_frame_buf->matrix_coefficients = seq_params->matrix_coefficients;
tip_frame_buf->monochrome = seq_params->monochrome;
tip_frame_buf->chroma_sample_position = seq_params->chroma_sample_position;
tip_frame_buf->color_range = seq_params->color_range;
tip_frame_buf->render_width = cm->render_width;
tip_frame_buf->render_height = cm->render_height;
}
#endif // CONFIG_TIP_DIRECT_FRAME_MV
}
static AOM_INLINE void setup_buffer_pool(AV1_COMMON *cm) {
BufferPool *const pool = cm->buffer_pool;
const SequenceHeader *const seq_params = &cm->seq_params;
lock_buffer_pool(pool);
if (aom_realloc_frame_buffer(
&cm->cur_frame->buf, cm->width, cm->height, seq_params->subsampling_x,
seq_params->subsampling_y, AOM_DEC_BORDER_IN_PIXELS,
cm->features.byte_alignment, &cm->cur_frame->raw_frame_buffer,
pool->get_fb_cb, pool->cb_priv, 0)) {
unlock_buffer_pool(pool);
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
}
unlock_buffer_pool(pool);
cm->cur_frame->buf.bit_depth = (unsigned int)seq_params->bit_depth;
cm->cur_frame->buf.color_primaries = seq_params->color_primaries;
cm->cur_frame->buf.transfer_characteristics =
seq_params->transfer_characteristics;
cm->cur_frame->buf.matrix_coefficients = seq_params->matrix_coefficients;
cm->cur_frame->buf.monochrome = seq_params->monochrome;
cm->cur_frame->buf.chroma_sample_position =
seq_params->chroma_sample_position;
cm->cur_frame->buf.color_range = seq_params->color_range;
cm->cur_frame->buf.render_width = cm->render_width;
cm->cur_frame->buf.render_height = cm->render_height;
if (cm->seq_params.enable_tip) {
const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, TIP_FRAME);
if (ref_buf == NULL || (ref_buf->buf.y_crop_width != cm->width ||
ref_buf->buf.y_crop_height != cm->height)) {
setup_tip_frame_size(cm);
}
}
}
static AOM_INLINE void setup_frame_size(AV1_COMMON *cm,
int frame_size_override_flag,
struct aom_read_bit_buffer *rb) {
const SequenceHeader *const seq_params = &cm->seq_params;
int width, height;
if (frame_size_override_flag) {
int num_bits_width = seq_params->num_bits_width;
int num_bits_height = seq_params->num_bits_height;
av1_read_frame_size(rb, num_bits_width, num_bits_height, &width, &height);
if (width > seq_params->max_frame_width ||
height > seq_params->max_frame_height) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Frame dimensions are larger than the maximum values");
}
} else {
width = seq_params->max_frame_width;
height = seq_params->max_frame_height;
}
setup_superres(cm, rb, &width, &height);
resize_context_buffers(cm, width, height);
setup_render_size(cm, rb);
setup_buffer_pool(cm);
}
static AOM_INLINE void setup_seq_sb_size(SequenceHeader *seq_params,
struct aom_read_bit_buffer *rb) {
static const BLOCK_SIZE sb_sizes[] = {
#if CONFIG_BLOCK_256
BLOCK_256X256,
#endif
BLOCK_128X128,
BLOCK_64X64
};
int index = 0;
bool bit = aom_rb_read_bit(rb);
if (!bit) {
index++;
#if CONFIG_BLOCK_256
bit = aom_rb_read_bit(rb);
if (!bit) {
index++;
}
#endif
}
BLOCK_SIZE sb_size = sb_sizes[index];
seq_params->sb_size = sb_size;
seq_params->mib_size = mi_size_wide[sb_size];
seq_params->mib_size_log2 = mi_size_wide_log2[sb_size];
}
static INLINE int valid_ref_frame_img_fmt(aom_bit_depth_t ref_bit_depth,
int ref_xss, int ref_yss,
aom_bit_depth_t this_bit_depth,
int this_xss, int this_yss) {
return ref_bit_depth == this_bit_depth && ref_xss == this_xss &&
ref_yss == this_yss;
}
static AOM_INLINE void setup_frame_size_with_refs(
AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
int width, height;
int found = 0;
int has_valid_ref_frame = 0;
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
if (aom_rb_read_bit(rb)) {
const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, i);
// This will never be NULL in a normal stream, as streams are required to
// have a shown keyframe before any inter frames, which would refresh all
// the reference buffers. However, it might be null if we're starting in
// the middle of a stream, and static analysis will error if we don't do
// a null check here.
if (ref_buf == NULL) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Invalid condition: invalid reference buffer");
} else {
const YV12_BUFFER_CONFIG *const buf = &ref_buf->buf;
width = buf->y_crop_width;
height = buf->y_crop_height;
cm->render_width = buf->render_width;
cm->render_height = buf->render_height;
setup_superres(cm, rb, &width, &height);
resize_context_buffers(cm, width, height);
found = 1;
break;
}
}
}
const SequenceHeader *const seq_params = &cm->seq_params;
if (!found) {
int num_bits_width = seq_params->num_bits_width;
int num_bits_height = seq_params->num_bits_height;
av1_read_frame_size(rb, num_bits_width, num_bits_height, &width, &height);
setup_superres(cm, rb, &width, &height);
resize_context_buffers(cm, width, height);
setup_render_size(cm, rb);
}
if (width <= 0 || height <= 0)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Invalid frame size");
// Check to make sure at least one of frames that this frame references has
// valid dimensions.
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
const RefCntBuffer *const ref_frame = get_ref_frame_buf(cm, i);
has_valid_ref_frame |=
valid_ref_frame_size(ref_frame->buf.y_crop_width,
ref_frame->buf.y_crop_height, width, height);
}
if (!has_valid_ref_frame)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Referenced frame has invalid size");
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
const RefCntBuffer *const ref_frame = get_ref_frame_buf(cm, i);
if (!valid_ref_frame_img_fmt(
ref_frame->buf.bit_depth, ref_frame->buf.subsampling_x,
ref_frame->buf.subsampling_y, seq_params->bit_depth,
seq_params->subsampling_x, seq_params->subsampling_y))
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Referenced frame has incompatible color format");
}
setup_buffer_pool(cm);
}
static AOM_INLINE void read_tile_info_max_tile(
AV1_COMMON *const cm, struct aom_read_bit_buffer *const rb) {
CommonTileParams *const tiles = &cm->tiles;
int width_mi = ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols, cm->mib_size_log2);
int height_mi = ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, cm->mib_size_log2);
int width_sb = width_mi >> cm->mib_size_log2;
int height_sb = height_mi >> cm->mib_size_log2;
av1_get_tile_limits(cm);
tiles->uniform_spacing = aom_rb_read_bit(rb);
// Read tile columns
if (tiles->uniform_spacing) {
tiles->log2_cols = tiles->min_log2_cols;
while (tiles->log2_cols < tiles->max_log2_cols) {
if (!aom_rb_read_bit(rb)) {
break;
}
tiles->log2_cols++;
}
} else {
int i;
int start_sb;
for (i = 0, start_sb = 0; width_sb > 0 && i < MAX_TILE_COLS; i++) {
const int size_sb =
1 + rb_read_uniform(rb, AOMMIN(width_sb, tiles->max_width_sb));
tiles->col_start_sb[i] = start_sb;
start_sb += size_sb;
width_sb -= size_sb;
}
tiles->cols = i;
tiles->col_start_sb[i] = start_sb + width_sb;
}
av1_calculate_tile_cols(cm, cm->mi_params.mi_rows, cm->mi_params.mi_cols,
tiles);
// Read tile rows
if (tiles->uniform_spacing) {
tiles->log2_rows = tiles->min_log2_rows;
while (tiles->log2_rows < tiles->max_log2_rows) {
if (!aom_rb_read_bit(rb)) {
break;
}
tiles->log2_rows++;
}
} else {
int i;
int start_sb;
for (i = 0, start_sb = 0; height_sb > 0 && i < MAX_TILE_ROWS; i++) {
const int size_sb =
1 + rb_read_uniform(rb, AOMMIN(height_sb, tiles->max_height_sb));
tiles->row_start_sb[i] = start_sb;
start_sb += size_sb;
height_sb -= size_sb;
}
tiles->rows = i;
tiles->row_start_sb[i] = start_sb + height_sb;
}
av1_calculate_tile_rows(cm, cm->mi_params.mi_rows, tiles);
}
void av1_set_single_tile_decoding_mode(AV1_COMMON *const cm) {
cm->tiles.single_tile_decoding = 0;
if (cm->tiles.large_scale) {
struct loopfilter *lf = &cm->lf;
RestorationInfo *const rst_info = cm->rst_info;
const CdefInfo *const cdef_info = &cm->cdef_info;
// Figure out single_tile_decoding by loopfilter_level.
const int no_loopfilter = !(lf->filter_level[0] || lf->filter_level[1]);
const int no_cdef = cdef_info->cdef_bits == 0 &&
cdef_info->cdef_strengths[0] == 0 &&
cdef_info->cdef_uv_strengths[0] == 0;
const int no_restoration =
#if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
rst_info[0].frame_cross_restoration_type == RESTORE_NONE &&
rst_info[1].frame_cross_restoration_type == RESTORE_NONE &&
rst_info[2].frame_cross_restoration_type == RESTORE_NONE &&
#endif // CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
rst_info[0].frame_restoration_type == RESTORE_NONE &&
rst_info[1].frame_restoration_type == RESTORE_NONE &&
rst_info[2].frame_restoration_type == RESTORE_NONE;
assert(IMPLIES(cm->features.coded_lossless, no_loopfilter && no_cdef));
assert(IMPLIES(cm->features.all_lossless, no_restoration));
cm->tiles.single_tile_decoding = no_loopfilter && no_cdef && no_restoration;
}
}
static AOM_INLINE void read_tile_info(AV1Decoder *const pbi,
struct aom_read_bit_buffer *const rb) {
AV1_COMMON *const cm = &pbi->common;
read_tile_info_max_tile(cm, rb);
pbi->context_update_tile_id = 0;
if (cm->tiles.rows * cm->tiles.cols > 1) {
// tile to use for cdf update
pbi->context_update_tile_id =
aom_rb_read_literal(rb, cm->tiles.log2_rows + cm->tiles.log2_cols);
if (pbi->context_update_tile_id >= cm->tiles.rows * cm->tiles.cols) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Invalid context_update_tile_id");
}
// tile size magnitude
pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1;
}
}
#if EXT_TILE_DEBUG
static AOM_INLINE void read_ext_tile_info(
AV1Decoder *const pbi, struct aom_read_bit_buffer *const rb) {
AV1_COMMON *const cm = &pbi->common;
// This information is stored as a separate byte.
int mod = rb->bit_offset % CHAR_BIT;
if (mod > 0) aom_rb_read_literal(rb, CHAR_BIT - mod);
assert(rb->bit_offset % CHAR_BIT == 0);
if (cm->tiles.cols * cm->tiles.rows > 1) {
// Read the number of bytes used to store tile size
pbi->tile_col_size_bytes = aom_rb_read_literal(rb, 2) + 1;
pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1;
}
}
#endif // EXT_TILE_DEBUG
static size_t mem_get_varsize(const uint8_t *src, int sz) {
switch (sz) {
case 1: return src[0];
case 2: return mem_get_le16(src);
case 3: return mem_get_le24(src);
case 4: return mem_get_le32(src);
default: assert(0 && "Invalid size"); return -1;
}
}
#if EXT_TILE_DEBUG
// Reads the next tile returning its size and adjusting '*data' accordingly
// based on 'is_last'. On return, '*data' is updated to point to the end of the
// raw tile buffer in the bit stream.
static AOM_INLINE void get_ls_tile_buffer(
const uint8_t *const data_end, struct aom_internal_error_info *error_info,
const uint8_t **data, TileBufferDec (*const tile_buffers)[MAX_TILE_COLS],
int tile_size_bytes, int col, int row, int tile_copy_mode) {
size_t size;
size_t copy_size = 0;
const uint8_t *copy_data = NULL;
if (!read_is_valid(*data, tile_size_bytes, data_end))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
size = mem_get_varsize(*data, tile_size_bytes);
// If tile_copy_mode = 1, then the top bit of the tile header indicates copy
// mode.
if (tile_copy_mode && (size >> (tile_size_bytes * 8 - 1)) == 1) {
// The remaining bits in the top byte signal the row offset
int offset = (size >> (tile_size_bytes - 1) * 8) & 0x7f;
// Currently, only use tiles in same column as reference tiles.
copy_data = tile_buffers[row - offset][col].data;
copy_size = tile_buffers[row - offset][col].size;
size = 0;
} else {
size += AV1_MIN_TILE_SIZE_BYTES;
}
*data += tile_size_bytes;
if (size > (size_t)(data_end - *data))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile size");
if (size > 0) {
tile_buffers[row][col].data = *data;
tile_buffers[row][col].size = size;
} else {
tile_buffers[row][col].data = copy_data;
tile_buffers[row][col].size = copy_size;
}
*data += size;
}
// Returns the end of the last tile buffer
// (tile_buffers[cm->tiles.rows - 1][cm->tiles.cols - 1]).
static const uint8_t *get_ls_tile_buffers(
AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end,
TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) {
AV1_COMMON *const cm = &pbi->common;
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
const int have_tiles = tile_cols * tile_rows > 1;
const uint8_t *raw_data_end; // The end of the last tile buffer
if (!have_tiles) {
const size_t tile_size = data_end - data;
tile_buffers[0][0].data = data;
tile_buffers[0][0].size = tile_size;
raw_data_end = NULL;
} else {
// We locate only the tile buffers that are required, which are the ones
// specified by pbi->dec_tile_col and pbi->dec_tile_row. Also, we always
// need the last (bottom right) tile buffer, as we need to know where the
// end of the compressed frame buffer is for proper superframe decoding.
const uint8_t *tile_col_data_end[MAX_TILE_COLS] = { NULL };
const uint8_t *const data_start = data;
const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
const int single_row = pbi->dec_tile_row >= 0;
const int tile_rows_start = single_row ? dec_tile_row : 0;
const int tile_rows_end = single_row ? tile_rows_start + 1 : tile_rows;
const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
const int single_col = pbi->dec_tile_col >= 0;
const int tile_cols_start = single_col ? dec_tile_col : 0;
const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
const int tile_col_size_bytes = pbi->tile_col_size_bytes;
const int tile_size_bytes = pbi->tile_size_bytes;
int tile_width, tile_height;
av1_get_uniform_tile_size(cm, &tile_width, &tile_height);
const int tile_copy_mode =
((AOMMAX(tile_width, tile_height) << MI_SIZE_LOG2) <= 256) ? 1 : 0;
// Read tile column sizes for all columns (we need the last tile buffer)
for (int c = 0; c < tile_cols; ++c) {
const int is_last = c == tile_cols - 1;
size_t tile_col_size;
if (!is_last) {
tile_col_size = mem_get_varsize(data, tile_col_size_bytes);
data += tile_col_size_bytes;
tile_col_data_end[c] = data + tile_col_size;
} else {
tile_col_size = data_end - data;
tile_col_data_end[c] = data_end;
}
data += tile_col_size;
}
data = data_start;
// Read the required tile sizes.
for (int c = tile_cols_start; c < tile_cols_end; ++c) {
const int is_last = c == tile_cols - 1;
if (c > 0) data = tile_col_data_end[c - 1];
if (!is_last) data += tile_col_size_bytes;
// Get the whole of the last column, otherwise stop at the required tile.
for (int r = 0; r < (is_last ? tile_rows : tile_rows_end); ++r) {
get_ls_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data,
tile_buffers, tile_size_bytes, c, r, tile_copy_mode);
}
}
// If we have not read the last column, then read it to get the last tile.
if (tile_cols_end != tile_cols) {
const int c = tile_cols - 1;
data = tile_col_data_end[c - 1];
for (int r = 0; r < tile_rows; ++r) {
get_ls_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data,
tile_buffers, tile_size_bytes, c, r, tile_copy_mode);
}
}
raw_data_end = data;
}
return raw_data_end;
}
#endif // EXT_TILE_DEBUG
static const uint8_t *get_ls_single_tile_buffer(
AV1Decoder *pbi, const uint8_t *data,
TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) {
assert(pbi->dec_tile_row >= 0 && pbi->dec_tile_col >= 0);
tile_buffers[pbi->dec_tile_row][pbi->dec_tile_col].data = data;
tile_buffers[pbi->dec_tile_row][pbi->dec_tile_col].size =
(size_t)pbi->coded_tile_data_size;
return data + pbi->coded_tile_data_size;
}
// Reads the next tile returning its size and adjusting '*data' accordingly
// based on 'is_last'.
static AOM_INLINE void get_tile_buffer(
const uint8_t *const data_end, const int tile_size_bytes, int is_last,
struct aom_internal_error_info *error_info, const uint8_t **data,
TileBufferDec *const buf) {
size_t size;
if (!is_last) {
if (!read_is_valid(*data, tile_size_bytes, data_end))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Not enough data to read tile size");
size = mem_get_varsize(*data, tile_size_bytes) + AV1_MIN_TILE_SIZE_BYTES;
*data += tile_size_bytes;
if (size > (size_t)(data_end - *data))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile size");
} else {
size = data_end - *data;
}
buf->data = *data;
buf->size = size;
*data += size;
}
static AOM_INLINE void get_tile_buffers(
AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end,
TileBufferDec (*const tile_buffers)[MAX_TILE_COLS], int start_tile,
int end_tile) {
AV1_COMMON *const cm = &pbi->common;
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
int tc = 0;
for (int r = 0; r < tile_rows; ++r) {
for (int c = 0; c < tile_cols; ++c, ++tc) {
TileBufferDec *const buf = &tile_buffers[r][c];
const int is_last = (tc == end_tile);
const size_t hdr_offset = 0;
if (tc < start_tile || tc > end_tile) continue;
if (data + hdr_offset >= data_end)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Data ended before all tiles were read.");
data += hdr_offset;
get_tile_buffer(data_end, pbi->tile_size_bytes, is_last,
&pbi->common.error, &data, buf);
}
}
}
static AOM_INLINE void set_cb_buffer(AV1Decoder *pbi, DecoderCodingBlock *dcb,
CB_BUFFER *cb_buffer_base,
const int num_planes, int mi_row,
int mi_col) {
AV1_COMMON *const cm = &pbi->common;
int mib_size_log2 = cm->mib_size_log2;
int stride = (cm->mi_params.mi_cols >> mib_size_log2) + 1;
int offset = (mi_row >> mib_size_log2) * stride + (mi_col >> mib_size_log2);
CB_BUFFER *cb_buffer = cb_buffer_base + offset;
for (int plane = 0; plane < num_planes; ++plane) {
dcb->dqcoeff_block[plane] = cb_buffer->dqcoeff[plane];
#if CONFIG_INSPECTION
dcb->dqcoeff_block_copy[plane] = cb_buffer->dqcoeff_copy[plane];
dcb->qcoeff_block[plane] = cb_buffer->qcoeff[plane];
dcb->dequant_values[plane] = cb_buffer->dequant_values[plane];
#endif // CONFIG_INSPECTION
dcb->eob_data[plane] = cb_buffer->eob_data[plane];
dcb->bob_data[plane] = cb_buffer->bob_data[plane];
dcb->cb_offset[plane] = 0;
dcb->txb_offset[plane] = 0;
}
MACROBLOCKD *const xd = &dcb->xd;
xd->plane[0].color_index_map = cb_buffer->color_index_map[0];
xd->plane[1].color_index_map = cb_buffer->color_index_map[1];
xd->color_index_map_offset[0] = 0;
xd->color_index_map_offset[1] = 0;
}
static AOM_INLINE void decoder_alloc_tile_data(AV1Decoder *pbi,
const int n_tiles) {
AV1_COMMON *const cm = &pbi->common;
aom_free(pbi->tile_data);
CHECK_MEM_ERROR(cm, pbi->tile_data,
aom_memalign(32, n_tiles * sizeof(*pbi->tile_data)));
pbi->allocated_tiles = n_tiles;
for (int i = 0; i < n_tiles; i++) {
TileDataDec *const tile_data = pbi->tile_data + i;
av1_zero(tile_data->dec_row_mt_sync);
}
pbi->allocated_row_mt_sync_rows = 0;
}
// Set up nsync by width.
static INLINE int get_sync_range(int width) {
// nsync numbers are picked by testing.
#if 0
if (width < 640)
return 1;
else if (width <= 1280)
return 2;
else if (width <= 4096)
return 4;
else
return 8;
#else
(void)width;
#endif
return 1;
}
// Allocate memory for decoder row synchronization
static AOM_INLINE void dec_row_mt_alloc(AV1DecRowMTSync *dec_row_mt_sync,
AV1_COMMON *cm, int rows) {
dec_row_mt_sync->allocated_sb_rows = rows;
#if CONFIG_MULTITHREAD
{
int i;
CHECK_MEM_ERROR(cm, dec_row_mt_sync->mutex_,
aom_malloc(sizeof(*(dec_row_mt_sync->mutex_)) * rows));
if (dec_row_mt_sync->mutex_) {
for (i = 0; i < rows; ++i) {
pthread_mutex_init(&dec_row_mt_sync->mutex_[i], NULL);
}
}
CHECK_MEM_ERROR(cm, dec_row_mt_sync->cond_,
aom_malloc(sizeof(*(dec_row_mt_sync->cond_)) * rows));
if (dec_row_mt_sync->cond_) {
for (i = 0; i < rows; ++i) {
pthread_cond_init(&dec_row_mt_sync->cond_[i], NULL);
}
}
}
#endif // CONFIG_MULTITHREAD
CHECK_MEM_ERROR(cm, dec_row_mt_sync->cur_sb_col,
aom_malloc(sizeof(*(dec_row_mt_sync->cur_sb_col)) * rows));
// Set up nsync.
dec_row_mt_sync->sync_range = get_sync_range(cm->width);
}
// Deallocate decoder row synchronization related mutex and data
void av1_dec_row_mt_dealloc(AV1DecRowMTSync *dec_row_mt_sync) {
if (dec_row_mt_sync != NULL) {
#if CONFIG_MULTITHREAD
int i;
if (dec_row_mt_sync->mutex_ != NULL) {
for (i = 0; i < dec_row_mt_sync->allocated_sb_rows; ++i) {
pthread_mutex_destroy(&dec_row_mt_sync->mutex_[i]);
}
aom_free(dec_row_mt_sync->mutex_);
}
if (dec_row_mt_sync->cond_ != NULL) {
for (i = 0; i < dec_row_mt_sync->allocated_sb_rows; ++i) {
pthread_cond_destroy(&dec_row_mt_sync->cond_[i]);
}
aom_free(dec_row_mt_sync->cond_);
}
#endif // CONFIG_MULTITHREAD
aom_free(dec_row_mt_sync->cur_sb_col);
// clear the structure as the source of this call may be a resize in which
// case this call will be followed by an _alloc() which may fail.
av1_zero(*dec_row_mt_sync);
}
}
static INLINE void sync_read(AV1DecRowMTSync *const dec_row_mt_sync, int r,
int c) {
#if CONFIG_MULTITHREAD
const int nsync = dec_row_mt_sync->sync_range;
if (r && !(c & (nsync - 1))) {
pthread_mutex_t *const mutex = &dec_row_mt_sync->mutex_[r - 1];
pthread_mutex_lock(mutex);
while (c > dec_row_mt_sync->cur_sb_col[r - 1] - nsync) {
pthread_cond_wait(&dec_row_mt_sync->cond_[r - 1], mutex);
}
pthread_mutex_unlock(mutex);
}
#else
(void)dec_row_mt_sync;
(void)r;
(void)c;
#endif // CONFIG_MULTITHREAD
}
static INLINE void sync_write(AV1DecRowMTSync *const dec_row_mt_sync, int r,
int c, const int sb_cols) {
#if CONFIG_MULTITHREAD
const int nsync = dec_row_mt_sync->sync_range;
int cur;
int sig = 1;
if (c < sb_cols - 1) {
cur = c;
if (c % nsync) sig = 0;
} else {
cur = sb_cols + nsync;
}
if (sig) {
pthread_mutex_lock(&dec_row_mt_sync->mutex_[r]);
dec_row_mt_sync->cur_sb_col[r] = cur;
pthread_cond_signal(&dec_row_mt_sync->cond_[r]);
pthread_mutex_unlock(&dec_row_mt_sync->mutex_[r]);
}
#else
(void)dec_row_mt_sync;
(void)r;
(void)c;
(void)sb_cols;
#endif // CONFIG_MULTITHREAD
}
static AOM_INLINE void decode_tile_sb_row(AV1Decoder *pbi, ThreadData *const td,
TileInfo tile_info,
const int mi_row) {
AV1_COMMON *const cm = &pbi->common;
const int num_planes = av1_num_planes(cm);
TileDataDec *const tile_data =
pbi->tile_data + tile_info.tile_row * cm->tiles.cols + tile_info.tile_col;
const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info);
const int sb_row_in_tile =
(mi_row - tile_info.mi_row_start) >> cm->mib_size_log2;
int sb_col_in_tile = 0;
for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end;
mi_col += cm->mib_size, sb_col_in_tile++) {
av1_reset_is_mi_coded_map(&td->dcb.xd, cm->mib_size);
td->dcb.xd.sbi = av1_get_sb_info(cm, mi_row, mi_col);
set_cb_buffer(pbi, &td->dcb, pbi->cb_buffer_base, num_planes, mi_row,
mi_col);
sync_read(&tile_data->dec_row_mt_sync, sb_row_in_tile, sb_col_in_tile);
DecoderCodingBlock *const dcb = &td->dcb;
MACROBLOCKD *const xd = &dcb->xd;
xd->ref_mv_bank.rmb_sb_hits = 0;
#if CONFIG_EXTENDED_WARP_PREDICTION
xd->warp_param_bank.wpb_sb_hits = 0;
#endif // CONFIG_EXTENDED_WARP_PREDICTION
// Decoding of the super-block
decode_partition_sb(pbi, td, mi_row, mi_col, td->bit_reader, cm->sb_size,
0x2);
sync_write(&tile_data->dec_row_mt_sync, sb_row_in_tile, sb_col_in_tile,
sb_cols_in_tile);
}
}
static int check_trailing_bits_after_symbol_coder(aom_reader *r) {
if (aom_reader_has_overflowed(r)) return -1;
uint32_t nb_bits = aom_reader_tell(r);
uint32_t nb_bytes = (nb_bits + 7) >> 3;
const uint8_t *p = aom_reader_find_begin(r) + nb_bytes;
// aom_reader_tell() returns 1 for a newly initialized decoder, and the
// return value only increases as values are decoded. So nb_bits > 0, and
// thus p > p_begin. Therefore accessing p[-1] is safe.
uint8_t last_byte = p[-1];
uint8_t pattern = 128 >> ((nb_bits - 1) & 7);
if ((last_byte & (2 * pattern - 1)) != pattern) return -1;
// Make sure that all padding bytes are zero as required by the spec.
const uint8_t *p_end = aom_reader_find_end(r);
while (p < p_end) {
if (*p != 0) return -1;
p++;
}
return 0;
}
static AOM_INLINE void set_decode_func_pointers(ThreadData *td,
int parse_decode_flag) {
td->read_coeffs_tx_intra_block_visit = decode_block_void;
td->predict_and_recon_intra_block_visit = decode_block_void;
td->read_coeffs_tx_inter_block_visit = decode_block_void;
td->inverse_tx_inter_block_visit = decode_block_void;
td->inverse_cctx_block_visit = decode_block_void;
td->predict_inter_block_visit = predict_inter_block_void;
td->cfl_store_inter_block_visit = cfl_store_inter_block_void;
if (parse_decode_flag & 0x1) {
td->read_coeffs_tx_intra_block_visit = read_coeffs_tx_intra_block;
td->read_coeffs_tx_inter_block_visit = av1_read_coeffs_txb_facade;
}
if (parse_decode_flag & 0x2) {
td->predict_and_recon_intra_block_visit =
predict_and_reconstruct_intra_block;
td->inverse_tx_inter_block_visit = inverse_transform_inter_block;
td->inverse_cctx_block_visit = inverse_cross_chroma_transform_block;
td->predict_inter_block_visit = predict_inter_block;
td->cfl_store_inter_block_visit = cfl_store_inter_block;
}
}
static AOM_INLINE void decode_tile(AV1Decoder *pbi, ThreadData *const td,
int tile_row, int tile_col) {
TileInfo tile_info;
AV1_COMMON *const cm = &pbi->common;
const int num_planes = av1_num_planes(cm);
av1_tile_set_row(&tile_info, cm, tile_row);
av1_tile_set_col(&tile_info, cm, tile_col);
DecoderCodingBlock *const dcb = &td->dcb;
MACROBLOCKD *const xd = &dcb->xd;
av1_zero_above_context(cm, xd, tile_info.mi_col_start, tile_info.mi_col_end,
tile_row);
av1_reset_loop_filter_delta(xd, num_planes);
#if CONFIG_WIENER_NONSEP
int num_filter_classes[MAX_MB_PLANE];
for (int p = 0; p < num_planes; ++p)
num_filter_classes[p] = cm->rst_info[p].num_filter_classes;
#endif // CONFIG_WIENER_NONSEP
av1_reset_loop_restoration(xd, 0, num_planes
#if CONFIG_WIENER_NONSEP
,
num_filter_classes
#endif // CONFIG_WIENER_NONSEP
);
for (int mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end;
mi_row += cm->mib_size) {
av1_zero_left_context(xd);
av1_zero(xd->ref_mv_bank);
#if !CONFIG_MVP_IMPROVEMENT
xd->ref_mv_bank_pt = &td->ref_mv_bank;
#endif
#if CONFIG_EXTENDED_WARP_PREDICTION
av1_zero(xd->warp_param_bank);
#if !WARP_CU_BANK
xd->warp_param_bank_pt = &td->warp_param_bank;
#endif //! WARP_CU_BANK
#endif // CONFIG_EXTENDED_WARP_PREDICTION
for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end;
mi_col += cm->mib_size) {
av1_reset_is_mi_coded_map(xd, cm->mib_size);
av1_set_sb_info(cm, xd, mi_row, mi_col);
set_cb_buffer(pbi, dcb, &td->cb_buffer_base, num_planes, 0, 0);
// td->ref_mv_bank is initialized as xd->ref_mv_bank, and used
// for MV referencing during decoding the tile.
// xd->ref_mv_bank is updated as decoding goes.
xd->ref_mv_bank.rmb_sb_hits = 0;
#if !CONFIG_MVP_IMPROVEMENT
td->ref_mv_bank = xd->ref_mv_bank;
#endif // !CONFIG_MVP_IMPROVEMENT
#if CONFIG_EXTENDED_WARP_PREDICTION
xd->warp_param_bank.wpb_sb_hits = 0;
#if !WARP_CU_BANK
td->warp_param_bank = xd->warp_param_bank;
#endif //! WARP_CU_BANK
#endif // CONFIG_EXTENDED_WARP_PREDICTION
decode_partition_sb(pbi, td, mi_row, mi_col, td->bit_reader, cm->sb_size,
0x3);
if (aom_reader_has_overflowed(td->bit_reader)) {
aom_merge_corrupted_flag(&dcb->corrupted, 1);
return;
}
}
}
int corrupted =
(check_trailing_bits_after_symbol_coder(td->bit_reader)) ? 1 : 0;
aom_merge_corrupted_flag(&dcb->corrupted, corrupted);
}
#if CONFIG_THROUGHPUT_ANALYSIS
static void aom_accounting_cal_total(AV1Decoder *pbi) {
if (pbi->decoding_first_frame) {
pbi->common.sym_stats.frame_dec_order = 0;
pbi->common.sym_stats.tot_ctx_syms = 0;
pbi->common.sym_stats.tot_bypass_syms = 0;
pbi->common.sym_stats.tot_bits = 0;
pbi->common.sym_stats.peak_ctx_syms = 0;
pbi->common.sym_stats.peak_bypass_syms = 0;
pbi->common.sym_stats.peak_bits = 0;
}
Accounting accounting = pbi->accounting;
int64_t frm_ctx_syms = accounting.syms.num_ctx_coded;
int64_t frm_bypass_syms = accounting.syms.num_bypass_coded;
int64_t frm_bits = 0;
for (int i = 0; i < accounting.syms.num_syms; i++) {
AccountingSymbol sym = accounting.syms.syms[i];
frm_bits += sym.bits;
}
int64_t peak_ctx_syms = pbi->common.sym_stats.peak_ctx_syms;
int64_t peak_bypass_syms = pbi->common.sym_stats.peak_bypass_syms;
pbi->common.sym_stats.tot_ctx_syms += frm_ctx_syms;
pbi->common.sym_stats.tot_bypass_syms += frm_bypass_syms;
pbi->common.sym_stats.frame_dec_order += 1;
pbi->common.sym_stats.tot_bits += frm_bits;
if (frm_ctx_syms * 4 + frm_bypass_syms >
peak_ctx_syms * 4 + peak_bypass_syms) {
pbi->common.sym_stats.peak_ctx_syms = frm_ctx_syms;
pbi->common.sym_stats.peak_bypass_syms = frm_bypass_syms;
pbi->common.sym_stats.peak_bits = frm_bits;
}
tot_ctx_syms = pbi->common.sym_stats.tot_ctx_syms;
tot_bypass_syms = pbi->common.sym_stats.tot_bypass_syms;
tot_bits = pbi->common.sym_stats.tot_bits;
max_ctx_syms = pbi->common.sym_stats.peak_ctx_syms;
max_bypass_syms = pbi->common.sym_stats.peak_bypass_syms;
max_bits = pbi->common.sym_stats.peak_bits;
tot_frames = pbi->common.sym_stats.frame_dec_order;
}
#endif // CONFIG_THROUGHPUT_ANALYSIS
static const uint8_t *decode_tiles(AV1Decoder *pbi, const uint8_t *data,
const uint8_t *data_end, int start_tile,
int end_tile) {
AV1_COMMON *const cm = &pbi->common;
ThreadData *const td = &pbi->td;
CommonTileParams *const tiles = &cm->tiles;
const int tile_cols = tiles->cols;
const int tile_rows = tiles->rows;
const int n_tiles = tile_cols * tile_rows;
TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers;
const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
const int single_row = pbi->dec_tile_row >= 0;
const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
const int single_col = pbi->dec_tile_col >= 0;
int tile_rows_start;
int tile_rows_end;
int tile_cols_start;
int tile_cols_end;
int inv_col_order;
int inv_row_order;
int tile_row, tile_col;
uint8_t allow_update_cdf;
const uint8_t *raw_data_end = NULL;
if (tiles->large_scale) {
tile_rows_start = single_row ? dec_tile_row : 0;
tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows;
tile_cols_start = single_col ? dec_tile_col : 0;
tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
inv_col_order = pbi->inv_tile_order && !single_col;
inv_row_order = pbi->inv_tile_order && !single_row;
allow_update_cdf = 0;
} else {
tile_rows_start = 0;
tile_rows_end = tile_rows;
tile_cols_start = 0;
tile_cols_end = tile_cols;
inv_col_order = pbi->inv_tile_order;
inv_row_order = pbi->inv_tile_order;
allow_update_cdf = 1;
}
// No tiles to decode.
if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start ||
// First tile is larger than end_tile.
tile_rows_start * tiles->cols + tile_cols_start > end_tile ||
// Last tile is smaller than start_tile.
(tile_rows_end - 1) * tiles->cols + tile_cols_end - 1 < start_tile)
return data;
allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update;
assert(tile_rows <= MAX_TILE_ROWS);
assert(tile_cols <= MAX_TILE_COLS);
#if EXT_TILE_DEBUG
if (tiles->large_scale && !pbi->ext_tile_debug)
raw_data_end = get_ls_single_tile_buffer(pbi, data, tile_buffers);
else if (tiles->large_scale && pbi->ext_tile_debug)
raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers);
else
#endif // EXT_TILE_DEBUG
get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile);
if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) {
decoder_alloc_tile_data(pbi, n_tiles);
}
#if CONFIG_ACCOUNTING
if (pbi->acct_enabled) {
aom_accounting_reset(&pbi->accounting);
}
#endif
set_decode_func_pointers(&pbi->td, 0x3);
// Load all tile information into thread_data.
td->dcb = pbi->dcb;
td->dcb.corrupted = 0;
td->dcb.mc_buf[0] = td->mc_buf[0];
td->dcb.mc_buf[1] = td->mc_buf[1];
td->dcb.xd.tmp_conv_dst = td->tmp_conv_dst;
for (int j = 0; j < 2; ++j) {
td->dcb.xd.tmp_obmc_bufs[j] = td->tmp_obmc_bufs[j];
}
for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) {
const int row = inv_row_order ? tile_rows - 1 - tile_row : tile_row;
for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) {
const int col = inv_col_order ? tile_cols - 1 - tile_col : tile_col;
TileDataDec *const tile_data = pbi->tile_data + row * tiles->cols + col;
const TileBufferDec *const tile_bs_buf = &tile_buffers[row][col];
if (row * tiles->cols + col < start_tile ||
row * tiles->cols + col > end_tile)
continue;
td->bit_reader = &tile_data->bit_reader;
// av1_zero(td->cb_buffer_base.dqcoeff);
av1_tile_init(&td->dcb.xd.tile, cm, row, col);
td->dcb.xd.current_base_qindex = cm->quant_params.base_qindex;
setup_bool_decoder(tile_bs_buf->data, data_end, tile_bs_buf->size,
&cm->error, td->bit_reader, allow_update_cdf);
#if CONFIG_ACCOUNTING
if (pbi->acct_enabled) {
td->bit_reader->accounting = &pbi->accounting;
td->bit_reader->accounting->last_tell_frac =
aom_reader_tell_frac(td->bit_reader);
} else {
td->bit_reader->accounting = NULL;
}
#endif
av1_init_macroblockd(cm, &td->dcb.xd);
av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), row,
&td->dcb.xd);
// Initialise the tile context from the frame context
tile_data->tctx = *cm->fc;
td->dcb.xd.tile_ctx = &tile_data->tctx;
// decode tile
decode_tile(pbi, td, row, col);
aom_merge_corrupted_flag(&pbi->dcb.corrupted, td->dcb.corrupted);
if (pbi->dcb.corrupted)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Failed to decode tile data");
}
}
if (tiles->large_scale) {
if (n_tiles == 1) {
// Find the end of the single tile buffer
return aom_reader_find_end(&pbi->tile_data->bit_reader);
}
// Return the end of the last tile buffer
return raw_data_end;
}
TileDataDec *const tile_data = pbi->tile_data + end_tile;
#if CONFIG_THROUGHPUT_ANALYSIS
if (pbi->acct_enabled) {
aom_accounting_cal_total(pbi);
}
#endif // CONFIG_THROUGHPUT_ANALYSIS
return aom_reader_find_end(&tile_data->bit_reader);
}
static TileJobsDec *get_dec_job_info(AV1DecTileMT *tile_mt_info) {
TileJobsDec *cur_job_info = NULL;
#if CONFIG_MULTITHREAD
pthread_mutex_lock(tile_mt_info->job_mutex);
if (tile_mt_info->jobs_dequeued < tile_mt_info->jobs_enqueued) {
cur_job_info = tile_mt_info->job_queue + tile_mt_info->jobs_dequeued;
tile_mt_info->jobs_dequeued++;
}
pthread_mutex_unlock(tile_mt_info->job_mutex);
#else
(void)tile_mt_info;
#endif
return cur_job_info;
}
static AOM_INLINE void tile_worker_hook_init(
AV1Decoder *const pbi, DecWorkerData *const thread_data,
const TileBufferDec *const tile_buffer, TileDataDec *const tile_data,
uint8_t allow_update_cdf) {
AV1_COMMON *cm = &pbi->common;
ThreadData *const td = thread_data->td;
int tile_row = tile_data->tile_info.tile_row;
int tile_col = tile_data->tile_info.tile_col;
td->bit_reader = &tile_data->bit_reader;
av1_zero(td->cb_buffer_base.dqcoeff);
MACROBLOCKD *const xd = &td->dcb.xd;
av1_tile_init(&xd->tile, cm, tile_row, tile_col);
xd->current_base_qindex = cm->quant_params.base_qindex;
setup_bool_decoder(tile_buffer->data, thread_data->data_end,
tile_buffer->size, &thread_data->error_info,
td->bit_reader, allow_update_cdf);
#if CONFIG_ACCOUNTING
if (pbi->acct_enabled) {
td->bit_reader->accounting = &pbi->accounting;
td->bit_reader->accounting->last_tell_frac =
aom_reader_tell_frac(td->bit_reader);
} else {
td->bit_reader->accounting = NULL;
}
#endif
av1_init_macroblockd(cm, xd);
xd->error_info = &thread_data->error_info;
av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row, xd);
// Initialise the tile context from the frame context
tile_data->tctx = *cm->fc;
xd->tile_ctx = &tile_data->tctx;
#if CONFIG_ACCOUNTING
if (pbi->acct_enabled) {
tile_data->bit_reader.accounting->last_tell_frac =
aom_reader_tell_frac(&tile_data->bit_reader);
}
#endif
}
static int tile_worker_hook(void *arg1, void *arg2) {
DecWorkerData *const thread_data = (DecWorkerData *)arg1;
AV1Decoder *const pbi = (AV1Decoder *)arg2;
AV1_COMMON *cm = &pbi->common;
ThreadData *const td = thread_data->td;
uint8_t allow_update_cdf;
// The jmp_buf is valid only for the duration of the function that calls
// setjmp(). Therefore, this function must reset the 'setjmp' field to 0
// before it returns.
if (setjmp(thread_data->error_info.jmp)) {
thread_data->error_info.setjmp = 0;
thread_data->td->dcb.corrupted = 1;
return 0;
}
thread_data->error_info.setjmp = 1;
allow_update_cdf = cm->tiles.large_scale ? 0 : 1;
allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update;
set_decode_func_pointers(td, 0x3);
assert(cm->tiles.cols > 0);
while (!td->dcb.corrupted) {
TileJobsDec *cur_job_info = get_dec_job_info(&pbi->tile_mt_info);
if (cur_job_info != NULL) {
const TileBufferDec *const tile_buffer = cur_job_info->tile_buffer;
TileDataDec *const tile_data = cur_job_info->tile_data;
tile_worker_hook_init(pbi, thread_data, tile_buffer, tile_data,
allow_update_cdf);
// decode tile
int tile_row = tile_data->tile_info.tile_row;
int tile_col = tile_data->tile_info.tile_col;
decode_tile(pbi, td, tile_row, tile_col);
} else {
break;
}
}
thread_data->error_info.setjmp = 0;
return !td->dcb.corrupted;
}
static INLINE int get_max_row_mt_workers_per_tile(AV1_COMMON *cm,
TileInfo tile) {
// NOTE: Currently value of max workers is calculated based
// on the parse and decode time. As per the theoretical estimate
// when percentage of parse time is equal to percentage of decode
// time, number of workers needed to parse + decode a tile can not
// exceed more than 2.
// TODO(any): Modify this value if parsing is optimized in future.
int sb_rows = av1_get_sb_rows_in_tile(cm, tile);
int max_workers =
sb_rows == 1 ? AOM_MIN_THREADS_PER_TILE : AOM_MAX_THREADS_PER_TILE;
return max_workers;
}
// The caller must hold pbi->row_mt_mutex_ when calling this function.
// Returns 1 if either the next job is stored in *next_job_info or 1 is stored
// in *end_of_frame.
// NOTE: The caller waits on pbi->row_mt_cond_ if this function returns 0.
// The return value of this function depends on the following variables:
// - frame_row_mt_info->mi_rows_parse_done
// - frame_row_mt_info->mi_rows_decode_started
// - frame_row_mt_info->row_mt_exit
// Therefore we may need to signal or broadcast pbi->row_mt_cond_ if any of
// these variables is modified.
static int get_next_job_info(AV1Decoder *const pbi,
AV1DecRowMTJobInfo *next_job_info,
int *end_of_frame) {
AV1_COMMON *cm = &pbi->common;
TileDataDec *tile_data;
AV1DecRowMTSync *dec_row_mt_sync;
AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info;
TileInfo tile_info;
const int tile_rows_start = frame_row_mt_info->tile_rows_start;
const int tile_rows_end = frame_row_mt_info->tile_rows_end;
const int tile_cols_start = frame_row_mt_info->tile_cols_start;
const int tile_cols_end = frame_row_mt_info->tile_cols_end;
const int start_tile = frame_row_mt_info->start_tile;
const int end_tile = frame_row_mt_info->end_tile;
const int sb_mi_size = mi_size_wide[cm->sb_size];
int num_mis_to_decode, num_threads_working;
int num_mis_waiting_for_decode;
int min_threads_working = INT_MAX;
int max_mis_to_decode = 0;
int tile_row_idx, tile_col_idx;
int tile_row = -1;
int tile_col = -1;
memset(next_job_info, 0, sizeof(*next_job_info));
// Frame decode is completed or error is encountered.
*end_of_frame = (frame_row_mt_info->mi_rows_decode_started ==
frame_row_mt_info->mi_rows_to_decode) ||
(frame_row_mt_info->row_mt_exit == 1);
if (*end_of_frame) {
return 1;
}
// Decoding cannot start as bit-stream parsing is not complete.
assert(frame_row_mt_info->mi_rows_parse_done >=
frame_row_mt_info->mi_rows_decode_started);
if (frame_row_mt_info->mi_rows_parse_done ==
frame_row_mt_info->mi_rows_decode_started)
return 0;
// Choose the tile to decode.
for (tile_row_idx = tile_rows_start; tile_row_idx < tile_rows_end;
++tile_row_idx) {
for (tile_col_idx = tile_cols_start; tile_col_idx < tile_cols_end;
++tile_col_idx) {
if (tile_row_idx * cm->tiles.cols + tile_col_idx < start_tile ||
tile_row_idx * cm->tiles.cols + tile_col_idx > end_tile)
continue;
tile_data = pbi->tile_data + tile_row_idx * cm->tiles.cols + tile_col_idx;
dec_row_mt_sync = &tile_data->dec_row_mt_sync;
num_threads_working = dec_row_mt_sync->num_threads_working;
num_mis_waiting_for_decode = (dec_row_mt_sync->mi_rows_parse_done -
dec_row_mt_sync->mi_rows_decode_started) *
dec_row_mt_sync->mi_cols;
num_mis_to_decode =
(dec_row_mt_sync->mi_rows - dec_row_mt_sync->mi_rows_decode_started) *
dec_row_mt_sync->mi_cols;
assert(num_mis_to_decode >= num_mis_waiting_for_decode);
// Pick the tile which has minimum number of threads working on it.
if (num_mis_waiting_for_decode > 0) {
if (num_threads_working < min_threads_working) {
min_threads_working = num_threads_working;
max_mis_to_decode = 0;
}
if (num_threads_working == min_threads_working &&
num_mis_to_decode > max_mis_to_decode &&
num_threads_working <
get_max_row_mt_workers_per_tile(cm, tile_data->tile_info)) {
max_mis_to_decode = num_mis_to_decode;
tile_row = tile_row_idx;
tile_col = tile_col_idx;
}
}
}
}
// No job found to process
if (tile_row == -1 || tile_col == -1) return 0;
tile_data = pbi->tile_data + tile_row * cm->tiles.cols + tile_col;
tile_info = tile_data->tile_info;
dec_row_mt_sync = &tile_data->dec_row_mt_sync;
next_job_info->tile_row = tile_row;
next_job_info->tile_col = tile_col;
next_job_info->mi_row =
dec_row_mt_sync->mi_rows_decode_started + tile_info.mi_row_start;
dec_row_mt_sync->num_threads_working++;
dec_row_mt_sync->mi_rows_decode_started += sb_mi_size;
frame_row_mt_info->mi_rows_decode_started += sb_mi_size;
assert(frame_row_mt_info->mi_rows_parse_done >=
frame_row_mt_info->mi_rows_decode_started);
#if CONFIG_MULTITHREAD
if (frame_row_mt_info->mi_rows_decode_started ==
frame_row_mt_info->mi_rows_to_decode) {
pthread_cond_broadcast(pbi->row_mt_cond_);
}
#endif
return 1;
}
static INLINE void signal_parse_sb_row_done(AV1Decoder *const pbi,
TileDataDec *const tile_data,
const int sb_mi_size) {
AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info;
#if CONFIG_MULTITHREAD
pthread_mutex_lock(pbi->row_mt_mutex_);
#endif
assert(frame_row_mt_info->mi_rows_parse_done >=
frame_row_mt_info->mi_rows_decode_started);
tile_data->dec_row_mt_sync.mi_rows_parse_done += sb_mi_size;
frame_row_mt_info->mi_rows_parse_done += sb_mi_size;
#if CONFIG_MULTITHREAD
// A new decode job is available. Wake up one worker thread to handle the
// new decode job.
// NOTE: This assumes we bump mi_rows_parse_done and mi_rows_decode_started
// by the same increment (sb_mi_size).
pthread_cond_signal(pbi->row_mt_cond_);
pthread_mutex_unlock(pbi->row_mt_mutex_);
#endif
}
// This function is very similar to decode_tile(). It would be good to figure
// out how to share code.
static AOM_INLINE void parse_tile_row_mt(AV1Decoder *pbi, ThreadData *const td,
TileDataDec *const tile_data) {
AV1_COMMON *const cm = &pbi->common;
const int sb_mi_size = mi_size_wide[cm->sb_size];
const int num_planes = av1_num_planes(cm);
TileInfo tile_info = tile_data->tile_info;
int tile_row = tile_info.tile_row;
DecoderCodingBlock *const dcb = &td->dcb;
MACROBLOCKD *const xd = &dcb->xd;
av1_zero_above_context(cm, xd, tile_info.mi_col_start, tile_info.mi_col_end,
tile_row);
av1_reset_loop_filter_delta(xd, num_planes);
#if CONFIG_WIENER_NONSEP
int num_filter_classes[MAX_MB_PLANE];
for (int p = 0; p < num_planes; ++p)
num_filter_classes[p] = cm->rst_info[p].num_filter_classes;
#endif // CONFIG_WIENER_NONSEP
av1_reset_loop_restoration(xd, 0, num_planes
#if CONFIG_WIENER_NONSEP
,
num_filter_classes
#endif // CONFIG_WIENER_NONSEP
);
for (int mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end;
mi_row += cm->mib_size) {
av1_zero_left_context(xd);
av1_zero(xd->ref_mv_bank);
#if !CONFIG_MVP_IMPROVEMENT
xd->ref_mv_bank_pt = &td->ref_mv_bank;
#endif
#if CONFIG_EXTENDED_WARP_PREDICTION
av1_zero(xd->warp_param_bank);
#if !WARP_CU_BANK
xd->warp_param_bank_pt = &td->warp_param_bank;
#endif //! WARP_CU_BANK
#endif // CONFIG_EXTENDED_WARP_PREDICTION
for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end;
mi_col += cm->mib_size) {
av1_reset_is_mi_coded_map(xd, cm->mib_size);
av1_set_sb_info(cm, xd, mi_row, mi_col);
set_cb_buffer(pbi, dcb, pbi->cb_buffer_base, num_planes, mi_row, mi_col);
xd->ref_mv_bank.rmb_sb_hits = 0;
#if !CONFIG_MVP_IMPROVEMENT
td->ref_mv_bank = xd->ref_mv_bank;
#endif // !CONFIG_MVP_IMPROVEMENT
#if CONFIG_EXTENDED_WARP_PREDICTION
xd->warp_param_bank.wpb_sb_hits = 0;
#if !WARP_CU_BANK
td->warp_param_bank = xd->warp_param_bank;
#endif //! WARP_CU_BANK
#endif // CONFIG_EXTENDED_WARP_PREDICTION
// Bit-stream parsing of the superblock
decode_partition_sb(pbi, td, mi_row, mi_col, td->bit_reader, cm->sb_size,
0x1);
if (aom_reader_has_overflowed(td->bit_reader)) {
aom_merge_corrupted_flag(&dcb->corrupted, 1);
return;
}
}
signal_parse_sb_row_done(pbi, tile_data, sb_mi_size);
}
int corrupted =
(check_trailing_bits_after_symbol_coder(td->bit_reader)) ? 1 : 0;
aom_merge_corrupted_flag(&dcb->corrupted, corrupted);
}
static int row_mt_worker_hook(void *arg1, void *arg2) {
DecWorkerData *const thread_data = (DecWorkerData *)arg1;
AV1Decoder *const pbi = (AV1Decoder *)arg2;
AV1_COMMON *cm = &pbi->common;
ThreadData *const td = thread_data->td;
uint8_t allow_update_cdf;
AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info;
td->dcb.corrupted = 0;
// The jmp_buf is valid only for the duration of the function that calls
// setjmp(). Therefore, this function must reset the 'setjmp' field to 0
// before it returns.
if (setjmp(thread_data->error_info.jmp)) {
thread_data->error_info.setjmp = 0;
thread_data->td->dcb.corrupted = 1;
#if CONFIG_MULTITHREAD
pthread_mutex_lock(pbi->row_mt_mutex_);
#endif
frame_row_mt_info->row_mt_exit = 1;
#if CONFIG_MULTITHREAD
pthread_cond_broadcast(pbi->row_mt_cond_);
pthread_mutex_unlock(pbi->row_mt_mutex_);
#endif
return 0;
}
thread_data->error_info.setjmp = 1;
allow_update_cdf = cm->tiles.large_scale ? 0 : 1;
allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update;
set_decode_func_pointers(td, 0x1);
assert(cm->tiles.cols > 0);
while (!td->dcb.corrupted) {
TileJobsDec *cur_job_info = get_dec_job_info(&pbi->tile_mt_info);
if (cur_job_info != NULL) {
const TileBufferDec *const tile_buffer = cur_job_info->tile_buffer;
TileDataDec *const tile_data = cur_job_info->tile_data;
tile_worker_hook_init(pbi, thread_data, tile_buffer, tile_data,
allow_update_cdf);
#if CONFIG_MULTITHREAD
pthread_mutex_lock(pbi->row_mt_mutex_);
#endif
tile_data->dec_row_mt_sync.num_threads_working++;
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(pbi->row_mt_mutex_);
#endif
// decode tile
parse_tile_row_mt(pbi, td, tile_data);
#if CONFIG_MULTITHREAD
pthread_mutex_lock(pbi->row_mt_mutex_);
#endif
tile_data->dec_row_mt_sync.num_threads_working--;
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(pbi->row_mt_mutex_);
#endif
} else {
break;
}
}
if (td->dcb.corrupted) {
thread_data->error_info.setjmp = 0;
#if CONFIG_MULTITHREAD
pthread_mutex_lock(pbi->row_mt_mutex_);
#endif
frame_row_mt_info->row_mt_exit = 1;
#if CONFIG_MULTITHREAD
pthread_cond_broadcast(pbi->row_mt_cond_);
pthread_mutex_unlock(pbi->row_mt_mutex_);
#endif
return 0;
}
set_decode_func_pointers(td, 0x2);
while (1) {
AV1DecRowMTJobInfo next_job_info;
int end_of_frame = 0;
#if CONFIG_MULTITHREAD
pthread_mutex_lock(pbi->row_mt_mutex_);
#endif
while (!get_next_job_info(pbi, &next_job_info, &end_of_frame)) {
#if CONFIG_MULTITHREAD
pthread_cond_wait(pbi->row_mt_cond_, pbi->row_mt_mutex_);
#endif
}
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(pbi->row_mt_mutex_);
#endif
if (end_of_frame) break;
int tile_row = next_job_info.tile_row;
int tile_col = next_job_info.tile_col;
int mi_row = next_job_info.mi_row;
TileDataDec *tile_data =
pbi->tile_data + tile_row * cm->tiles.cols + tile_col;
AV1DecRowMTSync *dec_row_mt_sync = &tile_data->dec_row_mt_sync;
TileInfo tile_info = tile_data->tile_info;
av1_tile_init(&td->dcb.xd.tile, cm, tile_row, tile_col);
av1_init_macroblockd(cm, &td->dcb.xd);
td->dcb.xd.error_info = &thread_data->error_info;
decode_tile_sb_row(pbi, td, tile_info, mi_row);
#if CONFIG_MULTITHREAD
pthread_mutex_lock(pbi->row_mt_mutex_);
#endif
dec_row_mt_sync->num_threads_working--;
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(pbi->row_mt_mutex_);
#endif
}
thread_data->error_info.setjmp = 0;
return !td->dcb.corrupted;
}
// sorts in descending order
static int compare_tile_buffers(const void *a, const void *b) {
const TileJobsDec *const buf1 = (const TileJobsDec *)a;
const TileJobsDec *const buf2 = (const TileJobsDec *)b;
return (((int)buf2->tile_buffer->size) - ((int)buf1->tile_buffer->size));
}
static AOM_INLINE void enqueue_tile_jobs(AV1Decoder *pbi, AV1_COMMON *cm,
int tile_rows_start, int tile_rows_end,
int tile_cols_start, int tile_cols_end,
int start_tile, int end_tile) {
AV1DecTileMT *tile_mt_info = &pbi->tile_mt_info;
TileJobsDec *tile_job_queue = tile_mt_info->job_queue;
tile_mt_info->jobs_enqueued = 0;
tile_mt_info->jobs_dequeued = 0;
for (int row = tile_rows_start; row < tile_rows_end; row++) {
for (int col = tile_cols_start; col < tile_cols_end; col++) {
if (row * cm->tiles.cols + col < start_tile ||
row * cm->tiles.cols + col > end_tile)
continue;
tile_job_queue->tile_buffer = &pbi->tile_buffers[row][col];
tile_job_queue->tile_data = pbi->tile_data + row * cm->tiles.cols + col;
tile_job_queue++;
tile_mt_info->jobs_enqueued++;
}
}
}
static AOM_INLINE void alloc_dec_jobs(AV1DecTileMT *tile_mt_info,
AV1_COMMON *cm, int tile_rows,
int tile_cols) {
tile_mt_info->alloc_tile_rows = tile_rows;
tile_mt_info->alloc_tile_cols = tile_cols;
int num_tiles = tile_rows * tile_cols;
#if CONFIG_MULTITHREAD
{
CHECK_MEM_ERROR(cm, tile_mt_info->job_mutex,
aom_malloc(sizeof(*tile_mt_info->job_mutex) * num_tiles));
for (int i = 0; i < num_tiles; i++) {
pthread_mutex_init(&tile_mt_info->job_mutex[i], NULL);
}
}
#endif
CHECK_MEM_ERROR(cm, tile_mt_info->job_queue,
aom_malloc(sizeof(*tile_mt_info->job_queue) * num_tiles));
}
void av1_free_mc_tmp_buf(ThreadData *thread_data) {
int ref;
for (ref = 0; ref < 2; ref++) {
aom_free(thread_data->mc_buf[ref]);
thread_data->mc_buf[ref] = NULL;
}
thread_data->mc_buf_size = 0;
aom_free(thread_data->tmp_conv_dst);
thread_data->tmp_conv_dst = NULL;
for (int i = 0; i < 2; ++i) {
aom_free(thread_data->tmp_obmc_bufs[i]);
thread_data->tmp_obmc_bufs[i] = NULL;
}
}
static AOM_INLINE void allocate_mc_tmp_buf(AV1_COMMON *const cm,
ThreadData *thread_data,
int buf_size) {
for (int ref = 0; ref < 2; ref++) {
// The mc_buf/hbd_mc_buf must be zeroed to fix a intermittent valgrind error
// 'Conditional jump or move depends on uninitialised value' from the loop
// filter. Uninitialized reads in convolve function (e.g. horiz_4tap path in
// av1_convolve_2d_sr_avx2()) from mc_buf/hbd_mc_buf are seen to be the
// potential reason for this issue.
uint16_t *hbd_mc_buf;
CHECK_MEM_ERROR(cm, hbd_mc_buf, (uint16_t *)aom_memalign(16, buf_size));
memset(hbd_mc_buf, 0, buf_size);
thread_data->mc_buf[ref] = hbd_mc_buf;
}
thread_data->mc_buf_size = buf_size;
CHECK_MEM_ERROR(cm, thread_data->tmp_conv_dst,
aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE *
sizeof(*thread_data->tmp_conv_dst)));
for (int i = 0; i < 2; ++i) {
CHECK_MEM_ERROR(
cm, thread_data->tmp_obmc_bufs[i],
aom_memalign(16, 2 * MAX_MB_PLANE * MAX_SB_SQUARE *
sizeof(*thread_data->tmp_obmc_bufs[i])));
}
}
static AOM_INLINE void reset_dec_workers(AV1Decoder *pbi,
AVxWorkerHook worker_hook,
int num_workers) {
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
// Reset tile decoding hook
for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) {
AVxWorker *const worker = &pbi->tile_workers[worker_idx];
DecWorkerData *const thread_data = pbi->thread_data + worker_idx;
thread_data->td->dcb = pbi->dcb;
thread_data->td->dcb.corrupted = 0;
thread_data->td->dcb.mc_buf[0] = thread_data->td->mc_buf[0];
thread_data->td->dcb.mc_buf[1] = thread_data->td->mc_buf[1];
thread_data->td->dcb.xd.tmp_conv_dst = thread_data->td->tmp_conv_dst;
for (int j = 0; j < 2; ++j) {
thread_data->td->dcb.xd.tmp_obmc_bufs[j] =
thread_data->td->tmp_obmc_bufs[j];
}
winterface->sync(worker);
worker->hook = worker_hook;
worker->data1 = thread_data;
worker->data2 = pbi;
}
#if CONFIG_ACCOUNTING
if (pbi->acct_enabled) {
#if CONFIG_THROUGHPUT_ANALYSIS
aom_accounting_cal_total(pbi);
#else
aom_accounting_dump(&pbi->accounting);
#endif // CONFIG_THROUGHPUT_ANALYSIS
aom_accounting_reset(&pbi->accounting);
}
#endif
}
static AOM_INLINE void launch_dec_workers(AV1Decoder *pbi,
const uint8_t *data_end,
int num_workers) {
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) {
AVxWorker *const worker = &pbi->tile_workers[worker_idx];
DecWorkerData *const thread_data = (DecWorkerData *)worker->data1;
thread_data->data_end = data_end;
worker->had_error = 0;
if (worker_idx == num_workers - 1) {
winterface->execute(worker);
} else {
winterface->launch(worker);
}
}
}
static AOM_INLINE void sync_dec_workers(AV1Decoder *pbi, int num_workers) {
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
int corrupted = 0;
for (int worker_idx = num_workers; worker_idx > 0; --worker_idx) {
AVxWorker *const worker = &pbi->tile_workers[worker_idx - 1];
aom_merge_corrupted_flag(&corrupted, !winterface->sync(worker));
}
pbi->dcb.corrupted = corrupted;
}
static AOM_INLINE void decode_mt_init(AV1Decoder *pbi) {
AV1_COMMON *const cm = &pbi->common;
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
int worker_idx;
// Create workers and thread_data
if (pbi->num_workers == 0) {
const int num_threads = pbi->max_threads;
CHECK_MEM_ERROR(cm, pbi->tile_workers,
aom_malloc(num_threads * sizeof(*pbi->tile_workers)));
CHECK_MEM_ERROR(cm, pbi->thread_data,
aom_malloc(num_threads * sizeof(*pbi->thread_data)));
for (worker_idx = 0; worker_idx < num_threads; ++worker_idx) {
AVxWorker *const worker = &pbi->tile_workers[worker_idx];
DecWorkerData *const thread_data = pbi->thread_data + worker_idx;
++pbi->num_workers;
winterface->init(worker);
worker->thread_name = "aom tile worker";
if (worker_idx < num_threads - 1 && !winterface->reset(worker)) {
aom_internal_error(&cm->error, AOM_CODEC_ERROR,
"Tile decoder thread creation failed");
}
if (worker_idx < num_threads - 1) {
// Allocate thread data.
CHECK_MEM_ERROR(cm, thread_data->td,
aom_memalign(32, sizeof(*thread_data->td)));
av1_zero(*thread_data->td);
} else {
// Main thread acts as a worker and uses the thread data in pbi
thread_data->td = &pbi->td;
}
thread_data->error_info.error_code = AOM_CODEC_OK;
thread_data->error_info.setjmp = 0;
}
}
const int buf_size = MC_TEMP_BUF_PELS << 1;
for (worker_idx = 0; worker_idx < pbi->max_threads - 1; ++worker_idx) {
DecWorkerData *const thread_data = pbi->thread_data + worker_idx;
if (thread_data->td->mc_buf_size != buf_size) {
av1_free_mc_tmp_buf(thread_data->td);
allocate_mc_tmp_buf(cm, thread_data->td, buf_size);
}
}
}
static AOM_INLINE void tile_mt_queue(AV1Decoder *pbi, int tile_cols,
int tile_rows, int tile_rows_start,
int tile_rows_end, int tile_cols_start,
int tile_cols_end, int start_tile,
int end_tile) {
AV1_COMMON *const cm = &pbi->common;
if (pbi->tile_mt_info.alloc_tile_cols != tile_cols ||
pbi->tile_mt_info.alloc_tile_rows != tile_rows) {
av1_dealloc_dec_jobs(&pbi->tile_mt_info);
alloc_dec_jobs(&pbi->tile_mt_info, cm, tile_rows, tile_cols);
}
enqueue_tile_jobs(pbi, cm, tile_rows_start, tile_rows_end, tile_cols_start,
tile_cols_end, start_tile, end_tile);
qsort(pbi->tile_mt_info.job_queue, pbi->tile_mt_info.jobs_enqueued,
sizeof(pbi->tile_mt_info.job_queue[0]), compare_tile_buffers);
}
static const uint8_t *decode_tiles_mt(AV1Decoder *pbi, const uint8_t *data,
const uint8_t *data_end, int start_tile,
int end_tile) {
AV1_COMMON *const cm = &pbi->common;
CommonTileParams *const tiles = &cm->tiles;
const int tile_cols = tiles->cols;
const int tile_rows = tiles->rows;
const int n_tiles = tile_cols * tile_rows;
TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers;
const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
const int single_row = pbi->dec_tile_row >= 0;
const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
const int single_col = pbi->dec_tile_col >= 0;
int tile_rows_start;
int tile_rows_end;
int tile_cols_start;
int tile_cols_end;
int tile_count_tg;
int num_workers;
const uint8_t *raw_data_end = NULL;
if (tiles->large_scale) {
tile_rows_start = single_row ? dec_tile_row : 0;
tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows;
tile_cols_start = single_col ? dec_tile_col : 0;
tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
} else {
tile_rows_start = 0;
tile_rows_end = tile_rows;
tile_cols_start = 0;
tile_cols_end = tile_cols;
}
tile_count_tg = end_tile - start_tile + 1;
num_workers = AOMMIN(pbi->max_threads, tile_count_tg);
// No tiles to decode.
if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start ||
// First tile is larger than end_tile.
tile_rows_start * tile_cols + tile_cols_start > end_tile ||
// Last tile is smaller than start_tile.
(tile_rows_end - 1) * tile_cols + tile_cols_end - 1 < start_tile)
return data;
assert(tile_rows <= MAX_TILE_ROWS);
assert(tile_cols <= MAX_TILE_COLS);
assert(tile_count_tg > 0);
assert(num_workers > 0);
assert(start_tile <= end_tile);
assert(start_tile >= 0 && end_tile < n_tiles);
decode_mt_init(pbi);
// get tile size in tile group
#if EXT_TILE_DEBUG
if (tiles->large_scale) assert(pbi->ext_tile_debug == 1);
if (tiles->large_scale)
raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers);
else
#endif // EXT_TILE_DEBUG
get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile);
if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) {
decoder_alloc_tile_data(pbi, n_tiles);
}
for (int row = 0; row < tile_rows; row++) {
for (int col = 0; col < tile_cols; col++) {
TileDataDec *tile_data = pbi->tile_data + row * tiles->cols + col;
av1_tile_init(&tile_data->tile_info, cm, row, col);
}
}
tile_mt_queue(pbi, tile_cols, tile_rows, tile_rows_start, tile_rows_end,
tile_cols_start, tile_cols_end, start_tile, end_tile);
reset_dec_workers(pbi, tile_worker_hook, num_workers);
launch_dec_workers(pbi, data_end, num_workers);
sync_dec_workers(pbi, num_workers);
if (pbi->dcb.corrupted)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Failed to decode tile data");
if (tiles->large_scale) {
if (n_tiles == 1) {
// Find the end of the single tile buffer
return aom_reader_find_end(&pbi->tile_data->bit_reader);
}
// Return the end of the last tile buffer
return raw_data_end;
}
TileDataDec *const tile_data = pbi->tile_data + end_tile;
return aom_reader_find_end(&tile_data->bit_reader);
}
static AOM_INLINE void dec_alloc_cb_buf(AV1Decoder *pbi) {
AV1_COMMON *const cm = &pbi->common;
int size = ((cm->mi_params.mi_rows >> cm->mib_size_log2) + 1) *
((cm->mi_params.mi_cols >> cm->mib_size_log2) + 1);
if (pbi->cb_buffer_alloc_size < size) {
av1_dec_free_cb_buf(pbi);
CHECK_MEM_ERROR(cm, pbi->cb_buffer_base,
aom_memalign(32, sizeof(*pbi->cb_buffer_base) * size));
memset(pbi->cb_buffer_base, 0, sizeof(*pbi->cb_buffer_base) * size);
pbi->cb_buffer_alloc_size = size;
}
}
static AOM_INLINE void row_mt_frame_init(AV1Decoder *pbi, int tile_rows_start,
int tile_rows_end, int tile_cols_start,
int tile_cols_end, int start_tile,
int end_tile, int max_sb_rows) {
AV1_COMMON *const cm = &pbi->common;
AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info;
frame_row_mt_info->tile_rows_start = tile_rows_start;
frame_row_mt_info->tile_rows_end = tile_rows_end;
frame_row_mt_info->tile_cols_start = tile_cols_start;
frame_row_mt_info->tile_cols_end = tile_cols_end;
frame_row_mt_info->start_tile = start_tile;
frame_row_mt_info->end_tile = end_tile;
frame_row_mt_info->mi_rows_to_decode = 0;
frame_row_mt_info->mi_rows_parse_done = 0;
frame_row_mt_info->mi_rows_decode_started = 0;
frame_row_mt_info->row_mt_exit = 0;
for (int tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) {
for (int tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) {
if (tile_row * cm->tiles.cols + tile_col < start_tile ||
tile_row * cm->tiles.cols + tile_col > end_tile)
continue;
TileDataDec *const tile_data =
pbi->tile_data + tile_row * cm->tiles.cols + tile_col;
TileInfo tile_info = tile_data->tile_info;
tile_data->dec_row_mt_sync.mi_rows_parse_done = 0;
tile_data->dec_row_mt_sync.mi_rows_decode_started = 0;
tile_data->dec_row_mt_sync.num_threads_working = 0;
tile_data->dec_row_mt_sync.mi_rows = ALIGN_POWER_OF_TWO(
tile_info.mi_row_end - tile_info.mi_row_start, cm->mib_size_log2);
tile_data->dec_row_mt_sync.mi_cols = ALIGN_POWER_OF_TWO(
tile_info.mi_col_end - tile_info.mi_col_start, cm->mib_size_log2);
frame_row_mt_info->mi_rows_to_decode +=
tile_data->dec_row_mt_sync.mi_rows;
// Initialize cur_sb_col to -1 for all SB rows.
memset(tile_data->dec_row_mt_sync.cur_sb_col, -1,
sizeof(*tile_data->dec_row_mt_sync.cur_sb_col) * max_sb_rows);
}
}
#if CONFIG_MULTITHREAD
if (pbi->row_mt_mutex_ == NULL) {
CHECK_MEM_ERROR(cm, pbi->row_mt_mutex_,
aom_malloc(sizeof(*(pbi->row_mt_mutex_))));
if (pbi->row_mt_mutex_) {
pthread_mutex_init(pbi->row_mt_mutex_, NULL);
}
}
if (pbi->row_mt_cond_ == NULL) {
CHECK_MEM_ERROR(cm, pbi->row_mt_cond_,
aom_malloc(sizeof(*(pbi->row_mt_cond_))));
if (pbi->row_mt_cond_) {
pthread_cond_init(pbi->row_mt_cond_, NULL);
}
}
#endif
}
static const uint8_t *decode_tiles_row_mt(AV1Decoder *pbi, const uint8_t *data,
const uint8_t *data_end,
int start_tile, int end_tile) {
AV1_COMMON *const cm = &pbi->common;
CommonTileParams *const tiles = &cm->tiles;
const int tile_cols = tiles->cols;
const int tile_rows = tiles->rows;
const int n_tiles = tile_cols * tile_rows;
TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers;
const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
const int single_row = pbi->dec_tile_row >= 0;
const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
const int single_col = pbi->dec_tile_col >= 0;
int tile_rows_start;
int tile_rows_end;
int tile_cols_start;
int tile_cols_end;
int tile_count_tg;
int num_workers = 0;
int max_threads;
const uint8_t *raw_data_end = NULL;
int max_sb_rows = 0;
if (tiles->large_scale) {
tile_rows_start = single_row ? dec_tile_row : 0;
tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows;
tile_cols_start = single_col ? dec_tile_col : 0;
tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
} else {
tile_rows_start = 0;
tile_rows_end = tile_rows;
tile_cols_start = 0;
tile_cols_end = tile_cols;
}
tile_count_tg = end_tile - start_tile + 1;
max_threads = pbi->max_threads;
// No tiles to decode.
if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start ||
// First tile is larger than end_tile.
tile_rows_start * tile_cols + tile_cols_start > end_tile ||
// Last tile is smaller than start_tile.
(tile_rows_end - 1) * tile_cols + tile_cols_end - 1 < start_tile)
return data;
assert(tile_rows <= MAX_TILE_ROWS);
assert(tile_cols <= MAX_TILE_COLS);
assert(tile_count_tg > 0);
assert(max_threads > 0);
assert(start_tile <= end_tile);
assert(start_tile >= 0 && end_tile < n_tiles);
(void)tile_count_tg;
decode_mt_init(pbi);
// get tile size in tile group
#if EXT_TILE_DEBUG
if (tiles->large_scale) assert(pbi->ext_tile_debug == 1);
if (tiles->large_scale)
raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers);
else
#endif // EXT_TILE_DEBUG
get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile);
if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) {
if (pbi->tile_data != NULL) {
for (int i = 0; i < pbi->allocated_tiles; i++) {
TileDataDec *const tile_data = pbi->tile_data + i;
av1_dec_row_mt_dealloc(&tile_data->dec_row_mt_sync);
}
}
decoder_alloc_tile_data(pbi, n_tiles);
}
for (int row = 0; row < tile_rows; row++) {
for (int col = 0; col < tile_cols; col++) {
TileDataDec *tile_data = pbi->tile_data + row * tiles->cols + col;
av1_tile_init(&tile_data->tile_info, cm, row, col);
max_sb_rows = AOMMAX(max_sb_rows,
av1_get_sb_rows_in_tile(cm, tile_data->tile_info));
num_workers += get_max_row_mt_workers_per_tile(cm, tile_data->tile_info);
}
}
num_workers = AOMMIN(num_workers, max_threads);
if (pbi->allocated_row_mt_sync_rows != max_sb_rows) {
for (int i = 0; i < n_tiles; ++i) {
TileDataDec *const tile_data = pbi->tile_data + i;
av1_dec_row_mt_dealloc(&tile_data->dec_row_mt_sync);
dec_row_mt_alloc(&tile_data->dec_row_mt_sync, cm, max_sb_rows);
}
pbi->allocated_row_mt_sync_rows = max_sb_rows;
}
tile_mt_queue(pbi, tile_cols, tile_rows, tile_rows_start, tile_rows_end,
tile_cols_start, tile_cols_end, start_tile, end_tile);
dec_alloc_cb_buf(pbi);
row_mt_frame_init(pbi, tile_rows_start, tile_rows_end, tile_cols_start,
tile_cols_end, start_tile, end_tile, max_sb_rows);
reset_dec_workers(pbi, row_mt_worker_hook, num_workers);
launch_dec_workers(pbi, data_end, num_workers);
sync_dec_workers(pbi, num_workers);
if (pbi->dcb.corrupted)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Failed to decode tile data");
if (tiles->large_scale) {
if (n_tiles == 1) {
// Find the end of the single tile buffer
return aom_reader_find_end(&pbi->tile_data->bit_reader);
}
// Return the end of the last tile buffer
return raw_data_end;
}
TileDataDec *const tile_data = pbi->tile_data + end_tile;
return aom_reader_find_end(&tile_data->bit_reader);
}
static AOM_INLINE void error_handler(void *data) {
AV1_COMMON *const cm = (AV1_COMMON *)data;
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Truncated packet");
}
// Reads the high_bitdepth and twelve_bit fields in color_config() and sets
// seq_params->bit_depth based on the values of those fields and
// seq_params->profile. Reports errors by calling rb->error_handler() or
// aom_internal_error().
static AOM_INLINE void read_bitdepth(
struct aom_read_bit_buffer *rb, SequenceHeader *seq_params,
struct aom_internal_error_info *error_info) {
const int high_bitdepth = aom_rb_read_bit(rb);
if (seq_params->profile == PROFILE_2 && high_bitdepth) {
const int twelve_bit = aom_rb_read_bit(rb);
seq_params->bit_depth = twelve_bit ? AOM_BITS_12 : AOM_BITS_10;
} else if (seq_params->profile <= PROFILE_2) {
seq_params->bit_depth = high_bitdepth ? AOM_BITS_10 : AOM_BITS_8;
} else {
aom_internal_error(error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Unsupported profile/bit-depth combination");
}
}
void av1_read_film_grain_params(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
aom_film_grain_t *pars = &cm->film_grain_params;
const SequenceHeader *const seq_params = &cm->seq_params;
pars->apply_grain = aom_rb_read_bit(rb);
if (!pars->apply_grain) {
memset(pars, 0, sizeof(*pars));
return;
}
pars->random_seed = aom_rb_read_literal(rb, 16);
if (cm->current_frame.frame_type == INTER_FRAME)
pars->update_parameters = aom_rb_read_bit(rb);
else
pars->update_parameters = 1;
pars->bit_depth = seq_params->bit_depth;
if (!pars->update_parameters) {
// inherit parameters from a previous reference frame
int film_grain_params_ref_idx = aom_rb_read_literal(rb, 3);
// Section 6.8.20: It is a requirement of bitstream conformance that
// film_grain_params_ref_idx is equal to ref_frame_idx[ j ] for some value
// of j in the range 0 to REFS_PER_FRAME - 1.
int found = 0;
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
if (film_grain_params_ref_idx == cm->remapped_ref_idx[i]) {
found = 1;
break;
}
}
if (!found) {
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Invalid film grain reference idx %d. ref_frame_idx = "
"{%d, %d, %d, %d, %d, %d, %d}",
film_grain_params_ref_idx, cm->remapped_ref_idx[0],
cm->remapped_ref_idx[1], cm->remapped_ref_idx[2],
cm->remapped_ref_idx[3], cm->remapped_ref_idx[4],
cm->remapped_ref_idx[5], cm->remapped_ref_idx[6]);
}
RefCntBuffer *const buf = cm->ref_frame_map[film_grain_params_ref_idx];
if (buf == NULL) {
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Invalid Film grain reference idx");
}
if (!buf->film_grain_params_present) {
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Film grain reference parameters not available");
}
uint16_t random_seed = pars->random_seed;
*pars = buf->film_grain_params; // inherit paramaters
pars->random_seed = random_seed; // with new random seed
return;
}
// Scaling functions parameters
pars->num_y_points = aom_rb_read_literal(rb, 4); // max 14
if (pars->num_y_points > 14)
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Number of points for film grain luma scaling function "
"exceeds the maximum value.");
for (int i = 0; i < pars->num_y_points; i++) {
pars->scaling_points_y[i][0] = aom_rb_read_literal(rb, 8);
if (i && pars->scaling_points_y[i - 1][0] >= pars->scaling_points_y[i][0])
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"First coordinate of the scaling function points "
"shall be increasing.");
pars->scaling_points_y[i][1] = aom_rb_read_literal(rb, 8);
}
if (!seq_params->monochrome)
pars->chroma_scaling_from_luma = aom_rb_read_bit(rb);
else
pars->chroma_scaling_from_luma = 0;
if (seq_params->monochrome || pars->chroma_scaling_from_luma ||
((seq_params->subsampling_x == 1) && (seq_params->subsampling_y == 1) &&
(pars->num_y_points == 0))) {
pars->num_cb_points = 0;
pars->num_cr_points = 0;
} else {
pars->num_cb_points = aom_rb_read_literal(rb, 4); // max 10
if (pars->num_cb_points > 10)
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Number of points for film grain cb scaling function "
"exceeds the maximum value.");
for (int i = 0; i < pars->num_cb_points; i++) {
pars->scaling_points_cb[i][0] = aom_rb_read_literal(rb, 8);
if (i &&
pars->scaling_points_cb[i - 1][0] >= pars->scaling_points_cb[i][0])
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"First coordinate of the scaling function points "
"shall be increasing.");
pars->scaling_points_cb[i][1] = aom_rb_read_literal(rb, 8);
}
pars->num_cr_points = aom_rb_read_literal(rb, 4); // max 10
if (pars->num_cr_points > 10)
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Number of points for film grain cr scaling function "
"exceeds the maximum value.");
for (int i = 0; i < pars->num_cr_points; i++) {
pars->scaling_points_cr[i][0] = aom_rb_read_literal(rb, 8);
if (i &&
pars->scaling_points_cr[i - 1][0] >= pars->scaling_points_cr[i][0])
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"First coordinate of the scaling function points "
"shall be increasing.");
pars->scaling_points_cr[i][1] = aom_rb_read_literal(rb, 8);
}
if ((seq_params->subsampling_x == 1) && (seq_params->subsampling_y == 1) &&
(((pars->num_cb_points == 0) && (pars->num_cr_points != 0)) ||
((pars->num_cb_points != 0) && (pars->num_cr_points == 0))))
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"In YCbCr 4:2:0, film grain shall be applied "
"to both chroma components or neither.");
}
pars->scaling_shift = aom_rb_read_literal(rb, 2) + 8; // 8 + value
// AR coefficients
// Only sent if the corresponsing scaling function has
// more than 0 points
pars->ar_coeff_lag = aom_rb_read_literal(rb, 2);
int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1);
int num_pos_chroma = num_pos_luma;
if (pars->num_y_points > 0) ++num_pos_chroma;
if (pars->num_y_points)
for (int i = 0; i < num_pos_luma; i++)
pars->ar_coeffs_y[i] = aom_rb_read_literal(rb, 8) - 128;
if (pars->num_cb_points || pars->chroma_scaling_from_luma)
for (int i = 0; i < num_pos_chroma; i++)
pars->ar_coeffs_cb[i] = aom_rb_read_literal(rb, 8) - 128;
if (pars->num_cr_points || pars->chroma_scaling_from_luma)
for (int i = 0; i < num_pos_chroma; i++)
pars->ar_coeffs_cr[i] = aom_rb_read_literal(rb, 8) - 128;
pars->ar_coeff_shift = aom_rb_read_literal(rb, 2) + 6; // 6 + value
pars->grain_scale_shift = aom_rb_read_literal(rb, 2);
if (pars->num_cb_points) {
pars->cb_mult = aom_rb_read_literal(rb, 8);
pars->cb_luma_mult = aom_rb_read_literal(rb, 8);
pars->cb_offset = aom_rb_read_literal(rb, 9);
}
if (pars->num_cr_points) {
pars->cr_mult = aom_rb_read_literal(rb, 8);
pars->cr_luma_mult = aom_rb_read_literal(rb, 8);
pars->cr_offset = aom_rb_read_literal(rb, 9);
}
pars->overlap_flag = aom_rb_read_bit(rb);
pars->clip_to_restricted_range = aom_rb_read_bit(rb);
}
static AOM_INLINE void read_film_grain(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
if (cm->seq_params.film_grain_params_present &&
(cm->show_frame || cm->showable_frame)) {
av1_read_film_grain_params(cm, rb);
} else {
memset(&cm->film_grain_params, 0, sizeof(cm->film_grain_params));
}
cm->film_grain_params.bit_depth = cm->seq_params.bit_depth;
memcpy(&cm->cur_frame->film_grain_params, &cm->film_grain_params,
sizeof(aom_film_grain_t));
}
void av1_read_color_config(struct aom_read_bit_buffer *rb,
SequenceHeader *seq_params,
struct aom_internal_error_info *error_info) {
read_bitdepth(rb, seq_params, error_info);
// monochrome bit (not needed for PROFILE_1)
const int is_monochrome =
seq_params->profile != PROFILE_1 ? aom_rb_read_bit(rb) : 0;
seq_params->monochrome = is_monochrome;
int color_description_present_flag = aom_rb_read_bit(rb);
if (color_description_present_flag) {
seq_params->color_primaries = aom_rb_read_literal(rb, 8);
seq_params->transfer_characteristics = aom_rb_read_literal(rb, 8);
seq_params->matrix_coefficients = aom_rb_read_literal(rb, 8);
} else {
seq_params->color_primaries = AOM_CICP_CP_UNSPECIFIED;
seq_params->transfer_characteristics = AOM_CICP_TC_UNSPECIFIED;
seq_params->matrix_coefficients = AOM_CICP_MC_UNSPECIFIED;
}
if (is_monochrome) {
// [16,235] (including xvycc) vs [0,255] range
seq_params->color_range = aom_rb_read_bit(rb);
seq_params->subsampling_y = seq_params->subsampling_x = 1;
seq_params->chroma_sample_position = AOM_CSP_UNKNOWN;
seq_params->separate_uv_delta_q = 0;
} else {
if (seq_params->color_primaries == AOM_CICP_CP_BT_709 &&
seq_params->transfer_characteristics == AOM_CICP_TC_SRGB &&
seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
seq_params->subsampling_y = seq_params->subsampling_x = 0;
seq_params->color_range = 1; // assume full color-range
if (!(seq_params->profile == PROFILE_1 ||
(seq_params->profile == PROFILE_2 &&
seq_params->bit_depth == AOM_BITS_12))) {
aom_internal_error(
error_info, AOM_CODEC_UNSUP_BITSTREAM,
"sRGB colorspace not compatible with specified profile");
}
} else {
// [16,235] (including xvycc) vs [0,255] range
seq_params->color_range = aom_rb_read_bit(rb);
if (seq_params->profile == PROFILE_0) {
// 420 only
seq_params->subsampling_x = seq_params->subsampling_y = 1;
} else if (seq_params->profile == PROFILE_1) {
// 444 only
seq_params->subsampling_x = seq_params->subsampling_y = 0;
} else {
assert(seq_params->profile == PROFILE_2);
if (seq_params->bit_depth == AOM_BITS_12) {
seq_params->subsampling_x = aom_rb_read_bit(rb);
if (seq_params->subsampling_x)
seq_params->subsampling_y = aom_rb_read_bit(rb); // 422 or 420
else
seq_params->subsampling_y = 0; // 444
} else {
// 422
seq_params->subsampling_x = 1;
seq_params->subsampling_y = 0;
}
}
if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY &&
(seq_params->subsampling_x || seq_params->subsampling_y)) {
aom_internal_error(
error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Identity CICP Matrix incompatible with non 4:4:4 color sampling");
}
if (seq_params->subsampling_x && seq_params->subsampling_y) {
seq_params->chroma_sample_position = aom_rb_read_literal(rb, 2);
}
}
seq_params->separate_uv_delta_q = aom_rb_read_bit(rb);
}
seq_params->base_y_dc_delta_q =
DELTA_DCQUANT_MIN + aom_rb_read_literal(rb, DELTA_DCQUANT_BITS);
if (!is_monochrome) {
seq_params->base_uv_dc_delta_q =
DELTA_DCQUANT_MIN + aom_rb_read_literal(rb, DELTA_DCQUANT_BITS);
}
}
void av1_read_timing_info_header(aom_timing_info_t *timing_info,
struct aom_internal_error_info *error,
struct aom_read_bit_buffer *rb) {
timing_info->num_units_in_display_tick =
aom_rb_read_unsigned_literal(rb,
32); // Number of units in a display tick
timing_info->time_scale = aom_rb_read_unsigned_literal(rb, 32); // Time scale
if (timing_info->num_units_in_display_tick == 0 ||
timing_info->time_scale == 0) {
aom_internal_error(
error, AOM_CODEC_UNSUP_BITSTREAM,
"num_units_in_display_tick and time_scale must be greater than 0.");
}
timing_info->equal_picture_interval =
aom_rb_read_bit(rb); // Equal picture interval bit
if (timing_info->equal_picture_interval) {
const uint32_t num_ticks_per_picture_minus_1 = aom_rb_read_uvlc(rb);
if (num_ticks_per_picture_minus_1 == UINT32_MAX) {
aom_internal_error(
error, AOM_CODEC_UNSUP_BITSTREAM,
"num_ticks_per_picture_minus_1 cannot be (1 << 32) − 1.");
}
timing_info->num_ticks_per_picture = num_ticks_per_picture_minus_1 + 1;
}
}
void av1_read_decoder_model_info(aom_dec_model_info_t *decoder_model_info,
struct aom_read_bit_buffer *rb) {
decoder_model_info->encoder_decoder_buffer_delay_length =
aom_rb_read_literal(rb, 5) + 1;
decoder_model_info->num_units_in_decoding_tick =
aom_rb_read_unsigned_literal(rb,
32); // Number of units in a decoding tick
decoder_model_info->buffer_removal_time_length =
aom_rb_read_literal(rb, 5) + 1;
decoder_model_info->frame_presentation_time_length =
aom_rb_read_literal(rb, 5) + 1;
}
void av1_read_op_parameters_info(aom_dec_model_op_parameters_t *op_params,
int buffer_delay_length,
struct aom_read_bit_buffer *rb) {
op_params->decoder_buffer_delay =
aom_rb_read_unsigned_literal(rb, buffer_delay_length);
op_params->encoder_buffer_delay =
aom_rb_read_unsigned_literal(rb, buffer_delay_length);
op_params->low_delay_mode_flag = aom_rb_read_bit(rb);
}
static AOM_INLINE void read_temporal_point_info(
AV1_COMMON *const cm, struct aom_read_bit_buffer *rb) {
cm->frame_presentation_time = aom_rb_read_unsigned_literal(
rb, cm->seq_params.decoder_model_info.frame_presentation_time_length);
}
void av1_read_sequence_header(AV1_COMMON *cm, struct aom_read_bit_buffer *rb,
SequenceHeader *seq_params) {
const int num_bits_width = aom_rb_read_literal(rb, 4) + 1;
const int num_bits_height = aom_rb_read_literal(rb, 4) + 1;
const int max_frame_width = aom_rb_read_literal(rb, num_bits_width) + 1;
const int max_frame_height = aom_rb_read_literal(rb, num_bits_height) + 1;
seq_params->num_bits_width = num_bits_width;
seq_params->num_bits_height = num_bits_height;
seq_params->max_frame_width = max_frame_width;
seq_params->max_frame_height = max_frame_height;
if (seq_params->reduced_still_picture_hdr) {
seq_params->frame_id_numbers_present_flag = 0;
} else {
seq_params->frame_id_numbers_present_flag = aom_rb_read_bit(rb);
}
if (seq_params->frame_id_numbers_present_flag) {
// We must always have delta_frame_id_length < frame_id_length,
// in order for a frame to be referenced with a unique delta.
// Avoid wasting bits by using a coding that enforces this restriction.
seq_params->delta_frame_id_length = aom_rb_read_literal(rb, 4) + 2;
seq_params->frame_id_length =
aom_rb_read_literal(rb, 3) + seq_params->delta_frame_id_length + 1;
if (seq_params->frame_id_length > 16)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Invalid frame_id_length");
}
setup_seq_sb_size(seq_params, rb);
seq_params->enable_filter_intra = aom_rb_read_bit(rb);
seq_params->enable_intra_edge_filter = aom_rb_read_bit(rb);
if (seq_params->reduced_still_picture_hdr) {
#if CONFIG_EXTENDED_WARP_PREDICTION
seq_params->seq_enabled_motion_modes = (1 << SIMPLE_TRANSLATION);
#else
seq_params->enable_interintra_compound = 0;
#endif // CONFIG_EXTENDED_WARP_PREDICTION
seq_params->enable_masked_compound = 0;
#if !CONFIG_EXTENDED_WARP_PREDICTION
seq_params->enable_warped_motion = 0;
#endif // !CONFIG_EXTENDED_WARP_PREDICTION
seq_params->order_hint_info.enable_order_hint = 0;
seq_params->order_hint_info.enable_ref_frame_mvs = 0;
seq_params->force_screen_content_tools = 2; // SELECT_SCREEN_CONTENT_TOOLS
seq_params->force_integer_mv = 2; // SELECT_INTEGER_MV
seq_params->order_hint_info.order_hint_bits_minus_1 = -1;
#if CONFIG_OPTFLOW_REFINEMENT
seq_params->enable_opfl_refine = AOM_OPFL_REFINE_NONE;
#endif // CONFIG_OPTFLOW_REFINEMENT
#if CONFIG_AFFINE_REFINEMENT
seq_params->enable_affine_refine = 0;
#endif // CONFIG_AFFINE_REFINEMENT
} else {
#if CONFIG_EXTENDED_WARP_PREDICTION
int seq_enabled_motion_modes = (1 << SIMPLE_TRANSLATION);
for (int motion_mode = INTERINTRA; motion_mode < MOTION_MODES;
motion_mode++) {
int enabled = aom_rb_read_bit(rb);
if (enabled) {
seq_enabled_motion_modes |= (1 << motion_mode);
}
}
seq_params->seq_enabled_motion_modes = seq_enabled_motion_modes;
#else
seq_params->enable_interintra_compound = aom_rb_read_bit(rb);
#endif // CONFIG_EXTENDED_WARP_PREDICTION
seq_params->enable_masked_compound = aom_rb_read_bit(rb);
#if !CONFIG_EXTENDED_WARP_PREDICTION
seq_params->enable_warped_motion = aom_rb_read_bit(rb);
#endif // !CONFIG_EXTENDED_WARP_PREDICTION
seq_params->order_hint_info.enable_order_hint = aom_rb_read_bit(rb);
seq_params->order_hint_info.enable_ref_frame_mvs =
seq_params->order_hint_info.enable_order_hint ? aom_rb_read_bit(rb) : 0;
if (aom_rb_read_bit(rb)) {
seq_params->force_screen_content_tools =
2; // SELECT_SCREEN_CONTENT_TOOLS
} else {
seq_params->force_screen_content_tools = aom_rb_read_bit(rb);
}
if (seq_params->force_screen_content_tools > 0) {
if (aom_rb_read_bit(rb)) {
seq_params->force_integer_mv = 2; // SELECT_INTEGER_MV
} else {
seq_params->force_integer_mv = aom_rb_read_bit(rb);
}
} else {
seq_params->force_integer_mv = 2; // SELECT_INTEGER_MV
}
seq_params->order_hint_info.order_hint_bits_minus_1 =
seq_params->order_hint_info.enable_order_hint
? aom_rb_read_literal(rb, 3)
: -1;
}
seq_params->enable_superres = aom_rb_read_bit(rb);
seq_params->enable_cdef = aom_rb_read_bit(rb);
seq_params->enable_restoration = aom_rb_read_bit(rb);
#if CONFIG_LR_FLEX_SYNTAX
if (seq_params->enable_restoration) {
for (int i = 1; i < RESTORE_SWITCHABLE_TYPES; ++i) {
seq_params->lr_tools_disable_mask[0] |= (aom_rb_read_bit(rb) << i);
}
if (aom_rb_read_bit(rb)) {
seq_params->lr_tools_disable_mask[1] = DEF_UV_LR_TOOLS_DISABLE_MASK;
for (int i = 1; i < RESTORE_SWITCHABLE_TYPES; ++i) {
if (DEF_UV_LR_TOOLS_DISABLE_MASK & (1 << i)) continue;
seq_params->lr_tools_disable_mask[1] |= (aom_rb_read_bit(rb) << i);
}
} else {
seq_params->lr_tools_disable_mask[1] =
(seq_params->lr_tools_disable_mask[0] | DEF_UV_LR_TOOLS_DISABLE_MASK);
}
}
#endif // CONFIG_LR_FLEX_SYNTAX
}
void av1_read_sequence_header_beyond_av1(struct aom_read_bit_buffer *rb,
SequenceHeader *seq_params) {
// printf("print sps\n");
seq_params->enable_refmvbank = aom_rb_read_bit(rb);
seq_params->explicit_ref_frame_map = aom_rb_read_bit(rb);
#if CONFIG_OUTPUT_FRAME_BASED_ON_ORDER_HINT
// 0 : use show_existing_frame, 1: use implicit derivation
seq_params->enable_frame_output_order = aom_rb_read_bit(rb);
#endif // CONFIG_OUTPUT_FRAME_BASED_ON_ORDER_HINT
// A bit is sent here to indicate if the max number of references is 7. If
// this bit is 0, then two more bits are sent to indicate the exact number
// of references allowed (range: 3 to 6).
if (aom_rb_read_bit(rb)) {
seq_params->max_reference_frames = 3 + aom_rb_read_literal(rb, 2);
} else {
seq_params->max_reference_frames = 7;
}
#if CONFIG_ALLOW_SAME_REF_COMPOUND
seq_params->num_same_ref_compound = aom_rb_read_literal(rb, 2);
#endif // CONFIG_ALLOW_SAME_REF_COMPOUND
seq_params->enable_sdp = aom_rb_read_bit(rb);
seq_params->enable_ist = aom_rb_read_bit(rb);
seq_params->enable_cctx = seq_params->monochrome ? 0 : aom_rb_read_bit(rb);
seq_params->enable_mrls = aom_rb_read_bit(rb);
seq_params->enable_tip = aom_rb_read_literal(rb, 2);
if (seq_params->enable_tip) {
seq_params->enable_tip_hole_fill = aom_rb_read_bit(rb);
} else {
seq_params->enable_tip_hole_fill = 0;
}
#if CONFIG_BAWP
seq_params->enable_bawp = aom_rb_read_bit(rb);
#endif // CONFIG_BAWP
#if CONFIG_CWP
seq_params->enable_cwp = aom_rb_read_bit(rb);
#endif // CONFIG_CWP
#if CONFIG_D071_IMP_MSK_BLD
seq_params->enable_imp_msk_bld = aom_rb_read_bit(rb);
#endif // CONFIG_D071_IMP_MSK_BLD
seq_params->enable_fsc = aom_rb_read_bit(rb);
#if CONFIG_CCSO
seq_params->enable_ccso = aom_rb_read_bit(rb);
#endif
#if CONFIG_PEF
seq_params->enable_pef = aom_rb_read_bit(rb);
#if CONFIG_TIP_IMPLICIT_QUANT
if (seq_params->enable_tip == 1 && seq_params->enable_pef) {
seq_params->enable_tip_explicit_qp = aom_rb_read_bit(rb);
} else {
seq_params->enable_tip_explicit_qp = 0;
}
#endif // CONFIG_TIP_IMPLICIT_QUANT
#endif // CONFIG_PEF
seq_params->enable_orip = aom_rb_read_bit(rb);
#if CONFIG_IDIF
seq_params->enable_idif = aom_rb_read_bit(rb);
#endif // CONFIG_IDIF
#if CONFIG_OPTFLOW_REFINEMENT
seq_params->enable_opfl_refine = seq_params->order_hint_info.enable_order_hint
? aom_rb_read_literal(rb, 2)
: AOM_OPFL_REFINE_NONE;
#if CONFIG_AFFINE_REFINEMENT
seq_params->enable_affine_refine =
seq_params->enable_opfl_refine ? aom_rb_read_bit(rb) : 0;
#endif // CONFIG_AFFINE_REFINEMENT
#endif // CONFIG_OPTFLOW_REFINEMENT
seq_params->enable_ibp = aom_rb_read_bit(rb);
seq_params->enable_adaptive_mvd = aom_rb_read_bit(rb);
#if CONFIG_REFINEMV
seq_params->enable_refinemv = aom_rb_read_bit(rb);
#endif // CONFIG_REFINEMV
#if CONFIG_FLEX_MVRES
seq_params->enable_flex_mvres = aom_rb_read_bit(rb);
#endif // CONFIG_FLEX_MVRES
#if CONFIG_ADAPTIVE_DS_FILTER
seq_params->enable_cfl_ds_filter = aom_rb_read_literal(rb, 2);
#endif // CONFIG_ADAPTIVE_DS_FILTER
seq_params->enable_parity_hiding = aom_rb_read_bit(rb);
#if CONFIG_EXT_RECUR_PARTITIONS
seq_params->enable_ext_partitions = aom_rb_read_bit(rb);
#endif // CONFIG_EXT_RECUR_PARTITIONS
#if CONFIG_IMPROVED_GLOBAL_MOTION
if (seq_params->reduced_still_picture_hdr) {
seq_params->enable_global_motion = 0;
} else {
seq_params->enable_global_motion = aom_rb_read_bit(rb);
}
#endif // CONFIG_IMPROVED_GLOBAL_MOTION
#if CONFIG_REFRESH_FLAG
seq_params->enable_short_refresh_frame_flags = aom_rb_read_bit(rb);
#endif // CONFIG_REFRESH_FLAG
}
static int read_global_motion_params(WarpedMotionParams *params,
const WarpedMotionParams *ref_params,
struct aom_read_bit_buffer *rb,
#if !CONFIG_FLEX_MVRES
int allow_hp) {
#if CONFIG_IMPROVED_GLOBAL_MOTION
(void)allow_hp;
#endif // CONFIG_IMPROVED_GLOBAL_MOTION
#else
MvSubpelPrecision precision) {
const int precision_loss = get_gm_precision_loss(precision);
#if CONFIG_IMPROVED_GLOBAL_MOTION
(void)precision_loss;
#endif // CONFIG_IMPROVED_GLOBAL_MOTION
#endif // !CONFIG_FLEX_MVRES
TransformationType type = aom_rb_read_bit(rb);
if (type != IDENTITY) {
if (aom_rb_read_bit(rb)) {
type = ROTZOOM;
} else {
#if CONFIG_IMPROVED_GLOBAL_MOTION
type = AFFINE;
#else
type = aom_rb_read_bit(rb) ? TRANSLATION : AFFINE;
#endif // CONFIG_IMPROVED_GLOBAL_MOTION
}
}
*params = default_warp_params;
params->wmtype = type;
if (type >= ROTZOOM) {
params->wmmat[2] = aom_rb_read_signed_primitive_refsubexpfin(
rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) -
(1 << GM_ALPHA_PREC_BITS)) *
GM_ALPHA_DECODE_FACTOR +
(1 << WARPEDMODEL_PREC_BITS);
params->wmmat[3] = aom_rb_read_signed_primitive_refsubexpfin(
rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF)) *
GM_ALPHA_DECODE_FACTOR;
}
if (type >= AFFINE) {
params->wmmat[4] = aom_rb_read_signed_primitive_refsubexpfin(
rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF)) *
GM_ALPHA_DECODE_FACTOR;
params->wmmat[5] = aom_rb_read_signed_primitive_refsubexpfin(
rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
(1 << GM_ALPHA_PREC_BITS)) *
GM_ALPHA_DECODE_FACTOR +
(1 << WARPEDMODEL_PREC_BITS);
} else {
params->wmmat[4] = -params->wmmat[3];
params->wmmat[5] = params->wmmat[2];
}
if (type >= TRANSLATION) {
#if CONFIG_IMPROVED_GLOBAL_MOTION
const int trans_dec_factor = GM_TRANS_DECODE_FACTOR;
const int trans_prec_diff = GM_TRANS_PREC_DIFF;
const int trans_max = GM_TRANS_MAX;
#else
const int trans_bits = (type == TRANSLATION)
#if CONFIG_FLEX_MVRES
? GM_ABS_TRANS_ONLY_BITS - precision_loss
#else
? GM_ABS_TRANS_ONLY_BITS - !allow_hp
#endif
: GM_ABS_TRANS_BITS;
const int trans_dec_factor =
(type == TRANSLATION)
#if CONFIG_FLEX_MVRES
? GM_TRANS_ONLY_DECODE_FACTOR * (1 << precision_loss)
#else
? GM_TRANS_ONLY_DECODE_FACTOR * (1 << !allow_hp)
#endif
: GM_TRANS_DECODE_FACTOR;
const int trans_prec_diff = (type == TRANSLATION)
#if CONFIG_FLEX_MVRES
? GM_TRANS_ONLY_PREC_DIFF + precision_loss
#else
? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
#endif
: GM_TRANS_PREC_DIFF;
const int trans_max = (1 << trans_bits);
#endif // CONFIG_IMPROVED_GLOBAL_MOTION
params->wmmat[0] = aom_rb_read_signed_primitive_refsubexpfin(
rb, trans_max + 1, SUBEXPFIN_K,
(ref_params->wmmat[0] >> trans_prec_diff)) *
trans_dec_factor;
params->wmmat[1] = aom_rb_read_signed_primitive_refsubexpfin(
rb, trans_max + 1, SUBEXPFIN_K,
(ref_params->wmmat[1] >> trans_prec_diff)) *
trans_dec_factor;
}
if (params->wmtype <= AFFINE) {
#if CONFIG_EXTENDED_WARP_PREDICTION
av1_reduce_warp_model(params);
#endif // CONFIG_EXTENDED_WARP_PREDICTION
int good_shear_params = av1_get_shear_params(params);
if (!good_shear_params) return 0;
}
return 1;
}
static AOM_INLINE void read_global_motion(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
#if CONFIG_IMPROVED_GLOBAL_MOTION
const SequenceHeader *const seq_params = &cm->seq_params;
int num_total_refs = cm->ref_frames_info.num_total_refs;
bool use_global_motion = false;
if (seq_params->enable_global_motion) {
use_global_motion = aom_rb_read_bit(rb);
}
if (!use_global_motion) {
for (int frame = 0; frame < INTER_REFS_PER_FRAME; ++frame) {
cm->global_motion[frame] = default_warp_params;
cm->cur_frame->global_motion[frame] = default_warp_params;
}
return;
}
int our_ref = aom_rb_read_primitive_quniform(rb, num_total_refs + 1);
if (our_ref == num_total_refs) {
// Special case: Use IDENTITY model
cm->base_global_motion_model = default_warp_params;
cm->base_global_motion_distance = 1;
} else {
RefCntBuffer *buf = get_ref_frame_buf(cm, our_ref);
assert(buf);
int their_num_refs = buf->num_ref_frames;
if (their_num_refs == 0) {
// Special case: if an intra/key frame is used as a ref, use an
// IDENTITY model
cm->base_global_motion_model = default_warp_params;
cm->base_global_motion_distance = 1;
} else {
int their_ref = aom_rb_read_primitive_quniform(rb, their_num_refs);
#if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
const int our_ref_order_hint = buf->display_order_hint;
const int their_ref_order_hint = buf->ref_display_order_hint[their_ref];
#else
const int our_ref_order_hint = buf->order_hint;
const int their_ref_order_hint = buf->ref_order_hints[their_ref];
#endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
cm->base_global_motion_model = buf->global_motion[their_ref];
cm->base_global_motion_distance =
get_relative_dist(&seq_params->order_hint_info, our_ref_order_hint,
their_ref_order_hint);
}
}
#endif // CONFIG_IMPROVED_GLOBAL_MOTION
for (int frame = 0; frame < cm->ref_frames_info.num_total_refs; ++frame) {
#if CONFIG_IMPROVED_GLOBAL_MOTION
int temporal_distance;
if (seq_params->order_hint_info.enable_order_hint) {
const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, frame);
#if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
const int ref_order_hint = ref_buf->display_order_hint;
const int cur_order_hint = cm->cur_frame->display_order_hint;
#else
const int ref_order_hint = ref_buf->order_hint;
const int cur_order_hint = cm->cur_frame->order_hint;
#endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
temporal_distance = get_relative_dist(&seq_params->order_hint_info,
cur_order_hint, ref_order_hint);
} else {
temporal_distance = 1;
}
if (temporal_distance == 0) {
// Don't code global motion for frames at the same temporal instant
cm->global_motion[frame] = default_warp_params;
continue;
}
WarpedMotionParams ref_params_;
av1_scale_warp_model(&cm->base_global_motion_model,
cm->base_global_motion_distance, &ref_params_,
temporal_distance);
WarpedMotionParams *ref_params = &ref_params_;
#else
const WarpedMotionParams *ref_params =
cm->prev_frame ? &cm->prev_frame->global_motion[frame]
: &default_warp_params;
#endif // CONFIG_IMPROVED_GLOBAL_MOTION
int good_params =
#if !CONFIG_FLEX_MVRES
read_global_motion_params(&cm->global_motion[frame], ref_params, rb,
cm->features.allow_high_precision_mv);
#else
read_global_motion_params(&cm->global_motion[frame], ref_params, rb,
cm->features.fr_mv_precision);
#endif
if (!good_params) {
#if WARPED_MOTION_DEBUG
printf("Warning: unexpected global motion shear params from aomenc\n");
#endif
cm->global_motion[frame].invalid = 1;
}
// TODO(sarahparker, debargha): The logic in the commented out code below
// does not work currently and causes mismatches when resize is on. Fix it
// before turning the optimization back on.
/*
YV12_BUFFER_CONFIG *ref_buf = get_ref_frame(cm, frame);
if (cm->width == ref_buf->y_crop_width &&
cm->height == ref_buf->y_crop_height) {
read_global_motion_params(&cm->global_motion[frame],
&cm->prev_frame->global_motion[frame], rb,
cm->features.allow_high_precision_mv);
} else {
cm->global_motion[frame] = default_warp_params;
}
*/
/*
printf("Dec Ref %d [%d/%d]: %d %d %d %d\n",
frame, cm->current_frame.frame_number, cm->show_frame,
cm->global_motion[frame].wmmat[0],
cm->global_motion[frame].wmmat[1],
cm->global_motion[frame].wmmat[2],
cm->global_motion[frame].wmmat[3]);
*/
}
memcpy(cm->cur_frame->global_motion, cm->global_motion,
INTER_REFS_PER_FRAME * sizeof(WarpedMotionParams));
}
// Release the references to the frame buffers in cm->ref_frame_map and reset
// all elements of cm->ref_frame_map to NULL.
static AOM_INLINE void reset_ref_frame_map(AV1_COMMON *const cm) {
BufferPool *const pool = cm->buffer_pool;
for (int i = 0; i < REF_FRAMES; i++) {
decrease_ref_count(cm->ref_frame_map[i], pool);
cm->ref_frame_map[i] = NULL;
}
}
// If the refresh_frame_flags bitmask is set, update reference frame id values
// and mark frames as valid for reference.
static AOM_INLINE void update_ref_frame_id(AV1Decoder *const pbi) {
AV1_COMMON *const cm = &pbi->common;
int refresh_frame_flags = cm->current_frame.refresh_frame_flags;
for (int i = 0; i < REF_FRAMES; i++) {
if ((refresh_frame_flags >> i) & 1) {
cm->ref_frame_id[i] = cm->current_frame_id;
pbi->valid_for_referencing[i] = 1;
}
}
}
static AOM_INLINE void show_existing_frame_reset(AV1Decoder *const pbi,
int existing_frame_idx) {
AV1_COMMON *const cm = &pbi->common;
assert(cm->show_existing_frame);
cm->current_frame.frame_type = KEY_FRAME;
cm->current_frame.refresh_frame_flags = REFRESH_FRAME_ALL;
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
cm->remapped_ref_idx[i] = INVALID_IDX;
}
cm->cur_frame->display_order_hint = 0;
if (pbi->need_resync) {
reset_ref_frame_map(cm);
pbi->need_resync = 0;
}
// Note that the displayed frame must be valid for referencing in order to
// have been selected.
cm->current_frame_id = cm->ref_frame_id[existing_frame_idx];
update_ref_frame_id(pbi);
cm->features.refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED;
}
static INLINE void reset_frame_buffers(AV1_COMMON *cm) {
RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
int i;
lock_buffer_pool(cm->buffer_pool);
reset_ref_frame_map(cm);
assert(cm->cur_frame->ref_count == 1);
for (i = 0; i < FRAME_BUFFERS; ++i) {
// Reset all unreferenced frame buffers. We can also reset cm->cur_frame
// because we are the sole owner of cm->cur_frame.
if (frame_bufs[i].ref_count > 0 && &frame_bufs[i] != cm->cur_frame) {
continue;
}
frame_bufs[i].order_hint = 0;
#if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
frame_bufs[i].display_order_hint = 0;
av1_zero(frame_bufs[i].ref_display_order_hint);
#endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
av1_zero(frame_bufs[i].ref_order_hints);
}
av1_zero_unused_internal_frame_buffers(&cm->buffer_pool->int_frame_buffers);
unlock_buffer_pool(cm->buffer_pool);
}
static INLINE int get_disp_order_hint(AV1_COMMON *const cm) {
CurrentFrame *const current_frame = &cm->current_frame;
if (current_frame->frame_type == KEY_FRAME && cm->show_existing_frame)
return 0;
#if CONFIG_DISPLAY_ORDER_HINT_FIX
// For key frames, the implicit derivation of display_order_hit is not
// applied.
if (current_frame->frame_type == KEY_FRAME) return current_frame->order_hint;
#endif // CONFIG_DISPLAY_ORDER_HINT_FIX
// Derive the exact display order hint from the signaled order_hint.
// This requires scaling up order_hints corresponding to frame
// numbers that exceed the number of bits available to send the order_hints.
// Find the reference frame with the largest order_hint
int max_disp_order_hint = 0;
for (int map_idx = 0; map_idx < REF_FRAMES; map_idx++) {
// Get reference frame buffer
const RefCntBuffer *const buf = cm->ref_frame_map[map_idx];
if (buf == NULL) continue;
if ((int)buf->display_order_hint > max_disp_order_hint)
max_disp_order_hint = buf->display_order_hint;
}
// If the order_hint is above the threshold distance of 35 frames (largest
// possible lag_in_frames) from the found reference frame, we assume it was
// modified using:
// order_hint = display_order_hint % display_order_hint_factor
// Here, the actual display_order_hint is recovered.
int cur_disp_order_hint = current_frame->order_hint;
while (abs(max_disp_order_hint - cur_disp_order_hint) > 35) {
if (cur_disp_order_hint > max_disp_order_hint) return cur_disp_order_hint;
int display_order_hint_factor =
1 << (cm->seq_params.order_hint_info.order_hint_bits_minus_1 + 1);
cur_disp_order_hint += display_order_hint_factor;
}
return cur_disp_order_hint;
}
#if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
static INLINE int get_ref_frame_disp_order_hint(AV1_COMMON *const cm,
const RefCntBuffer *const buf) {
// Find the reference frame with the largest order_hint
int max_disp_order_hint = 0;
for (int map_idx = 0; map_idx < INTER_REFS_PER_FRAME; map_idx++) {
if ((int)buf->ref_display_order_hint[map_idx] > max_disp_order_hint)
max_disp_order_hint = buf->ref_display_order_hint[map_idx];
}
// If the order_hint is above the threshold distance of 35 frames (largest
// possible lag_in_frames) from the found reference frame, we assume it was
// modified using:
// order_hint = display_order_hint % display_order_hint_factor
// Here, the actual display_order_hint is recovered.
const int display_order_hint_factor =
1 << (cm->seq_params.order_hint_info.order_hint_bits_minus_1 + 1);
int disp_order_hint = buf->order_hint;
while (abs(max_disp_order_hint - disp_order_hint) > 35) {
if (disp_order_hint > max_disp_order_hint) return disp_order_hint;
disp_order_hint += display_order_hint_factor;
}
return disp_order_hint;
}
#endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
// On success, returns 0. On failure, calls aom_internal_error and does not
// return.
static int read_uncompressed_header(AV1Decoder *pbi,
struct aom_read_bit_buffer *rb) {
AV1_COMMON *const cm = &pbi->common;
const SequenceHeader *const seq_params = &cm->seq_params;
CurrentFrame *const current_frame = &cm->current_frame;
FeatureFlags *const features = &cm->features;
MACROBLOCKD *const xd = &pbi->dcb.xd;
BufferPool *const pool = cm->buffer_pool;
RefCntBuffer *const frame_bufs = pool->frame_bufs;
aom_s_frame_info *sframe_info = &pbi->sframe_info;
sframe_info->is_s_frame = 0;
sframe_info->is_s_frame_at_altref = 0;
if (!pbi->sequence_header_ready) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"No sequence header");
}
if (seq_params->reduced_still_picture_hdr) {
cm->show_existing_frame = 0;
cm->show_frame = 1;
current_frame->frame_type = KEY_FRAME;
if (pbi->sequence_header_changed) {
// This is the start of a new coded video sequence.
pbi->sequence_header_changed = 0;
pbi->decoding_first_frame = 1;
reset_frame_buffers(cm);
}
features->error_resilient_mode = 1;
} else {
cm->show_existing_frame = aom_rb_read_bit(rb);
pbi->reset_decoder_state = 0;
if (cm->show_existing_frame) {
if (pbi->sequence_header_changed) {
aom_internal_error(
&cm->error, AOM_CODEC_CORRUPT_FRAME,
"New sequence header starts with a show_existing_frame.");
}
// Show an existing frame directly.
const int existing_frame_idx = aom_rb_read_literal(rb, 3);
RefCntBuffer *const frame_to_show = cm->ref_frame_map[existing_frame_idx];
if (frame_to_show == NULL) {
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Buffer does not contain a decoded frame");
}
if (seq_params->decoder_model_info_present_flag &&
seq_params->timing_info.equal_picture_interval == 0) {
read_temporal_point_info(cm, rb);
}
if (seq_params->frame_id_numbers_present_flag) {
int frame_id_length = seq_params->frame_id_length;
int display_frame_id = aom_rb_read_literal(rb, frame_id_length);
/* Compare display_frame_id with ref_frame_id and check valid for
* referencing */
if (display_frame_id != cm->ref_frame_id[existing_frame_idx] ||
pbi->valid_for_referencing[existing_frame_idx] == 0)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Reference buffer frame ID mismatch");
}
lock_buffer_pool(pool);
assert(frame_to_show->ref_count > 0);
// cm->cur_frame should be the buffer referenced by the return value
// of the get_free_fb() call in assign_cur_frame_new_fb() (called by
// av1_receive_compressed_data()), so the ref_count should be 1.
assert(cm->cur_frame->ref_count == 1);
// assign_frame_buffer_p() decrements ref_count directly rather than
// call decrease_ref_count(). If cm->cur_frame->raw_frame_buffer has
// already been allocated, it will not be released by
// assign_frame_buffer_p()!
assert(!cm->cur_frame->raw_frame_buffer.data);
FrameHash raw_frame_hash = cm->cur_frame->raw_frame_hash;
FrameHash grain_frame_hash = cm->cur_frame->grain_frame_hash;
assign_frame_buffer_p(&cm->cur_frame, frame_to_show);
pbi->reset_decoder_state = frame_to_show->frame_type == KEY_FRAME;
// Combine any Decoded Frame Header metadata that was parsed before
// the referenced frame with any parsed before this
// show_existing_frame header, e.g. raw frame hash values before the
// referenced coded frame and post film grain hash values before this
// header.
if (raw_frame_hash.is_present)
cm->cur_frame->raw_frame_hash = raw_frame_hash;
if (grain_frame_hash.is_present)
cm->cur_frame->grain_frame_hash = grain_frame_hash;
unlock_buffer_pool(pool);
cm->lf.filter_level[0] = 0;
cm->lf.filter_level[1] = 0;
cm->show_frame = 1;
// Section 6.8.2: It is a requirement of bitstream conformance that when
// show_existing_frame is used to show a previous frame, that the value
// of showable_frame for the previous frame was equal to 1.
if (!frame_to_show->showable_frame) {
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Buffer does not contain a showable frame");
}
// Section 6.8.2: It is a requirement of bitstream conformance that when
// show_existing_frame is used to show a previous frame with
// RefFrameType[ frame_to_show_map_idx ] equal to KEY_FRAME, that the
// frame is output via the show_existing_frame mechanism at most once.
if (pbi->reset_decoder_state) frame_to_show->showable_frame = 0;
cm->film_grain_params = frame_to_show->film_grain_params;
if (pbi->reset_decoder_state) {
show_existing_frame_reset(pbi, existing_frame_idx);
} else {
current_frame->refresh_frame_flags = 0;
}
return 0;
}
current_frame->frame_type = (FRAME_TYPE)aom_rb_read_literal(rb, 2);
if (pbi->sequence_header_changed) {
if (current_frame->frame_type == KEY_FRAME) {
// This is the start of a new coded video sequence.
pbi->sequence_header_changed = 0;
pbi->decoding_first_frame = 1;
reset_frame_buffers(cm);
} else {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Sequence header has changed without a keyframe.");
}
}
cm->show_frame = aom_rb_read_bit(rb);
if (cm->show_frame == 0) pbi->is_arf_frame_present = 1;
if (cm->show_frame == 0 && cm->current_frame.frame_type == KEY_FRAME)
pbi->is_fwd_kf_present = 1;
if (cm->current_frame.frame_type == S_FRAME) {
sframe_info->is_s_frame = 1;
sframe_info->is_s_frame_at_altref = cm->show_frame ? 0 : 1;
}
if (seq_params->still_picture &&
(current_frame->frame_type != KEY_FRAME || !cm->show_frame)) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Still pictures must be coded as shown keyframes");
}
cm->showable_frame = current_frame->frame_type != KEY_FRAME;
if (cm->show_frame) {
if (seq_params->decoder_model_info_present_flag &&
seq_params->timing_info.equal_picture_interval == 0)
read_temporal_point_info(cm, rb);
} else {
// See if this frame can be used as show_existing_frame in future
cm->showable_frame = aom_rb_read_bit(rb);
}
cm->cur_frame->showable_frame = cm->showable_frame;
features->error_resilient_mode =
frame_is_sframe(cm) ||
(current_frame->frame_type == KEY_FRAME && cm->show_frame)
? 1
: aom_rb_read_bit(rb);
}
av1_set_frame_sb_size(cm, cm->seq_params.sb_size);
if (current_frame->frame_type == KEY_FRAME && cm->show_frame) {
/* All frames need to be marked as not valid for referencing */
for (int i = 0; i < REF_FRAMES; i++) {
pbi->valid_for_referencing[i] = 0;
}
}
features->disable_cdf_update = aom_rb_read_bit(rb);
if (seq_params->force_screen_content_tools == 2) {
features->allow_screen_content_tools = aom_rb_read_bit(rb);
} else {
features->allow_screen_content_tools =
seq_params->force_screen_content_tools;
}
if (features->allow_screen_content_tools) {
if (seq_params->force_integer_mv == 2) {
features->cur_frame_force_integer_mv = aom_rb_read_bit(rb);
} else {
features->cur_frame_force_integer_mv = seq_params->force_integer_mv;
}
} else {
features->cur_frame_force_integer_mv = 0;
}
int frame_size_override_flag = 0;
features->allow_intrabc = 0;
#if CONFIG_IBC_SR_EXT
features->allow_global_intrabc = 0;
features->allow_local_intrabc = 0;
#endif // CONFIG_IBC_SR_EXT
features->primary_ref_frame = PRIMARY_REF_NONE;
#if CONFIG_PRIMARY_REF_FRAME_OPT
int signal_primary_ref_frame = -1;
features->derived_primary_ref_frame = PRIMARY_REF_NONE;
#endif // CONFIG_PRIMARY_REF_FRAME_OPT
if (!seq_params->reduced_still_picture_hdr) {
if (seq_params->frame_id_numbers_present_flag) {
int frame_id_length = seq_params->frame_id_length;
int diff_len = seq_params->delta_frame_id_length;
int prev_frame_id = 0;
int have_prev_frame_id =
!pbi->decoding_first_frame &&
!(current_frame->frame_type == KEY_FRAME && cm->show_frame);
if (have_prev_frame_id) {
prev_frame_id = cm->current_frame_id;
}
cm->current_frame_id = aom_rb_read_literal(rb, frame_id_length);
if (have_prev_frame_id) {
int diff_frame_id;
if (cm->current_frame_id > prev_frame_id) {
diff_frame_id = cm->current_frame_id - prev_frame_id;
} else {
diff_frame_id =
(1 << frame_id_length) + cm->current_frame_id - prev_frame_id;
}
/* Check current_frame_id for conformance */
if (prev_frame_id == cm->current_frame_id ||
diff_frame_id >= (1 << (frame_id_length - 1))) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Invalid value of current_frame_id");
}
}
/* Check if some frames need to be marked as not valid for referencing */
for (int i = 0; i < REF_FRAMES; i++) {
if (cm->current_frame_id - (1 << diff_len) > 0) {
if (cm->ref_frame_id[i] > cm->current_frame_id ||
cm->ref_frame_id[i] < cm->current_frame_id - (1 << diff_len))
pbi->valid_for_referencing[i] = 0;
} else {
if (cm->ref_frame_id[i] > cm->current_frame_id &&
cm->ref_frame_id[i] < (1 << frame_id_length) +
cm->current_frame_id - (1 << diff_len))
pbi->valid_for_referencing[i] = 0;
}
}
}
frame_size_override_flag = frame_is_sframe(cm) ? 1 : aom_rb_read_bit(rb);
current_frame->order_hint = aom_rb_read_literal(
rb, seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
current_frame->display_order_hint = get_disp_order_hint(cm);
current_frame->frame_number = current_frame->order_hint;
if (!features->error_resilient_mode && !frame_is_intra_only(cm)) {
#if CONFIG_PRIMARY_REF_FRAME_OPT
signal_primary_ref_frame = aom_rb_read_literal(rb, 1);
if (signal_primary_ref_frame)
features->primary_ref_frame = aom_rb_read_literal(rb, PRIMARY_REF_BITS);
#else
features->primary_ref_frame = aom_rb_read_literal(rb, PRIMARY_REF_BITS);
#endif // CONFIG_PRIMARY_REF_FRAME_OPT
}
}
if (seq_params->decoder_model_info_present_flag) {
cm->buffer_removal_time_present = aom_rb_read_bit(rb);
if (cm->buffer_removal_time_present) {
for (int op_num = 0;
op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) {
if (seq_params->op_params[op_num].decoder_model_param_present_flag) {
if ((((seq_params->operating_point_idc[op_num] >>
cm->temporal_layer_id) &
0x1) &&
((seq_params->operating_point_idc[op_num] >>
(cm->spatial_layer_id + 8)) &
0x1)) ||
seq_params->operating_point_idc[op_num] == 0) {
cm->buffer_removal_times[op_num] = aom_rb_read_unsigned_literal(
rb, seq_params->decoder_model_info.buffer_removal_time_length);
} else {
cm->buffer_removal_times[op_num] = 0;
}
} else {
cm->buffer_removal_times[op_num] = 0;
}
}
}
}
#if CONFIG_REFRESH_FLAG
const int short_refresh_frame_flags =
cm->seq_params.enable_short_refresh_frame_flags &&
!cm->features.error_resilient_mode;
const int refresh_frame_flags_bits =
short_refresh_frame_flags ? 3 : REF_FRAMES;
#endif // CONFIG_REFRESH_FLAG
if (current_frame->frame_type == KEY_FRAME) {
if (!cm->show_frame) { // unshown keyframe (forward keyframe)
#if CONFIG_REFRESH_FLAG
if (short_refresh_frame_flags) {
const int refresh_idx =
aom_rb_read_literal(rb, refresh_frame_flags_bits);
if (refresh_idx == 0) {
const bool has_refresh_frame_flags = aom_rb_read_literal(rb, 1);
current_frame->refresh_frame_flags = has_refresh_frame_flags ? 1 : 0;
} else {
current_frame->refresh_frame_flags = 1 << refresh_idx;
}
} else {
current_frame->refresh_frame_flags =
aom_rb_read_literal(rb, refresh_frame_flags_bits);
}
#else
current_frame->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES);
#endif // CONFIG_REFRESH_FLAG
} else { // shown keyframe
current_frame->refresh_frame_flags = REFRESH_FRAME_ALL;
}
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
cm->remapped_ref_idx[i] = INVALID_IDX;
}
if (pbi->need_resync) {
reset_ref_frame_map(cm);
pbi->need_resync = 0;
}
} else {
if (current_frame->frame_type == INTRA_ONLY_FRAME) {
#if CONFIG_REFRESH_FLAG
if (short_refresh_frame_flags) {
const int refresh_idx =
aom_rb_read_literal(rb, refresh_frame_flags_bits);
if (refresh_idx == 0) {
const bool has_refresh_frame_flags = aom_rb_read_literal(rb, 1);
current_frame->refresh_frame_flags = has_refresh_frame_flags ? 1 : 0;
} else {
current_frame->refresh_frame_flags = 1 << refresh_idx;
}
} else {
current_frame->refresh_frame_flags =
aom_rb_read_literal(rb, refresh_frame_flags_bits);
}
#else
current_frame->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES);
#endif // CONFIG_REFRESH_FLAG
if (current_frame->refresh_frame_flags == REFRESH_FRAME_ALL) {
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Intra only frames cannot have refresh flags 0xFF");
}
if (pbi->need_resync) {
reset_ref_frame_map(cm);
pbi->need_resync = 0;
}
} else if (pbi->need_resync != 1) { /* Skip if need resync */
#if CONFIG_REFRESH_FLAG
if (frame_is_sframe(cm)) {
current_frame->refresh_frame_flags = REFRESH_FRAME_ALL;
} else {
if (short_refresh_frame_flags) {
const int refresh_idx =
aom_rb_read_literal(rb, refresh_frame_flags_bits);
if (refresh_idx == 0) {
const bool has_refresh_frame_flags = aom_rb_read_literal(rb, 1);
current_frame->refresh_frame_flags =
has_refresh_frame_flags ? 1 : 0;
} else {
current_frame->refresh_frame_flags = 1 << refresh_idx;
}
} else {
current_frame->refresh_frame_flags =
aom_rb_read_literal(rb, refresh_frame_flags_bits);
}
}
#else
current_frame->refresh_frame_flags =
frame_is_sframe(cm) ? REFRESH_FRAME_ALL
: aom_rb_read_literal(rb, REF_FRAMES);
#endif // CONFIG_REFRESH_FLAG
}
}
if (!frame_is_intra_only(cm) ||
current_frame->refresh_frame_flags != REFRESH_FRAME_ALL) {
// Read all ref frame order hints if error_resilient_mode == 1
if (features->error_resilient_mode &&
seq_params->order_hint_info.enable_order_hint) {
for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) {
// Read order hint from bit stream
unsigned int order_hint = aom_rb_read_literal(
rb, seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
// Get buffer
RefCntBuffer *buf = cm->ref_frame_map[ref_idx];
if (buf == NULL || order_hint != buf->order_hint) {
if (buf != NULL) {
lock_buffer_pool(pool);
decrease_ref_count(buf, pool);
unlock_buffer_pool(pool);
cm->ref_frame_map[ref_idx] = NULL;
}
// If no corresponding buffer exists, allocate a new buffer with all
// pixels set to neutral grey.
int buf_idx = get_free_fb(cm);
if (buf_idx == INVALID_IDX) {
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Unable to find free frame buffer");
}
buf = &frame_bufs[buf_idx];
lock_buffer_pool(pool);
if (aom_realloc_frame_buffer(
&buf->buf, seq_params->max_frame_width,
seq_params->max_frame_height, seq_params->subsampling_x,
seq_params->subsampling_y, AOM_BORDER_IN_PIXELS,
features->byte_alignment, &buf->raw_frame_buffer,
pool->get_fb_cb, pool->cb_priv, 0)) {
decrease_ref_count(buf, pool);
unlock_buffer_pool(pool);
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
}
unlock_buffer_pool(pool);
// According to the specification, valid bitstreams are required to
// never use missing reference frames so the filling process for
// missing frames is not normatively defined and RefValid for missing
// frames is set to 0.
// To make libaom more robust when the bitstream has been corrupted
// by the loss of some frames of data, this code adds a neutral grey
// buffer in place of missing frames, i.e.
//
set_planes_to_neutral_grey(seq_params, &buf->buf, 0);
//
// and allows the frames to be used for referencing, i.e.
//
pbi->valid_for_referencing[ref_idx] = 1;
//
// Please note such behavior is not normative and other decoders may
// use a different approach.
cm->ref_frame_map[ref_idx] = buf;
buf->order_hint = order_hint;
// TODO(kslu) This is a workaround for error resilient mode. Make
// it more consistent with get_disp_order_hint().
#if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
buf->display_order_hint = get_ref_frame_disp_order_hint(cm, buf);
#else
buf->display_order_hint = order_hint;
#endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
}
}
}
if (features->error_resilient_mode) {
// Read all ref frame base_qindex
for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) {
RefCntBuffer *buf = cm->ref_frame_map[ref_idx];
buf->base_qindex = aom_rb_read_literal(
rb, cm->seq_params.bit_depth == AOM_BITS_8 ? QINDEX_BITS_UNEXT
: QINDEX_BITS);
}
}
}
if (current_frame->frame_type == KEY_FRAME) {
cm->current_frame.pyramid_level = 1;
features->tip_frame_mode = TIP_FRAME_DISABLED;
setup_frame_size(cm, frame_size_override_flag, rb);
if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
features->allow_intrabc = aom_rb_read_bit(rb);
#if CONFIG_IBC_SR_EXT
if (features->allow_intrabc) {
features->allow_global_intrabc = aom_rb_read_bit(rb);
features->allow_local_intrabc =
features->allow_global_intrabc ? aom_rb_read_bit(rb) : 1;
#if CONFIG_IBC_BV_IMPROVEMENT
#if CONFIG_IBC_MAX_DRL
features->max_bvp_drl_bits =
aom_rb_read_primitive_quniform(
rb, MAX_MAX_IBC_DRL_BITS - MIN_MAX_IBC_DRL_BITS + 1) +
MIN_MAX_IBC_DRL_BITS;
#else
features->max_drl_bits =
aom_rb_read_primitive_quniform(
rb, MAX_MAX_DRL_BITS - MIN_MAX_DRL_BITS + 1) +
MIN_MAX_DRL_BITS;
#endif // CONFIG_IBC_MAX_DRL
#endif // CONFIG_IBC_BV_IMPROVEMENT
}
#endif // CONFIG_IBC_SR_EXT
features->allow_ref_frame_mvs = 0;
cm->prev_frame = NULL;
#if CONFIG_IMPROVED_GLOBAL_MOTION
cm->cur_frame->num_ref_frames = 0;
#endif // CONFIG_IMPROVED_GLOBAL_MOTION
} else {
features->allow_ref_frame_mvs = 0;
features->tip_frame_mode = TIP_FRAME_DISABLED;
if (current_frame->frame_type == INTRA_ONLY_FRAME) {
cm->cur_frame->film_grain_params_present =
seq_params->film_grain_params_present;
setup_frame_size(cm, frame_size_override_flag, rb);
if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
features->allow_intrabc = aom_rb_read_bit(rb);
#if CONFIG_IBC_SR_EXT
if (features->allow_intrabc) {
features->allow_global_intrabc = aom_rb_read_bit(rb);
features->allow_local_intrabc =
features->allow_global_intrabc ? aom_rb_read_bit(rb) : 1;
#if CONFIG_IBC_BV_IMPROVEMENT
#if CONFIG_IBC_MAX_DRL
features->max_bvp_drl_bits =
aom_rb_read_primitive_quniform(
rb, MAX_MAX_IBC_DRL_BITS - MIN_MAX_IBC_DRL_BITS + 1) +
MIN_MAX_IBC_DRL_BITS;
#else
features->max_drl_bits =
aom_rb_read_primitive_quniform(
rb, MAX_MAX_DRL_BITS - MIN_MAX_DRL_BITS + 1) +
MIN_MAX_DRL_BITS;
#endif // CONFIG_IBC_MAX_DRL
#endif // CONFIG_IBC_BV_IMPROVEMENT
}
#endif // CONFIG_IBC_SR_EXT
#if CONFIG_IMPROVED_GLOBAL_MOTION
cm->cur_frame->num_ref_frames = 0;
#endif // CONFIG_IMPROVED_GLOBAL_MOTION
} else if (pbi->need_resync != 1) { /* Skip if need resync */
// Implicitly derive the reference mapping
#if CONFIG_PRIMARY_REF_FRAME_OPT
init_ref_map_pair(cm, cm->ref_frame_map_pairs,
current_frame->frame_type == KEY_FRAME);
int n_ranked = av1_get_ref_frames(cm, current_frame->display_order_hint,
cm->ref_frame_map_pairs);
#else
RefFrameMapPair ref_frame_map_pairs[REF_FRAMES];
init_ref_map_pair(cm, ref_frame_map_pairs,
current_frame->frame_type == KEY_FRAME);
int n_ranked = av1_get_ref_frames(cm, current_frame->display_order_hint,
ref_frame_map_pairs);
#endif // CONFIG_PRIMARY_REF_FRAME_OPT
// Reference rankings have been implicitly derived in av1_get_ref_frames.
// However, reference indices can be overwritten if they have been
// signaled, which happens in error resilient mode or when order hint
// is unavailable.
const int explicit_ref_frame_map =
cm->features.error_resilient_mode || frame_is_sframe(cm) ||
seq_params->explicit_ref_frame_map ||
!seq_params->order_hint_info.enable_order_hint;
if (explicit_ref_frame_map) {
cm->ref_frames_info.num_total_refs =
aom_rb_read_literal(rb, REF_FRAMES_LOG2);
// Check whether num_total_refs read is valid and not greater than
// n_ranked (using a reference frame more than once is not allowed).
if (cm->ref_frames_info.num_total_refs <= 0 ||
(seq_params->order_hint_info.enable_order_hint &&
cm->ref_frames_info.num_total_refs > n_ranked) ||
cm->ref_frames_info.num_total_refs >
seq_params->max_reference_frames)
aom_internal_error(&cm->error, AOM_CODEC_ERROR,
"Invalid num_total_refs");
}
#if CONFIG_ALLOW_SAME_REF_COMPOUND
cm->ref_frames_info.num_same_ref_compound =
AOMMIN(cm->seq_params.num_same_ref_compound,
cm->ref_frames_info.num_total_refs);
#endif // CONFIG_ALLOW_SAME_REF_COMPOUND
if (features->primary_ref_frame >= cm->ref_frames_info.num_total_refs &&
features->primary_ref_frame != PRIMARY_REF_NONE) {
aom_internal_error(&cm->error, AOM_CODEC_ERROR,
"Invalid primary_ref_frame");
}
for (int i = 0; i < cm->ref_frames_info.num_total_refs; ++i) {
int ref = 0;
if (!explicit_ref_frame_map) {
ref = cm->remapped_ref_idx[i];
if (cm->ref_frame_map[ref] == NULL)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Inter frame requests nonexistent reference");
} else {
ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2);
// Most of the time, streams start with a keyframe. In that case,
// ref_frame_map will have been filled in at that point and will not
// contain any NULLs. However, streams are explicitly allowed to start
// with an intra-only frame, so long as they don't then signal a
// reference to a slot that hasn't been set yet. That's what we are
// checking here.
if (cm->ref_frame_map[ref] == NULL)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Inter frame requests nonexistent reference");
cm->remapped_ref_idx[i] = ref;
}
// Check valid for referencing
if (pbi->valid_for_referencing[ref] == 0)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Reference frame not valid for referencing");
if (seq_params->frame_id_numbers_present_flag) {
int frame_id_length = seq_params->frame_id_length;
int diff_len = seq_params->delta_frame_id_length;
int delta_frame_id_minus_1 = aom_rb_read_literal(rb, diff_len);
int ref_frame_id =
((cm->current_frame_id - (delta_frame_id_minus_1 + 1) +
(1 << frame_id_length)) %
(1 << frame_id_length));
// Compare values derived from delta_frame_id_minus_1 and
// refresh_frame_flags.
if (ref_frame_id != cm->ref_frame_id[ref])
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Reference buffer frame ID mismatch");
}
}
// With explicit_ref_frame_map, cm->remapped_ref_idx has been
// overwritten. The reference lists also needs to be reset.
if (explicit_ref_frame_map) {
RefScoreData scores[REF_FRAMES];
for (int i = 0; i < REF_FRAMES; i++) scores[i].score = INT_MAX;
for (int i = 0; i < cm->ref_frames_info.num_total_refs; i++) {
scores[i].score = i;
int ref = cm->remapped_ref_idx[i];
scores[i].distance =
seq_params->order_hint_info.enable_order_hint
? ((int)current_frame->display_order_hint -
#if CONFIG_PRIMARY_REF_FRAME_OPT
(int)cm->ref_frame_map_pairs[ref].disp_order)
#else
(int)ref_frame_map_pairs[ref].disp_order)
#endif // CONFIG_PRIMARY_REF_FRAME_OPT
: 1;
}
av1_get_past_future_cur_ref_lists(cm, scores);
}
#if CONFIG_IMPROVED_GLOBAL_MOTION
cm->cur_frame->num_ref_frames = cm->ref_frames_info.num_total_refs;
#endif // CONFIG_IMPROVED_GLOBAL_MOTION
if (!features->error_resilient_mode && frame_size_override_flag) {
setup_frame_size_with_refs(cm, rb);
} else {
setup_frame_size(cm, frame_size_override_flag, rb);
}
if (frame_might_allow_ref_frame_mvs(cm))
features->allow_ref_frame_mvs = aom_rb_read_bit(rb);
else
features->allow_ref_frame_mvs = 0;
#if CONFIG_PEF
features->allow_pef = false;
if (cm->seq_params.enable_pef) {
features->allow_pef = aom_rb_read_bit(rb);
if (features->allow_pef) {
cm->pef_params.pef_delta = aom_rb_read_bit(rb) + 1;
}
}
#endif // CONFIG_PEF
#if CONFIG_TIP_DIRECT_FRAME_MV
cm->tip_global_motion.as_int = 0;
cm->tip_interp_filter = MULTITAP_SHARP;
#endif // CONFIG_TIP_DIRECT_FRAME_MV
if (cm->seq_params.enable_tip) {
features->tip_frame_mode = aom_rb_read_literal(rb, 2);
#if CONFIG_OPTFLOW_ON_TIP
features->use_optflow_tip = 1;
#endif // CONFIG_OPTFLOW_ON_TIP
if (features->tip_frame_mode >= TIP_FRAME_MODES) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Invalid TIP mode.");
}
if (features->tip_frame_mode == TIP_FRAME_AS_OUTPUT &&
av1_superres_scaled(cm)) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Invalid TIP Direct mode with superres.");
}
if (features->tip_frame_mode && cm->seq_params.enable_tip_hole_fill) {
features->allow_tip_hole_fill = aom_rb_read_bit(rb);
} else {
features->allow_tip_hole_fill = false;
}
#if CONFIG_TIP_DIRECT_FRAME_MV
if (features->tip_frame_mode == TIP_FRAME_AS_OUTPUT) {
int all_zero = aom_rb_read_bit(rb);
if (!all_zero) {
cm->tip_global_motion.as_mv.row = aom_rb_read_literal(rb, 4);
cm->tip_global_motion.as_mv.col = aom_rb_read_literal(rb, 4);
if (cm->tip_global_motion.as_mv.row != 0) {
int sign = aom_rb_read_bit(rb);
if (sign) cm->tip_global_motion.as_mv.row *= -1;
}
if (cm->tip_global_motion.as_mv.col != 0) {
int sign = aom_rb_read_bit(rb);
if (sign) cm->tip_global_motion.as_mv.col *= -1;
}
}
cm->tip_interp_filter =
aom_rb_read_bit(rb) ? MULTITAP_SHARP : EIGHTTAP_REGULAR;
#endif // CONFIG_TIP_DIRECT_FRAME_MV
}
} else {
features->tip_frame_mode = TIP_FRAME_DISABLED;
}
if (features->tip_frame_mode != TIP_FRAME_AS_OUTPUT) {
#if CONFIG_IBC_SR_EXT
if (features->allow_screen_content_tools && !av1_superres_scaled(cm)) {
features->allow_intrabc = aom_rb_read_bit(rb);
features->allow_global_intrabc = 0;
features->allow_local_intrabc = features->allow_intrabc;
}
#endif // CONFIG_IBC_SR_EXT
features->max_drl_bits =
aom_rb_read_primitive_quniform(
rb, MAX_MAX_DRL_BITS - MIN_MAX_DRL_BITS + 1) +
MIN_MAX_DRL_BITS;
#if CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL
if (features->allow_intrabc) {
features->max_bvp_drl_bits =
aom_rb_read_primitive_quniform(
rb, MAX_MAX_IBC_DRL_BITS - MIN_MAX_IBC_DRL_BITS + 1) +
MIN_MAX_IBC_DRL_BITS;
}
#endif // CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL
#if CONFIG_FLEX_MVRES
if (features->cur_frame_force_integer_mv) {
features->fr_mv_precision = MV_PRECISION_ONE_PEL;
} else {
features->fr_mv_precision = aom_rb_read_bit(rb)
? MV_PRECISION_ONE_EIGHTH_PEL
: MV_PRECISION_QTR_PEL;
features->most_probable_fr_mv_precision = features->fr_mv_precision;
}
if (features->fr_mv_precision == MV_PRECISION_ONE_PEL) {
features->use_pb_mv_precision = 0;
} else {
features->use_pb_mv_precision = cm->seq_params.enable_flex_mvres;
}
#else
if (features->cur_frame_force_integer_mv) {
features->allow_high_precision_mv = 0;
} else {
features->allow_high_precision_mv = aom_rb_read_bit(rb);
}
#endif
features->interp_filter = read_frame_interp_filter(rb);
#if CONFIG_EXTENDED_WARP_PREDICTION
int seq_enabled_motion_modes = cm->seq_params.seq_enabled_motion_modes;
int frame_enabled_motion_modes = (1 << SIMPLE_TRANSLATION);
for (int motion_mode = INTERINTRA; motion_mode < MOTION_MODES;
motion_mode++) {
if (seq_enabled_motion_modes & (1 << motion_mode)) {
int enabled = aom_rb_read_bit(rb);
if (enabled) {
frame_enabled_motion_modes |= (1 << motion_mode);
}
}
}
features->enabled_motion_modes = frame_enabled_motion_modes;
#else
features->switchable_motion_mode = aom_rb_read_bit(rb);
#endif // CONFIG_EXTENDED_WARP_PREDICTION
#if CONFIG_OPTFLOW_REFINEMENT
if (cm->seq_params.enable_opfl_refine == AOM_OPFL_REFINE_AUTO) {
features->opfl_refine_type = aom_rb_read_literal(rb, 2);
if (features->opfl_refine_type == AOM_OPFL_REFINE_AUTO)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Invalid frame level optical flow refine type");
} else {
features->opfl_refine_type = cm->seq_params.enable_opfl_refine;
}
#endif // CONFIG_OPTFLOW_REFINEMENT
}
}
#if !CONFIG_PRIMARY_REF_FRAME_OPT
cm->prev_frame = get_primary_ref_frame_buf(cm);
if (features->primary_ref_frame != PRIMARY_REF_NONE &&
get_primary_ref_frame_buf(cm) == NULL) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Reference frame containing this frame's initial "
"frame context is unavailable.");
}
#endif // !CONFIG_PRIMARY_REF_FRAME_OPT
if (!(current_frame->frame_type == INTRA_ONLY_FRAME) &&
pbi->need_resync != 1) {
for (int i = 0; i < cm->ref_frames_info.num_total_refs; ++i) {
const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, i);
if (!ref_buf) continue;
struct scale_factors *const ref_scale_factors =
get_ref_scale_factors(cm, i);
av1_setup_scale_factors_for_frame(
ref_scale_factors, ref_buf->buf.y_crop_width,
ref_buf->buf.y_crop_height, cm->width, cm->height);
if ((!av1_is_valid_scale(ref_scale_factors)))
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
}
if (cm->seq_params.enable_tip) {
const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, TIP_FRAME);
if (ref_buf) {
struct scale_factors *const ref_scale_factors =
get_ref_scale_factors(cm, TIP_FRAME);
av1_setup_scale_factors_for_frame(
ref_scale_factors, ref_buf->buf.y_crop_width,
ref_buf->buf.y_crop_height, cm->width, cm->height);
if ((!av1_is_valid_scale(ref_scale_factors)))
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
}
}
}
}
av1_setup_frame_buf_refs(cm);
av1_setup_frame_sign_bias(cm);
cm->cur_frame->frame_type = current_frame->frame_type;
update_ref_frame_id(pbi);
cm->cur_frame->buf.bit_depth = seq_params->bit_depth;
cm->cur_frame->buf.color_primaries = seq_params->color_primaries;
cm->cur_frame->buf.transfer_characteristics =
seq_params->transfer_characteristics;
cm->cur_frame->buf.matrix_coefficients = seq_params->matrix_coefficients;
cm->cur_frame->buf.monochrome = seq_params->monochrome;
cm->cur_frame->buf.chroma_sample_position =
seq_params->chroma_sample_position;
cm->cur_frame->buf.color_range = seq_params->color_range;
cm->cur_frame->buf.render_width = cm->render_width;
cm->cur_frame->buf.render_height = cm->render_height;
#if CONFIG_TIP_DIRECT_FRAME_MV
YV12_BUFFER_CONFIG *tip_frame_buf = &cm->tip_ref.tmp_tip_frame->buf;
#else
YV12_BUFFER_CONFIG *tip_frame_buf = &cm->tip_ref.tip_frame->buf;
#endif // CONFIG_TIP_DIRECT_FRAME_MV
tip_frame_buf->bit_depth = seq_params->bit_depth;
tip_frame_buf->color_primaries = seq_params->color_primaries;
tip_frame_buf->transfer_characteristics =
seq_params->transfer_characteristics;
tip_frame_buf->matrix_coefficients = seq_params->matrix_coefficients;
tip_frame_buf->monochrome = seq_params->monochrome;
tip_frame_buf->chroma_sample_position = seq_params->chroma_sample_position;
tip_frame_buf->color_range = seq_params->color_range;
tip_frame_buf->render_width = cm->render_width;
tip_frame_buf->render_height = cm->render_height;
if (pbi->need_resync) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Keyframe / intra-only frame required to reset decoder"
" state");
}
if (is_global_intrabc_allowed(cm) ||
features->tip_frame_mode == TIP_FRAME_AS_OUTPUT) {
// Set parameters corresponding to no filtering.
struct loopfilter *lf = &cm->lf;
lf->filter_level[0] = 0;
lf->filter_level[1] = 0;
#if CONFIG_FIX_CDEF_SYNTAX
cm->cdef_info.cdef_frame_enable = 0;
#else
cm->cdef_info.cdef_bits = 0;
cm->cdef_info.cdef_strengths[0] = 0;
cm->cdef_info.nb_cdef_strengths = 1;
cm->cdef_info.cdef_uv_strengths[0] = 0;
#endif // CONFIG_FIX_CDEF_SYNTAX
cm->rst_info[0].frame_restoration_type = RESTORE_NONE;
cm->rst_info[1].frame_restoration_type = RESTORE_NONE;
cm->rst_info[2].frame_restoration_type = RESTORE_NONE;
#if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
cm->rst_info[0].frame_cross_restoration_type = RESTORE_NONE;
cm->rst_info[1].frame_cross_restoration_type = RESTORE_NONE;
cm->rst_info[2].frame_cross_restoration_type = RESTORE_NONE;
#endif
}
if (features->tip_frame_mode == TIP_FRAME_AS_OUTPUT) {
#if CONFIG_TIP_IMPLICIT_QUANT
if (cm->seq_params.enable_tip_explicit_qp) {
cm->quant_params.base_qindex = aom_rb_read_literal(
rb, cm->seq_params.bit_depth == AOM_BITS_8 ? QINDEX_BITS_UNEXT
: QINDEX_BITS);
if (av1_num_planes(cm) > 1) {
int diff_uv_delta = 0;
if (cm->seq_params.separate_uv_delta_q) {
diff_uv_delta = aom_rb_read_bit(rb);
}
cm->quant_params.u_ac_delta_q = read_delta_q(rb);
if (diff_uv_delta) {
cm->quant_params.v_ac_delta_q = read_delta_q(rb);
} else {
cm->quant_params.v_ac_delta_q = cm->quant_params.u_ac_delta_q;
}
} else {
cm->quant_params.v_ac_delta_q = cm->quant_params.u_ac_delta_q = 0;
}
cm->cur_frame->base_qindex = cm->quant_params.base_qindex;
cm->cur_frame->u_ac_delta_q = cm->quant_params.u_ac_delta_q;
cm->cur_frame->v_ac_delta_q = cm->quant_params.v_ac_delta_q;
}
#else
cm->quant_params.base_qindex = aom_rb_read_literal(
rb,
cm->seq_params.bit_depth == AOM_BITS_8 ? QINDEX_BITS_UNEXT : QINDEX_BITS);
cm->cur_frame->base_qindex = cm->quant_params.base_qindex;
#endif // CONFIG_TIP_IMPLICIT_QUANT
features->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED;
read_tile_info(pbi, rb);
cm->cur_frame->film_grain_params_present =
seq_params->film_grain_params_present;
read_film_grain(cm, rb);
av1_setup_past_independence(cm);
if (!cm->tiles.large_scale) {
cm->cur_frame->frame_context = *cm->fc;
}
// TIP frame will be output for displaying
// No futher processing needed
return 0;
}
const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) &&
!(features->disable_cdf_update);
if (might_bwd_adapt) {
features->refresh_frame_context = aom_rb_read_bit(rb)
? REFRESH_FRAME_CONTEXT_DISABLED
: REFRESH_FRAME_CONTEXT_BACKWARD;
} else {
features->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED;
}
read_tile_info(pbi, rb);
if (!av1_is_min_tile_width_satisfied(cm)) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Minimum tile width requirement not satisfied");
}
CommonQuantParams *const quant_params = &cm->quant_params;
setup_quantization(quant_params, av1_num_planes(cm), cm->seq_params.bit_depth,
cm->seq_params.separate_uv_delta_q, rb);
cm->cur_frame->base_qindex = quant_params->base_qindex;
#if CONFIG_TIP_IMPLICIT_QUANT
cm->cur_frame->u_ac_delta_q = quant_params->u_ac_delta_q;
cm->cur_frame->v_ac_delta_q = quant_params->v_ac_delta_q;
#endif // CONFIG_TIP_IMPLICIT_QUANT
xd->bd = (int)seq_params->bit_depth;
#if CONFIG_PRIMARY_REF_FRAME_OPT
if (!seq_params->reduced_still_picture_hdr) {
features->derived_primary_ref_frame = choose_primary_ref_frame(cm);
if (!signal_primary_ref_frame)
features->primary_ref_frame = features->derived_primary_ref_frame;
}
// For primary_ref_frame and derived_primary_ref_frame, if one of them is
// PRIMARY_REF_NONE, the other one is also PRIMARY_REF_NONE.
if (features->derived_primary_ref_frame == PRIMARY_REF_NONE ||
features->primary_ref_frame == PRIMARY_REF_NONE) {
features->primary_ref_frame = PRIMARY_REF_NONE;
features->derived_primary_ref_frame = PRIMARY_REF_NONE;
}
assert(IMPLIES(features->derived_primary_ref_frame == PRIMARY_REF_NONE,
features->primary_ref_frame == PRIMARY_REF_NONE));
assert(IMPLIES(features->primary_ref_frame == PRIMARY_REF_NONE,
features->derived_primary_ref_frame == PRIMARY_REF_NONE));
if (features->primary_ref_frame >= cm->ref_frames_info.num_total_refs &&
features->primary_ref_frame != PRIMARY_REF_NONE) {
aom_internal_error(&cm->error, AOM_CODEC_ERROR,
"Invalid primary_ref_frame");
}
if (current_frame->frame_type != KEY_FRAME) {
cm->prev_frame =
get_primary_ref_frame_buf(cm, features->derived_primary_ref_frame);
if (features->derived_primary_ref_frame != PRIMARY_REF_NONE &&
get_primary_ref_frame_buf(cm, features->derived_primary_ref_frame) ==
NULL) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Reference frame containing this frame's initial "
"frame context is unavailable.");
}
}
#endif // CONFIG_PRIMARY_REF_FRAME_OPT
CommonContexts *const above_contexts = &cm->above_contexts;
if (above_contexts->num_planes < av1_num_planes(cm) ||
above_contexts->num_mi_cols < cm->mi_params.mi_cols ||
above_contexts->num_tile_rows < cm->tiles.rows) {
av1_free_above_context_buffers(above_contexts);
if (av1_alloc_above_context_buffers(above_contexts, cm->tiles.rows,
cm->mi_params.mi_cols,
av1_num_planes(cm))) {
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate context buffers");
}
}
if (features->primary_ref_frame == PRIMARY_REF_NONE) {
av1_setup_past_independence(cm);
}
setup_segmentation(cm, rb);
cm->delta_q_info.delta_q_res = 1;
cm->delta_q_info.delta_lf_res = 1;
cm->delta_q_info.delta_lf_present_flag = 0;
cm->delta_q_info.delta_lf_multi = 0;
cm->delta_q_info.delta_q_present_flag =
quant_params->base_qindex > 0 ? aom_rb_read_bit(rb) : 0;
if (cm->delta_q_info.delta_q_present_flag) {
xd->current_base_qindex = quant_params->base_qindex;
cm->delta_q_info.delta_q_res = 1 << aom_rb_read_literal(rb, 2);
if (!is_global_intrabc_allowed(cm))
cm->delta_q_info.delta_lf_present_flag = aom_rb_read_bit(rb);
if (cm->delta_q_info.delta_lf_present_flag) {
cm->delta_q_info.delta_lf_res = 1 << aom_rb_read_literal(rb, 2);
cm->delta_q_info.delta_lf_multi = aom_rb_read_bit(rb);
av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
}
}
xd->cur_frame_force_integer_mv = features->cur_frame_force_integer_mv;
for (int i = 0; i < MAX_SEGMENTS; ++i) {
const int qindex = av1_get_qindex(&cm->seg, i, quant_params->base_qindex,
cm->seq_params.bit_depth);
xd->lossless[i] =
qindex == 0 &&
(quant_params->y_dc_delta_q + cm->seq_params.base_y_dc_delta_q <= 0) &&
(quant_params->u_dc_delta_q + cm->seq_params.base_uv_dc_delta_q <= 0) &&
quant_params->u_ac_delta_q <= 0 &&
(quant_params->v_dc_delta_q + cm->seq_params.base_uv_dc_delta_q <= 0) &&
quant_params->v_ac_delta_q <= 0;
xd->qindex[i] = qindex;
}
features->coded_lossless = is_coded_lossless(cm, xd);
features->all_lossless = features->coded_lossless && !av1_superres_scaled(cm);
setup_segmentation_dequant(cm, xd);
if (features->coded_lossless) {
cm->lf.filter_level[0] = 0;
cm->lf.filter_level[1] = 0;
}
if (features->coded_lossless || !seq_params->enable_cdef) {
#if CONFIG_FIX_CDEF_SYNTAX
cm->cdef_info.cdef_frame_enable = 0;
#else
cm->cdef_info.cdef_bits = 0;
cm->cdef_info.cdef_strengths[0] = 0;
cm->cdef_info.cdef_uv_strengths[0] = 0;
#endif // CONFIG_FIX_CDEF_SYNTAX
}
if (features->all_lossless || !seq_params->enable_restoration) {
cm->rst_info[0].frame_restoration_type = RESTORE_NONE;
cm->rst_info[1].frame_restoration_type = RESTORE_NONE;
cm->rst_info[2].frame_restoration_type = RESTORE_NONE;
#if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
cm->rst_info[0].frame_cross_restoration_type = RESTORE_NONE;
cm->rst_info[1].frame_cross_restoration_type = RESTORE_NONE;
cm->rst_info[2].frame_cross_restoration_type = RESTORE_NONE;
#endif
}
setup_loopfilter(cm, rb);
if (!features->coded_lossless && seq_params->enable_cdef) {
setup_cdef(cm, rb);
}
if (!features->all_lossless && seq_params->enable_restoration) {
decode_restoration_mode(cm, rb);
}
#if CONFIG_CCSO
if (!features->coded_lossless && seq_params->enable_ccso) {
setup_ccso(cm, rb);
}
#endif
if (features->coded_lossless || !cm->seq_params.enable_parity_hiding)
features->allow_parity_hiding = false;
else
features->allow_parity_hiding = aom_rb_read_bit(rb);
features->tx_mode = read_tx_mode(rb, features->coded_lossless);
current_frame->reference_mode = read_frame_reference_mode(cm, rb);
av1_setup_skip_mode_allowed(cm);
current_frame->skip_mode_info.skip_mode_flag =
current_frame->skip_mode_info.skip_mode_allowed ? aom_rb_read_bit(rb) : 0;
#if !CONFIG_EXTENDED_WARP_PREDICTION
if (frame_might_allow_warped_motion(cm))
features->allow_warped_motion = aom_rb_read_bit(rb);
else
features->allow_warped_motion = 0;
#endif // !CONFIG_EXTENDED_WARP_PREDICTION
#if CONFIG_BAWP
if (!frame_is_intra_only(cm) && seq_params->enable_bawp)
features->enable_bawp = aom_rb_read_bit(rb);
else
features->enable_bawp = 0;
#endif // CONFIG_BAWP
#if CONFIG_CWP
features->enable_cwp = seq_params->enable_cwp;
#endif // CONFIG_CWP
#if CONFIG_EXTENDED_WARP_PREDICTION
features->allow_warpmv_mode = 0;
if (!frame_is_intra_only(cm) &&
(features->enabled_motion_modes & (1 << WARP_DELTA)) != 0) {
features->allow_warpmv_mode = aom_rb_read_bit(rb);
}
#endif // CONFIG_EXTENDED_WARP_PREDICTION
#if CONFIG_D071_IMP_MSK_BLD
features->enable_imp_msk_bld = seq_params->enable_imp_msk_bld;
#endif // CONFIG_D071_IMP_MSK_BLD
features->reduced_tx_set_used = aom_rb_read_bit(rb);
if (features->allow_ref_frame_mvs && !frame_might_allow_ref_frame_mvs(cm)) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Frame wrongly requests reference frame MVs");
}
if (features->tip_frame_mode && !cm->seq_params.enable_tip) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Frame wrongly requests TIP mode");
}
if (!frame_is_intra_only(cm)) read_global_motion(cm, rb);
cm->cur_frame->film_grain_params_present =
seq_params->film_grain_params_present;
read_film_grain(cm, rb);
#if EXT_TILE_DEBUG
if (pbi->ext_tile_debug && cm->tiles.large_scale) {
read_ext_tile_info(pbi, rb);
av1_set_single_tile_decoding_mode(cm);
}
#endif // EXT_TILE_DEBUG
return 0;
}
struct aom_read_bit_buffer *av1_init_read_bit_buffer(
AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data,
const uint8_t *data_end) {
rb->bit_offset = 0;
rb->error_handler = error_handler;
rb->error_handler_data = &pbi->common;
rb->bit_buffer = data;
rb->bit_buffer_end = data_end;
return rb;
}
void av1_read_frame_size(struct aom_read_bit_buffer *rb, int num_bits_width,
int num_bits_height, int *width, int *height) {
*width = aom_rb_read_literal(rb, num_bits_width) + 1;
*height = aom_rb_read_literal(rb, num_bits_height) + 1;
}
BITSTREAM_PROFILE av1_read_profile(struct aom_read_bit_buffer *rb) {
int profile = aom_rb_read_literal(rb, PROFILE_BITS);
return (BITSTREAM_PROFILE)profile;
}
static AOM_INLINE void superres_post_decode(AV1Decoder *pbi) {
AV1_COMMON *const cm = &pbi->common;
BufferPool *const pool = cm->buffer_pool;
if (!av1_superres_scaled(cm)) return;
assert(!cm->features.all_lossless);
av1_superres_upscale(cm, pool, 0);
}
static AOM_INLINE void process_tip_mode(AV1Decoder *pbi) {
AV1_COMMON *const cm = &pbi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &pbi->dcb.xd;
if (cm->features.allow_ref_frame_mvs && cm->has_bwd_ref) {
if (cm->features.tip_frame_mode == TIP_FRAME_AS_OUTPUT) {
av1_dec_setup_tip_frame(cm, xd, pbi->td.mc_buf, pbi->td.tmp_conv_dst);
#if !CONFIG_TIP_DIRECT_FRAME_MV
#if CONFIG_PEF
if (cm->seq_params.enable_pef && cm->features.allow_pef) {
enhance_tip_frame(cm, xd);
}
#endif // CONFIG_PEF
#endif // !CONFIG_TIP_DIRECT_FRAME_MV
} else if (cm->features.tip_frame_mode == TIP_FRAME_AS_REF) {
av1_setup_tip_motion_field(cm, 0);
const int mvs_rows =
ROUND_POWER_OF_TWO(cm->mi_params.mi_rows, TMVP_SHIFT_BITS);
const int mvs_cols =
ROUND_POWER_OF_TWO(cm->mi_params.mi_cols, TMVP_SHIFT_BITS);
av1_zero_array(cm->tip_ref.available_flag, mvs_rows * mvs_cols);
}
}
if (cm->features.tip_frame_mode == TIP_FRAME_AS_OUTPUT) {
av1_copy_tip_frame_tmvp_mvs(cm);
aom_yv12_copy_frame(&cm->tip_ref.tip_frame->buf, &cm->cur_frame->buf,
num_planes);
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
cm->global_motion[i] = default_warp_params;
cm->cur_frame->global_motion[i] = default_warp_params;
}
av1_setup_past_independence(cm);
if (!cm->tiles.large_scale) {
cm->cur_frame->frame_context = *cm->fc;
}
}
}
uint32_t av1_decode_frame_headers_and_setup(AV1Decoder *pbi,
struct aom_read_bit_buffer *rb,
const uint8_t *data,
const uint8_t **p_data_end,
int trailing_bits_present) {
AV1_COMMON *const cm = &pbi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &pbi->dcb.xd;
#if CONFIG_BITSTREAM_DEBUG
aom_bitstream_queue_set_frame_read(cm->current_frame.order_hint * 2 +
cm->show_frame);
#endif
#if CONFIG_MISMATCH_DEBUG
mismatch_move_frame_idx_r(1);
#endif // CONFIG_MISMATCH_DEBUG
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
cm->global_motion[i] = default_warp_params;
cm->cur_frame->global_motion[i] = default_warp_params;
}
xd->global_motion = cm->global_motion;
read_uncompressed_header(pbi, rb);
if (trailing_bits_present) av1_check_trailing_bits(pbi, rb);
if (!cm->tiles.single_tile_decoding &&
(pbi->dec_tile_row >= 0 || pbi->dec_tile_col >= 0)) {
pbi->dec_tile_row = -1;
pbi->dec_tile_col = -1;
}
const uint32_t uncomp_hdr_size =
(uint32_t)aom_rb_bytes_read(rb); // Size of the uncompressed header
YV12_BUFFER_CONFIG *new_fb = &cm->cur_frame->buf;
xd->cur_buf = new_fb;
if (av1_allow_intrabc(cm) && xd->tree_type != CHROMA_PART) {
av1_setup_scale_factors_for_frame(
&cm->sf_identity, xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height,
xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height);
}
if (cm->show_existing_frame) {
// showing a frame directly
*p_data_end = data + uncomp_hdr_size;
if (pbi->reset_decoder_state) {
// Use the default frame context values.
*cm->fc = *cm->default_frame_context;
if (!cm->fc->initialized)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Uninitialized entropy context.");
}
return uncomp_hdr_size;
}
cm->mi_params.setup_mi(&cm->mi_params);
if (cm->features.allow_ref_frame_mvs) av1_setup_motion_field(cm);
#if CONFIG_MVP_IMPROVEMENT
else
av1_setup_ref_frame_sides(cm);
#endif // CONFIG_MVP_IMPROVEMENT
#if CONFIG_PEF
if (cm->seq_params.enable_pef && cm->features.allow_pef) {
init_pef_parameter(cm, 0, num_planes);
}
#endif // CONFIG_PEF
process_tip_mode(pbi);
if (cm->features.tip_frame_mode == TIP_FRAME_AS_OUTPUT) {
*p_data_end = data + uncomp_hdr_size;
return uncomp_hdr_size;
}
av1_setup_block_planes(xd, cm->seq_params.subsampling_x,
cm->seq_params.subsampling_y, num_planes);
if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) {
// use the default frame context values
*cm->fc = *cm->default_frame_context;
} else {
#if CONFIG_PRIMARY_REF_FRAME_OPT
*cm->fc = get_primary_ref_frame_buf(cm, cm->features.primary_ref_frame)
->frame_context;
#else
*cm->fc = get_primary_ref_frame_buf(cm)->frame_context;
#endif // CONFIG_PRIMARY_REF_FRAME_OPT
}
if (!cm->fc->initialized)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Uninitialized entropy context.");
pbi->dcb.corrupted = 0;
return uncomp_hdr_size;
}
// Once-per-frame initialization
static AOM_INLINE void setup_frame_info(AV1Decoder *pbi) {
AV1_COMMON *const cm = &pbi->common;
if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE ||
cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
cm->rst_info[2].frame_restoration_type != RESTORE_NONE
#if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
|| cm->rst_info[0].frame_cross_restoration_type != RESTORE_NONE ||
cm->rst_info[1].frame_cross_restoration_type != RESTORE_NONE ||
cm->rst_info[2].frame_cross_restoration_type != RESTORE_NONE
#endif
) {
av1_alloc_restoration_buffers(cm);
}
const int buf_size = MC_TEMP_BUF_PELS << 1;
if (pbi->td.mc_buf_size != buf_size) {
av1_free_mc_tmp_buf(&pbi->td);
allocate_mc_tmp_buf(cm, &pbi->td, buf_size);
}
}
void av1_decode_tg_tiles_and_wrapup(AV1Decoder *pbi, const uint8_t *data,
const uint8_t *data_end,
const uint8_t **p_data_end, int start_tile,
int end_tile, int initialize_flag) {
AV1_COMMON *const cm = &pbi->common;
CommonTileParams *const tiles = &cm->tiles;
MACROBLOCKD *const xd = &pbi->dcb.xd;
const int tile_count_tg = end_tile - start_tile + 1;
if (initialize_flag) setup_frame_info(pbi);
const int num_planes = av1_num_planes(cm);
#if CONFIG_LPF_MASK
av1_loop_filter_frame_init(cm, 0, num_planes);
#endif
#if CONFIG_INSPECTION
aom_realloc_frame_buffer(&cm->predicted_pixels, cm->width, cm->height,
cm->seq_params.subsampling_x,
cm->seq_params.subsampling_y,
AOM_DEC_BORDER_IN_PIXELS,
cm->features.byte_alignment, NULL, NULL, NULL, 0);
aom_realloc_frame_buffer(&cm->prefiltered_pixels, cm->width, cm->height,
cm->seq_params.subsampling_x,
cm->seq_params.subsampling_y,
AOM_DEC_BORDER_IN_PIXELS,
cm->features.byte_alignment, NULL, NULL, NULL, 0);
#endif // CONFIG_INSPECTION
if (pbi->max_threads > 1 && !(tiles->large_scale && !pbi->ext_tile_debug) &&
pbi->row_mt)
*p_data_end =
decode_tiles_row_mt(pbi, data, data_end, start_tile, end_tile);
else if (pbi->max_threads > 1 && tile_count_tg > 1 &&
!(tiles->large_scale && !pbi->ext_tile_debug))
*p_data_end = decode_tiles_mt(pbi, data, data_end, start_tile, end_tile);
else
*p_data_end = decode_tiles(pbi, data, data_end, start_tile, end_tile);
// If the bit stream is monochrome, set the U and V buffers to a constant.
if (num_planes < 3) {
set_planes_to_neutral_grey(&cm->seq_params, xd->cur_buf, 1);
}
#if CONFIG_INSPECTION
memcpy(cm->prefiltered_pixels.buffer_alloc, cm->cur_frame->buf.buffer_alloc,
cm->prefiltered_pixels.frame_size);
#endif // CONFIG_INSPECTION
if (end_tile != tiles->rows * tiles->cols - 1) {
return;
}
if (!is_global_intrabc_allowed(cm) && !tiles->single_tile_decoding) {
if (cm->lf.filter_level[0] || cm->lf.filter_level[1]) {
if (pbi->num_workers > 1) {
av1_loop_filter_frame_mt(
&cm->cur_frame->buf, cm, &pbi->dcb.xd, 0, num_planes, 0,
#if CONFIG_LPF_MASK
1,
#endif
pbi->tile_workers, pbi->num_workers, &pbi->lf_row_sync);
} else {
av1_loop_filter_frame(&cm->cur_frame->buf, cm, &pbi->dcb.xd,
#if CONFIG_LPF_MASK
1,
#endif
0, num_planes, 0);
}
}
#if CONFIG_CCSO
const int use_ccso =
!pbi->skip_loop_filter && !cm->features.coded_lossless &&
(cm->ccso_info.ccso_enable[0] || cm->ccso_info.ccso_enable[1]
#if CONFIG_CCSO_EXT
|| cm->ccso_info.ccso_enable[2]
#endif
);
uint16_t *ext_rec_y;
if (use_ccso) {
av1_setup_dst_planes(xd->plane, &cm->cur_frame->buf, 0, 0, 0, num_planes,
NULL);
const int ccso_stride_ext =
xd->plane[0].dst.width + (CCSO_PADDING_SIZE << 1);
ext_rec_y =
aom_malloc(sizeof(*ext_rec_y) *
(xd->plane[0].dst.height + (CCSO_PADDING_SIZE << 1)) *
(xd->plane[0].dst.width + (CCSO_PADDING_SIZE << 1)));
for (int pli = 0; pli < 1; pli++) {
int pic_height = xd->plane[pli].dst.height;
int pic_width = xd->plane[pli].dst.width;
const int dst_stride = xd->plane[pli].dst.stride;
#if CONFIG_CCSO_EXT
ext_rec_y += CCSO_PADDING_SIZE * ccso_stride_ext + CCSO_PADDING_SIZE;
#endif
for (int r = 0; r < pic_height; ++r) {
for (int c = 0; c < pic_width; ++c) {
#if CONFIG_CCSO_EXT
ext_rec_y[c] = xd->plane[pli].dst.buf[c];
#else
ext_rec_y[(r + CCSO_PADDING_SIZE) * ccso_stride_ext + c +
CCSO_PADDING_SIZE] =
xd->plane[pli].dst.buf[r * dst_stride + c];
#endif
}
#if CONFIG_CCSO_EXT
ext_rec_y += ccso_stride_ext;
xd->plane[0].dst.buf += dst_stride;
}
ext_rec_y -= CCSO_PADDING_SIZE * ccso_stride_ext + CCSO_PADDING_SIZE;
ext_rec_y -= pic_height * ccso_stride_ext;
xd->plane[0].dst.buf -= pic_height * ccso_stride_ext;
#else
}
#endif
}
extend_ccso_border(ext_rec_y, CCSO_PADDING_SIZE, xd);
}
#endif
const int do_loop_restoration =
#if CONFIG_HIGH_PASS_CROSS_WIENER_FILTER
cm->rst_info[0].frame_cross_restoration_type != RESTORE_NONE ||
cm->rst_info[1].frame_cross_restoration_type != RESTORE_NONE ||
cm->rst_info[2].frame_cross_restoration_type != RESTORE_NONE ||
#endif
cm->rst_info[0].frame_restoration_type != RESTORE_NONE ||
cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
cm->rst_info[2].frame_restoration_type != RESTORE_NONE;
const int do_cdef = !pbi->skip_loop_filter &&
!cm->features.coded_lossless &&
#if CONFIG_FIX_CDEF_SYNTAX
cm->cdef_info.cdef_frame_enable;
#else
(cm->cdef_info.cdef_bits ||
cm->cdef_info.cdef_strengths[0] ||
cm->cdef_info.cdef_uv_strengths[0]);
#endif // CONFIG_FIX_CDEF_SYNTAX
const int do_superres = av1_superres_scaled(cm);
const int optimized_loop_restoration =
#if CONFIG_CCSO
!use_ccso &&
#endif
!do_cdef && !do_superres;
if (!optimized_loop_restoration) {
if (do_loop_restoration)
av1_loop_restoration_save_boundary_lines(&pbi->common.cur_frame->buf,
cm, 0);
if (do_cdef) {
av1_cdef_frame(&pbi->common.cur_frame->buf, cm, &pbi->dcb.xd);
}
#if CONFIG_CCSO
if (use_ccso) {
ccso_frame(&cm->cur_frame->buf, cm, xd, ext_rec_y);
aom_free(ext_rec_y);
}
#endif
superres_post_decode(pbi);
if (do_loop_restoration) {
av1_loop_restoration_save_boundary_lines(&pbi->common.cur_frame->buf,
cm, 1);
if (pbi->num_workers > 1) {
av1_loop_restoration_filter_frame_mt(
(YV12_BUFFER_CONFIG *)xd->cur_buf, cm, optimized_loop_restoration,
pbi->tile_workers, pbi->num_workers, &pbi->lr_row_sync,
&pbi->lr_ctxt);
} else {
av1_loop_restoration_filter_frame((YV12_BUFFER_CONFIG *)xd->cur_buf,
cm, optimized_loop_restoration,
&pbi->lr_ctxt);
}
}
} else {
#if CONFIG_CCSO
if (use_ccso) {
ccso_frame(&cm->cur_frame->buf, cm, xd, ext_rec_y);
aom_free(ext_rec_y);
}
#endif
// In no cdef and no superres case. Provide an optimized version of
// loop_restoration_filter.
if (do_loop_restoration) {
if (pbi->num_workers > 1) {
av1_loop_restoration_filter_frame_mt(
(YV12_BUFFER_CONFIG *)xd->cur_buf, cm, optimized_loop_restoration,
pbi->tile_workers, pbi->num_workers, &pbi->lr_row_sync,
&pbi->lr_ctxt);
} else {
av1_loop_restoration_filter_frame((YV12_BUFFER_CONFIG *)xd->cur_buf,
cm, optimized_loop_restoration,
&pbi->lr_ctxt);
}
}
}
}
#if CONFIG_LPF_MASK
av1_zero_array(cm->lf.lfm, cm->lf.lfm_num);
#endif
if (!pbi->dcb.corrupted) {
if (cm->features.refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
assert(pbi->context_update_tile_id < pbi->allocated_tiles);
*cm->fc = pbi->tile_data[pbi->context_update_tile_id].tctx;
av1_reset_cdf_symbol_counters(cm->fc);
}
} else {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Decode failed. Frame data is corrupted.");
}
#if CONFIG_INSPECTION
if (pbi->inspect_cb != NULL) {
(*pbi->inspect_cb)(pbi, pbi->inspect_ctx);
}
#endif // CONFIG_INSPECTION
// Non frame parallel update frame context here.
if (!tiles->large_scale) {
cm->cur_frame->frame_context = *cm->fc;
}
}