blob: c686b48c343f736ad1b68d9962d3c2b7c6cb8b06 [file] [log] [blame]
#!/usr/bin/env python
## Copyright (c) 2019, Alliance for Open Media. All rights reserved
##
## This source code is subject to the terms of the BSD 2 Clause License and
## the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
## was not distributed with this source code in the LICENSE file, you can
## obtain it at www.aomedia.org/license/software. If the Alliance for Open
## Media Patent License 1.0 was not distributed with this source code in the
## PATENTS file, you can obtain it at www.aomedia.org/license/patent.
##
__author__ = "maggie.sun@intel.com, ryan.lei@intel.com"
import os
import xlsxwriter
import xlrd
import re
from Config import QPs, DnScaleRatio, QualityList, VbaBinFile, CvxH_WtRows,\
CvxH_WtLastCol, LoggerName, CalcBDRateInExcel, CvxH_WtCols, CvxHDataRows, CvxHDataStartCol
from Utils import GetShortContentName, CalcRowsClassAndContentDict
from CalcBDRate import BD_RATE
import logging
subloggername = "PostAnalysisSummary"
loggername = LoggerName + '.' + '%s' % subloggername
logger = logging.getLogger(loggername)
# give all paths including convex hull result file (only one file for each
# content) to generate summary file for all contents in Input path
# assume all content's result has same test settings
################################################################################
### Helper Functions ###########################################################
def GetRDSummaryFileName(encMethod, codecName, preset, path):
filetype = 'xlsm' if CalcBDRateInExcel else 'xlsx'
name = 'ConvexHullRDSummary_ScaleAlgosNum_%d_%s_%s_%s.%s'\
% (len(DnScaleRatio), encMethod, codecName, preset, filetype)
return os.path.join(path, name)
def GetConvexHullDataSummaryFileName(encMethod, codecName, preset, path):
name = 'ConvexHullData_ScaleAlgosNum_%d_%s_%s_%s.xlsx'\
% (len(DnScaleRatio), encMethod, codecName, preset)
return os.path.join(path, name)
def SweepScalingAlgosInOneResultFile(resultfiles):
dnscls = []
upscls = []
# here assume all result files includes same combinations of dn and up scaling algos
# that is, same number of sheet and sheet names
file = resultfiles[0]
if os.path.isfile(file):
rdwb = xlrd.open_workbook(file)
else:
return dnscls, upscls
if rdwb is not None:
shtnms = rdwb.sheet_names()
for shtname in shtnms:
item = re.findall(r"(.+)\-\-(.+)", shtname)
dnsl = item[0][0]
upsl = item[0][1]
dnscls.append(dnsl)
upscls.append(upsl)
return dnscls, upscls
def CopyResultDataToSummaryFile_Onesheet(sht, wt_cols, resultfiles):
rdrows = CvxH_WtRows
rd_endcol = CvxH_WtLastCol
shtname = sht.get_name()
sht.write(1, 0, 'Content Class')
sht.write(1, 1, 'Content Name')
sht.write(1, 2, 'QP')
for residx, col in zip(range(len(DnScaleRatio)), wt_cols):
sht.write(0, col, 'Scaling Ratio = %.2f' % (DnScaleRatio[residx]))
sht.write(1, col, 'Bitrate(kbps)')
qtynames = ['%s' % qty for qty in QualityList]
sht.write_row(1, col + 1, qtynames)
# copy the results data from each content's result file to corresponding
# location in summary excel file
for (cls, clip_list), row_class in zip(ClipDict.items(), Rows_Class):
sht.write(row_class, 0, cls)
rows_content = [i * len(QPs) for i in range(len(clip_list))]
for clip, row_cont in zip(clip_list, rows_content):
key = GetShortContentName(clip.file_name)
sht.write(row_class + row_cont, 1, key)
rdwb = None
for resfile in resultfiles:
if key in resfile:
rdwb = xlrd.open_workbook(resfile)
rdsht = rdwb.sheet_by_name(shtname)
for i, rdrow in zip(range(len(QPs)), rdrows):
data = rdsht.row_values(rdrow, 0, rd_endcol + 1)
sht.write_row(row_class + row_cont + i, 2, data)
break
assert rdwb is not None
if rdwb is None:
logger.warning("not find convex hull result file for content:%s"
% clip.file_name)
def CalBDRateWithExcel_OneSheet(sht, cols, cols_bdmtrs, cellformat):
row_refst = 0
bdstep = len(QPs) - 1
for cols_bd, residx in zip(cols_bdmtrs, range(1, len(DnScaleRatio))):
sht.write(0, cols_bd, 'BD-Rate %.2f vs. %.2f' % (DnScaleRatio[residx],
DnScaleRatio[0]))
sht.write_row(1, cols_bd, QualityList)
for (cls, clip_list), row_class in zip(ClipDict.items(), Rows_Class):
rows_content = [i * len(QPs) for i in range(len(clip_list))]
for row_cont in rows_content:
for y in range(len(QualityList)):
refbr_b = xlrd.cellnameabs(row_class + row_cont + row_refst,
cols[0])
refbr_e = xlrd.cellnameabs(row_class + row_cont + row_refst
+ bdstep, cols[0])
refq_b = xlrd.cellnameabs(row_class + row_cont + row_refst,
cols[0] + 1 + y)
refq_e = xlrd.cellnameabs(row_class + row_cont + row_refst
+ bdstep, cols[0] + 1 + y)
testbr_b = xlrd.cellnameabs(row_class + row_cont + row_refst,
cols[residx])
testbr_e = xlrd.cellnameabs(row_class + row_cont + row_refst
+ bdstep, cols[residx])
testq_b = xlrd.cellnameabs(row_class + row_cont + row_refst,
cols[residx] + 1 + y)
testq_e = xlrd.cellnameabs(row_class + row_cont + row_refst
+ bdstep, cols[residx] + 1 + y)
#formula = '=bdrate(%s:%s,%s:%s,%s:%s,%s:%s)' % (
#refbr_b, refbr_e, refq_b, refq_e, testbr_b, testbr_e,
# testq_b, testq_e)
formula = '=bdRateExtend(%s:%s,%s:%s,%s:%s,%s:%s)'\
% (refbr_b, refbr_e, refq_b, refq_e, testbr_b,
testbr_e, testq_b, testq_e)
sht.write_formula(row_class + row_cont, cols_bd + y, formula,
cellformat)
def CalBDRateWithPython_OneSheet(sht, cols_bdmtrs, resultfiles, cellformat):
row_refst = 0
bdstep = len(QPs) - 1
assert row_refst + bdstep < len(CvxH_WtRows)
shtname = sht.get_name()
rdrows = CvxH_WtRows
rdcols = CvxH_WtCols
for cols_bd, residx in zip(cols_bdmtrs, range(1, len(DnScaleRatio))):
sht.write(0, cols_bd, 'BD-Rate %.2f vs. %.2f' % (DnScaleRatio[residx],
DnScaleRatio[0]))
sht.write_row(1, cols_bd, QualityList)
for (cls, clip_list), row_class in zip(ClipDict.items(), Rows_Class):
rows_content = [i * len(QPs) for i in range(len(clip_list))]
for row_cont, clip in zip(rows_content, clip_list):
key = GetShortContentName(clip.file_name)
for resfile in resultfiles:
if key in resfile:
rdwb = xlrd.open_workbook(resfile)
rdsht = rdwb.sheet_by_name(shtname)
break
for y in range(len(QualityList)):
refbrs = rdsht.col_values(rdcols[0], rdrows[row_refst], rdrows[row_refst + bdstep] + 1)
refqtys = rdsht.col_values(rdcols[0] + 1 + y, rdrows[row_refst], rdrows[row_refst + bdstep] + 1)
testbrs = rdsht.col_values(rdcols[residx], rdrows[row_refst], rdrows[row_refst + bdstep] + 1)
testqtys = rdsht.col_values(rdcols[residx] + 1 + y, rdrows[row_refst], rdrows[row_refst + bdstep] + 1)
bdrate = BD_RATE(refbrs, refqtys, testbrs, testqtys) / 100.0
sht.write(row_class + row_cont, cols_bd + y, bdrate, cellformat)
def GenerateFormula_SumRows(shtname, rows, col):
cells = ''
for row in rows:
location = xlrd.cellnameabs(row, col)
cells = cells + '\'%s\'!%s,' % (shtname, location)
cells = cells[:-1] # remove the last ,
formula = '=SUM(%s)/%d' % (cells, len(rows))
return formula
def GenerateFormula_SumRows_Weighted(rows, col, weight_rows, weight_col, num):
cells = ''
for row, wtrow in zip(rows, weight_rows):
location = xlrd.cellnameabs(row, col)
weight = xlrd.cellnameabs(wtrow, weight_col)
cells = cells + '%s * %s,' % (location, weight)
cells = cells[:-1] # remove the last ,
formula = '=SUM(%s)/%d' % (cells, num)
return formula
def WriteBitrateQtyAverageSheet(wb, rdshts, rdcols):
avg_sht = wb.add_worksheet('Average')
avg_sht.write(2, 0, 'Content Class')
avg_sht.write(2, 1, 'Content Number')
avg_sht.write(2, 2, 'QP')
colstart = 3
cols_res = [colstart]
step = len(QualityList) + 1 + 1 # 1 for bitrate, 1 for interval
colres_2nd_start = colstart + step
step = len(upScalAlgos) * (len(QualityList) + 1) + 1 # + 1 for interval
cols_res += [step * i + colres_2nd_start for i in range(len(DnScaleRatio) - 1)]
step = len(QualityList) + 1 # + 1 for bitrate
cols_upscl = [step * i for i in range(len(upScalAlgos))]
for residx, col_res in zip(range(len(DnScaleRatio)), cols_res):
avg_sht.write(0, col_res, 'ScalingRatio = %.2f' % (DnScaleRatio[residx]))
if residx == 0:
avg_sht.write(1, col_res + 1, 'None')
avg_sht.write(2, col_res, 'Bitrate(kbps)')
avg_sht.write_row(2, col_res + 1, QualityList)
else:
for dnsc, upsc, col_upscl in zip(dnScalAlgos, upScalAlgos, cols_upscl):
avg_sht.write(1, col_res + col_upscl + 1, '%s--%s' % (dnsc, upsc))
avg_sht.write(2, col_res + col_upscl, 'Bitrate(kbps)')
avg_sht.write_row(2, col_res + col_upscl + 1, QualityList)
startrow = 3
step = len(QPs)
rows_class_avg = [startrow + step * i for i in range(len(ClipDict))]
totalnum_content = 0
for (cls, clip_list), row_class, rdclassrow in zip(ClipDict.items(),
rows_class_avg,
Rows_Class):
avg_sht.write(row_class, 0, cls)
totalnum_content = totalnum_content + len(clip_list)
avg_sht.write(row_class, 1, len(clip_list))
avg_sht.write_column(row_class, 2, QPs)
rows_content = [i * len(QPs) for i in range(len(clip_list))]
for rdcol, col_res, residx in zip(rdcols, cols_res, range(len(DnScaleRatio))):
for i in range(len(QPs)):
sum_rows = [rdclassrow + row_cont + i for row_cont in rows_content]
for col_upscl, sht in zip(cols_upscl, rdshts):
shtname = sht.get_name()
# write bitrate average formula.
formula = GenerateFormula_SumRows(shtname, sum_rows, rdcol)
avg_sht.write_formula(row_class + i, col_res + col_upscl,
formula)
# write quality average formula
for j in range(len(QualityList)):
formula = GenerateFormula_SumRows(shtname, sum_rows,
rdcol + 1 + j)
avg_sht.write_formula(row_class + i,
col_res + col_upscl + 1 + j,
formula)
# for first resolution, no down and up scaling. only need
# one set of bitrate/quality data
if residx == 0:
break
# write total average
last_class_row = rows_class_avg[-1] + len(QPs) + 1 # 1 for 1 row of interval
avg_sht.write(last_class_row, 0, 'Total')
avg_sht.write(last_class_row, 1, totalnum_content)
avg_sht.write_column(last_class_row, 2, QPs)
weight_rows = [row_class for row_class in rows_class_avg]
for col_res, residx in zip(cols_res, range(len(DnScaleRatio))):
for i in range(len(QPs)):
sum_rows = [row_class + i for row_class in rows_class_avg]
for col_upscl in cols_upscl:
# bitrate average
formula = GenerateFormula_SumRows_Weighted(sum_rows,
col_res + col_upscl,
weight_rows, 1,
totalnum_content)
avg_sht.write_formula(last_class_row + i, col_res + col_upscl,
formula)
# quality average
for j in range(len(QualityList)):
formula = GenerateFormula_SumRows_Weighted(sum_rows,
col_res +
col_upscl + 1 + j,
weight_rows, 1,
totalnum_content)
avg_sht.write_formula(last_class_row + i,
col_res + col_upscl + 1 + j, formula)
# for first resolution, no down and up scaling. only need one
# set of bitrate/quality data
if residx == 0:
break
def WriteBDRateAverageSheet(wb, rdshts, rd_cols_bdmtrs, cellformat):
# write bdrate average sheet
bdavg_sht = wb.add_worksheet('Average_BDRate')
bdavg_sht.write(2, 0, 'Content Class')
bdavg_sht.write(2, 1, 'Content Number')
startcol = 2
startrow = 3
colintval_scalalgo = 1
colintval_dnscalres = 1
step_upscl = len(QualityList) + colintval_scalalgo
cols_upscl_bd = [step_upscl * i for i in range(len(upScalAlgos))]
step_res = len(upScalAlgos) * step_upscl + colintval_dnscalres
cols_res_bd = [step_res * i + startcol for i in range(len(DnScaleRatio) - 1)]
rows_class_rdavg = [startrow + i for i in range(len(ClipDict))]
for residx, col_res_bd in zip(range(1, len(DnScaleRatio)), cols_res_bd):
bdavg_sht.write(0, col_res_bd, 'BD-Rate %.2f vs. %.2f'
% (DnScaleRatio[residx], DnScaleRatio[0]))
for dnsc, upsc, col_upscl_bd in zip(dnScalAlgos, upScalAlgos, cols_upscl_bd):
bdavg_sht.write(1, col_res_bd + col_upscl_bd, '%s--%s' % (dnsc, upsc))
bdavg_sht.write_row(2, col_res_bd + col_upscl_bd, QualityList)
totalnum_content = 0
for (cls, clip_list), row_class, rdclassrow in zip(ClipDict.items(),
rows_class_rdavg,
Rows_Class):
bdavg_sht.write(row_class, 0, cls)
totalnum_content = totalnum_content + len(clip_list)
bdavg_sht.write(row_class, 1, len(clip_list))
rows_content = [i * len(QPs) for i in range(len(clip_list))]
sum_rows = [rdclassrow + row_cont for row_cont in rows_content]
for rdcol, col_res in zip(rd_cols_bdmtrs, cols_res_bd):
# write average bd rate
for col_upscl, sht in zip(cols_upscl_bd, rdshts):
shtname = sht.get_name()
for j in range(len(QualityList)):
formula = GenerateFormula_SumRows(shtname, sum_rows, rdcol + j)
bdavg_sht.write_formula(row_class, col_res + col_upscl + j,
formula, cellformat)
# write total average
last_row = rows_class_rdavg[-1] + 1
bdavg_sht.write(last_row, 0, 'Total')
bdavg_sht.write(last_row, 1, totalnum_content)
sum_rows = [row_class for row_class in rows_class_rdavg]
for col_res in cols_res_bd:
for col_upscl in cols_upscl_bd:
for j in range(len(QualityList)):
formula = GenerateFormula_SumRows_Weighted(sum_rows,
col_res + col_upscl + j,
sum_rows, 1,
totalnum_content)
bdavg_sht.write_formula(last_row, col_res + col_upscl + j,
formula, cellformat)
#######################################################################
#######################################################################
# GenerateSummaryExcelFile is to
# 1. summarize all contents convexhull results into one file
# 2. calculate average of bitrate and quality metrics for each content class
# 3. calculate BD rate across different scaling ratios for all scaling
# algorithms in convex hull test
# 4. calcualte average BD rate for each content class
# Arguments description:
# content_paths is where test contents located, which used for generating convex
# hull results.
# resultfiles is a list of all convex hull RD result files generated by
# runninging '-f convexhull'
# summary_outpath is the folder where output summary file will be
def GenerateSumRDExcelFile(encMethod, codecName, preset, summary_outpath,
resultfiles, clip_list):
global dnScalAlgos, upScalAlgos
# find all scaling algos tested in results file,
# IMPORTANT: expect up and down scaling algos are the same for every content
dnScalAlgos, upScalAlgos = SweepScalingAlgosInOneResultFile(resultfiles)
if not os.path.exists(summary_outpath):
os.makedirs(summary_outpath)
smfile = GetRDSummaryFileName(encMethod, codecName, preset, summary_outpath)
wb = xlsxwriter.Workbook(smfile)
# shts is for all scaling algorithms' convex hull test results
shts = []
for dnsc, upsc in zip(dnScalAlgos, upScalAlgos):
shtname = dnsc + '--' + upsc
sht = wb.add_worksheet(shtname)
shts.append(sht)
# below variables define summary file data layout format.
# if to change them, modify CopyResultsDataToSummaryFile_Onesheet() and
# CalcRowsCategAndContentDict() accordingly
colstart = 3
colInterval = 2
rowstart = 2
# to generate rows number of starting of each class: Rows_Class
global ClipDict, Rows_Class
ClipDict, Rows_Class = CalcRowsClassAndContentDict(rowstart, clip_list, len(QPs))
# cols is column number of results files
step = colInterval + 1 + len(QualityList) # 1 is for bitrate
sum_wtcols = [step * i + colstart for i in range(len(DnScaleRatio))]
if CalcBDRateInExcel:
wb.add_vba_project(VbaBinFile)
cellformat = wb.add_format()
cellformat.set_num_format('0.00%')
#cols_bdmtrs is the column number to write the bdrate data
step = len(QualityList) + 1
start_col_bd = sum_wtcols[-1] + step + 1
cols_bdmtrs = [start_col_bd + i * step for i in range(len(DnScaleRatio) - 1)]
# -1 because first resolution is used as reference
for sht in shts:
CopyResultDataToSummaryFile_Onesheet(sht, sum_wtcols, resultfiles)
# calculate bd rate in each scaling sheet
if CalcBDRateInExcel:
CalBDRateWithExcel_OneSheet(sht, sum_wtcols, cols_bdmtrs, cellformat)
else:
CalBDRateWithPython_OneSheet(sht, cols_bdmtrs, resultfiles, cellformat)
# calculate average bitrate and quality metrics for each category and
# write to "average" sheet
WriteBitrateQtyAverageSheet(wb, shts, sum_wtcols)
# calculate average bd metrics and write to a new sheet
WriteBDRateAverageSheet(wb, shts, cols_bdmtrs, cellformat)
wb.close()
return smfile
def GenerateSumCvxHullExcelFile(encMethod, codecName, preset, summary_outpath,
resultfiles, EnablePreInterpolation = False):
if not os.path.exists(summary_outpath):
os.makedirs(summary_outpath)
smfile = GetConvexHullDataSummaryFileName(encMethod, codecName, preset,
summary_outpath)
wb = xlsxwriter.Workbook(smfile)
cvx_cols = 4
if EnablePreInterpolation:
cvx_cols = 6
# shts is for all scaling algorithms' convex hull test results
shts = []
cols = [3 + i * cvx_cols for i in range(len(QualityList))]
for dnsc, upsc in zip(dnScalAlgos, upScalAlgos):
shtname = dnsc + '--' + upsc
sht = wb.add_worksheet(shtname)
shts.append(sht)
# write headers
sht.write(0, 0, 'Content Class')
sht.write(0, 1, 'Content Name')
sht.write(0, 2, 'Num RD Points')
for qty, col in zip(QualityList, cols):
sht.write(0, col, 'Resolution')
sht.write(0, col + 1, 'QP')
sht.write(0, col + 2, 'Bitrate(kbps)')
sht.write(0, col + 3, qty)
if EnablePreInterpolation:
sht.write(0, col + 4, 'Int_Bitrate(kbps)')
sht.write(0, col + 5, 'Int_' + qty)
# copy convexhull data from each content's result file to corresponding
# location in summary excel file
row = 1
rdcolstart = CvxHDataStartCol + 1
for (cls, clip_list) in ClipDict.items():
sht.write(row, 0, cls)
for clip in clip_list:
key = GetShortContentName(clip.file_name)
sht.write(row, 1, key)
for resfile in resultfiles:
if key in resfile:
rdwb = xlrd.open_workbook(resfile)
rdsht = rdwb.sheet_by_name(shtname)
maxNumQty = 0; maxNumIntQty = 0
for rdrow, col in zip(CvxHDataRows, cols):
qtys = []; brs = []; qps = []; ress = []
int_qtys = []; int_brs = []
numQty = 0
for qty in rdsht.row_values(rdrow)[rdcolstart:]:
if qty == '':
break
else:
qtys.append(qty)
numQty = numQty + 1
maxNumQty = max(maxNumQty, numQty)
for br in rdsht.row_values(rdrow + 1)[rdcolstart:]:
if br == '':
break
else:
brs.append(br)
for qp in rdsht.row_values(rdrow + 2)[rdcolstart:]:
if qp == '':
break
else:
qps.append(qp)
for res in rdsht.row_values(rdrow + 3)[rdcolstart:]:
if res == '':
break
else:
ress.append(res)
if EnablePreInterpolation:
numQty = 0
for qty in rdsht.row_values(rdrow + 4)[
rdcolstart:]:
if qty == '':
break
else:
int_qtys.append(qty)
numQty = numQty + 1
maxNumIntQty = max(maxNumIntQty, numQty)
for br in rdsht.row_values(rdrow + 5)[rdcolstart:]:
if br == '':
break
else:
int_brs.append(br)
sht.write_column(row, col, ress)
sht.write_column(row, col + 1, qps)
sht.write_column(row, col + 2, brs)
sht.write_column(row, col + 3, qtys)
if EnablePreInterpolation:
sht.write_column(row, col + 4, int_brs)
sht.write_column(row, col + 5, int_qtys)
sht.write(row, 2, max(maxNumQty, maxNumIntQty))
row = row + max(maxNumQty, maxNumIntQty)
break
wb.close()
return smfile