blob: b43ed2bf9db484ffa1d602b8a73fdcdb3adee4bd [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
/*! \file
* Declares various structs used to encode the current partition block.
*/
#ifndef AOM_AV1_ENCODER_BLOCK_H_
#define AOM_AV1_ENCODER_BLOCK_H_
#include "av1/common/entropymv.h"
#include "av1/common/entropy.h"
#include "av1/common/enums.h"
#include "av1/common/mvref_common.h"
#include "av1/encoder/enc_enums.h"
#include "av1/encoder/partition_cnn_weights.h"
#include "av1/encoder/hash.h"
#ifdef __cplusplus
extern "C" {
#endif
//! Minimum linear dimension of a tpl block
#define MIN_TPL_BSIZE_1D 16
//! Maximum number of tpl block in a super block
#define MAX_TPL_BLK_IN_SB (MAX_SB_SIZE / MIN_TPL_BSIZE_1D)
//! Number of intra winner modes kept
#define MAX_WINNER_MODE_COUNT_INTRA 3
//! Number of inter winner modes kept
#define MAX_WINNER_MODE_COUNT_INTER 1
//! Number of txfm hash records kept for the partition block.
#define RD_RECORD_BUFFER_LEN 8
//! Number of txfm hash records kept for the txfm block.
#define TX_SIZE_RD_RECORD_BUFFER_LEN 256
/*! \brief Superblock level encoder info
*
* SuperblockEnc stores superblock level information used by the encoder for
* more efficient encoding. Currently this is mostly used to store TPL data
* for the current superblock.
*/
typedef struct {
//! Maximum partition size for the sb.
BLOCK_SIZE min_partition_size;
//! Minimum partition size for the sb.
BLOCK_SIZE max_partition_size;
/*****************************************************************************
* \name TPL Info
*
* Information gathered from tpl_model at tpl block precision for the
* superblock to speed up the encoding process..
****************************************************************************/
/**@{*/
//! Number of TPL blocks in this superblock.
int tpl_data_count;
//! TPL's estimate of inter cost for each tpl block.
int64_t tpl_inter_cost[MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB];
//! TPL's estimate of tpl cost for each tpl block.
int64_t tpl_intra_cost[MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB];
//! Motion vectors found by TPL model for each tpl block.
int_mv tpl_mv[MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB][INTER_REFS_PER_FRAME];
//! TPL's stride for the arrays in this struct.
int tpl_stride;
/**@}*/
} SuperBlockEnc;
/*! \brief Stores the best performing modes.
*/
typedef struct {
//! The mbmi used to reconstruct the winner mode.
MB_MODE_INFO mbmi;
//! Rdstats of the winner mode.
RD_STATS rd_cost;
//! Rdcost of the winner mode
int64_t rd;
//! Luma rate of the winner mode.
int rate_y;
//! Chroma rate of the winner mode.
int rate_uv;
//! The color map needed to reconstruct palette mode.
uint8_t color_index_map[MAX_SB_SQUARE];
//! The current winner mode.
REFERENCE_MODE mode;
//! Reference frame(s) for winner mode.
int refs[2];
} WinnerModeStats;
/*! \brief Each source plane of the current macroblock
*
* This struct also stores the txfm buffers and quantizer settings.
*/
typedef struct macroblock_plane {
//! Stores source - pred so the txfm can be computed later
DECLARE_ALIGNED(32, int16_t, src_diff[MAX_SB_SQUARE]);
//! Temporary buffer for primary transform coeffs
DECLARE_ALIGNED(32, int32_t, temp_coeff[4096]);
//! Dequantized coefficients
tran_low_t *dqcoeff;
//! Quantized coefficients
tran_low_t *qcoeff;
//! Transformed coefficients
tran_low_t *coeff;
//! Location of the end of qcoeff (end of block).
uint16_t *eobs;
//! Location of the beginning of qcoeff (beginning of block).
uint16_t *bobs;
//! Contexts used to code the transform coefficients.
uint8_t *txb_entropy_ctx;
//! A buffer containing the source frame.
struct buf_2d src;
/*! \name Quantizer Settings
*
* \attention These are used/accessed only in the quantization process.
* RDO does not and *must not* depend on any of these values.
* All values below share the coefficient scale/shift used in TX.
*/
/**@{*/
//! Quantization step size used by AV1_XFORM_QUANT_FP.
const int32_t *quant_fp_QTX;
//! Offset used for rounding in the quantizer process by AV1_XFORM_QUANT_FP.
const int32_t *round_fp_QTX;
//! Quantization step size used by AV1_XFORM_QUANT_B.
const int32_t *quant_QTX;
//! Offset used for rounding in the quantizer process by AV1_XFORM_QUANT_B.
const int32_t *round_QTX;
//! Scale factor to shift coefficients toward zero. Only used by QUANT_B.
const int32_t *quant_shift_QTX;
//! Size of the quantization bin around 0. Only Used by QUANT_B
const int32_t *zbin_QTX;
//! Dequantizer
const int32_t *dequant_QTX;
/**@}*/
} MACROBLOCK_PLANE;
/*! \brief Costs for encoding the coefficients within a level.
*
* Covers everything including txb_skip, eob, dc_sign,
*/
typedef struct {
//! Cost to skip txfm for the current txfm block.
#if CONFIG_TX_SKIP_FLAG_MODE_DEP_CTX
int txb_skip_cost[2][TXB_SKIP_CONTEXTS][2];
#else
int txb_skip_cost[TXB_SKIP_CONTEXTS][2];
#endif // CONFIG_TX_SKIP_FLAG_MODE_DEP_CTX
#if CONFIG_CONTEXT_DERIVATION
//! Cost to skip txfm for the current AOM_PLANE_V txfm block.
int v_txb_skip_cost[V_TXB_SKIP_CONTEXTS][2];
#endif // CONFIG_CONTEXT_DERIVATION
#if CONFIG_LCCHROMA
//! Cost for encoding the base_eob level of a low-frequency chroma coefficient
int base_lf_eob_cost_uv[SIG_COEF_CONTEXTS_EOB][LF_BASE_SYMBOLS - 1];
//! Cost for encoding the base level of a low-frequency chroma coefficient
int base_lf_cost_uv[LF_SIG_COEF_CONTEXTS_UV][LF_BASE_SYMBOLS * 2];
//! Cost for encoding an increment to the low-frequency chroma coefficient
int lps_lf_cost_uv[LF_LEVEL_CONTEXTS_UV]
[COEFF_BASE_RANGE + 1 + COEFF_BASE_RANGE + 1];
/*! \brief Cost for encoding the base_eob of a chroma level.
*
* Decoder uses base_eob to derive the base_level as base_eob := base_eob+1.
*/
int base_eob_cost_uv[SIG_COEF_CONTEXTS_EOB][3];
/*! \brief Cost for encoding the base level of a chroma coefficient.
*
* Decoder derives coeff_base as coeff_base := base_eob + 1.
*/
int base_cost_uv[SIG_COEF_CONTEXTS_UV][8];
//! Cost for encoding an increment to the chroma coefficient
int lps_cost_uv[LEVEL_CONTEXTS_UV]
[COEFF_BASE_RANGE + 1 + COEFF_BASE_RANGE + 1];
#endif // CONFIG_LCCHROMA
/*! \brief Cost for encoding the base_eob of a level in the low frequency
* region.
*
* Decoder uses base_eob to derive the base_level as base_eob := base_eob+1.
*/
int base_lf_eob_cost[SIG_COEF_CONTEXTS_EOB][LF_BASE_SYMBOLS - 1];
//! Cost for encoding the base level of a low-frequency coefficient
int base_lf_cost[LF_SIG_COEF_CONTEXTS][LF_BASE_SYMBOLS * 2];
//! Cost for encoding an increment to the low-frequency coefficient
int lps_lf_cost[LF_LEVEL_CONTEXTS]
[COEFF_BASE_RANGE + 1 + COEFF_BASE_RANGE + 1];
//! Cost for encoding the base level of a parity-hidden coefficient
int base_ph_cost[COEFF_BASE_PH_CONTEXTS][4];
//! Cost for encoding an increment to the parity-hidden coefficient
int lps_ph_cost[COEFF_BR_PH_CONTEXTS]
[COEFF_BASE_RANGE + 1 + COEFF_BASE_RANGE + 1];
/*! \brief Cost for encoding the base_eob of a level.
*
* Decoder uses base_eob to derive the base_level as base_eob := base_eob+1.
*/
int base_eob_cost[SIG_COEF_CONTEXTS_EOB][3];
/*! \brief Cost for encoding the base level of a coefficient.
*
* Decoder derives coeff_base as coeff_base := base_eob + 1.
*/
int base_cost[SIG_COEF_CONTEXTS][8];
/*! \brief Cost for encoding the last non-zero coefficient.
*
* Eob is derived from eob_extra at the decoder as eob := eob_extra + 1
*/
int eob_extra_cost[EOB_COEF_CONTEXTS][2];
//! Cost for encoding the dc_sign
#if CONFIG_IMPROVEIDTX_CTXS
int dc_sign_cost[DC_SIGN_GROUPS][DC_SIGN_CONTEXTS][2];
#else
int dc_sign_cost[DC_SIGN_CONTEXTS][2];
#endif // CONFIG_IMPROVEIDTX_CTXS
#if CONFIG_CONTEXT_DERIVATION
//! Cost for encoding the AOM_PLANE_V txfm coefficient dc_sign
int v_dc_sign_cost[CROSS_COMPONENT_CONTEXTS][DC_SIGN_CONTEXTS][2];
//! Cost for encoding the AOM_PLANE_V txfm coefficient ac_sign
int v_ac_sign_cost[CROSS_COMPONENT_CONTEXTS][2];
#endif // CONFIG_CONTEXT_DERIVATION
//! Cost for encoding an increment to the coefficient
int lps_cost[LEVEL_CONTEXTS][COEFF_BASE_RANGE + 1 + COEFF_BASE_RANGE + 1];
//! Cost for encoding the base level of a coefficient for IDTX blocks
int idtx_base_cost[IDTX_SIG_COEF_CONTEXTS][8];
//! Cost for encoding the sign of a coefficient for IDTX blocks
int idtx_sign_cost[IDTX_SIGN_CONTEXTS][2];
//! Cost for encoding an increment to the coefficient for IDTX blocks
int lps_cost_skip[IDTX_LEVEL_CONTEXTS]
[COEFF_BASE_RANGE + 1 + COEFF_BASE_RANGE + 1];
/*! \brief Cost for encoding the base_bob of a level for IDTX blocks.
*
* Decoder uses base_bob to derive the base_level as base_bob := base_bob+1.
*/
int base_bob_cost[SIG_COEF_CONTEXTS_BOB][3];
} LV_MAP_COEFF_COST;
/*! \brief Costs for encoding the eob.
*/
typedef struct {
//! eob_cost.
#if CONFIG_EOB_POS_LUMA
int eob_cost[2][16];
#else
int eob_cost[EOB_MAX_SYMS];
#endif // CONFIG_EOB_POS_LUMA
} LV_MAP_EOB_COST;
/*! \brief Stores the transforms coefficients for the whole superblock.
*/
typedef struct {
//! The transformed coefficients.
tran_low_t tcoeff[MAX_MB_PLANE][MAX_SB_SQUARE];
//! Where the transformed coefficients end.
uint16_t eobs[MAX_MB_PLANE][MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)];
//! Where the transformed coefficients begin.
uint16_t bobs[MAX_MB_PLANE][MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)];
/*! \brief Transform block entropy contexts.
*
* Each element is used as a bit field.
* - Bits 0~3: txb_skip_ctx
* - Bits 4~5: dc_sign_ctx.
*/
uint8_t entropy_ctx[MAX_MB_PLANE]
[MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)];
} CB_COEFF_BUFFER;
/*! \brief Extended mode info derived from mbmi.
*/
typedef struct {
// TODO(angiebird): Reduce the buffer size according to sb_type
//! The reference mv list for the current block.
CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][USABLE_REF_MV_STACK_SIZE];
//! The weights used to compute the ref mvs.
uint16_t weight[MODE_CTX_REF_FRAMES][USABLE_REF_MV_STACK_SIZE];
//! Number of ref mvs in the drl.
uint8_t ref_mv_count[MODE_CTX_REF_FRAMES];
//! Global mvs
int_mv global_mvs[INTER_REFS_PER_FRAME];
//! skip_mvp_candidate_list is the MVP list for skip mode.
#if CONFIG_SKIP_MODE_ENHANCEMENT
SKIP_MODE_MVP_LIST skip_mvp_candidate_list;
#endif
//! Context used to encode the current mode.
int16_t mode_context[MODE_CTX_REF_FRAMES];
#if CONFIG_EXTENDED_WARP_PREDICTION
/*!
* warp_param_stack is the warp candidate list.
*/
WARP_CANDIDATE warp_param_stack[INTER_REFS_PER_FRAME]
[MAX_WARP_REF_CANDIDATES];
#endif // CONFIG_EXTENDED_WARP_PREDICTION
} MB_MODE_INFO_EXT;
/*! \brief Stores best extended mode information at frame level.
*
* The frame level in here is used in bitstream preparation stage. The
* information in \ref MB_MODE_INFO_EXT are copied to this struct to save
* memory.
*/
typedef struct {
#if CONFIG_SEP_COMP_DRL
//! \copydoc MB_MODE_INFO_EXT::ref_mv_stack
CANDIDATE_MV ref_mv_stack[2][USABLE_REF_MV_STACK_SIZE];
//! \copydoc MB_MODE_INFO_EXT::weight
uint16_t weight[2][USABLE_REF_MV_STACK_SIZE];
//! \copydoc MB_MODE_INFO_EXT::ref_mv_count
uint8_t ref_mv_count[2];
#else
//! \copydoc MB_MODE_INFO_EXT::ref_mv_stack
CANDIDATE_MV ref_mv_stack[USABLE_REF_MV_STACK_SIZE];
//! \copydoc MB_MODE_INFO_EXT::weight
uint16_t weight[USABLE_REF_MV_STACK_SIZE];
//! \copydoc MB_MODE_INFO_EXT::ref_mv_count
uint8_t ref_mv_count;
#endif // CONFIG_SEP_COMP_DRL
//! skip_mvp_candidate_list is the MVP list for skip mode.
#if CONFIG_SKIP_MODE_ENHANCEMENT
SKIP_MODE_MVP_LIST skip_mvp_candidate_list;
#endif
// TODO(Ravi/Remya): Reduce the buffer size of global_mvs
//! \copydoc MB_MODE_INFO_EXT::global_mvs
int_mv global_mvs[INTER_REFS_PER_FRAME];
//! \copydoc MB_MODE_INFO_EXT::mode_context
int16_t mode_context;
//! Offset of current coding block's coeff buffer relative to the sb.
int cb_offset[MAX_MB_PLANE];
#if CONFIG_EXTENDED_WARP_PREDICTION
//! warp_param_stack is the warp candidate list.
#if CONFIG_COMPOUND_WARP_CAUSAL
WARP_CANDIDATE warp_param_stack[2][MAX_WARP_REF_CANDIDATES];
#else
WARP_CANDIDATE warp_param_stack[MAX_WARP_REF_CANDIDATES];
#endif // CONFIG_COMPOUND_WARP_CAUSAL
#endif // CONFIG_EXTENDED_WARP_PREDICTION
} MB_MODE_INFO_EXT_FRAME;
/*! \brief Txfm search results for a partition
*/
typedef struct {
//! Txfm size used if the current mode is intra mode.
TX_SIZE tx_size;
//! Txfm sizes used if the current mode is inter mode.
TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN];
#if CONFIG_NEW_TX_PARTITION
//! Txfm partitions used if the current mode is inter mode.
TX_PARTITION_TYPE tx_partition_type[INTER_TX_SIZE_BUF_LEN];
#endif // CONFIG_NEW_TX_PARTITION
//! Map showing which txfm block skips the txfm process.
uint8_t blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
//! Map showing the txfm types for each blcok.
TX_TYPE tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
//! Map showing the cctx types for each block.
CctxType cctx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
//! Rd_stats for the whole partition block.
RD_STATS rd_stats;
//! Hash value of the current record.
uint32_t hash_value;
} MB_RD_INFO;
/*! \brief Hash records of txfm search results for the partition block.
*/
typedef struct {
//! Circular buffer that stores the txfm search results.
MB_RD_INFO tx_rd_info[RD_RECORD_BUFFER_LEN]; // Circular buffer.
//! Index to insert the newest \ref TXB_RD_INFO.
int index_start;
//! Number of info stored in this record.
int num;
//! Hash function
CRC32C crc_calculator;
} MB_RD_RECORD;
/*! \brief Txfm search results for a tx block.
*/
typedef struct {
//! Distortion after the txfm process
int64_t dist;
//! SSE of the prediction before the txfm process
int64_t sse;
//! Rate used to encode the txfm.
int rate;
//! Location of the end of non-zero entries.
uint16_t eob;
//! Location of the first of non-zero entries.
uint16_t bob;
//! Transform type used on the current block.
TX_TYPE tx_type;
//! Unknown usage
uint16_t entropy_context;
//! Context used to code the coefficients.
uint8_t txb_entropy_ctx;
//! Whether the current info block contains valid info
uint8_t valid;
//! Unused
uint8_t fast;
//! Whether trellis optimization is done.
uint8_t perform_block_coeff_opt;
} TXB_RD_INFO;
/*! \brief Hash records of txfm search result for each tx block.
*/
typedef struct {
//! The hash values.
uint32_t hash_vals[TX_SIZE_RD_RECORD_BUFFER_LEN];
//! The txfm search results
TXB_RD_INFO tx_rd_info[TX_SIZE_RD_RECORD_BUFFER_LEN];
//! Index to insert the newest \ref TXB_RD_INFO.
int index_start;
//! Number of info stored in this record.
int num;
} TXB_RD_RECORD;
//! Number of compound rd stats
#define MAX_COMP_RD_STATS 64
/*! \brief Rdcost stats in compound mode.
*/
typedef struct {
//! Rate of the compound modes.
int32_t rate[COMPOUND_TYPES];
//! Distortion of the compound modes.
int64_t dist[COMPOUND_TYPES];
//! Estimated rate of the compound modes.
int32_t model_rate[COMPOUND_TYPES];
//! Estimated distortion of the compound modes.
int64_t model_dist[COMPOUND_TYPES];
//! Rate need to send the mask type.
int comp_rs2[COMPOUND_TYPES];
//! Motion vector for each predictor.
int_mv mv[2];
//! Ref frame for each predictor.
MV_REFERENCE_FRAME ref_frames[2];
//! Current prediction mode.
PREDICTION_MODE mode;
//! Current interpolation filter.
InterpFilter interp_fltr;
//! Refmv index in the drl.
#if CONFIG_SEP_COMP_DRL
int ref_mv_idx[2];
#else
int ref_mv_idx;
#endif // CONFIG_SEP_COMP_DRL
//! Whether the predictors are GLOBALMV.
int is_global[2];
//! Current parameters for interinter mode.
INTERINTER_COMPOUND_DATA interinter_comp;
//! Index for compound weighted prediction parameters.
int cwp_idx;
} COMP_RD_STATS;
/*! \brief Contains buffers used to speed up rdopt for obmc.
*
* See the comments for calc_target_weighted_pred for details.
*/
typedef struct {
/*! \brief A new source weighted with the above and left predictors.
*
* Used to efficiently construct multiple obmc predictors during rdopt.
*/
int32_t *wsrc;
/*! \brief A new mask constructed from the original horz/vert mask.
*
* \copydetails wsrc
*/
int32_t *mask;
/*! \brief Prediction from the up predictor.
*
* Used to build the obmc predictor.
*/
uint16_t *above_pred;
/*! \brief Prediction from the up predictor.
*
* \copydetails above_pred
*/
uint16_t *left_pred;
} OBMCBuffer;
/*! \brief Contains color maps used in palette mode.
*/
typedef struct {
//! The best color map found.
uint8_t best_palette_color_map[MAX_PALETTE_SQUARE];
//! A temporary buffer used for k-means clustering.
int kmeans_data_buf[2 * MAX_PALETTE_SQUARE];
} PALETTE_BUFFER;
/*! \brief Contains buffers used by av1_compound_type_rd()
*
* For sizes and alignment of these arrays, refer to
* alloc_compound_type_rd_buffers() function.
*/
typedef struct {
//! First prediction.
uint16_t *pred0;
//! Second prediction.
uint16_t *pred1;
//! Source - first prediction.
int16_t *residual1;
//! Second prediction - first prediction.
int16_t *diff10;
//! Backup of the best segmentation mask.
uint8_t *tmp_best_mask_buf;
} CompoundTypeRdBuffers;
/*!\cond */
/*! \brief MV cost types
*/
enum {
MV_COST_ENTROPY, // Use the entropy rate of the mv as the cost
MV_COST_L1_LOWRES, // Use the l1 norm of the mv as the cost (<480p)
MV_COST_L1_MIDRES, // Use the l1 norm of the mv as the cost (>=480p)
MV_COST_L1_HDRES, // Use the l1 norm of the mv as the cost (>=720p)
MV_COST_NONE // Use 0 as as cost irrespective of the current mv
} UENUM1BYTE(MV_COST_TYPE);
/*!\endcond */
#if CONFIG_EXT_RECUR_PARTITIONS
/*! \brief max length of start Mv list
*/
#define kSMSMaxStartMVs 1
/*! \brief Contains data for simple motion
*/
typedef struct SimpleMotionData {
MV mv_ref; /*!< mv reference */
MV fullmv; /*!< mv full */
MV submv; /*!< mv subpel */
unsigned int sse; /*!< sse */
unsigned int var; /*!< variance */
int64_t dist; /*!< distortion */
int rate; /*!< rate */
int64_t rdcost; /*!< rdcost */
int valid; /*!< whether valid */
BLOCK_SIZE bsize; /*!< blocksize */
int mi_row; /*!< row position in mi units */
int mi_col; /*!< col position in mi units */
MV_COST_TYPE mv_cost_type; /*!< mv cost type */
int sadpb; /*!< sad per bit */
int errorperbit; /*!< error per bit */
MV start_mv_list[kSMSMaxStartMVs]; /*!< start mv list */
int num_start_mvs; /*!< number of start mvs */
int has_prev_partition; /*!< has previous partition */
PARTITION_TYPE prev_partition; /*!< previous partition */
struct PICK_MODE_CONTEXT *mode_cache[1]; /*!< mode cache */
struct SIMPLE_MOTION_DATA_TREE *old_sms; /*!< old sms */
} SimpleMotionData;
/*!\cond */
#if CONFIG_BLOCK_256
#define BLOCK_256_COUNT 1
#define BLOCK_128_COUNT 3
#define BLOCK_64_COUNT 7
#define BLOCK_32_COUNT 31
#define BLOCK_16_COUNT 63
#define BLOCK_8_COUNT 64
#define BLOCK_4_COUNT 64
#else
#define BLOCK_128_COUNT 1
#define BLOCK_64_COUNT 3
#define BLOCK_32_COUNT 15
#define BLOCK_16_COUNT 31
#define BLOCK_8_COUNT 32
#define BLOCK_4_COUNT 32
#endif // CONFIG_BLOCK_256
#define MAKE_SM_DATA_BUF(width, height) \
SimpleMotionData \
b_##width##x##height[BLOCK_##width##_COUNT * BLOCK_##height##_COUNT]
/*!\endcond */
/*! \brief Simple motion data buffers
*/
typedef struct SimpleMotionDataBufs {
/*!\cond */
// Square blocks
#if CONFIG_BLOCK_256
MAKE_SM_DATA_BUF(256, 256);
#endif // CONFIG_BLOCK_256
MAKE_SM_DATA_BUF(128, 128);
MAKE_SM_DATA_BUF(64, 64);
MAKE_SM_DATA_BUF(32, 32);
MAKE_SM_DATA_BUF(16, 16);
MAKE_SM_DATA_BUF(8, 8);
MAKE_SM_DATA_BUF(4, 4);
// 1:2 blocks
#if CONFIG_BLOCK_256
MAKE_SM_DATA_BUF(128, 256);
#endif // CONFIG_BLOCK_256
MAKE_SM_DATA_BUF(64, 128);
MAKE_SM_DATA_BUF(32, 64);
MAKE_SM_DATA_BUF(16, 32);
MAKE_SM_DATA_BUF(8, 16);
MAKE_SM_DATA_BUF(4, 8);
// 2:1 blocks
#if CONFIG_BLOCK_256
MAKE_SM_DATA_BUF(256, 128);
#endif // CONFIG_BLOCK_256
MAKE_SM_DATA_BUF(128, 64);
MAKE_SM_DATA_BUF(64, 32);
MAKE_SM_DATA_BUF(32, 16);
MAKE_SM_DATA_BUF(16, 8);
MAKE_SM_DATA_BUF(8, 4);
// 1:4 blocks
MAKE_SM_DATA_BUF(16, 64);
MAKE_SM_DATA_BUF(8, 32);
MAKE_SM_DATA_BUF(4, 16);
// 4:1 blocks
MAKE_SM_DATA_BUF(64, 16);
MAKE_SM_DATA_BUF(32, 8);
MAKE_SM_DATA_BUF(16, 4);
#if CONFIG_FLEX_PARTITION
// 1:8 blocks
MAKE_SM_DATA_BUF(8, 64);
MAKE_SM_DATA_BUF(4, 32);
// 8:1 blocks
MAKE_SM_DATA_BUF(64, 8);
MAKE_SM_DATA_BUF(32, 4);
// 1:16 blocks
MAKE_SM_DATA_BUF(4, 64);
// 16:1 blocks
MAKE_SM_DATA_BUF(64, 4);
#endif // CONFIG_FLEX_PARTITION
/*!\endcond */
} SimpleMotionDataBufs;
#undef MAKE_SM_DATA_BUF
#endif // CONFIG_EXT_RECUR_PARTITIONS
/*! \brief Holds some parameters related to partitioning schemes in AV1.
*/
// TODO(chiyotsai@google.com): Consolidate this with SIMPLE_MOTION_DATA_TREE
typedef struct {
// The following 4 parameters are used for cnn-based partitioning on intra
// frame.
/*! \brief Current index on the partition block quad tree.
*
* Used to index into the cnn buffer for partition decision.
*/
int quad_tree_idx;
//! Whether the CNN buffer contains valid output.
int cnn_output_valid;
//! A buffer used by our segmentation CNN for intra-frame partitioning.
float cnn_buffer[CNN_OUT_BUF_SIZE];
//! log of the quantization parameter of the ancestor BLOCK_64X64.
float log_q;
/*! \brief Variance of the subblocks in the superblock.
*
* This is used by rt mode for variance based partitioning.
* The indices corresponds to the following block sizes:
* - 0 - 128x128
* - 1-2 - 128x64
* - 3-4 - 64x128
* - 5-8 - 64x64
* - 9-16 - 64x32
* - 17-24 - 32x64
* - 25-40 - 32x32
* - 41-104 - 16x16
*/
uint8_t variance_low[105];
} PartitionSearchInfo;
/*! \brief Defines the parameters used to perform txfm search.
*
* For the most part, this determines how various speed features are used.
*/
typedef struct {
/*! \brief Whether to limit the intra txfm search type to the default txfm.
*
* This could either be a result of either sequence parameter or speed
* features.
*/
int use_default_intra_tx_type;
/*! \brief Whether to limit the inter txfm search type to the default txfm.
*
* \copydetails use_default_intra_tx_type
*/
int use_default_inter_tx_type;
//! Whether to prune 2d transforms based on 1d transform results.
int prune_2d_txfm_mode;
/*! \brief Variable from \ref WinnerModeParams based on current eval mode.
*
* See the documentation for \ref WinnerModeParams for more detail.
*/
unsigned int coeff_opt_dist_threshold;
//! \copydoc coeff_opt_dist_threshold
unsigned int coeff_opt_satd_threshold;
//! \copydoc coeff_opt_dist_threshold
unsigned int tx_domain_dist_threshold;
//! \copydoc coeff_opt_dist_threshold
TX_SIZE_SEARCH_METHOD tx_size_search_method;
//! \copydoc coeff_opt_dist_threshold
unsigned int use_transform_domain_distortion;
//! \copydoc coeff_opt_dist_threshold
unsigned int skip_txfm_level;
/*! \brief How to search for the optimal tx_size
*
* If ONLY_4X4, use TX_4X4; if TX_MODE_LARGEST, use the largest tx_size for
* the current partition block; if TX_MODE_SELECT, search through the whole
* tree.
*
* \attention
* Although this looks suspicious similar to a bitstream element, this
* tx_mode_search_type is only used internally by the encoder, and is *not*
* written to the bitstream. It determines what kind of tx_mode would be
* searched. For example, we might set it to TX_MODE_LARGEST to find a good
* candidate, then code it as TX_MODE_SELECT.
*/
TX_MODE tx_mode_search_type;
/*!
* Flag to enable/disable DC block prediction.
*/
unsigned int predict_dc_level;
} TxfmSearchParams;
/*!\cond */
#define MAX_NUM_8X8_TXBS ((MAX_MIB_SIZE >> 1) * (MAX_MIB_SIZE >> 1))
#define MAX_NUM_16X16_TXBS ((MAX_MIB_SIZE >> 2) * (MAX_MIB_SIZE >> 2))
#define MAX_NUM_32X32_TXBS ((MAX_MIB_SIZE >> 3) * (MAX_MIB_SIZE >> 3))
#define MAX_NUM_64X64_TXBS ((MAX_MIB_SIZE >> 4) * (MAX_MIB_SIZE >> 4))
/*!\endcond */
/*! \brief Stores various encoding/search decisions related to txfm search.
*
* This struct contains a cache of previous txfm results, and some buffers for
* the current txfm decision.
*/
typedef struct {
//! Whether to skip transform and quantization on a partition block level.
int skip_txfm;
/*! \brief Whether to skip transform and quantization on a txfm block level.
*
* Skips transform and quantization on a transform block level inside the
* current partition block. Each element of this array is used as a bit-field.
* So for example, the we are skipping on the luma plane, then the last bit
* would be set to 1.
*/
uint8_t blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
/*! \brief Transform types inside the partition block
*
* Keeps a record of what kind of transform to use for each of the transform
* block inside the partition block.
* \attention The buffer here is *never* directly used. Instead, this just
* allocates the memory for MACROBLOCKD::tx_type_map during rdopt on the
* partition block. So if we need to save memory, we could move the allocation
* to pick_sb_mode instead.
* If secondary transform in enabled (IST) each element of the array
* stores both primary and secondary transform types as shown below: Bits 4~5
* of each element stores secondary tx_type Bits 0~3 of each element stores
* primary tx_type
*/
TX_TYPE tx_type_map_[MAX_MIB_SIZE * MAX_MIB_SIZE];
//! \brief CCTX types inside the partition block.
CctxType cctx_type_map_[MAX_MIB_SIZE * MAX_MIB_SIZE];
/** \name Txfm hash records
* Hash records of the transform search results based on the residue. There
* are two main types here:
* - MB_RD_RECORD: records a whole *partition block*'s inter-mode txfm result.
* Since this operates on the partition block level, this can give us a
* whole txfm partition tree.
* - TXB_RD_RECORD: records a txfm search result within a transform blcok
* itself. This operates on txb level only and onlyt appplies to square
* txfms.
*/
/**@{*/
//! Txfm hash record for the whole coding block.
MB_RD_RECORD mb_rd_record;
//! Inter mode txfm hash record for TX_8X8 blocks.
TXB_RD_RECORD txb_rd_record_8X8[MAX_NUM_8X8_TXBS];
//! Inter mode txfm hash record for TX_16X16 blocks.
TXB_RD_RECORD txb_rd_record_16X16[MAX_NUM_16X16_TXBS];
//! Inter mode txfm hash record for TX_32X32 blocks.
TXB_RD_RECORD txb_rd_record_32X32[MAX_NUM_32X32_TXBS];
//! Inter mode txfm hash record for TX_64X64 blocks.
TXB_RD_RECORD txb_rd_record_64X64[MAX_NUM_64X64_TXBS];
//! Intra mode txfm hash record for square tx blocks.
TXB_RD_RECORD txb_rd_record_intra;
/**@}*/
/*! \brief Number of txb splits.
*
* Keep track of how many times we've used split tx partition for transform
* blocks. Somewhat misleadingly, this parameter doesn't actually keep track
* of the count of the current block. Instead, it's a cumulative count across
* of the whole frame. The main usage is that if txb_split_count is zero, then
* we can signal TX_MODE_LARGEST at frame level.
*/
// TODO(chiyotsai@google.com): Move this to a more appropriate location such
// as ThreadData.
unsigned int txb_split_count;
#if CONFIG_SPEED_STATS
//! For debugging. Used to check how many txfm searches we are doing.
unsigned int tx_search_count;
#endif // CONFIG_SPEED_STATS
} TxfmSearchInfo;
#undef MAX_NUM_8X8_TXBS
#undef MAX_NUM_16X16_TXBS
#undef MAX_NUM_32X32_TXBS
#undef MAX_NUM_64X64_TXBS
/*! \brief Holds the entropy costs for various modes sent to the bitstream.
*
* \attention This does not include the costs for mv and transformed
* coefficients.
*/
typedef struct {
/*****************************************************************************
* \name Partition Costs
****************************************************************************/
/**@{*/
#if CONFIG_EXT_RECUR_PARTITIONS
/*! Cost for sending split token. */
int do_split_cost[PARTITION_STRUCTURE_NUM][PARTITION_CONTEXTS][2];
#if CONFIG_BLOCK_256
/*! Cost for sending square split token. */
int do_square_split_cost[PARTITION_STRUCTURE_NUM][SQUARE_SPLIT_CONTEXTS][2];
#endif // CONFIG_BLOCK_256
/*! Cost for sending rectangular type token. */
int rect_type_cost[PARTITION_STRUCTURE_NUM][PARTITION_CONTEXTS][2];
/*! Cost for sending do_ext_partition token. */
int do_ext_partition_cost[PARTITION_STRUCTURE_NUM][NUM_RECT_PARTS]
[PARTITION_CONTEXTS][2];
/*! Cost for sending do_uneven_4way_partition token. */
int do_uneven_4way_partition_cost[PARTITION_STRUCTURE_NUM][NUM_RECT_PARTS]
[PARTITION_CONTEXTS][2];
/*! Cost for sending uneven_4way_partition_type token. */
int uneven_4way_partition_type_cost[PARTITION_STRUCTURE_NUM][NUM_RECT_PARTS]
[PARTITION_CONTEXTS]
[NUM_UNEVEN_4WAY_PARTS];
//! Cost for coding the partition.
int partition_cost[PARTITION_STRUCTURE_NUM][PARTITION_CONTEXTS]
[ALL_PARTITION_TYPES];
#else
//! Cost for coding the partition.
int partition_cost[PARTITION_STRUCTURE_NUM][PARTITION_CONTEXTS]
[EXT_PARTITION_TYPES];
#endif // CONFIG_EXT_RECUR_PARTITIONS
/**@}*/
/*****************************************************************************
* \name Intra Costs: General
****************************************************************************/
/**@{*/
//! Luma mode cost for inter frame.
int mbmode_cost[BLOCK_SIZE_GROUPS][INTRA_MODES];
//! Luma mode cost for intra frame.
int y_mode_costs[INTRA_MODES][INTRA_MODES][INTRA_MODES];
#if !CONFIG_AIMC
//! Chroma mode cost
int intra_uv_mode_cost[CFL_ALLOWED_TYPES][INTRA_MODES][UV_INTRA_MODES];
#if CONFIG_UV_CFL
//! CFL mode cost
int cfl_mode_cost[CFL_CONTEXTS][2];
#endif // CONFIG_UV_CFL
#endif // !CONFIG_AIMC
//! filter_intra_cost
#if CONFIG_D149_CTX_MODELING_OPT
int filter_intra_cost[2];
#else
int filter_intra_cost[BLOCK_SIZES_ALL][2];
#endif // CONFIG_D149_CTX_MODELING_OPT
//! filter_intra_mode_cost
int filter_intra_mode_cost[FILTER_INTRA_MODES];
//! angle_delta_cost
int angle_delta_cost[PARTITION_STRUCTURE_NUM][DIRECTIONAL_MODES]
[2 * MAX_ANGLE_DELTA + 1];
//! mrl_index_cost
#if CONFIG_IMPROVED_INTRA_DIR_PRED
int mrl_index_cost[MRL_INDEX_CONTEXTS][MRL_LINE_NUMBER];
#else
int mrl_index_cost[MRL_LINE_NUMBER];
#endif // CONFIG_IMPROVED_INTRA_DIR_PRED
//! Cost of signaling the forward skip coding mode
int fsc_cost[FSC_MODE_CONTEXTS][FSC_BSIZE_CONTEXTS][FSC_MODES];
#if CONFIG_IMPROVED_CFL
#if CONFIG_ENABLE_MHCCP
//! Cost of signaling the cfl mode
int cfl_index_cost[CFL_TYPE_COUNT - 1];
#else
int cfl_index_cost[CFL_TYPE_COUNT];
#endif // CONFIG_ENABLE_MHCCP
#endif // CONFIG_IMPROVED_CFL
#if CONFIG_ENABLE_MHCCP
//! cost of signaling filter direction
int filter_dir_cost[MHCCP_CONTEXT_GROUP_SIZE][MHCCP_MODE_NUM];
#endif // CONFIG_ENABLE_MHCCP
#if CONFIG_AIMC
//! y primary flag cost
int y_primary_flag_cost[INTRA_MODE_SETS];
//! y first mode cost
int y_first_mode_costs[Y_MODE_CONTEXTS][FIRST_MODE_COUNT];
//! y second mode cost
int y_second_mode_costs[Y_MODE_CONTEXTS][SECOND_MODE_COUNT];
//! uv mode cost
#if CONFIG_UV_CFL
int intra_uv_mode_cost[UV_MODE_CONTEXTS][UV_INTRA_MODES - 1];
//! CFL mode cost
int cfl_mode_cost[CFL_CONTEXTS][2];
#else
int intra_uv_mode_cost[CFL_ALLOWED_TYPES][UV_MODE_CONTEXTS][UV_INTRA_MODES];
#endif // CONFIG_UV_CFL
#endif // CONFIG_AIMC
//! Cost of signaling secondary transform index
int stx_flag_cost[TX_SIZES][STX_TYPES];
#if CONFIG_IST_SET_FLAG
//! Cost of signaling secondary transform set index
int stx_set_flag_cost[IST_DIR_SIZE][IST_DIR_SIZE];
#endif // CONFIG_IST_SET_FLAG
//! Rate rate associated with each alpha codeword
int cfl_cost[CFL_JOINT_SIGNS][CFL_PRED_PLANES][CFL_ALPHABET_SIZE];
/**@}*/
/*****************************************************************************
* \name Intra Costs: Screen Contents
****************************************************************************/
/**@{*/
//! intrabc_cost
#if CONFIG_NEW_CONTEXT_MODELING
int intrabc_cost[INTRABC_CONTEXTS][2];
#else
int intrabc_cost[2];
#endif // CONFIG_NEW_CONTEXT_MODELING
#if CONFIG_IBC_BV_IMPROVEMENT
//! intrabc_mode_cost
int intrabc_mode_cost[2];
//! intrabc_drl_idx_cost
int intrabc_drl_idx_cost[MAX_REF_BV_STACK_SIZE - 1][2];
#endif // CONFIG_IBC_BV_IMPROVEMENT
#if CONFIG_MORPH_PRED
//! cost for the new prediction mode
int morph_pred_cost[3][2];
#endif // CONFIG_MORPH_PRED
//! palette_y_size_cost
int palette_y_size_cost[PALATTE_BSIZE_CTXS][PALETTE_SIZES];
//! palette_uv_size_cost
int palette_uv_size_cost[PALATTE_BSIZE_CTXS][PALETTE_SIZES];
//! palette_y_color_cost
int palette_y_color_cost[PALETTE_SIZES][PALETTE_COLOR_INDEX_CONTEXTS]
[PALETTE_COLORS];
//! palette_uv_color_cost
int palette_uv_color_cost[PALETTE_SIZES][PALETTE_COLOR_INDEX_CONTEXTS]
[PALETTE_COLORS];
//! palette_y_mode_cost
int palette_y_mode_cost[PALATTE_BSIZE_CTXS][PALETTE_Y_MODE_CONTEXTS][2];
//! palette_uv_mode_cost
int palette_uv_mode_cost[PALETTE_UV_MODE_CONTEXTS][2];
#if CONFIG_PALETTE_IMPROVEMENTS
#if CONFIG_PALETTE_LINE_COPY
//! palette_direction_cost
int palette_direction_cost[2];
//! palette_y_row_flag_cost
int palette_y_row_flag_cost[PALETTE_ROW_FLAG_CONTEXTS][3];
//! palette_uv_row_flag_cost
int palette_uv_row_flag_cost[PALETTE_ROW_FLAG_CONTEXTS][3];
#else
//! palette_y_row_flag_cost
int palette_y_row_flag_cost[PALETTE_ROW_FLAG_CONTEXTS][2];
//! palette_uv_row_flag_cost
int palette_uv_row_flag_cost[PALETTE_ROW_FLAG_CONTEXTS][2];
#endif // CONFIG_PALETTE_LINE_COPY
#endif // CONFIG_PALETTE_IMPROVEMENTS
/**@}*/
/*****************************************************************************
* \name Inter Costs: MV Modes
****************************************************************************/
/**@{*/
//! skip_mode_cost
int skip_mode_cost[SKIP_MODE_CONTEXTS][2];
//! inter single mode cost
int inter_single_mode_cost[INTER_SINGLE_MODE_CONTEXTS][INTER_SINGLE_MODES];
#if CONFIG_EXTENDED_WARP_PREDICTION
//! inter warpmv mode cost
int inter_warp_mode_cost[WARPMV_MODE_CONTEXT][2];
#endif // CONFIG_EXTENDED_WARP_PREDICTION
//! drl_mode_cost
int drl_mode_cost[3][DRL_MODE_CONTEXTS][2];
/*! Costs for coding the most probable mv resolution. */
int pb_block_mv_mpp_flag_costs[NUM_MV_PREC_MPP_CONTEXT][2];
/*! Costs for coding the mv resolution. */
int pb_block_mv_precision_costs[MV_PREC_DOWN_CONTEXTS][FLEX_MV_COSTS_SIZE]
[NUM_MV_PRECISIONS];
#if CONFIG_SKIP_MODE_ENHANCEMENT
//! skip_drl_mode_cost
int skip_drl_mode_cost[3][2];
#endif // CONFIG_SKIP_MODE_ENHANCEMENT
/**@}*/
/*****************************************************************************
* \name Inter Costs: Ref Frame Types
****************************************************************************/
/**@{*/
//! single_ref_cost
int single_ref_cost[REF_CONTEXTS][INTER_REFS_PER_FRAME - 1][2];
#if CONFIG_ALLOW_SAME_REF_COMPOUND
//! comp_ref0_cost
int comp_ref0_cost[REF_CONTEXTS][INTER_REFS_PER_FRAME][2];
//! comp_ref1_cost
int comp_ref1_cost[REF_CONTEXTS][COMPREF_BIT_TYPES][INTER_REFS_PER_FRAME][2];
#else
//! comp_ref0_cost
int comp_ref0_cost[REF_CONTEXTS][INTER_REFS_PER_FRAME - 2][2];
//! comp_ref1_cost
int comp_ref1_cost[REF_CONTEXTS][COMPREF_BIT_TYPES][INTER_REFS_PER_FRAME - 2]
[2];
#endif // CONFIG_ALLOW_SAME_REF_COMPOUND
//! comp_inter_cost
int comp_inter_cost[COMP_INTER_CONTEXTS][2];
//! tip_cost
int tip_cost[TIP_CONTEXTS][CDF_SIZE(2)];
/**@}*/
/*****************************************************************************
* \name Inter Costs: Compound Types
****************************************************************************/
/**@{*/
//! intra_inter_cost
#if CONFIG_CONTEXT_DERIVATION && !CONFIG_SKIP_TXFM_OPT
int intra_inter_cost[INTRA_INTER_SKIP_TXFM_CONTEXTS][INTRA_INTER_CONTEXTS][2];
#else
int intra_inter_cost[INTRA_INTER_CONTEXTS][2];
#endif // CONFIG_CONTEXT_DERIVATION && !CONFIG_SKIP_TXFM_OPT
//! inter_compound_mode_cost
#if CONFIG_OPTFLOW_REFINEMENT
/*! use_optflow_cost */
int use_optflow_cost[INTER_COMPOUND_MODE_CONTEXTS][2];
/*! inter_compound_mode_cost */
int inter_compound_mode_cost[INTER_COMPOUND_MODE_CONTEXTS]
[INTER_COMPOUND_REF_TYPES];
#else
/*! inter_compound_mode_cost */
int inter_compound_mode_cost[INTER_COMPOUND_MODE_CONTEXTS]
[INTER_COMPOUND_MODES];
#endif // CONFIG_OPTFLOW_REFINEMENT
//! cwp_idx_cost for compound weighted prediction
int cwp_idx_cost[MAX_CWP_CONTEXTS][MAX_CWP_NUM - 1][2];
//! jmvd_scale_mode_cost for JOINT_NEWMV
int jmvd_scale_mode_cost[JOINT_NEWMV_SCALE_FACTOR_CNT];
//! jmvd_scale_mode_cost for JOINT_AMVDNEWMV
int jmvd_amvd_scale_mode_cost[JOINT_AMVD_SCALE_FACTOR_CNT];
//! compound_type_cost
#if CONFIG_D149_CTX_MODELING_OPT
int compound_type_cost[MASKED_COMPOUND_TYPES];
#else
int compound_type_cost[BLOCK_SIZES_ALL][MASKED_COMPOUND_TYPES];
#endif // CONFIG_D149_CTX_MODELING_OPT
//! wedge_idx_cost
#if CONFIG_WEDGE_MOD_EXT
#if CONFIG_D149_CTX_MODELING_OPT
//! wedge_angle_dir_cost
int wedge_angle_dir_cost[2];
//! wedge_angle_0_cost
int wedge_angle_0_cost[H_WEDGE_ANGLES];
//! wedge_angle_1_cost
int wedge_angle_1_cost[H_WEDGE_ANGLES];
//! wedge_dist_cost
int wedge_dist_cost[NUM_WEDGE_DIST];
//! wedge_dist_cost2
int wedge_dist_cost2[NUM_WEDGE_DIST - 1];
#else
//! wedge_angle_dir_cost
int wedge_angle_dir_cost[BLOCK_SIZES_ALL][2];
//! wedge_angle_0_cost
int wedge_angle_0_cost[BLOCK_SIZES_ALL][H_WEDGE_ANGLES];
//! wedge_angle_1_cost
int wedge_angle_1_cost[BLOCK_SIZES_ALL][H_WEDGE_ANGLES];
//! wedge_dist_cost
int wedge_dist_cost[BLOCK_SIZES_ALL][NUM_WEDGE_DIST];
//! wedge_dist_cost2
int wedge_dist_cost2[BLOCK_SIZES_ALL][NUM_WEDGE_DIST - 1];
#endif // CONFIG_D149_CTX_MODELING_OPT
#else
int wedge_idx_cost[BLOCK_SIZES_ALL][16];
#endif // CONFIG_WEDGE_MOD_EXT
//! interintra_cost
int interintra_cost[BLOCK_SIZE_GROUPS][2];
//! wedge_interintra_cost
#if CONFIG_D149_CTX_MODELING_OPT
int wedge_interintra_cost[2];
#else
int wedge_interintra_cost[BLOCK_SIZES_ALL][2];
#endif // CONFIG_D149_CTX_MODELING_OPT
//! interintra_mode_cost
int interintra_mode_cost[BLOCK_SIZE_GROUPS][INTERINTRA_MODES];
/**@}*/
/*****************************************************************************
* \name Inter Costs: Compound Masks
****************************************************************************/
/**@{*/
//! comp_group_idx_cost
int comp_group_idx_cost[COMP_GROUP_IDX_CONTEXTS][2];
/**@}*/
/*****************************************************************************
* \name Inter Costs: Motion Modes/Filters
****************************************************************************/
/**@{*/
//! obmc_cost
#if CONFIG_D149_CTX_MODELING_OPT
int obmc_cost[2];
#else
int obmc_cost[BLOCK_SIZES_ALL][2];
#endif // CONFIG_D149_CTX_MODELING_OPT
#if CONFIG_EXTENDED_WARP_PREDICTION
//! warped_causal_cost
#if CONFIG_D149_CTX_MODELING_OPT && !NO_D149_FOR_WARPED_CAUSAL
int warped_causal_cost[2];
#else
int warped_causal_cost[BLOCK_SIZES_ALL][2];
#endif // CONFIG_D149_CTX_MODELING_OPT && !NO_D149_FOR_WARPED_CAUSAL
//! warp_delta_cost
#if CONFIG_D149_CTX_MODELING_OPT
int warp_delta_cost[2];
#else
int warp_delta_cost[BLOCK_SIZES_ALL][2];
#endif // CONFIG_D149_CTX_MODELING_OPT
//! warped_causal_warpmv_cost
#if CONFIG_D149_CTX_MODELING_OPT
int warped_causal_warpmv_cost[2];
#else
int warped_causal_warpmv_cost[BLOCK_SIZES_ALL][2];
#endif // CONFIG_D149_CTX_MODELING_OPT
//! warp_delta_param_cost
int warp_delta_param_cost[2][WARP_DELTA_NUM_SYMBOLS];
//! warp_ref_idx_cost
int warp_ref_idx_cost[3][WARP_REF_CONTEXTS][2];
//! warpmv_with_mvd_flag_cost
#if CONFIG_D149_CTX_MODELING_OPT
int warpmv_with_mvd_flag_cost[2];
#else
int warpmv_with_mvd_flag_cost[BLOCK_SIZES_ALL][2];
#endif // CONFIG_D149_CTX_MODELING_OPT
//! warp_extend_cost
int warp_extend_cost[WARP_EXTEND_CTXS1][WARP_EXTEND_CTXS2][2];
#else
//! motion_mode_cost
int motion_mode_cost[BLOCK_SIZES_ALL][MOTION_MODES];
#endif // CONFIG_EXTENDED_WARP_PREDICTION
#if CONFIG_REFINEMV
//! refinemv_flag_cost
int refinemv_flag_cost[NUM_REFINEMV_CTX][REFINEMV_NUM_MODES];
#endif // CONFIG_REFINEMV
#if CONFIG_BAWP
//! bawp flag cost
#if CONFIG_BAWP_CHROMA
int bawp_flg_cost[2][2];
#else
int bawp_flg_cost[2];
#endif // CONFIG_BAWP_CHROMA
#if CONFIG_EXPLICIT_BAWP
//! Bawp type flag cost
int explict_bawp_cost[BAWP_SCALES_CTX_COUNT][2];
//! Explicit bawp scaling factor cost
int explict_bawp_scale_cost[EXPLICIT_BAWP_SCALE_CNT];
#endif // CONFIG_EXPLICIT_BAWP
#endif
//! switchable_interp_costs
int switchable_interp_costs[SWITCHABLE_FILTER_CONTEXTS][SWITCHABLE_FILTERS];
/**@}*/
/*****************************************************************************
* \name Txfm Mode Costs
****************************************************************************/
/**@{*/
//! skip_txfm_cost
int skip_txfm_cost[SKIP_CONTEXTS][2];
#if CONFIG_NEW_TX_PARTITION
#if CONFIG_TX_PARTITION_CTX
#if CONFIG_IMPROVEIDTX_CTXS
#if CONFIG_TX_PARTITION_TYPE_EXT
//! txfm_do_partition_cost
int txfm_do_partition_cost[FSC_MODES][2][TXFM_SPLIT_GROUP][2];
//! txfm_4way_partition_type_cost
int txfm_4way_partition_type_cost[FSC_MODES][2][TXFM_PARTITION_GROUP - 1]
[TX_PARTITION_TYPE_NUM];
#else
//! txfm_do_partition_cost
int txfm_do_partition_cost[FSC_MODES][2][TXFM_PARTITION_GROUP][2];
//! txfm_4way_partition_type_cost
int txfm_4way_partition_type_cost[FSC_MODES][2][TXFM_PARTITION_GROUP - 1][3];
#endif // CONFIG_TX_PARTITION_TYPE_EXT
#else
#if CONFIG_TX_PARTITION_TYPE_EXT
//! txfm_do_partition_cost
int txfm_do_partition_cost[2][TXFM_SPLIT_GROUP][2];
//! txfm_4way_partition_type_cost
int txfm_4way_partition_type_cost[2][TXFM_PARTITION_GROUP - 1]
[TX_PARTITION_TYPE_NUM];
#else
//! txfm_do_partition_cost
int txfm_do_partition_cost[2][TXFM_PARTITION_GROUP][2];
//! txfm_4way_partition_type_cost
int txfm_4way_partition_type_cost[2][TXFM_PARTITION_GROUP - 1][3];
#endif // CONFIG_TX_PARTITION_TYPE_EXT
#endif // CONFIG_IMPROVEIDTX_CTXS
#else
//! intra_4way_txfm_partition_cost
int intra_4way_txfm_partition_cost[2][TX_SIZE_CONTEXTS][4];
//! intra_2way_txfm_partition_cost
int intra_2way_txfm_partition_cost[2];
//! intra_2way_rect_txfm_partition_cost
int intra_2way_rect_txfm_partition_cost[2];
//! inter_4way_txfm_partition_cost
int inter_4way_txfm_partition_cost[2][TXFM_PARTITION_INTER_CONTEXTS][4];
//! inter_2way_txfm_partition_cost
int inter_2way_txfm_partition_cost[2];
//! inter_2way_rect_txfm_partition_cost
int inter_2way_rect_txfm_partition_cost[2];
#endif // CONFIG_TX_PARTITION_CTX
#else // CONFIG_NEW_TX_PARTITION
//! tx_size_cost
int tx_size_cost[TX_SIZES - 1][TX_SIZE_CONTEXTS][TX_SIZES];
//! txfm_partition_cost
int txfm_partition_cost[TXFM_PARTITION_CONTEXTS][2];
#endif // CONFIG_NEW_TX_PARTITION
//! inter_tx_type_costs
int inter_tx_type_costs[EXT_TX_SETS_INTER][EOB_TX_CTXS][EXT_TX_SIZES]
[TX_TYPES];
//! intra_tx_type_costs
int intra_tx_type_costs[EXT_TX_SETS_INTRA][EXT_TX_SIZES][INTRA_MODES]
[TX_TYPES];
//! cctx_type_cost
int cctx_type_cost[EXT_TX_SIZES][CCTX_CONTEXTS][CCTX_TYPES];
/**@}*/
/*****************************************************************************
* \name Restoration Mode Costs
****************************************************************************/
/**@{*/
#if CONFIG_LR_IMPROVEMENTS
//! switchable_flex_restore_cost
int switchable_flex_restore_cost[MAX_LR_FLEX_SWITCHABLE_BITS][MAX_MB_PLANE]
[2];
#else
//! switchable_restore_cost
int switchable_restore_cost[RESTORE_SWITCHABLE_TYPES];
#endif // CONFIG_LR_IMPROVEMENTS
//! wiener_restore_cost
int wiener_restore_cost[2];
//! sgrproj_restore_cost
int sgrproj_restore_cost[2];
#if CONFIG_LR_MERGE_COEFFS
/*!
* merged_param_cost
*/
int merged_param_cost[2];
#endif // CONFIG_LR_MERGE_COEFFS
#if CONFIG_LR_IMPROVEMENTS
/*!
* wienerns_restore_cost
*/
int wienerns_restore_cost[2];
/*!
* wienerns_length_cost
*/
int wienerns_length_cost[2][2];
/*!
* wienerns_uv_sym_cost
*/
int wienerns_uv_sym_cost[2];
#if ENABLE_LR_4PART_CODE
/*!
* wienerns_4part_cost
*/
int wienerns_4part_cost[WIENERNS_4PART_CTX_MAX][4];
#endif // ENABLE_LR_4PART_CODE
/*!
* pc_wiener_restore_cost
*/
int pc_wiener_restore_cost[2];
#endif // CONFIG_LR_IMPROVEMENTS
#if CONFIG_LOSSLESS_DPCM
int dpcm_cost[2];
int dpcm_vert_horz_cost[2];
int dpcm_uv_cost[2];
int dpcm_uv_vert_horz_cost[2];
#endif // CONFIG_LOSSLESS_DPCM
/**@}*/
} ModeCosts;
/*! \brief Holds mv costs for encoding and motion search.
*/
typedef struct {
/*****************************************************************************
* \name Rate to Distortion Multipliers
****************************************************************************/
/**@{*/
//! A multiplier that converts mv cost to l2 error.
int errorperbit;
//! A multiplier that converts mv cost to l1 error.
int sadperbit;
/**@}*/
#if CONFIG_VQ_MVD_CODING
/*****************************************************************************
* \name Encoding Costs
* Here are the entropy costs needed to encode a given mv.
****************************************************************************/
#else
/*****************************************************************************
* \name Encoding Costs
* Here are the entropy costs needed to encode a given mv.
* \ref nmv_costs_alloc is an array that holds the memory for mv cost. Since
* the motion vectors can be negative, we save a pointer to the middle of the
* array in \ref nmv_costs for easier referencing.
****************************************************************************/
#endif // CONFIG_VQ_MVD_CODING
/**@{*/
#if CONFIG_VQ_MVD_CODING
/*! costs to code mvd shell index. */
int nmv_joint_shell_cost[NUM_MV_PRECISIONS][(2 * MV_MAX) + 1];
/*! costs to code col_mv_greter_flags. */
int col_mv_greater_flags_costs[NUM_MV_PRECISIONS]
[MAX_COL_TRUNCATED_UNARY_VAL + 1]
[MAX_COL_TRUNCATED_UNARY_VAL + 1];
/*! costs to code col_mv_index. */
int col_mv_index_cost[NUM_MV_PRECISIONS][NUM_CTX_COL_MV_INDEX][2];
/*! costs to code amvd mvd magnitude. */
int amvd_index_mag_cost[MAX_AMVD_INDEX + 1][MAX_AMVD_INDEX + 1];
/*! costs to code amvd mvd sign. */
int amvd_index_sign_cost[2][2];
#else
/*! Costs for coding the zero components. */
int nmv_joint_cost[MV_JOINTS];
/*! Allocates memory for motion vector costs. */
int nmv_costs_alloc[NUM_MV_PRECISIONS][2][MV_VALS];
/*! Points to the middle of \ref nmv_costs_alloc. */
int *nmv_costs[NUM_MV_PRECISIONS][2];
#endif // CONFIG_VQ_MVD_CODING
#if CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING
/*! Costs for coding the sign components. */
int nmv_sign_cost[2][2];
#endif // CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING
#if !CONFIG_VQ_MVD_CODING
//! Costs for coding the zero components when adaptive MVD resolution is
//! applied
int amvd_nmv_joint_cost[MV_JOINTS];
//! Allocates memory for 1/4-pel motion vector costs when adaptive MVD
//! resolution is applied
int amvd_nmv_cost_alloc[2][MV_VALS];
//! Points to the middle of \ref amvd_nmv_cost_alloc
int *amvd_nmv_cost[2];
#endif // !CONFIG_VQ_MVD_CODING
#if CONFIG_DERIVED_MVD_SIGN && !CONFIG_VQ_MVD_CODING
/*! Costs for coding the sign components. */
int amvd_nmv_sign_cost[2][2];
#endif // CONFIG_DERIVED_MVD_SIGN && !CONFIG_VQ_MVD_CODING
#if CONFIG_VQ_MVD_CODING
/*! Costs for coding the shell cost of dv cost. */
int *dv_joint_shell_cost;
/*! Costs for coding the col mv greater flags of dv cost. */
int dv_col_mv_greater_flags_costs[MAX_COL_TRUNCATED_UNARY_VAL + 1]
[MAX_COL_TRUNCATED_UNARY_VAL + 1];
/*! Costs for coding the col mv index of dv cost. */
int dv_col_mv_index_cost[NUM_CTX_COL_MV_INDEX][2];
/*! Costs for coding the sign of each component. */
int dv_sign_cost[2][2];
#else
#if CONFIG_IBC_BV_IMPROVEMENT
/*! Costs for coding the zero components of dv cost. */
int *dv_joint_cost;
/*! Points to the middle of dvcost. */
int *dv_nmv_cost[2];
#endif
#endif // CONFIG_VQ_MVD_CODING
/**@}*/
} MvCosts;
/*! \brief Holds mv costs for intrabc.
*/
typedef struct {
#if CONFIG_VQ_MVD_CODING
/*! Costs for coding the joint shell. */
int dv_joint_shell_cost[(2 * MV_MAX) + 1];
/*! Costs for coding the jgreater flags. */
int dv_col_mv_greater_flags_costs[MAX_COL_TRUNCATED_UNARY_VAL + 1]
[MAX_COL_TRUNCATED_UNARY_VAL + 1];
/*! Costs for coding the column index. */
int dv_col_mv_index_cost[NUM_CTX_COL_MV_INDEX][2];
#else
/*! Costs for coding the joint mv. */
// TODO(huisu@google.com): we can update dv_joint_cost per SB.
int joint_mv[MV_JOINTS];
/*! \brief Cost of transmitting the actual motion vector.
* mv_costs_alloc[0][i] is the cost of motion vector with horizontal
* component (mv_row) equal to i - MV_MAX. mv_costs_alloc[1][i] is the cost of
* motion vector with vertical component (mv_col) equal to i - MV_MAX.
*/
int dv_costs_alloc[2][MV_VALS];
/*! Points to the middle of \ref dv_costs_alloc. */
int *dv_costs[2];
#endif // CONFIG_VQ_MVD_CODING
#if CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING
/*! Costs for coding the sign components. */
int dv_sign_cost[2][2];
#endif // CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING
} IntraBCMvCosts;
/*! \brief Holds the costs needed to encode the coefficients
*/
typedef struct {
//! Costs for coding the coefficients.
LV_MAP_COEFF_COST coeff_costs[TX_SIZES][PLANE_TYPES];
//! Costs for coding the eobs.
LV_MAP_EOB_COST eob_costs[7][2];
} CoeffCosts;
/*!\cond */
#define SINGLE_REF_MODES ((REF_FRAMES - 1) * 4)
/*!\endcond */
struct inter_modes_info;
/*! \brief Encoder's parameters related to the current coding block.
*
* This struct contains most of the information the encoder needs to encode the
* current coding block. This includes the src and pred buffer, a copy of the
* decoder's view of the current block, the txfm coefficients. This struct also
* contains various buffers and data used to speed up the encoding process.
*/
typedef struct macroblock {
/*****************************************************************************
* \name Source, Buffers and Decoder
****************************************************************************/
/**@{*/
/*! \brief Each of the encoding plane.
*
* An array holding the src buffer for each of plane of the current block. It
* also contains the txfm and quantized txfm coefficients.
*/
struct macroblock_plane plane[MAX_MB_PLANE];
/*! \brief Decoder's view of current coding block.
*
* Contains the encoder's copy of what the decoder sees in the current block.
* Most importantly, this struct contains pointers to mbmi that is used in
* final bitstream packing.
*/
MACROBLOCKD e_mbd;
/*! \brief Derived coding information.
*
* Contains extra information not transmitted in the bitstream but are
* derived. For example, this contains the stack of ref_mvs.
*/
MB_MODE_INFO_EXT *mbmi_ext;
/*! \brief Finalized mbmi_ext for the whole frame.
*
* Contains the finalized info in mbmi_ext that gets used at the frame level
* for bitstream packing.
*/
MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame;
//! Entropy context for the current row.
FRAME_CONTEXT *row_ctx;
/*! \brief Entropy context for the current tile.
*
* This context will be used to update color_map_cdf pointer which would be
* used during pack bitstream. For single thread and tile-multithreading case
* this pointer will be same as xd->tile_ctx, but for the case of row-mt:
* xd->tile_ctx will point to a temporary context while tile_pb_ctx will point
* to the accurate tile context.
*/
FRAME_CONTEXT *tile_pb_ctx;
/*! \brief Buffer of transformed coefficients
*
* Points to cb_coef_buff in the AV1_COMP struct, which contains the finalized
* coefficients. This is here to conveniently copy the best coefficients to
* frame level for bitstream packing. Since CB_COEFF_BUFFER is allocated on a
* superblock level, we need to combine it with cb_offset to get the proper
* position for the current coding block.
*/
CB_COEFF_BUFFER *cb_coef_buff;
//! Offset of current coding block's coeff buffer relative to the sb.
int cb_offset[MAX_MB_PLANE];
//! Modified source and masks used for fast OBMC search.
OBMCBuffer obmc_buffer;
//! Buffer to store the best palette map.
PALETTE_BUFFER *palette_buffer;
//! Buffer used for compound_type_rd().
CompoundTypeRdBuffers comp_rd_buffer;
//! Buffer to store convolution during averaging process in compound mode.
CONV_BUF_TYPE *tmp_conv_dst;
/*! \brief Temporary buffer to hold prediction.
*
* Points to a buffer that is used to hold temporary prediction results. This
* is used in two ways:
* - This is a temporary buffer used to pingpong the prediction in
* handle_inter_mode.
* - xd->tmp_obmc_bufs also points to this buffer, and is used in ombc
* prediction.
*/
uint16_t *tmp_pred_bufs[2];
/**@}*/
/*****************************************************************************
* \name Rdopt Costs
****************************************************************************/
/**@{*/
/*! \brief Quantization index for the current partition block.
*
* This is used to as the index to find quantization parameter for luma and
* chroma transformed coefficients.
*/
int qindex;
/*! \brief Difference between frame-level qindex and current qindex.
*
* This is used to track whether a non-zero delta for qindex is used at least
* once in the current frame.
*/
int delta_qindex;
/*! \brief Rate-distortion multiplier.
*
* The rd multiplier used to determine the rate-distortion trade-off. This is
* roughly proportional to the inverse of q-index for a given frame, but this
* can be manipulated for better rate-control. For example, in tune_ssim
* mode, this is scaled by a factor related to the variance of the current
* block.
*/
int rdmult;
//! Energy in the current source coding block. Used to calculate \ref rdmult
int mb_energy;
//! Energy in the current source superblock. Used to calculate \ref rdmult
int sb_energy_level;
//! The rate needed to signal a mode to the bitstream.
ModeCosts mode_costs;
//! The rate needed to encode a new motion vector to the bitstream and some
//! multipliers for motion search.
MvCosts mv_costs;
//! The rate needed to encode a new block vector to the bitstream and some
//! multipliers for motion search.
IntraBCMvCosts dv_costs;
//! The rate needed to signal the txfm coefficients to the bitstream.
CoeffCosts coeff_costs;
/**@}*/
/******************************************************************************
* \name Segmentation
*****************************************************************************/
/**@{*/
/*! \brief Skip mode for the segment
*
* A syntax element of the segmentation mode. In skip_block mode, all mvs are
* set 0 and all txfms are skipped.
*/
int seg_skip_block;
/**@}*/
/*****************************************************************************
* \name Superblock
****************************************************************************/
/**@{*/
//! Information on a whole superblock level.
// TODO(chiyotsai@google.com): Refactor this out of macroblock
SuperBlockEnc sb_enc;
/**@}*/
/*****************************************************************************
* \name Reference Frame Searc
****************************************************************************/
/**@{*/
/*! \brief Sum absolute distortion of the predicted mv for each ref frame.
*
* This is used to measure how viable a reference frame is.
*/
int pred_mv_sad[SINGLE_REF_FRAMES];
//! The minimum of \ref pred_mv_sad.
int best_pred_mv_sad;
/*! \brief Disables certain ref frame pruning based on tpl.
*
* Determines whether a given ref frame is "good" based on data from the TPL
* model. If so, this stops selective_ref frame from pruning the given ref
* frame at block level.
*/
uint8_t tpl_keep_ref_frame[REF_FRAMES];
/*! \brief Reference frames picked by the square subblocks in a superblock.
*
* Keeps track of ref frames that are selected by square partition blocks
* within a superblock, in MI resolution. They can be used to prune ref frames
* for rectangular blocks.
*/
#if CONFIG_ALLOW_SAME_REF_COMPOUND
uint64_t picked_ref_frames_mask[MAX_MIB_SIZE * MAX_MIB_SIZE];
#else
int picked_ref_frames_mask[MAX_MIB_SIZE * MAX_MIB_SIZE];
#endif // CONFIG_ALLOW_SAME_REF_COMPOUND
/**@}*/
/*****************************************************************************
* \name Partition Search
****************************************************************************/
/**@{*/
//! Stores some partition-search related buffers.
PartitionSearchInfo part_search_info;
/*! \brief Whether to disable some features to force a mode in current block.
*
* In some cases, our speed features can be overly aggressive and remove all
* modes search in the superblock. When this happens, we set
* must_find_valid_partition to 1 to reduce the number of speed features, and
* recode the superblock again.
*/
int must_find_valid_partition;
/**@}*/
/*****************************************************************************
* \name Prediction Mode Search
****************************************************************************/
/**@{*/
/*! \brief Inter skip mode.
*
* Skip mode tries to use the closest forward and backward references for
* inter prediction. Skip here means to skip transmitting the reference
* frames, not to be confused with skip_txfm.
*/
int skip_mode;
/*! \brief Factors used for rd-thresholding.
*
* Determines a rd threshold to determine whether to continue searching the
* current mode. If the current best rd is already <= threshold, then we skip
* the current mode.
*/
int thresh_freq_fact[BLOCK_SIZES_ALL][MB_MODE_COUNT];
/*! \brief Tracks the winner modes in the current coding block.
*
* Winner mode is a two-pass strategy to find the best prediction mode. In the
* first pass, we search the prediction modes with a limited set of txfm
* options, and keep the top modes. These modes are called the winner modes.
* In the second pass, we retry the winner modes with more thorough txfm
* options.
*/
WinnerModeStats winner_mode_stats[AOMMAX(MAX_WINNER_MODE_COUNT_INTRA,
MAX_WINNER_MODE_COUNT_INTER)];
//! Tracks how many winner modes there are.
int winner_mode_count;
/*! \brief The model used for rd-estimation to avoid txfm
*
* These are for inter_mode_rd_model_estimation, which is another two pass
* approach. In this speed feature, we collect data in the first couple frames
* to build an rd model to estimate the rdcost of a prediction model based on
* the residue error. Once enough data is collected, this speed feature uses
* the estimated rdcost to find the most performant prediction mode. Then we
* follow up with a second pass find the best transform for the mode.
* Determines if one would go with reduced complexity transform block
* search model to select prediction modes, or full complexity model
* to select transform kernel.
*/
TXFM_RD_MODEL rd_model;
/*! \brief Stores the inter mode information needed to build an rd model.
*
* These are for inter_mode_rd_model_estimation, which is another two pass
* approach. In this speed feature, we collect data in the first couple frames
* to build an rd model to estimate the rdcost of a prediction model based on
* the residue error. Once enough data is collected, this speed feature uses
* the estimated rdcost to find the most performant prediction mode. Then we
* follow up with a second pass find the best transform for the mode.
*/
// TODO(any): try to consolidate this speed feature with winner mode
// processing.
struct inter_modes_info *inter_modes_info;
//! A caches of results of compound type search so they can be reused later.
COMP_RD_STATS comp_rd_stats[MAX_COMP_RD_STATS];
//! The idx for the latest compound mode in the cache \ref comp_rd_stats.
int comp_rd_stats_idx;
/*! \brief Whether to recompute the luma prediction.
*
* In interpolation search, we can usually skip recalculating the luma
* prediction because it is already calculated by a previous predictor. This
* flag signifies that some modes might have been skipped, so we need to
* rebuild the prediction.
*/
int recalc_luma_mc_data;
/*! \brief Data structure to speed up intrabc search.
*
* Contains the hash table, hash function, and buffer used for intrabc.
*/
IntraBCHashInfo intrabc_hash_info;
/**@}*/
/*****************************************************************************
* \name MV Search
****************************************************************************/
/**@{*/
/*! \brief Context used to determine the initial step size in motion search.
*
* This context is defined as the \f$l_\inf\f$ norm of the best ref_mvs for
* each frame.
*/
unsigned int max_mv_context[SINGLE_REF_FRAMES];
/*! \brief Limit for the range of motion vectors.
*
* These define limits to motion vector components to prevent them from
* extending outside the UMV borders
*/
FullMvLimits mv_limits;
/**@}*/
/*****************************************************************************
* \name Txfm Search
****************************************************************************/
/**@{*/
/*! \brief Parameters that control how motion search is done.
*
* Stores various txfm search related parameters such as txfm_type, txfm_size,
* trellis eob search, etc.
*/
TxfmSearchParams txfm_search_params;
/*! \brief Results of the txfm searches that have been done.
*
* Caches old txfm search results and keeps the current txfm decisions to
* facilitate rdopt.
*/
TxfmSearchInfo txfm_search_info;
/**@}*/
#if CONFIG_LOSSLESS_DPCM
// dpcm_flag indicates if the current prediction mode is dpcm
uint8_t dpcm_flag;
#endif
/*****************************************************************************
* \name Misc
****************************************************************************/
/**@{*/
//! Variance of the source frame.
unsigned int source_variance;
//! SSE of the current predictor.
unsigned int pred_sse[SINGLE_REF_FRAMES];
#if CONFIG_EXT_RECUR_PARTITIONS
/*! Simple motion search buffers. */
SimpleMotionDataBufs *sms_bufs;
/*! \brief Determines what encoding decision should be reused. */
int reuse_inter_mode_cache_type;
/*! \brief The mode to reuse during \ref av1_rd_pick_inter_mode_sb. */
MB_MODE_INFO *inter_mode_cache;
/*! \brief Whether the whole superblock is inside the frame boudnary */
bool is_whole_sb;
#endif // CONFIG_EXT_RECUR_PARTITIONS
/**@}*/
#if CONFIG_SCC_DETERMINATION
/*!\brief Number of pixels in current thread that choose palette mode in the
* fast encoding stage for screen content tool detemination.
*/
int palette_pixels;
#endif // CONFIG_SCC_DETERMINATION
} MACROBLOCK;
#undef SINGLE_REF_MODES
/*!\cond */
static INLINE int is_rect_tx_allowed_bsize(BLOCK_SIZE bsize) {
static const char LUT[BLOCK_SIZES_ALL] = {
#if CONFIG_NEW_TX_PARTITION
0, // BLOCK_4X4
1, // BLOCK_4X8
1, // BLOCK_8X4
1, // BLOCK_8X8
1, // BLOCK_8X16
1, // BLOCK_16X8
1, // BLOCK_16X16
1, // BLOCK_16X32
1, // BLOCK_32X16
1, // BLOCK_32X32
1, // BLOCK_32X64
1, // BLOCK_64X32
1, // BLOCK_64X64
1, // BLOCK_64X128
1, // BLOCK_128X64
1, // BLOCK_128X128
#if CONFIG_BLOCK_256
1, // BLOCK_128X256
1, // BLOCK_256X128
1, // BLOCK_256X256
#endif // CONFIG_BLOCK_256
1, // BLOCK_4X16
1, // BLOCK_16X4
1, // BLOCK_8X32
1, // BLOCK_32X8
1, // BLOCK_16X64
1, // BLOCK_64X16
#else
0, // BLOCK_4X4
1, // BLOCK_4X8
1, // BLOCK_8X4
0, // BLOCK_8X8
1, // BLOCK_8X16
1, // BLOCK_16X8
0, // BLOCK_16X16
1, // BLOCK_16X32
1, // BLOCK_32X16
0, // BLOCK_32X32
1, // BLOCK_32X64
1, // BLOCK_64X32
0, // BLOCK_64X64
0, // BLOCK_64X128
0, // BLOCK_128X64
0, // BLOCK_128X128
#if CONFIG_BLOCK_256
0, // BLOCK_128X256
0, // BLOCK_256X128
0, // BLOCK_256X256
#endif // CONFIG_BLOCK_256
1, // BLOCK_4X16
1, // BLOCK_16X4
1, // BLOCK_8X32
1, // BLOCK_32X8
1, // BLOCK_16X64
1, // BLOCK_64X16
#endif // CONFIG_NEW_TX_PARTITION
#if CONFIG_EXT_RECUR_PARTITIONS && CONFIG_FLEX_PARTITION
1, // BLOCK_4X32
1, // BLOCK_32X4
1, // BLOCK_8X64
1, // BLOCK_64X8
1, // BLOCK_4X64
1, // BLOCK_64X4
#endif // CONFIG_EXT_RECUR_PARTITIONS && CONFIG_FLEX_PARTITION
};
return LUT[bsize];
}
static INLINE int is_rect_tx_allowed(const MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi) {
return is_rect_tx_allowed_bsize(
mbmi->sb_type[xd->tree_type == CHROMA_PART]) &&
!xd->lossless[mbmi->segment_id];
}
static INLINE void set_blk_skip(uint8_t txb_skip[], int plane, int blk_idx,
int skip) {
if (skip)
txb_skip[blk_idx] |= 1UL << plane;
else
txb_skip[blk_idx] &= ~(1UL << plane);
#ifndef NDEBUG
// Set chroma planes to uninitialized states when luma is set to check if
// it will be set later
if (plane == 0) {
txb_skip[blk_idx] |= 1UL << (1 + 4);
txb_skip[blk_idx] |= 1UL << (2 + 4);
}
// Clear the initialization checking bit
txb_skip[blk_idx] &= ~(1UL << (plane + 4));
#endif
}
static INLINE int is_blk_skip(uint8_t *txb_skip, int plane, int blk_idx) {
#ifndef NDEBUG
// The magic number is 0x77, this is to test if there is garbage data
assert((txb_skip[blk_idx] & 0x88) == 0);
#endif
return (txb_skip[blk_idx] >> plane) & 1;
}
#if CONFIG_EXT_RECUR_PARTITIONS
static INLINE int should_reuse_mode(const MACROBLOCK *x, int mode_flag) {
return x->reuse_inter_mode_cache_type & mode_flag;
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
/*!\endcond */
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AOM_AV1_ENCODER_BLOCK_H_