blob: 5b543cadd38cca82792441b754751e3ca6fe8bbf [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/bitwriter.h"
#include "aom_dsp/quantize.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
#include "aom_util/debug_util.h"
#endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
#include "av1/common/cfl.h"
#include "av1/common/idct.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/scan.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/encodetxb.h"
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/rdopt.h"
void av1_subtract_block(const MACROBLOCKD *xd, int rows, int cols,
int16_t *diff, ptrdiff_t diff_stride,
const uint16_t *src, ptrdiff_t src_stride,
const uint16_t *pred, ptrdiff_t pred_stride) {
assert(rows >= 4 && cols >= 4);
aom_highbd_subtract_block(rows, cols, diff, diff_stride, src, src_stride,
pred, pred_stride, xd->bd);
}
#if CONFIG_LOSSLESS_DPCM
// subtraction for residue calculation of DPCM mode
void av1_subtract_block_dpcm(const MACROBLOCKD *xd, int rows, int cols,
int16_t *diff, ptrdiff_t diff_stride,
const uint16_t *src, ptrdiff_t src_stride,
const uint16_t *pred, ptrdiff_t pred_stride,
int plane) {
assert(rows >= 4 && cols >= 4);
const MB_MODE_INFO *const mbmi = xd->mi[0];
if (xd->lossless[mbmi->segment_id]) {
PREDICTION_MODE cur_pred_mode =
(plane == AOM_PLANE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
int cur_dpcm_flag =
(plane == AOM_PLANE_Y) ? mbmi->use_dpcm_y : mbmi->use_dpcm_uv;
int cur_angle_delta = (plane == AOM_PLANE_Y) ? mbmi->angle_delta[0] : 0;
if (cur_pred_mode == V_PRED && cur_angle_delta == 0 && cur_dpcm_flag > 0) {
av1_subtract_block_vert(xd, cols, rows, diff, diff_stride, src,
src_stride, pred, pred_stride);
} else if (cur_pred_mode == H_PRED && cur_angle_delta == 0 &&
cur_dpcm_flag > 0) {
av1_subtract_block_horz(xd, cols, rows, diff, diff_stride, src,
src_stride, pred, pred_stride);
} else {
aom_highbd_subtract_block(rows, cols, diff, diff_stride, src, src_stride,
pred, pred_stride, xd->bd);
}
} else {
aom_highbd_subtract_block(rows, cols, diff, diff_stride, src, src_stride,
pred, pred_stride, xd->bd);
}
}
// subtraction for DPCM lossless mode vertical direction
void av1_subtract_block_vert(const MACROBLOCKD *xd, int rows, int cols,
int16_t *diff, ptrdiff_t diff_stride,
const uint16_t *src, ptrdiff_t src_stride,
const uint16_t *pred, ptrdiff_t pred_stride) {
assert(rows >= 4 && cols >= 4);
aom_highbd_subtract_block_vert(rows, cols, diff, diff_stride, src, src_stride,
pred, pred_stride, xd->bd);
}
// subtraction for DPCM lossless mode horizontal direction
void av1_subtract_block_horz(const MACROBLOCKD *xd, int rows, int cols,
int16_t *diff, ptrdiff_t diff_stride,
const uint16_t *src, ptrdiff_t src_stride,
const uint16_t *pred, ptrdiff_t pred_stride) {
assert(rows >= 4 && cols >= 4);
aom_highbd_subtract_block_horz(rows, cols, diff, diff_stride, src, src_stride,
pred, pred_stride, xd->bd);
}
#endif // CONFIG_LOSSLESS_DPCM
void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize,
int blk_col, int blk_row, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
const int diff_stride = block_size_wide[plane_bsize];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
const int tx1d_width = tx_size_wide[tx_size];
const int tx1d_height = tx_size_high[tx_size];
uint16_t *dst =
&pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
uint16_t *src = &p->src.buf[(blk_row * src_stride + blk_col) << MI_SIZE_LOG2];
int16_t *src_diff =
&p->src_diff[(blk_row * diff_stride + blk_col) << MI_SIZE_LOG2];
#if CONFIG_LOSSLESS_DPCM
if (xd->lossless[xd->mi[0]->segment_id]) {
av1_subtract_block_dpcm(xd, tx1d_height, tx1d_width, src_diff, diff_stride,
src, src_stride, dst, dst_stride, plane);
} else {
av1_subtract_block(xd, tx1d_height, tx1d_width, src_diff, diff_stride, src,
src_stride, dst, dst_stride);
}
#else
av1_subtract_block(xd, tx1d_height, tx1d_width, src_diff, diff_stride, src,
src_stride, dst, dst_stride);
#endif
}
void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE plane_bsize, int plane) {
struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
assert(plane_bsize < BLOCK_SIZES_ALL);
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
const MACROBLOCKD *xd = &x->e_mbd;
#if CONFIG_LOSSLESS_DPCM
if (xd->lossless[xd->mi[0]->segment_id]) {
av1_subtract_block_dpcm(xd, bh, bw, p->src_diff, bw, p->src.buf,
p->src.stride, pd->dst.buf, pd->dst.stride, plane);
} else {
av1_subtract_block(xd, bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
}
#else
av1_subtract_block(xd, bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
#endif
}
#if CONFIG_IMPROVEIDTX_RDPH
/*
This function performs coefficient optimization over the quantized
coefficient samples when the transform type is 2D IDTX. Returns skip cost if
EOB=0, otherwise moves the first position index closer to the end of block by
shrinking the number of coefficient samples to be encoded.
*/
int av1_optimize_fsc(const struct AV1_COMP *cpi, MACROBLOCK *x, int plane,
int block, TX_SIZE tx_size, TX_TYPE tx_type,
const TXB_CTX *const txb_ctx, int *rate_cost) {
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
const int eob = p->eobs[block];
const int segment_id = xd->mi[0]->segment_id;
if (eob == 0 || !cpi->optimize_seg_arr[segment_id] ||
xd->lossless[segment_id]) {
*rate_cost =
av1_cost_skip_txb(&x->coeff_costs, txb_ctx, plane, tx_size, x, block);
return eob;
}
return av1_optimize_fsc_block(cpi, x, plane, block, tx_size, tx_type, txb_ctx,
rate_cost, cpi->oxcf.algo_cfg.sharpness);
}
#endif // CONFIG_IMPROVEIDTX_RDPH
/*
This function performs coefficient optimization over the quantized coefficient
samples when the transform type is trigonometric along at least 1 dimension.
Returns skip cost if EOB=0, otherwise moves the last position index closer to
the end of block by shrinking the number of coefficient samples to be encoded.
*/
int av1_optimize_b(const struct AV1_COMP *cpi, MACROBLOCK *x, int plane,
int block, TX_SIZE tx_size, TX_TYPE tx_type,
CctxType cctx_type, const TXB_CTX *const txb_ctx,
int *rate_cost) {
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
const int eob = p->eobs[block];
const int segment_id = xd->mi[0]->segment_id;
if (eob == 0 || !cpi->optimize_seg_arr[segment_id] ||
xd->lossless[segment_id]) {
*rate_cost = av1_cost_skip_txb(&x->coeff_costs, txb_ctx, plane, tx_size
#if CONFIG_CONTEXT_DERIVATION
,
x, block
#endif // CONFIG_CONTEXT_DERIVATION
);
*rate_cost += get_cctx_type_cost(&cpi->common, x, xd, plane, tx_size, block,
cctx_type);
return eob;
}
return av1_optimize_txb_new(cpi, x, plane, block, tx_size, tx_type, cctx_type,
txb_ctx, rate_cost, cpi->oxcf.algo_cfg.sharpness);
}
// This function returns the multiplier of dequantization for current position.
static INLINE int get_dqv(const int32_t *dequant, int coeff_idx,
const qm_val_t *iqmatrix) {
int dqv = dequant[!!coeff_idx];
if (iqmatrix != NULL)
dqv =
((iqmatrix[coeff_idx] * dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
return dqv;
}
// This function tunes the coefficients when trellis quantization is off.
void parity_hiding_trellis_off(const struct AV1_COMP *cpi, MACROBLOCK *mb,
const int plane_type, int block, TX_SIZE tx_size,
TX_TYPE tx_type) {
MACROBLOCKD *xd = &mb->e_mbd;
const struct macroblock_plane *const p = &mb->plane[plane_type];
const int32_t *dequant = p->dequant_QTX;
const qm_val_t *iqmatrix = av1_get_iqmatrix(&cpi->common.quant_params, xd,
plane_type, tx_size, tx_type);
const int shift = av1_get_tx_scale(tx_size);
tran_low_t *const qcoeff = p->qcoeff + BLOCK_OFFSET(block);
tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
tran_low_t *const tcoeff = p->coeff + BLOCK_OFFSET(block);
const int eob = p->eobs[block];
if (eob <= PHTHRESH) {
return;
}
const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type);
const int16_t *const scan = scan_order->scan;
int nz = 0, sum_abs1 = 0;
for (int si = eob - 1; si > 0; si--) {
const int pos = scan[si];
nz += !!(qcoeff[pos]);
sum_abs1 += AOMMIN(abs(qcoeff[pos]), MAX_BASE_BR_RANGE);
}
if (nz >= PHTHRESH && ((qcoeff[0] & 1) != (sum_abs1 & 1))) {
int tune_pos = scan[0];
tran_low_t absdqcoeff = abs(dqcoeff[tune_pos]);
tran_low_t abstcoeff = abs(tcoeff[tune_pos]);
tran_low_t absqcoeff =
abs(qcoeff[tune_pos]) + ((abstcoeff < absdqcoeff) ? -1 : 1);
absdqcoeff = (tran_low_t)(ROUND_POWER_OF_TWO_64(
(tran_high_t)absqcoeff *
get_dqv(dequant, tune_pos, iqmatrix),
QUANT_TABLE_BITS) >>
shift);
tran_low_t dist_min = abs(abstcoeff - absdqcoeff);
tran_low_t tune_absqcoeff = absqcoeff, tune_absdqcoeff = absdqcoeff;
for (int si = eob - 1; si > 0; si--) {
const int pos = scan[si];
abstcoeff = abs(tcoeff[pos]);
absdqcoeff = abs(dqcoeff[pos]);
absqcoeff = abs(qcoeff[pos]);
bool tunable =
(absqcoeff < MAX_BASE_BR_RANGE) ||
((absqcoeff == MAX_BASE_BR_RANGE) && (abstcoeff < absdqcoeff));
absqcoeff += ((abstcoeff < absdqcoeff) ? -1 : 1);
absdqcoeff = (tran_low_t)(ROUND_POWER_OF_TWO_64(
(tran_high_t)absqcoeff *
get_dqv(dequant, pos, iqmatrix),
QUANT_TABLE_BITS) >>
shift);
tran_low_t absdist = abs(abstcoeff - absdqcoeff);
if (absdist < dist_min && tunable) {
dist_min = absdist;
tune_pos = pos;
tune_absqcoeff = absqcoeff;
tune_absdqcoeff = absdqcoeff;
}
}
tran_low_t sign = tcoeff[tune_pos] < 0 ? -1 : 1;
qcoeff[tune_pos] = tune_absqcoeff * sign;
dqcoeff[tune_pos] = tune_absdqcoeff * sign;
}
int si = eob - 1;
for (; si >= 0; si--) {
if (qcoeff[scan[si]]) {
break;
}
}
int new_eob = si + 1;
if (new_eob != p->eobs[block]) {
p->eobs[block] = new_eob;
p->txb_entropy_ctx[block] =
av1_get_txb_entropy_context(qcoeff, scan_order, new_eob);
}
}
// Hyper-parameters for dropout optimization, based on following logics.
// TODO(yjshen): These settings are tuned by experiments. They may still be
// optimized for better performance.
// (1) Coefficients which are large enough will ALWAYS be kept.
const tran_low_t DROPOUT_COEFF_MAX = 2; // Max dropout-able coefficient.
// (2) Continuous coefficients will ALWAYS be kept. Here rigorous continuity is
// NOT required. For example, `5 0 0 0 7` is treated as two continuous
// coefficients if three zeros do not fulfill the dropout condition.
const int DROPOUT_CONTINUITY_MAX = 2; // Max dropout-able continuous coeff.
// (3) Dropout operation is NOT applicable to blocks with large or small
// quantization index.
const int DROPOUT_Q_MAX = 128;
const int DROPOUT_Q_MIN = 16;
// (4) Recall that dropout optimization will forcibly set some quantized
// coefficients to zero. The key logic on determining whether a coefficient
// should be dropped is to check the number of continuous zeros before AND
// after this coefficient. The exact number of zeros for judgement depends
// on block size and quantization index. More concretely, block size
// determines the base number of zeros, while quantization index determines
// the multiplier. Intuitively, larger block requires more zeros and larger
// quantization index also requires more zeros (more information is lost
// when using larger quantization index).
const int DROPOUT_BEFORE_BASE_MAX = 32; // Max base number for leading zeros.
const int DROPOUT_BEFORE_BASE_MIN = 16; // Min base number for leading zeros.
const int DROPOUT_AFTER_BASE_MAX = 32; // Max base number for trailing zeros.
const int DROPOUT_AFTER_BASE_MIN = 16; // Min base number for trailing zeros.
const int DROPOUT_MULTIPLIER_MAX = 8; // Max multiplier on number of zeros.
const int DROPOUT_MULTIPLIER_MIN = 2; // Min multiplier on number of zeros.
const int DROPOUT_MULTIPLIER_Q_BASE = 32; // Base Q to compute multiplier.
void av1_dropout_qcoeff(MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size,
TX_TYPE tx_type, int qindex) {
const struct macroblock_plane *const p = &mb->plane[plane];
tran_low_t *const qcoeff = p->qcoeff + BLOCK_OFFSET(block);
tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
const int tx_width = tx_size_wide[tx_size];
const int tx_height = tx_size_high[tx_size];
const int max_eob = av1_get_max_eob(tx_size);
const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type);
// Early return if `qindex` is out of range.
if (qindex > DROPOUT_Q_MAX || qindex < DROPOUT_Q_MIN) {
return;
}
// Compute number of zeros used for dropout judgement.
const int base_size = AOMMAX(tx_width, tx_height);
const int multiplier = CLIP(qindex / DROPOUT_MULTIPLIER_Q_BASE,
DROPOUT_MULTIPLIER_MIN, DROPOUT_MULTIPLIER_MAX);
const int dropout_num_before =
multiplier *
CLIP(base_size, DROPOUT_BEFORE_BASE_MIN, DROPOUT_BEFORE_BASE_MAX);
const int dropout_num_after =
multiplier *
CLIP(base_size, DROPOUT_AFTER_BASE_MIN, DROPOUT_AFTER_BASE_MAX);
// Early return if there are not enough non-zero coefficients.
if (p->eobs[block] == 0 || p->eobs[block] <= dropout_num_before) {
return;
}
int count_zeros_before = 0;
int count_zeros_after = 0;
int count_nonzeros = 0;
// Index of the first non-zero coefficient after sufficient number of
// continuous zeros. If equals to `-1`, it means number of leading zeros
// hasn't reach `dropout_num_before`.
int idx = -1;
int eob = 0; // New end of block.
for (int i = 0; i < p->eobs[block]; ++i) {
const int scan_idx = scan_order->scan[i];
if (qcoeff[scan_idx] > DROPOUT_COEFF_MAX) { // Keep large coefficients.
count_zeros_before = 0;
count_zeros_after = 0;
idx = -1;
eob = i + 1;
} else if (qcoeff[scan_idx] == 0) { // Count zeros.
if (idx == -1) {
++count_zeros_before;
} else {
++count_zeros_after;
}
} else { // Count non-zeros.
if (count_zeros_before >= dropout_num_before) {
idx = (idx == -1) ? i : idx;
++count_nonzeros;
} else {
count_zeros_before = 0;
eob = i + 1;
}
}
// Handle continuity.
if (count_nonzeros > DROPOUT_CONTINUITY_MAX) {
count_zeros_before = 0;
count_zeros_after = 0;
idx = -1;
eob = i + 1;
}
// Handle the trailing zeros after original end of block.
if (idx != -1 && i == p->eobs[block] - 1) {
count_zeros_after += (max_eob - p->eobs[block]);
}
// Set redundant coefficients to zeros if needed.
if (count_zeros_after >= dropout_num_after) {
for (int j = idx; j <= i; ++j) {
qcoeff[scan_order->scan[j]] = 0;
dqcoeff[scan_order->scan[j]] = 0;
}
count_zeros_before += (i - idx + 1);
count_zeros_after = 0;
count_nonzeros = 0;
} else if (i == p->eobs[block] - 1) {
eob = i + 1;
}
}
if (eob != p->eobs[block]) {
p->eobs[block] = eob;
p->txb_entropy_ctx[block] =
av1_get_txb_entropy_context(qcoeff, scan_order, eob);
}
}
// Settings for optimization type. NOTE: To set optimization type for all intra
// frames, both `KEY_BLOCK_OPT_TYPE` and `INTRA_BLOCK_OPT_TYPE` should be set.
// TODO(yjshen): These settings are hard-coded and look okay for now. They
// should be made configurable later.
// Blocks of key frames ONLY.
const OPT_TYPE KEY_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT;
// Blocks of intra frames (key frames EXCLUSIVE).
const OPT_TYPE INTRA_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT;
// Blocks of inter frames. (NOTE: Dropout optimization is DISABLED by default
// if trellis optimization is on for inter frames.)
const OPT_TYPE INTER_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT;
enum {
QUANT_FUNC_LOWBD = 0,
QUANT_FUNC_HIGHBD = 1,
QUANT_FUNC_TYPES = 2
} UENUM1BYTE(QUANT_FUNC);
static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_TYPES] = {
av1_highbd_quantize_fp_facade, av1_highbd_quantize_b_facade,
av1_highbd_quantize_dc_facade, NULL
};
// Computes the transform for DC only blocks
void av1_xform_dc_only(MACROBLOCK *x, int plane, int block,
TxfmParam *txfm_param, int64_t per_px_mean) {
assert(per_px_mean != INT64_MAX);
const struct macroblock_plane *const p = &x->plane[plane];
const int block_offset = BLOCK_OFFSET(block);
tran_low_t *const coeff = p->coeff + block_offset;
const int n_coeffs = av1_get_max_eob(txfm_param->tx_size);
memset(coeff, 0, sizeof(*coeff) * n_coeffs);
coeff[0] =
(tran_low_t)((per_px_mean * dc_coeff_scale[txfm_param->tx_size]) >> 12);
}
void av1_xform_quant(const AV1_COMMON *cm, MACROBLOCK *x, int plane, int block,
int blk_row, int blk_col, BLOCK_SIZE plane_bsize,
TxfmParam *txfm_param, QUANT_PARAM *qparam) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const struct macroblock_plane *const p = &x->plane[plane];
const int is_inter = is_inter_block(mbmi, xd->tree_type);
if (is_cctx_allowed(cm, xd)) {
// In the pipeline of cross-chroma transform, the forward transform for
// plane V is done earlier in plane U, followed by forward cross chroma
// transform, in order to obtain the quantized coefficients of the second
// channel.
if (plane != AOM_PLANE_V) {
av1_xform(x, plane, block, blk_row, blk_col, plane_bsize, txfm_param, 0);
}
if (plane == AOM_PLANE_U) {
av1_xform(x, AOM_PLANE_V, block, blk_row, blk_col, plane_bsize,
txfm_param, 0);
forward_cross_chroma_transform(x, block, txfm_param->tx_size,
txfm_param->cctx_type);
}
} else {
av1_xform(x, plane, block, blk_row, blk_col, plane_bsize, txfm_param, 0);
}
const uint8_t fsc_mode =
(mbmi->fsc_mode[xd->tree_type == CHROMA_PART] && plane == PLANE_TYPE_Y) ||
use_inter_fsc(cm, plane, txfm_param->tx_type, is_inter);
#if !CONFIG_IMPROVEIDTX_RDPH
if (fsc_mode) qparam->use_optimize_b = false;
#endif // !CONFIG_IMPROVEIDTX_RDPH
av1_quant(x, plane, block, txfm_param, qparam);
if (fsc_mode) {
if (get_primary_tx_type(txfm_param->tx_type) == IDTX) {
uint16_t *const eob = &p->eobs[block];
if (*eob != 0) *eob = av1_get_max_eob(txfm_param->tx_size);
}
}
}
void av1_xform(MACROBLOCK *x, int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TxfmParam *txfm_param, const int reuse) {
struct macroblock_plane *const p = &x->plane[plane];
const int block_offset = BLOCK_OFFSET(block);
tran_low_t *const coeff = p->coeff + block_offset;
const int diff_stride = block_size_wide[plane_bsize];
const int src_offset = (blk_row * diff_stride + blk_col);
const int16_t *src_diff = &p->src_diff[src_offset << MI_SIZE_LOG2];
if (reuse == 0) {
av1_fwd_txfm(src_diff, coeff, diff_stride, txfm_param);
} else {
const int tr_width = tx_size_wide[txfm_param->tx_size] <= 32
? tx_size_wide[txfm_param->tx_size]
: 32;
const int tr_height = tx_size_high[txfm_param->tx_size] <= 32
? tx_size_high[txfm_param->tx_size]
: 32;
#if CONFIG_IST_ANY_SET
// perform fwd tx only once (and save the result in temp buff) during the
// search loop for IST Set (IST_DIR_SIZE sets) and its kenerls (3 tx kernels
// per set) Set 0 ~ IST_DIR_SIZE-1 for DCT_DCT, and Set IST_DIR_SIZE ~
// IST_SET_SIZE-1 for ADST_ADST
if (txfm_param->sec_tx_type == 0 &&
(txfm_param->sec_tx_set == 0 || txfm_param->sec_tx_set == IST_DIR_SIZE))
#else
if (txfm_param->sec_tx_type == 0)
#endif // CONFIG_IST_ANY_SET
{
av1_fwd_txfm(src_diff, coeff, diff_stride, txfm_param);
if (plane == 0) {
memcpy(p->temp_coeff, coeff, tr_width * tr_height * sizeof(tran_low_t));
}
} else {
if (plane == 0)
memcpy(coeff, p->temp_coeff, tr_width * tr_height * sizeof(tran_low_t));
}
}
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const PREDICTION_MODE intra_mode = get_intra_mode(mbmi, plane);
const int filter = mbmi->filter_intra_mode_info.use_filter_intra;
const int is_depth0 = tx_size_is_depth0(txfm_param->tx_size, plane_bsize);
assert(((intra_mode >= PAETH_PRED || filter || !is_depth0) &&
txfm_param->sec_tx_type) == 0);
(void)intra_mode;
(void)filter;
(void)is_depth0;
av1_fwd_stxfm(coeff, txfm_param);
}
// Facade function for forward cross chroma component transform
void forward_cross_chroma_transform(MACROBLOCK *x, int block, TX_SIZE tx_size,
CctxType cctx_type) {
struct macroblock_plane *const p_c1 = &x->plane[AOM_PLANE_U];
struct macroblock_plane *const p_c2 = &x->plane[AOM_PLANE_V];
const int block_offset = BLOCK_OFFSET(block);
tran_low_t *coeff_c1 = p_c1->coeff + block_offset;
tran_low_t *coeff_c2 = p_c2->coeff + block_offset;
av1_fwd_cross_chroma_tx_block(coeff_c1, coeff_c2, tx_size, cctx_type);
}
// Finds and sets the first position (BOB) index.
// To make sure the BOB value is statistically similar to EOB
// for arithmetic coding efficiency performs a simple rotation.
void set_bob(MACROBLOCK *x, int plane, int block, TX_SIZE tx_size,
TX_TYPE tx_type) {
const struct macroblock_plane *const p = &x->plane[plane];
const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type);
const int block_offset = BLOCK_OFFSET(block);
tran_low_t *const qcoeff = p->qcoeff + block_offset;
uint16_t *const eob = &p->eobs[block];
uint16_t *const bob_ptr = &p->bobs[block];
int bob = 0;
for (int c = 0; c < *eob; ++c) {
const int pos = scan_order->scan[c];
const tran_low_t v = qcoeff[pos];
const tran_low_t level = abs(v);
if (level != 0) {
break;
}
bob++;
}
*bob_ptr = av1_get_max_eob(tx_size) - bob;
}
void av1_quant(MACROBLOCK *x, int plane, int block, TxfmParam *txfm_param,
QUANT_PARAM *qparam) {
const struct macroblock_plane *const p = &x->plane[plane];
const SCAN_ORDER *const scan_order =
get_scan(txfm_param->tx_size, txfm_param->tx_type);
const int block_offset = BLOCK_OFFSET(block);
tran_low_t *const coeff = p->coeff + block_offset;
tran_low_t *const qcoeff = p->qcoeff + block_offset;
tran_low_t *const dqcoeff = p->dqcoeff + block_offset;
uint16_t *const eob = &p->eobs[block];
if (qparam->xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) {
const int n_coeffs = av1_get_max_eob(txfm_param->tx_size);
if (LIKELY(!x->seg_skip_block)) {
quant_func_list[qparam->xform_quant_idx](
coeff, n_coeffs, p, qcoeff, dqcoeff, eob, scan_order, qparam);
} else {
av1_quantize_skip(n_coeffs, qcoeff, dqcoeff, eob);
}
}
set_bob(x, plane, block, txfm_param->tx_size, txfm_param->tx_type);
#if CONFIG_CONTEXT_DERIVATION
MACROBLOCKD *const xd = &x->e_mbd;
const int16_t *const scan = scan_order->scan;
if (plane == AOM_PLANE_V) {
tran_low_t *const qcoeff_u = x->plane[AOM_PLANE_U].qcoeff + block_offset;
xd->eob_u_flag = x->plane[AOM_PLANE_U].eobs[block] ? 1 : 0;
const int width = get_txb_wide(txfm_param->tx_size);
const int height = get_txb_high(txfm_param->tx_size);
memset(xd->tmp_sign, 0, width * height * sizeof(int32_t));
for (int c = 0; c < x->plane[AOM_PLANE_U].eobs[block]; ++c) {
const int pos = scan[c];
int sign = (qcoeff_u[pos] < 0) ? 1 : 0;
if (abs(qcoeff_u[pos])) xd->tmp_sign[pos] = (sign ? 2 : 1);
}
}
#endif // CONFIG_CONTEXT_DERIVATION
// use_optimize_b is true means av1_optimze_b will be called,
// thus cannot update entropy ctx now (performed in optimize_b)
if (qparam->use_optimize_b) {
p->txb_entropy_ctx[block] = 0;
} else {
p->txb_entropy_ctx[block] =
av1_get_txb_entropy_context(qcoeff, scan_order, *eob);
}
}
void av1_setup_xform(const AV1_COMMON *cm, MACROBLOCK *x, int plane,
TX_SIZE tx_size, TX_TYPE tx_type, CctxType cctx_type,
TxfmParam *txfm_param) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
txfm_param->tx_type = get_primary_tx_type(tx_type);
#if CONFIG_IST_SET_FLAG
txfm_param->sec_tx_set = 0;
#endif // CONFIG_IST_SET_FLAG
txfm_param->sec_tx_type = 0;
txfm_param->intra_mode = get_intra_mode(mbmi, plane);
if ((txfm_param->intra_mode < PAETH_PRED) &&
!xd->lossless[mbmi->segment_id] &&
!(mbmi->filter_intra_mode_info.use_filter_intra) &&
!(mbmi->fsc_mode[xd->tree_type == CHROMA_PART]) &&
cm->seq_params.enable_ist) {
#if CONFIG_IST_SET_FLAG
txfm_param->sec_tx_set = get_secondary_tx_set(tx_type);
#endif // CONFIG_IST_SET_FLAG
txfm_param->sec_tx_type = get_secondary_tx_type(tx_type);
}
txfm_param->cctx_type = cctx_type;
txfm_param->tx_size = tx_size;
txfm_param->lossless = xd->lossless[mbmi->segment_id];
txfm_param->tx_set_type =
av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi, xd->tree_type),
cm->features.reduced_tx_set_used);
txfm_param->bd = xd->bd;
}
void av1_setup_quant(TX_SIZE tx_size, int use_optimize_b, int xform_quant_idx,
int use_quant_b_adapt, QUANT_PARAM *qparam) {
qparam->log_scale = av1_get_tx_scale(tx_size);
qparam->tx_size = tx_size;
qparam->use_quant_b_adapt = use_quant_b_adapt;
// TODO(bohanli): optimize_b and quantization idx has relationship,
// but is kind of buried and complicated in different encoding stages.
// Should have a unified function to derive quant_idx, rather than
// determine and pass in the quant_idx
qparam->use_optimize_b = use_optimize_b;
qparam->xform_quant_idx = xform_quant_idx;
qparam->qmatrix = NULL;
qparam->iqmatrix = NULL;
}
void av1_update_trellisq(int use_optimize_b, int xform_quant_idx,
int use_quant_b_adapt, QUANT_PARAM *qparam) {
qparam->use_quant_b_adapt = use_quant_b_adapt;
qparam->use_optimize_b = use_optimize_b;
qparam->xform_quant_idx = xform_quant_idx;
}
void av1_setup_qmatrix(const CommonQuantParams *quant_params,
const MACROBLOCKD *xd, int plane, TX_SIZE tx_size,
TX_TYPE tx_type, QUANT_PARAM *qparam) {
qparam->qmatrix = av1_get_qmatrix(quant_params, xd, plane, tx_size, tx_type);
qparam->iqmatrix =
av1_get_iqmatrix(quant_params, xd, plane, tx_size, tx_type);
}
static void encode_block(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg,
RUN_TYPE dry_run) {
(void)dry_run;
struct encode_b_args *const args = arg;
const AV1_COMP *const cpi = args->cpi;
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
uint16_t *dst;
ENTROPY_CONTEXT *a, *l;
int dummy_rate_cost = 0;
const int bw = mi_size_wide[plane_bsize];
dst = &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2];
a = &args->ta[blk_col];
l = &args->tl[blk_row];
TX_TYPE tx_type = av1_get_tx_type(xd, pd->plane_type, blk_row, blk_col,
tx_size, cm->features.reduced_tx_set_used);
CctxType cctx_type =
plane ? av1_get_cctx_type(xd, blk_row, blk_col) : CCTX_NONE;
if (!is_blk_skip(x->txfm_search_info.blk_skip, plane,
blk_row * bw + blk_col) &&
(plane < AOM_PLANE_V || !is_cctx_allowed(cm, xd) ||
#if CCTX_C2_DROPPED
((cctx_type == CCTX_NONE || x->plane[AOM_PLANE_U].eobs[block]) &&
keep_chroma_c2(cctx_type))) &&
#else
cctx_type == CCTX_NONE || x->plane[AOM_PLANE_U].eobs[block]) &&
#endif // CCTX_C2_DROPPED
#if CONFIG_SKIP_MODE_ENHANCEMENT
!(mbmi->skip_mode == 1)) {
#else
!mbmi->skip_mode) {
#endif // CONFIG_SKIP_MODE_ENHANCEMENT
TxfmParam txfm_param;
QUANT_PARAM quant_param;
const int is_inter = is_inter_block(mbmi, xd->tree_type);
const int fsc_mode = (mbmi->fsc_mode[xd->tree_type == CHROMA_PART] &&
plane == PLANE_TYPE_Y) ||
use_inter_fsc(cm, plane, tx_type, is_inter);
const int use_trellis = is_trellis_used(args->enable_optimize_b, dry_run)
#if !CONFIG_IMPROVEIDTX_RDPH
&& !fsc_mode
#endif // !CONFIG_IMPROVEIDTX_RDPH
;
int quant_idx;
if (use_trellis)
quant_idx = AV1_XFORM_QUANT_FP;
else
quant_idx =
USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP;
av1_setup_xform(cm, x, plane, tx_size, tx_type, cctx_type, &txfm_param);
av1_setup_quant(tx_size, use_trellis, quant_idx,
cpi->oxcf.q_cfg.quant_b_adapt, &quant_param);
av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
&quant_param);
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize,
&txfm_param, &quant_param);
bool enable_parity_hiding =
cm->features.allow_parity_hiding && !xd->lossless[mbmi->segment_id] &&
plane == PLANE_TYPE_Y &&
#if CONFIG_IMPROVEIDTX_RDPH
ph_allowed_tx_types[get_primary_tx_type(tx_type)] &&
(p->eobs[block] > PHTHRESH);
#else
get_primary_tx_type(tx_type) < IDTX;
#endif // CONFIG_IMPROVEIDTX_RDPH
// Whether trellis or dropout optimization is required for inter frames.
const bool do_trellis = INTER_BLOCK_OPT_TYPE == TRELLIS_OPT ||
INTER_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT;
const bool do_dropout = INTER_BLOCK_OPT_TYPE == DROPOUT_OPT ||
INTER_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT;
if (quant_param.use_optimize_b && do_trellis) {
TXB_CTX txb_ctx;
get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx,
mbmi->fsc_mode[xd->tree_type == CHROMA_PART]);
#if CONFIG_IMPROVEIDTX_RDPH
if (fsc_mode)
av1_optimize_fsc(args->cpi, x, plane, block, tx_size, tx_type, &txb_ctx,
&dummy_rate_cost);
else
#endif // CONFIG_IMPROVEIDTX_RDPH
av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type, cctx_type,
&txb_ctx, &dummy_rate_cost);
}
if (!quant_param.use_optimize_b && do_dropout && !fsc_mode &&
!enable_parity_hiding) {
av1_dropout_qcoeff(x, plane, block, tx_size, tx_type,
cm->quant_params.base_qindex);
}
if (!quant_param.use_optimize_b && enable_parity_hiding) {
parity_hiding_trellis_off(cpi, x, plane, block, tx_size, tx_type);
}
const int skip_cctx = is_inter ? 0 : (p->eobs[block] == 1);
// Since eob can be updated here, make sure cctx_type is always CCTX_NONE
// when eob of U is 0.
if (is_cctx_allowed(cm, xd) && plane == AOM_PLANE_U &&
(p->eobs[block] == 0 || skip_cctx)) {
// In dry run, cctx type will not be referenced by neighboring blocks, so
// there is no need to fill in the whole chroma region. In addition,
// ctx->cctx_type_map size in dry run may not be aligned with actual
// chroma coding region for some partition types.
update_cctx_array(xd, blk_row, blk_col, 0, 0, dry_run ? TX_4X4 : tx_size,
CCTX_NONE);
}
} else {
#if CCTX_C2_DROPPED
// Reset coeffs and dqcoeffs
if (plane == AOM_PLANE_V && !keep_chroma_c2(cctx_type) &&
is_cctx_allowed(cm, xd))
av1_quantize_skip(av1_get_max_eob(tx_size),
p->coeff + BLOCK_OFFSET(block), dqcoeff,
&p->eobs[block]);
#endif // CCTX_C2_DROPPED
p->eobs[block] = 0;
p->bobs[block] = 0;
p->txb_entropy_ctx[block] = 0;
}
av1_set_txb_context(x, plane, block, tx_size, a, l);
// In CCTX, reconstruction for U plane relies on dqcoeffs of V plane, so the
// below operations for U are performed together with V once dqcoeffs of V are
// obtained.
if (plane == AOM_PLANE_U && is_cctx_allowed(cm, xd)) {
if (p->eobs[block]) *(args->skip) = 0;
return;
}
int recon_with_cctx = 0;
int max_chroma_eob = 0;
if (plane == AOM_PLANE_V && is_cctx_allowed(cm, xd)) {
struct macroblock_plane *const p_c1 = &x->plane[AOM_PLANE_U];
struct macroblockd_plane *const pd_c1 = &xd->plane[AOM_PLANE_U];
tran_low_t *dqcoeff_c1 = p_c1->dqcoeff + BLOCK_OFFSET(block);
uint16_t *dst_c1 =
&pd_c1->dst
.buf[(blk_row * pd_c1->dst.stride + blk_col) << MI_SIZE_LOG2];
int eob_c1 = p_c1->eobs[block];
int eob_c2 = x->plane[AOM_PLANE_V].eobs[block];
const int is_inter = is_inter_block(mbmi, xd->tree_type);
const int skip_cctx = is_inter ? 0 : (p->eobs[block] == 1);
recon_with_cctx = (eob_c1 || eob_c2) && !skip_cctx;
max_chroma_eob = AOMMAX(eob_c1, eob_c2);
if (recon_with_cctx) {
av1_inv_cross_chroma_tx_block(dqcoeff_c1, dqcoeff, tx_size, cctx_type);
av1_inverse_transform_block(xd, dqcoeff_c1, AOM_PLANE_U, tx_type, tx_size,
dst_c1, pd_c1->dst.stride, max_chroma_eob,
cm->features.reduced_tx_set_used);
}
}
if (p->eobs[block] || recon_with_cctx) {
*(args->skip) = 0;
av1_inverse_transform_block(
xd, dqcoeff, plane, tx_type, tx_size, dst, pd->dst.stride,
(plane == 0 || !is_cctx_allowed(cm, xd) || !recon_with_cctx)
? p->eobs[block]
: max_chroma_eob,
cm->features.reduced_tx_set_used);
}
// TODO(debargha, jingning): Temporarily disable txk_type check for eob=0
// case. It is possible that certain collision in hash index would cause
// the assertion failure. To further optimize the rate-distortion
// performance, we need to re-visit this part and enable this assert
// again.
if (p->eobs[block] == 0 && plane == 0) {
#if 0
if (args->cpi->oxcf.q_cfg.aq_mode == NO_AQ &&
args->cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q) {
// TODO(jingning,angiebird,huisu@google.com): enable txk_check when
// enable_optimize_b is true to detect potential RD bug.
const uint8_t disable_txk_check = args->enable_optimize_b;
if (!disable_txk_check) {
assert(xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col)] ==
DCT_DCT);
}
}
#endif
update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
}
#if CONFIG_LR_IMPROVEMENTS
if (dry_run == OUTPUT_ENABLED && plane == AOM_PLANE_V &&
is_cctx_allowed(cm, xd) && x->plane[AOM_PLANE_U].eobs[block] == 0) {
av1_update_txk_skip_array(cm, xd->mi_row, xd->mi_col, xd->tree_type,
&mbmi->chroma_ref_info, AOM_PLANE_U, blk_row,
blk_col, tx_size);
}
if (p->eobs[block] == 0 && dry_run == OUTPUT_ENABLED) {
av1_update_txk_skip_array(cm, xd->mi_row, xd->mi_col, xd->tree_type,
&mbmi->chroma_ref_info, plane, blk_row, blk_col,
tx_size);
}
#endif // CONFIG_LR_IMPROVEMENTS
#if CONFIG_MISMATCH_DEBUG
if (dry_run == OUTPUT_ENABLED) {
int pixel_c, pixel_r;
BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
int blk_w = block_size_wide[bsize];
int blk_h = block_size_high[bsize];
if (plane) {
mi_to_pixel_loc(&pixel_c, &pixel_r,
mbmi->chroma_ref_info.mi_col_chroma_base,
mbmi->chroma_ref_info.mi_row_chroma_base, blk_col,
blk_row, pd->subsampling_x, pd->subsampling_y);
} else {
mi_to_pixel_loc(&pixel_c, &pixel_r, xd->mi_col, xd->mi_row, blk_col,
blk_row, pd->subsampling_x, pd->subsampling_y);
}
if (plane == AOM_PLANE_V && is_cctx_allowed(cm, xd)) {
struct macroblockd_plane *const pd_c1 = &xd->plane[AOM_PLANE_U];
uint16_t *dst_c1 =
&pd_c1->dst
.buf[(blk_row * pd_c1->dst.stride + blk_col) << MI_SIZE_LOG2];
mismatch_record_block_tx(dst_c1, pd_c1->dst.stride,
#if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
cm->current_frame.display_order_hint,
#else
cm->current_frame.order_hint,
#endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
AOM_PLANE_U, pixel_c, pixel_r, blk_w, blk_h);
}
mismatch_record_block_tx(dst, pd->dst.stride,
#if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
cm->current_frame.display_order_hint,
#else
cm->current_frame.order_hint,
#endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
plane, pixel_c, pixel_r, blk_w, blk_h);
}
#endif // CONFIG_MISMATCH_DEBUG
}
static void encode_block_inter(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg, RUN_TYPE dry_run) {
struct encode_b_args *const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
#if CONFIG_TX_PARTITION_TYPE_EXT
const int index = av1_get_txb_size_index(plane_bsize, blk_row, blk_col);
#if CONFIG_EXT_RECUR_PARTITIONS
const BLOCK_SIZE bsize_base = get_bsize_base(xd, mbmi, plane);
const TX_SIZE plane_tx_size =
plane ? av1_get_max_uv_txsize(bsize_base, pd->subsampling_x,
pd->subsampling_y)
: mbmi->inter_tx_size[index];
#else
const BLOCK_SIZE bsize_base = get_bsize_base(xd, mbmi, plane);
const TX_SIZE plane_tx_size =
plane ? av1_get_max_uv_txsize(bsize_base, pd->subsampling_x,
pd->subsampling_y)
: mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
blk_col)];
#endif // CONFIG_EXT_RECUR_PARTITIONS
#else
const TX_SIZE plane_tx_size =
plane ? av1_get_max_uv_txsize(mbmi->sb_type[xd->tree_type == CHROMA_PART],
pd->subsampling_x, pd->subsampling_y)
: mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
blk_col)];
#endif // CONFIG_TX_PARTITION_TYPE_EXT
if (!plane) {
assert(tx_size_wide[tx_size] >= tx_size_wide[plane_tx_size] &&
tx_size_high[tx_size] >= tx_size_high[plane_tx_size]);
}
if (tx_size == plane_tx_size || plane) {
encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg,
dry_run);
} else {
#if CONFIG_NEW_TX_PARTITION
#if CONFIG_TX_PARTITION_TYPE_EXT
get_tx_partition_sizes(mbmi->tx_partition_type[index], tx_size,
&mbmi->txb_pos, mbmi->sub_txs);
for (int txb_idx = 0; txb_idx < mbmi->txb_pos.n_partitions; ++txb_idx) {
const TX_SIZE sub_tx = mbmi->sub_txs[txb_idx];
int bsw = tx_size_wide_unit[sub_tx];
int bsh = tx_size_high_unit[sub_tx];
const int sub_step = bsw * bsh;
const int offsetr = blk_row + mbmi->txb_pos.row_offset[txb_idx];
const int offsetc = blk_col + mbmi->txb_pos.col_offset[txb_idx];
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
encode_block(plane, block, offsetr, offsetc, plane_bsize, sub_tx, arg,
dry_run);
block += sub_step;
}
#else
TX_SIZE sub_txs[MAX_TX_PARTITIONS] = { 0 };
const int index = av1_get_txb_size_index(plane_bsize, blk_row, blk_col);
get_tx_partition_sizes(mbmi->tx_partition_type[index], tx_size, sub_txs);
int cur_partition = 0;
int bsw = 0, bsh = 0;
for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) {
for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw) {
const TX_SIZE sub_tx = sub_txs[cur_partition];
bsw = tx_size_wide_unit[sub_tx];
bsh = tx_size_high_unit[sub_tx];
const int sub_step = bsw * bsh;
const int offsetr = blk_row + r;
const int offsetc = blk_col + c;
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
encode_block(plane, block, offsetr, offsetc, plane_bsize, sub_tx, arg,
dry_run);
block += sub_step;
cur_partition++;
}
}
#endif // CONFIG_TX_PARTITION_TYPE_EXT
#else
assert(tx_size < TX_SIZES_ALL);
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size));
assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size));
// This is the square transform block partition entry point.
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
const int step = bsh * bsw;
assert(bsw > 0 && bsh > 0);
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
const int offsetr = blk_row + row;
const int offsetc = blk_col + col;
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs,
arg, dry_run);
block += step;
}
}
#endif // CONFIG_NEW_TX_PARTITION
}
}
void av1_foreach_transformed_block_in_plane(
const MACROBLOCKD *const xd, BLOCK_SIZE plane_bsize, int plane,
foreach_transformed_block_visitor visit, void *arg) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
// block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
// transform size varies per plane, look it up in a common way.
const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
const uint8_t txw_unit = tx_size_wide_unit[tx_size];
const uint8_t txh_unit = tx_size_high_unit[tx_size];
const int step = txw_unit * txh_unit;
// If mb_to_right_edge is < 0 we are in a situation in which
// the current block size extends into the UMV and we won't
// visit the sub blocks that are wholly within the UMV.
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const BLOCK_SIZE max_unit_bsize =
get_plane_block_size(BLOCK_64X64, pd->subsampling_x, pd->subsampling_y);
const int mu_blocks_wide =
AOMMIN(mi_size_wide[max_unit_bsize], max_blocks_wide);
const int mu_blocks_high =
AOMMIN(mi_size_high[max_unit_bsize], max_blocks_high);
// Keep track of the row and column of the blocks we use so that we know
// if we are in the unrestricted motion border.
int i = 0;
for (int r = 0; r < max_blocks_high; r += mu_blocks_high) {
const int unit_height = AOMMIN(mu_blocks_high + r, max_blocks_high);
// Skip visiting the sub blocks that are wholly within the UMV.
for (int c = 0; c < max_blocks_wide; c += mu_blocks_wide) {
const int unit_width = AOMMIN(mu_blocks_wide + c, max_blocks_wide);
for (int blk_row = r; blk_row < unit_height; blk_row += txh_unit) {
for (int blk_col = c; blk_col < unit_width; blk_col += txw_unit) {
visit(plane, i, blk_row, blk_col, plane_bsize, tx_size, arg);
i += step;
}
}
}
}
}
typedef struct encode_block_pass1_args {
AV1_COMP *cpi;
MACROBLOCK *x;
} encode_block_pass1_args;
static void encode_block_pass1(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
encode_block_pass1_args *args = (encode_block_pass1_args *)arg;
AV1_COMP *cpi = args->cpi;
AV1_COMMON *cm = &cpi->common;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
uint16_t *dst;
dst = &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2];
TxfmParam txfm_param;
QUANT_PARAM quant_param;
av1_setup_xform(cm, x, plane, tx_size, DCT_DCT, CCTX_NONE, &txfm_param);
av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_B, cpi->oxcf.q_cfg.quant_b_adapt,
&quant_param);
av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, DCT_DCT,
&quant_param);
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize,
&txfm_param, &quant_param);
if (p->eobs[block] > 0) {
txfm_param.eob = p->eobs[block];
av1_highbd_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param);
}
}
void av1_encode_sby_pass1(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize) {
encode_block_pass1_args args = { cpi, x };
av1_subtract_plane(x, bsize, 0);
av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
encode_block_pass1, &args);
}
void av1_encode_sb(const struct AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
RUN_TYPE dry_run, int plane_start, int plane_end) {
(void)bsize;
assert(bsize < BLOCK_SIZES_ALL);
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
#if CONFIG_SKIP_MODE_ENHANCEMENT
// Temporally set the skip_mode to 2, for the encoding trick to not skip the
// residual coding at RD stage. To be further refined
if (mbmi->skip_mode == 1 &&
mbmi->skip_txfm[xd->tree_type == CHROMA_PART] == 0) {
mbmi->skip_mode = 2;
}
#endif // CONFIG_SKIP_MODE_ENHANCEMENT
mbmi->skip_txfm[xd->tree_type == CHROMA_PART] = 1;
#if CONFIG_LR_IMPROVEMENTS
if (x->txfm_search_info.skip_txfm && dry_run == OUTPUT_ENABLED) {
const AV1_COMMON *const cm = &cpi->common;
const int sb_type = mbmi->sb_type[xd->tree_type == CHROMA_PART];
av1_init_txk_skip_array(cm, xd->mi_row, xd->mi_col, sb_type, 1,
xd->tree_type, &mbmi->chroma_ref_info, plane_start,
plane_end);
}
#endif // CONFIG_LR_IMPROVEMENTS
if (x->txfm_search_info.skip_txfm) return;
struct optimize_ctx ctx;
struct encode_b_args arg = {
cpi, x, &ctx, &mbmi->skip_txfm[xd->tree_type == CHROMA_PART],
NULL, NULL, dry_run, cpi->optimize_seg_arr[mbmi->segment_id]
};
// Subtract first, so both U and V residues will be available when U
// component is being transformed and quantized.
for (int plane = plane_start; plane < plane_end; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
if (plane && !xd->is_chroma_ref) break;
const BLOCK_SIZE plane_bsize = get_mb_plane_block_size(
xd, mbmi, plane, pd->subsampling_x, pd->subsampling_y);
av1_subtract_plane(x, plane_bsize, plane);
}
for (int plane = plane_start; plane < plane_end; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int subsampling_x = pd->subsampling_x;
const int subsampling_y = pd->subsampling_y;
if (plane && !xd->is_chroma_ref) break;
const BLOCK_SIZE plane_bsize =
get_mb_plane_block_size(xd, mbmi, plane, subsampling_x, subsampling_y);
#if !CONFIG_EXT_RECUR_PARTITIONS
const BLOCK_SIZE bsize_base =
plane ? mbmi->chroma_ref_info.bsize_base
: mbmi->sb_type[xd->tree_type == CHROMA_PART];
assert(plane_bsize ==
get_plane_block_size(bsize_base, subsampling_x, subsampling_y));
(void)bsize_base;
#endif // !CONFIG_EXT_RECUR_PARTITIONS
assert(plane_bsize < BLOCK_SIZES_ALL);
const int mi_width = mi_size_wide[plane_bsize];
const int mi_height = mi_size_high[plane_bsize];
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
const int bw = mi_size_wide[txb_size];
const int bh = mi_size_high[txb_size];
int block = 0;
const int step =
tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
av1_get_entropy_contexts(plane_bsize, pd, ctx.ta[plane], ctx.tl[plane]);
arg.ta = ctx.ta[plane];
arg.tl = ctx.tl[plane];
const BLOCK_SIZE max_unit_bsize =
get_plane_block_size(BLOCK_64X64, subsampling_x, subsampling_y);
int mu_blocks_wide = mi_size_wide[max_unit_bsize];
int mu_blocks_high = mi_size_high[max_unit_bsize];
mu_blocks_wide = AOMMIN(mi_width, mu_blocks_wide);
mu_blocks_high = AOMMIN(mi_height, mu_blocks_high);
for (int idy = 0; idy < mi_height; idy += mu_blocks_high) {
for (int idx = 0; idx < mi_width; idx += mu_blocks_wide) {
int blk_row, blk_col;
const int unit_height = AOMMIN(mu_blocks_high + idy, mi_height);
const int unit_width = AOMMIN(mu_blocks_wide + idx, mi_width);
for (blk_row = idy; blk_row < unit_height; blk_row += bh) {
for (blk_col = idx; blk_col < unit_width; blk_col += bw) {
encode_block_inter(plane, block, blk_row, blk_col, plane_bsize,
max_tx_size, &arg, dry_run);
block += step;
}
}
}
}
}
#if CONFIG_SKIP_MODE_ENHANCEMENT
// trick to avoid reset the skip_txfm for skip mode
if (mbmi->skip_mode == 2) {
mbmi->skip_mode = 1;
}
#endif // CONFIG_SKIP_MODE_ENHANCEMENT
}
static void encode_block_intra_and_set_context(int plane, int block,
int blk_row, int blk_col,
BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size,
arg);
struct encode_b_args *const args = arg;
MACROBLOCK *x = args->x;
ENTROPY_CONTEXT *a = &args->ta[blk_col];
ENTROPY_CONTEXT *l = &args->tl[blk_row];
av1_set_txb_context(x, plane, block, tx_size, a, l);
}
void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct encode_b_args *const args = arg;
const AV1_COMP *const cpi = args->cpi;
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const int is_inter = is_inter_block(mbmi, xd->tree_type);
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
PLANE_TYPE plane_type = get_plane_type(plane);
uint16_t *eob = &p->eobs[block];
uint16_t *bob_code = &p->bobs[block];
const int dst_stride = pd->dst.stride;
uint16_t *dst =
&pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
int dummy_rate_cost = 0;
av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size);
#if CONFIG_MISMATCH_DEBUG
if (args->dry_run == OUTPUT_ENABLED) {
int pixel_c, pixel_r;
if (plane) {
mi_to_pixel_loc(&pixel_c, &pixel_r,
mbmi->chroma_ref_info.mi_col_chroma_base,
mbmi->chroma_ref_info.mi_row_chroma_base, blk_col,
blk_row, pd->subsampling_x, pd->subsampling_y);
} else {
mi_to_pixel_loc(&pixel_c, &pixel_r, xd->mi_col, xd->mi_row, blk_col,
blk_row, pd->subsampling_x, pd->subsampling_y);
}
mismatch_record_block_pre(pd->dst.buf, pd->dst.stride,
#if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
cm->current_frame.display_order_hint,
#else
cm->current_frame.order_hint,
#endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
plane, pixel_c, pixel_r, tx_size_wide[tx_size],
tx_size_high[tx_size]);
}
#endif // CONFIG_MISMATCH_DEBUG
TX_TYPE tx_type = DCT_DCT;
const int bw = mi_size_wide[plane_bsize];
#if DEBUG_EXTQUANT
if (args->dry_run == OUTPUT_ENABLED) {
fprintf(cm->fEncCoeffLog,
"\nmi_row = %d, mi_col = %d, blk_row = %d,"
" blk_col = %d, plane = %d, tx_size = %d ",
xd->mi_row, xd->mi_col, blk_row, blk_col, plane, tx_size);
}
#endif
if (plane == 0 && is_blk_skip(x->txfm_search_info.blk_skip, plane,
blk_row * bw + blk_col)) {
*eob = 0;
*bob_code = 0;
p->txb_entropy_ctx[block] = 0;
#if DEBUG_EXTQUANT
if (args->dry_run == OUTPUT_ENABLED) {
fprintf(cm->fEncCoeffLog, "tx_type = %d, eob = %d", tx_type, *eob);
}
#endif
} else {
av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size);
const ENTROPY_CONTEXT *a = &args->ta[blk_col];
const ENTROPY_CONTEXT *l = &args->tl[blk_row];
tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, tx_size,
cm->features.reduced_tx_set_used);
TxfmParam txfm_param;
QUANT_PARAM quant_param;
const uint8_t fsc_mode = (mbmi->fsc_mode[xd->tree_type == CHROMA_PART] &&
plane == PLANE_TYPE_Y) ||
use_inter_fsc(cm, plane, tx_type, is_inter);
const int use_trellis =
is_trellis_used(args->enable_optimize_b, args->dry_run)
#if !CONFIG_IMPROVEIDTX_RDPH
&& !fsc_mode
#endif // !CONFIG_IMPROVEIDTX_RDPH
;
int quant_idx;
if (use_trellis)
quant_idx = AV1_XFORM_QUANT_FP;
else
quant_idx =
USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP;
av1_setup_xform(cm, x, plane, tx_size, tx_type, CCTX_NONE, &txfm_param);
av1_setup_quant(tx_size, use_trellis, quant_idx,
cpi->oxcf.q_cfg.quant_b_adapt, &quant_param);
av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
&quant_param);
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize,
&txfm_param, &quant_param);
bool enable_parity_hiding =
cm->features.allow_parity_hiding && !xd->lossless[mbmi->segment_id] &&
plane == PLANE_TYPE_Y &&
#if CONFIG_IMPROVEIDTX_RDPH
ph_allowed_tx_types[get_primary_tx_type(tx_type)] && (*eob > PHTHRESH);
#else
get_primary_tx_type(tx_type) < IDTX;
#endif // CONFIG_IMPROVEIDTX_RDPH
#if DEBUG_EXTQUANT
if (args->dry_run == OUTPUT_ENABLED) {
fprintf(cm->fEncCoeffLog, "tx_type = %d, eob = %d\n", tx_type, *eob);
for (int c = 0; c < tx_size_wide[tx_size] * tx_size_high[tx_size]; c++) {
fprintf(cm->fEncCoeffLog, "%d ", dqcoeff[c]);
}
fprintf(cm->fEncCoeffLog, "\n\n");
}
#endif
// Whether trellis or dropout optimization is required for key frames and
// intra frames.
const bool do_trellis = (frame_is_intra_only(cm) &&
(KEY_BLOCK_OPT_TYPE == TRELLIS_OPT ||
KEY_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)) ||
(!frame_is_intra_only(cm) &&
(INTRA_BLOCK_OPT_TYPE == TRELLIS_OPT ||
INTRA_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT));
const bool do_dropout = (frame_is_intra_only(cm) &&
(KEY_BLOCK_OPT_TYPE == DROPOUT_OPT ||
KEY_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)) ||
(!frame_is_intra_only(cm) &&
(INTRA_BLOCK_OPT_TYPE == DROPOUT_OPT ||
INTRA_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT));
if (quant_param.use_optimize_b && do_trellis) {
TXB_CTX txb_ctx;
get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx,
mbmi->fsc_mode[xd->tree_type == CHROMA_PART]);
#if CONFIG_IMPROVEIDTX_RDPH
if (fsc_mode)
av1_optimize_fsc(args->cpi, x, plane, block, tx_size, tx_type, &txb_ctx,
&dummy_rate_cost);
else
#endif // CONFIG_IMPROVEIDTX_RDPH
av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type, CCTX_NONE,
&txb_ctx, &dummy_rate_cost);
}
if (do_dropout && !fsc_mode && !enable_parity_hiding) {
av1_dropout_qcoeff(x, plane, block, tx_size, tx_type,
cm->quant_params.base_qindex);
}
// make sure recon is correct at the encoder
if (*eob == 1 && tx_type != 0 && plane == 0) {
xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col] = DCT_DCT;
tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, tx_size,
cm->features.reduced_tx_set_used);
av1_setup_xform(cm, x, plane, tx_size, tx_type, CCTX_NONE, &txfm_param);
av1_setup_quant(tx_size, use_trellis, quant_idx,
cpi->oxcf.q_cfg.quant_b_adapt, &quant_param);
av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
&quant_param);
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize,
&txfm_param, &quant_param);
if (quant_param.use_optimize_b && do_trellis) {
TXB_CTX txb_ctx;
get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx,
mbmi->fsc_mode[xd->tree_type == CHROMA_PART]);
#if CONFIG_IMPROVEIDTX_RDPH
if (fsc_mode)
av1_optimize_fsc(args->cpi, x, plane, block, tx_size, tx_type,
&txb_ctx, &dummy_rate_cost);
else
#endif // CONFIG_IMPROVEIDTX_RDPH
av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type,
CCTX_NONE, &txb_ctx, &dummy_rate_cost);
}
if (do_dropout && !fsc_mode && !enable_parity_hiding) {
av1_dropout_qcoeff(x, plane, block, tx_size, tx_type,
cm->quant_params.base_qindex);
}
}
if (!quant_param.use_optimize_b && enable_parity_hiding) {
parity_hiding_trellis_off(cpi, x, plane, block, tx_size, tx_type);
}
}
if (*eob) {
av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst,
dst_stride, *eob,
cm->features.reduced_tx_set_used);
}
// TODO(jingning): Temporarily disable txk_type check for eob=0 case.
// It is possible that certain collision in hash index would cause
// the assertion failure. To further optimize the rate-distortion
// performance, we need to re-visit this part and enable this assert
// again.
if (*eob == 0 && plane == 0) {
#if 0
if (args->cpi->oxcf.q_cfg.aq_mode == NO_AQ
&& args->cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q) {
assert(xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col)] ==
DCT_DCT);
}
#endif
update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
}
#if CONFIG_LR_IMPROVEMENTS
if (*eob == 0 && args->dry_run == OUTPUT_ENABLED) {
av1_update_txk_skip_array(cm, xd->mi_row, xd->mi_col, xd->tree_type,
&mbmi->chroma_ref_info, plane, blk_row, blk_col,
tx_size);
}
#endif // CONFIG_LR_IMPROVEMENTS
#if CONFIG_MISMATCH_DEBUG
if (args->dry_run == OUTPUT_ENABLED) {
int pixel_c, pixel_r;
BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
int blk_w = block_size_wide[bsize];
int blk_h = block_size_high[bsize];
if (plane) {
mi_to_pixel_loc(&pixel_c, &pixel_r,
mbmi->chroma_ref_info.mi_col_chroma_base,
mbmi->chroma_ref_info.mi_row_chroma_base, blk_col,
blk_row, pd->subsampling_x, pd->subsampling_y);
} else {
mi_to_pixel_loc(&pixel_c, &pixel_r, xd->mi_col, xd->mi_row, blk_col,
blk_row, pd->subsampling_x, pd->subsampling_y);
}
mismatch_record_block_tx(dst, pd->dst.stride,
#if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
cm->current_frame.display_order_hint,
#else
cm->current_frame.order_hint,
#endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
plane, pixel_c, pixel_r, blk_w, blk_h);
}
#endif // CONFIG_MISMATCH_DEBUG
// For intra mode, skipped blocks are so rare that transmitting skip=1 is
// very expensive.
*(args->skip) = 0;
if (plane == AOM_PLANE_Y && xd->cfl.store_y && xd->tree_type == SHARED_PART) {
#if CONFIG_IMPROVED_CFL
cfl_store_tx(xd, blk_row, blk_col, tx_size,
cm->seq_params.enable_cfl_ds_filter);
#else
cfl_store_tx(xd, blk_row, blk_col, tx_size);
#endif // CONFIG_IMPROVED_CFL
}
}
void av1_encode_intra_block_plane(const struct AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int plane, RUN_TYPE dry_run,
TRELLIS_OPT_TYPE enable_optimize_b) {
const MACROBLOCKD *const xd = &x->e_mbd;
if (plane && !xd->is_chroma_ref) return;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
ENTROPY_CONTEXT ta[MAX_MIB_SIZE] = { 0 };
ENTROPY_CONTEXT tl[MAX_MIB_SIZE] = { 0 };
int8_t *skip_txfm = &(xd->mi[0]->skip_txfm[xd->tree_type == CHROMA_PART]);
struct encode_b_args arg = { cpi, x, NULL, skip_txfm,
ta, tl, dry_run, enable_optimize_b };
const BLOCK_SIZE plane_bsize =
get_mb_plane_block_size(xd, xd->mi[0], plane, ss_x, ss_y);
#if !CONFIG_EXT_RECUR_PARTITIONS
assert(plane_bsize == get_plane_block_size(bsize, ss_x, ss_y));
#endif // !CONFIG_EXT_RECUR_PARTITIONS
(void)bsize;
if (enable_optimize_b) {
av1_get_entropy_contexts(plane_bsize, pd, ta, tl);
}
#if CONFIG_TX_PARTITION_TYPE_EXT
if (plane == AOM_PLANE_Y && !xd->lossless[xd->mi[0]->segment_id]) {
MB_MODE_INFO *mbmi = xd->mi[0];
const TX_SIZE max_tx_size = max_txsize_rect_lookup[plane_bsize];
get_tx_partition_sizes(mbmi->tx_partition_type[0], max_tx_size,
&mbmi->txb_pos, mbmi->sub_txs);
// If mb_to_right_edge is < 0 we are in a situation in which
// the current block size extends into the UMV and we won't
// visit the sub blocks that are wholly within the UMV.
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const BLOCK_SIZE max_unit_bsize =
get_plane_block_size(BLOCK_64X64, pd->subsampling_x, pd->subsampling_y);
const int mu_blocks_wide =
AOMMIN(mi_size_wide[max_unit_bsize], max_blocks_wide);
const int mu_blocks_high =
AOMMIN(mi_size_high[max_unit_bsize], max_blocks_high);
// Keep track of the row and column of the blocks we use so that we know
// if we are in the unrestricted motion border.
int i = 0;
for (int r = 0; r < max_blocks_high; r += mu_blocks_high) {
const int unit_height = AOMMIN(mu_blocks_high + r, max_blocks_high);
// Skip visiting the sub blocks that are wholly within the UMV.
for (int c = 0; c < max_blocks_wide; c += mu_blocks_wide) {
const int unit_width = AOMMIN(mu_blocks_wide + c, max_blocks_wide);
for (int txb_idx = 0; txb_idx < mbmi->txb_pos.n_partitions; ++txb_idx) {
TX_SIZE tx_size = mbmi->sub_txs[txb_idx];
mbmi->txb_idx = txb_idx;
const uint8_t txw_unit = tx_size_wide_unit[tx_size];
const uint8_t txh_unit = tx_size_high_unit[tx_size];
const int step = txw_unit * txh_unit;
int blk_row = r + mbmi->txb_pos.row_offset[txb_idx];
int blk_col = c + mbmi->txb_pos.col_offset[txb_idx];
if (blk_row >= unit_height || blk_col >= unit_width) continue;
mbmi->tx_size = tx_size;
encode_block_intra_and_set_context(plane, i, blk_row, blk_col,
plane_bsize, tx_size, &arg);
i += step;
}
}
}
} else {
av1_foreach_transformed_block_in_plane(
xd, plane_bsize, plane, encode_block_intra_and_set_context, &arg);
}
#else
av1_foreach_transformed_block_in_plane(
xd, plane_bsize, plane, encode_block_intra_and_set_context, &arg);
#endif // CONFIG_TX_PARTITION_TYPE_EXT
}
// Jointly encode two chroma components for an intra block.
void av1_encode_block_intra_joint_uv(int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct encode_b_args *const args = arg;
const AV1_COMP *const cpi = args->cpi;
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
assert(is_cctx_allowed(cm, xd));
struct macroblock_plane *const p_c1 = &x->plane[AOM_PLANE_U];
struct macroblock_plane *const p_c2 = &x->plane[AOM_PLANE_V];
struct macroblockd_plane *const pd_c1 = &xd->plane[AOM_PLANE_U];
struct macroblockd_plane *const pd_c2 = &xd->plane[AOM_PLANE_V];
tran_low_t *dqcoeff_c1 = p_c1->dqcoeff + BLOCK_OFFSET(block);
tran_low_t *dqcoeff_c2 = p_c2->dqcoeff + BLOCK_OFFSET(block);
uint16_t *eob_c1 = &p_c1->eobs[block];
uint16_t *eob_c2 = &p_c2->eobs[block];
const int dst_stride = pd_c1->dst.stride;
uint16_t *dst_c1 =
&pd_c1->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
uint16_t *dst_c2 =
&pd_c2->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
int dummy_rate_cost = 0;
av1_predict_intra_block_facade(cm, xd, AOM_PLANE_U, blk_col, blk_row,
tx_size);
av1_predict_intra_block_facade(cm, xd, AOM_PLANE_V, blk_col, blk_row,
tx_size);
#if CONFIG_MISMATCH_DEBUG
if (args->dry_run == OUTPUT_ENABLED) {
int pixel_c, pixel_r;
mi_to_pixel_loc(&pixel_c, &pixel_r,
xd->mi[0]->chroma_ref_info.mi_col_chroma_base,
xd->mi[0]->chroma_ref_info.mi_row_chroma_base, blk_col,
blk_row, pd_c1->subsampling_x, pd_c1->subsampling_y);
mismatch_record_block_pre(pd_c1->dst.buf, pd_c1->dst.stride,
#if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
cm->current_frame.display_order_hint,
#else
cm->current_frame.order_hint,
#endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
AOM_PLANE_U, pixel_c, pixel_r,
tx_size_wide[tx_size], tx_size_high[tx_size]);
mismatch_record_block_pre(pd_c2->dst.buf, pd_c2->dst.stride,
#if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
cm->current_frame.display_order_hint,
#else
cm->current_frame.order_hint,
#endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
AOM_PLANE_V, pixel_c, pixel_r,
tx_size_wide[tx_size], tx_size_high[tx_size]);
}
#endif // CONFIG_MISMATCH_DEBUG
TX_TYPE tx_type = av1_get_tx_type(xd, PLANE_TYPE_UV, blk_row, blk_col,
tx_size, cm->features.reduced_tx_set_used);
CctxType cctx_type = av1_get_cctx_type(xd, blk_row, blk_col);
av1_subtract_txb(x, AOM_PLANE_U, plane_bsize, blk_col, blk_row, tx_size);
av1_subtract_txb(x, AOM_PLANE_V, plane_bsize, blk_col, blk_row, tx_size);
TxfmParam txfm_param;
QUANT_PARAM quant_param;
const int use_trellis =
is_trellis_used(args->enable_optimize_b, args->dry_run);
int quant_idx;
if (use_trellis)
quant_idx = AV1_XFORM_QUANT_FP;
else
quant_idx = USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP;
av1_setup_xform(cm, x, AOM_PLANE_U, tx_size, tx_type, cctx_type, &txfm_param);
av1_setup_quant(tx_size, use_trellis, quant_idx,
cpi->oxcf.q_cfg.quant_b_adapt, &quant_param);
// Whether trellis or dropout optimization is required for key frames and
// intra frames.
const bool do_trellis = (frame_is_intra_only(cm) &&
(KEY_BLOCK_OPT_TYPE == TRELLIS_OPT ||
KEY_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)) ||
(!frame_is_intra_only(cm) &&
(INTRA_BLOCK_OPT_TYPE == TRELLIS_OPT ||
INTRA_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT));
const bool do_dropout = (frame_is_intra_only(cm) &&
(KEY_BLOCK_OPT_TYPE == DROPOUT_OPT ||
KEY_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)) ||
(!frame_is_intra_only(cm) &&
(INTRA_BLOCK_OPT_TYPE == DROPOUT_OPT ||
INTRA_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT));
for (int plane = AOM_PLANE_U; plane <= AOM_PLANE_V; plane++) {
if (plane == AOM_PLANE_V && !is_inter_block(xd->mi[0], xd->tree_type) &&
*eob_c1 == 1) {
update_cctx_array(xd, blk_row, blk_col, 0, 0,
args->dry_run ? TX_4X4 : tx_size, CCTX_NONE);
cctx_type = av1_get_cctx_type(xd, blk_row, blk_col);
}
// Since eob can be updated here, make sure cctx_type is always CCTX_NONE
// when eob of U is 0.
if (plane == AOM_PLANE_V && *eob_c1 == 0) {
// In dry run, cctx type will not be referenced by neighboring blocks,
// so there is no need to fill in the whole chroma region. In addition,
// ctx->cctx_type_map size in dry run may not be aligned with actual
// chroma coding region for some partition types.
update_cctx_array(xd, blk_row, blk_col, 0, 0,
args->dry_run ? TX_4X4 : tx_size, CCTX_NONE);
}
#if CCTX_C2_DROPPED
if (plane == AOM_PLANE_V && (!keep_chroma_c2(cctx_type) ||
(*eob_c1 == 0 && cctx_type > CCTX_NONE))) {
#else
if (plane == AOM_PLANE_V && *eob_c1 == 0 && cctx_type > CCTX_NONE) {
#endif // CCTX_C2_DROPPED
av1_quantize_skip(av1_get_max_eob(tx_size),
p_c2->qcoeff + BLOCK_OFFSET(block), dqcoeff_c2, eob_c2);
break;
}
av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
&quant_param);
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize,
&txfm_param, &quant_param);
#if CONFIG_IMPROVEIDTX_RDPH
const uint8_t fsc_mode =
(xd->mi[0]->fsc_mode[xd->tree_type == CHROMA_PART] &&
plane == PLANE_TYPE_Y) ||
use_inter_fsc(cm, plane, tx_type, 0 /*is_inter*/);
#endif // CONFIG_IMPROVEIDTX_RDPH
if (quant_param.use_optimize_b && do_trellis) {
const ENTROPY_CONTEXT *a =
&args->ta[blk_col + (plane - AOM_PLANE_U) * MAX_MIB_SIZE];
const ENTROPY_CONTEXT *l =
&args->tl[blk_row + (plane - AOM_PLANE_U) * MAX_MIB_SIZE];
TXB_CTX txb_ctx;
get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx,
xd->mi[0]->fsc_mode[xd->tree_type == CHROMA_PART]);
#if CONFIG_IMPROVEIDTX_RDPH
if (fsc_mode)
av1_optimize_fsc(args->cpi, x, plane, block, tx_size, tx_type, &txb_ctx,
&dummy_rate_cost);
else
#endif // CONFIG_IMPROVEIDTX_RDPH
av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type, cctx_type,
&txb_ctx, &dummy_rate_cost);
}
if (do_dropout) {
av1_dropout_qcoeff(x, plane, block, tx_size, tx_type,
cm->quant_params.base_qindex);
}
if (plane == AOM_PLANE_V && !is_inter_block(xd->mi[0], xd->tree_type) &&
*eob_c1 == 1) {
update_cctx_array(xd, blk_row, blk_col, 0, 0,
args->dry_run ? TX_4X4 : tx_size, CCTX_NONE);
cctx_type = av1_get_cctx_type(xd, blk_row, blk_col);
av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
&quant_param);
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize,
&txfm_param, &quant_param);
if (quant_param.use_optimize_b && do_trellis) {
const ENTROPY_CONTEXT *a =
&args->ta[blk_col + (plane - AOM_PLANE_U) * MAX_MIB_SIZE];
const ENTROPY_CONTEXT *l =
&args->tl[blk_row + (plane - AOM_PLANE_U) * MAX_MIB_SIZE];
TXB_CTX txb_ctx;
get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx,
xd->mi[0]->fsc_mode[xd->tree_type == CHROMA_PART]);
#if CONFIG_IMPROVEIDTX_RDPH
if (fsc_mode)
av1_optimize_fsc(args->cpi, x, plane, block, tx_size, tx_type,
&txb_ctx, &dummy_rate_cost);
else
#endif // CONFIG_IMPROVEIDTX_RDPH
av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type,
cctx_type, &txb_ctx, &dummy_rate_cost);
}
if (do_dropout) {
av1_dropout_qcoeff(x, plane, block, tx_size, tx_type,
cm->quant_params.base_qindex);
}
}
}
if (*eob_c1 || *eob_c2) {
av1_inv_cross_chroma_tx_block(dqcoeff_c1, dqcoeff_c2, tx_size, cctx_type);
av1_inverse_transform_block(xd, dqcoeff_c1, AOM_PLANE_U, tx_type, tx_size,
dst_c1, dst_stride, AOMMAX(*eob_c1, *eob_c2),
cm->features.reduced_tx_set_used);
av1_inverse_transform_block(xd, dqcoeff_c2, AOM_PLANE_V, tx_type, tx_size,
dst_c2, dst_stride, AOMMAX(*eob_c1, *eob_c2),
cm->features.reduced_tx_set_used);
}
#if CONFIG_LR_IMPROVEMENTS
if (args->dry_run == OUTPUT_ENABLED) {
if (*eob_c1 == 0)
av1_update_txk_skip_array(cm, xd->mi_row, xd->mi_col, xd->tree_type,
&xd->mi[0]->chroma_ref_info, AOM_PLANE_U,
blk_row, blk_col, tx_size);
if (*eob_c2 == 0)
av1_update_txk_skip_array(cm, xd->mi_row, xd->mi_col, xd->tree_type,
&xd->mi[0]->chroma_ref_info, AOM_PLANE_V,
blk_row, blk_col, tx_size);
}
#endif // CONFIG_LR_IMPROVEMENTS
#if CONFIG_MISMATCH_DEBUG
if (args->dry_run == OUTPUT_ENABLED) {
int pixel_c, pixel_r;
BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
int blk_w = block_size_wide[bsize];
int blk_h = block_size_high[bsize];
mi_to_pixel_loc(&pixel_c, &pixel_r,
xd->mi[0]->chroma_ref_info.mi_col_chroma_base,
xd->mi[0]->chroma_ref_info.mi_row_chroma_base, blk_col,
blk_row, pd_c1->subsampling_x, pd_c1->subsampling_y);
mismatch_record_block_tx(dst_c1, pd_c1->dst.stride,
#if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
cm->current_frame.display_order_hint,
#else
cm->current_frame.order_hint,
#endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
AOM_PLANE_U, pixel_c, pixel_r, blk_w, blk_h);
mismatch_record_block_tx(dst_c2, pd_c2->dst.stride,
#if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
cm->current_frame.display_order_hint,
#else
cm->current_frame.order_hint,
#endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
AOM_PLANE_V, pixel_c, pixel_r, blk_w, blk_h);
}
#endif // CONFIG_MISMATCH_DEBUG
// For intra mode, skipped blocks are so rare that transmitting skip=1 is
// very expensive.
*(args->skip) = 0;
}
// Jointly code two chroma components and set contexts
static void encode_block_intra_and_set_context_joint_uv(
int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
(void)plane;
av1_encode_block_intra_joint_uv(block, blk_row, blk_col, plane_bsize, tx_size,
arg);
struct encode_b_args *const args = arg;
MACROBLOCK *x = args->x;
ENTROPY_CONTEXT *au = &args->ta[blk_col];
ENTROPY_CONTEXT *lu = &args->tl[blk_row];
ENTROPY_CONTEXT *av = &args->ta[MAX_MIB_SIZE + blk_col];
ENTROPY_CONTEXT *lv = &args->tl[MAX_MIB_SIZE + blk_row];
av1_set_txb_context(x, AOM_PLANE_U, block, tx_size, au, lu);
av1_set_txb_context(x, AOM_PLANE_V, block, tx_size, av, lv);
}
// This function codes the two chroma components jointly for each transform
// blocks within a block. This coding path is used instead of
// av1_encode_intra_block() when cross chroma component transform is
// applicable.
void av1_encode_intra_block_joint_uv(const struct AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, RUN_TYPE dry_run,
TRELLIS_OPT_TYPE enable_optimize_b) {
assert(bsize < BLOCK_SIZES_ALL);
const MACROBLOCKD *const xd = &x->e_mbd;
if (!xd->is_chroma_ref) return;
const struct macroblockd_plane *const pd_u = &xd->plane[AOM_PLANE_U];
const struct macroblockd_plane *const pd_v = &xd->plane[AOM_PLANE_V];
const int ss_x = pd_u->subsampling_x;
const int ss_y = pd_u->subsampling_y;
assert(ss_x == pd_v->subsampling_x && ss_y == pd_v->subsampling_y);
ENTROPY_CONTEXT ta[MAX_MIB_SIZE * 2] = { 0 };
ENTROPY_CONTEXT tl[MAX_MIB_SIZE * 2] = { 0 };
struct encode_b_args arg = {
cpi, x, NULL, &(xd->mi[0]->skip_txfm[xd->tree_type == CHROMA_PART]),
ta, tl, dry_run, enable_optimize_b
};
const BLOCK_SIZE plane_bsize =
get_mb_plane_block_size(xd, xd->mi[0], AOM_PLANE_U, ss_x, ss_y);
#if !CONFIG_EXT_RECUR_PARTITIONS
assert(plane_bsize == get_plane_block_size(bsize, ss_x, ss_y));
#endif // !CONFIG_EXT_RECUR_PARTITIONS
(void)bsize;
if (enable_optimize_b) {
av1_get_entropy_contexts(plane_bsize, pd_u, ta, tl);
av1_get_entropy_contexts(plane_bsize, pd_v, &ta[MAX_MIB_SIZE],
&tl[MAX_MIB_SIZE]);
}
av1_foreach_transformed_block_in_plane(
xd, plane_bsize, AOM_PLANE_U, encode_block_intra_and_set_context_joint_uv,
&arg);
}