blob: d22e107c64a0c88979c23cfeba7d4588b802a74a [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <assert.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include "config/aom_scale_rtcd.h"
#include "config/av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/binary_codes_writer.h"
#include "aom_dsp/mathutils.h"
#include "aom_dsp/psnr.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "aom_ports/system_state.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/quant_common.h"
#include "av1/common/restoration.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/picklpf.h"
#include "av1/encoder/pickrst.h"
#if CONFIG_LR_MERGE_COEFFS
#include "third_party/vector/vector.h"
#endif // CONFIG_LR_MERGE_COEFFS
#if CONFIG_LR_MERGE_COEFFS
// Search level 0 - search all drl candidates
// Search level 1 - search drl candidates 0 and the best one for the current RU
// Search level 2 - search only the best drl candidate for the current RU
#define MERGE_DRL_SEARCH_LEVEL 1
#endif // CONFIG_LR_MERGE_COEFFS
// Number of Wiener iterations
#define NUM_WIENER_ITERS 5
// Penalty factor for use of dual sgr
#define DUAL_SGR_PENALTY_MULT 0.01
// Working precision for Wiener filter coefficients
#define WIENER_TAP_SCALE_FACTOR ((int64_t)1 << 16)
#define SGRPROJ_EP_GRP1_START_IDX 0
#define SGRPROJ_EP_GRP1_END_IDX 9
#define SGRPROJ_EP_GRP1_SEARCH_COUNT 4
#define SGRPROJ_EP_GRP2_3_SEARCH_COUNT 2
static const int sgproj_ep_grp1_seed[SGRPROJ_EP_GRP1_SEARCH_COUNT] = { 0, 3, 6,
9 };
static const int sgproj_ep_grp2_3[SGRPROJ_EP_GRP2_3_SEARCH_COUNT][14] = {
{ 10, 10, 11, 11, 12, 12, 13, 13, 13, 13, -1, -1, -1, -1 },
{ 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15 }
};
#if CONFIG_LR_IMPROVEMENTS
// Number of elements needed in the temporary buffer for
// compute_wienerns_filter
#define WIENERNS_R_SIZE (WIENERNS_MAX_CLASSES * WIENERNS_MAX * WIENERNS_MAX)
#define WIENERNS_b_SIZE (WIENERNS_MAX_CLASSES * WIENERNS_MAX)
#define WIENERNS_TMPBUF_SIZE (WIENERNS_R_SIZE + WIENERNS_b_SIZE)
#endif // CONFIG_LR_IMPROVEMENTS
typedef int64_t (*sse_extractor_type)(const YV12_BUFFER_CONFIG *a,
const YV12_BUFFER_CONFIG *b);
typedef int64_t (*sse_part_extractor_type)(const YV12_BUFFER_CONFIG *a,
const YV12_BUFFER_CONFIG *b,
int hstart, int width, int vstart,
int height);
typedef uint64_t (*var_part_extractor_type)(const YV12_BUFFER_CONFIG *a,
int hstart, int width, int vstart,
int height);
#define NUM_EXTRACTORS 3
static const sse_part_extractor_type sse_part_extractors[NUM_EXTRACTORS] = {
aom_highbd_get_y_sse_part,
aom_highbd_get_u_sse_part,
aom_highbd_get_v_sse_part,
};
static const var_part_extractor_type var_part_extractors[NUM_EXTRACTORS] = {
aom_highbd_get_y_var,
aom_highbd_get_u_var,
aom_highbd_get_v_var,
};
static int64_t sse_restoration_unit(const RestorationTileLimits *limits,
const YV12_BUFFER_CONFIG *src,
const YV12_BUFFER_CONFIG *dst, int plane) {
return sse_part_extractors[plane](
src, dst, limits->h_start, limits->h_end - limits->h_start,
limits->v_start, limits->v_end - limits->v_start);
}
static uint64_t var_restoration_unit(const RestorationTileLimits *limits,
const YV12_BUFFER_CONFIG *src, int plane) {
return var_part_extractors[plane](
src, limits->h_start, limits->h_end - limits->h_start, limits->v_start,
limits->v_end - limits->v_start);
}
typedef struct {
// The best coefficients for Wiener or Sgrproj restoration
WienerInfo wiener_info;
SgrprojInfo sgrproj_info;
#if CONFIG_LR_IMPROVEMENTS
WienerNonsepInfo wienerns_info;
#endif // CONFIG_LR_IMPROVEMENTS
// The sum of squared errors for this rtype.
int64_t sse[RESTORE_SWITCHABLE_TYPES];
// The rtype to use for this unit given a frame rtype as
// index. Indices: WIENER, SGRPROJ, SWITCHABLE.
RestorationType best_rtype[RESTORE_TYPES - 1];
// This flag will be set based on the speed feature
// 'prune_sgr_based_on_wiener'. 0 implies no pruning and 1 implies pruning.
uint8_t skip_sgr_eval;
} RestUnitSearchInfo;
typedef struct {
const YV12_BUFFER_CONFIG *src;
YV12_BUFFER_CONFIG *dst;
const AV1_COMMON *cm;
const MACROBLOCK *x;
int plane;
int plane_width;
int plane_height;
RestUnitSearchInfo *rusi;
// Speed features
const LOOP_FILTER_SPEED_FEATURES *lpf_sf;
uint16_t *dgd_buffer;
int dgd_stride;
const uint16_t *src_buffer;
int src_stride;
// sse and bits are initialised by reset_rsc in search_rest_type
int64_t sse;
int64_t bits;
int tile_y0, tile_stripe0;
// Helps convert tile-localized RU indices to frame RU indices.
int ru_idx_base;
// sgrproj and wiener are initialised by rsc_on_tile when starting the first
// tile in the frame.
WienerInfoBank wiener_bank;
SgrprojInfoBank sgrproj_bank;
#if CONFIG_LR_IMPROVEMENTS
WienerNonsepInfoBank wienerns_bank;
// Vector storing statistics for all RUs.
Vector *wienerns_stats;
// Number of classes in the initial wienerns stat calculation.
int num_stat_classes;
// Number of classes in the wienerns filtering calculation.
int num_filter_classes;
const uint16_t *luma;
int luma_stride;
// Temporary storage used by compute_wienerns_filter
double *wienerns_tmpbuf;
#endif // CONFIG_LR_IMPROVEMENTS
#if CONFIG_LR_MERGE_COEFFS
// This vector holds the most recent list of units with merged coefficients.
Vector *unit_stack;
// This vector holds a list of rest_unit indices to be considered for merging
// for a given drl candidate to be examined. Note that the unit_stack above
// includes all previous RUs covering all entries in the drl list, but only
// a subset needs to be considered for merging for a given drl candidate.
Vector *unit_indices;
#endif // CONFIG_LR_MERGE_COEFFS
AV1PixelRect tile_rect;
} RestSearchCtxt;
#if CONFIG_LR_IMPROVEMENTS
// RU statistics for solving Wiener filters.
typedef struct RstUnitStats {
double A[WIENERNS_MAX_CLASSES * WIENERNS_MAX * WIENERNS_MAX];
double b[WIENERNS_MAX_CLASSES * WIENERNS_MAX];
int64_t real_sse;
int num_stats_classes;
int ru_idx; // debug.
int ru_idx_in_tile; // debug.
int plane; // debug.
} RstUnitStats;
#endif // CONFIG_LR_IMPROVEMENTS
#if CONFIG_LR_MERGE_COEFFS
typedef struct RstUnitSnapshot {
RestorationTileLimits limits;
int rest_unit_idx; // update filter value and sse as needed
int64_t current_sse;
int64_t current_bits;
int64_t merge_sse;
int64_t merge_bits;
int64_t merge_sse_cand;
int64_t merge_bits_cand;
// Wiener filter info
int64_t M[WIENER_WIN2];
int64_t H[WIENER_WIN2 * WIENER_WIN2];
// Wiener filter info
WienerInfoBank ref_wiener_bank;
// Sgrproj filter info
SgrprojInfoBank ref_sgrproj_bank;
#if CONFIG_LR_IMPROVEMENTS
// Nonseparable Wiener filter info.
// Pointers to respective stats in RstUnitStats.
const double *A;
const double *b;
WienerNonsepInfoBank ref_wienerns_bank;
#endif // CONFIG_LR_IMPROVEMENTS
} RstUnitSnapshot;
#endif // CONFIG_LR_MERGE_COEFFS
static AOM_INLINE void reset_all_banks(RestSearchCtxt *rsc) {
av1_reset_wiener_bank(&rsc->wiener_bank, rsc->plane != AOM_PLANE_Y);
av1_reset_sgrproj_bank(&rsc->sgrproj_bank);
#if CONFIG_LR_IMPROVEMENTS
av1_reset_wienerns_bank(&rsc->wienerns_bank,
rsc->cm->quant_params.base_qindex,
rsc->num_filter_classes, rsc->plane != AOM_PLANE_Y);
#endif // CONFIG_LR_IMPROVEMENTS
}
static AOM_INLINE void rsc_on_tile(void *priv, int idx_base) {
RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
reset_all_banks(rsc);
rsc->tile_stripe0 = 0;
rsc->ru_idx_base = idx_base;
}
static AOM_INLINE void reset_rsc(RestSearchCtxt *rsc) {
rsc->sse = 0;
rsc->bits = 0;
#if CONFIG_LR_MERGE_COEFFS
aom_vector_clear(rsc->unit_stack);
aom_vector_clear(rsc->unit_indices);
#endif // CONFIG_LR_MERGE_COEFFS
}
static AOM_INLINE void init_rsc(const YV12_BUFFER_CONFIG *src,
const AV1_COMMON *cm, const MACROBLOCK *x,
const LOOP_FILTER_SPEED_FEATURES *lpf_sf,
int plane, RestUnitSearchInfo *rusi,
#if CONFIG_LR_MERGE_COEFFS
Vector *unit_stack, Vector *unit_indices,
#endif // CONFIG_LR_MERGE_COEFFS
YV12_BUFFER_CONFIG *dst, RestSearchCtxt *rsc) {
rsc->src = src;
rsc->dst = dst;
rsc->cm = cm;
rsc->x = x;
rsc->plane = plane;
rsc->rusi = rusi;
rsc->lpf_sf = lpf_sf;
const YV12_BUFFER_CONFIG *dgd = &cm->cur_frame->buf;
const int is_uv = plane != AOM_PLANE_Y;
rsc->plane_width = src->crop_widths[is_uv];
rsc->plane_height = src->crop_heights[is_uv];
rsc->src_buffer = src->buffers[plane];
rsc->src_stride = src->strides[is_uv];
rsc->dgd_buffer = dgd->buffers[plane];
rsc->dgd_stride = dgd->strides[is_uv];
rsc->tile_rect = av1_whole_frame_rect(cm, is_uv);
assert(src->crop_widths[is_uv] == dgd->crop_widths[is_uv]);
assert(src->crop_heights[is_uv] == dgd->crop_heights[is_uv]);
#if CONFIG_LR_MERGE_COEFFS
rsc->unit_stack = unit_stack;
rsc->unit_indices = unit_indices;
#endif // CONFIG_LR_MERGE_COEFFS
#if CONFIG_LR_IMPROVEMENTS
rsc->num_stat_classes =
is_uv ? NUM_WIENERNS_CLASS_INIT_CHROMA : NUM_WIENERNS_CLASS_INIT_LUMA;
rsc->num_filter_classes = rsc->num_stat_classes;
#endif // CONFIG_LR_IMPROVEMENTS
}
static int64_t try_restoration_unit(const RestSearchCtxt *rsc,
const RestorationTileLimits *limits,
const AV1PixelRect *tile_rect,
const RestorationUnitInfo *rui) {
const AV1_COMMON *const cm = rsc->cm;
const int plane = rsc->plane;
const int is_uv = plane > 0;
const RestorationInfo *rsi = &cm->rst_info[plane];
RestorationLineBuffers rlbs;
const int bit_depth = cm->seq_params.bit_depth;
const YV12_BUFFER_CONFIG *fts = &cm->cur_frame->buf;
// TODO(yunqing): For now, only use optimized LR filter in decoder. Can be
// also used in encoder.
const int optimized_lr = 0;
av1_loop_restoration_filter_unit(
limits, rui, &rsi->boundaries, &rlbs, tile_rect, rsc->tile_stripe0,
is_uv && cm->seq_params.subsampling_x,
is_uv && cm->seq_params.subsampling_y, bit_depth, fts->buffers[plane],
fts->strides[is_uv], rsc->dst->buffers[plane], rsc->dst->strides[is_uv],
cm->rst_tmpbuf, optimized_lr);
return sse_restoration_unit(limits, rsc->src, rsc->dst, plane);
}
int64_t av1_highbd_pixel_proj_error_c(const uint16_t *src, int width,
int height, int src_stride,
const uint16_t *dat, int dat_stride,
int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride, int xq[2],
const sgr_params_type *params) {
int i, j;
int64_t err = 0;
const int32_t half = 1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1);
if (params->r[0] > 0 && params->r[1] > 0) {
int xq0 = xq[0];
int xq1 = xq[1];
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
const int32_t d = dat[j];
const int32_t s = src[j];
const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS);
int32_t v0 = flt0[j] - u;
int32_t v1 = flt1[j] - u;
int32_t v = half;
v += xq0 * v0;
v += xq1 * v1;
const int32_t e = (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s;
err += ((int64_t)e * e);
}
dat += dat_stride;
flt0 += flt0_stride;
flt1 += flt1_stride;
src += src_stride;
}
} else if (params->r[0] > 0 || params->r[1] > 0) {
int exq;
int32_t *flt;
int flt_stride;
if (params->r[0] > 0) {
exq = xq[0];
flt = flt0;
flt_stride = flt0_stride;
} else {
exq = xq[1];
flt = flt1;
flt_stride = flt1_stride;
}
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
const int32_t d = dat[j];
const int32_t s = src[j];
const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS);
int32_t v = half;
v += exq * (flt[j] - u);
const int32_t e = (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s;
err += ((int64_t)e * e);
}
dat += dat_stride;
flt += flt_stride;
src += src_stride;
}
} else {
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
const int32_t d = dat[j];
const int32_t s = src[j];
const int32_t e = d - s;
err += ((int64_t)e * e);
}
dat += dat_stride;
src += src_stride;
}
}
return err;
}
static int64_t get_pixel_proj_error(const uint16_t *src, int width, int height,
int src_stride, const uint16_t *dat,
int dat_stride, int32_t *flt0,
int flt0_stride, int32_t *flt1,
int flt1_stride, int *xqd,
const sgr_params_type *params) {
int xq[2];
av1_decode_xq(xqd, xq, params);
return av1_highbd_pixel_proj_error(src, width, height, src_stride, dat,
dat_stride, flt0, flt0_stride, flt1,
flt1_stride, xq, params);
}
#define USE_SGRPROJ_REFINEMENT_SEARCH 1
static int64_t finer_search_pixel_proj_error(
const uint16_t *src, int width, int height, int src_stride,
const uint16_t *dat, int dat_stride, int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride, int start_step, int *xqd,
const sgr_params_type *params) {
int64_t err =
get_pixel_proj_error(src, width, height, src_stride, dat, dat_stride,
flt0, flt0_stride, flt1, flt1_stride, xqd, params);
(void)start_step;
#if USE_SGRPROJ_REFINEMENT_SEARCH
int64_t err2;
int tap_min[] = { SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MIN1 };
int tap_max[] = { SGRPROJ_PRJ_MAX0, SGRPROJ_PRJ_MAX1 };
for (int s = start_step; s >= 1; s >>= 1) {
for (int p = 0; p < 2; ++p) {
if ((params->r[0] == 0 && p == 0) || (params->r[1] == 0 && p == 1)) {
continue;
}
int skip = 0;
do {
if (xqd[p] - s >= tap_min[p]) {
xqd[p] -= s;
err2 = get_pixel_proj_error(src, width, height, src_stride, dat,
dat_stride, flt0, flt0_stride, flt1,
flt1_stride, xqd, params);
if (err2 > err) {
xqd[p] += s;
} else {
err = err2;
skip = 1;
// At the highest step size continue moving in the same direction
if (s == start_step) continue;
}
}
break;
} while (1);
if (skip) break;
do {
if (xqd[p] + s <= tap_max[p]) {
xqd[p] += s;
err2 = get_pixel_proj_error(src, width, height, src_stride, dat,
dat_stride, flt0, flt0_stride, flt1,
flt1_stride, xqd, params);
if (err2 > err) {
xqd[p] -= s;
} else {
err = err2;
// At the highest step size continue moving in the same direction
if (s == start_step) continue;
}
}
break;
} while (1);
}
}
#endif // USE_SGRPROJ_REFINEMENT_SEARCH
return err;
}
static int64_t signed_rounded_divide(int64_t dividend, int64_t divisor) {
if (dividend < 0)
return (dividend - divisor / 2) / divisor;
else
return (dividend + divisor / 2) / divisor;
}
static AOM_INLINE void calc_proj_params_r0_r1_high_bd_c(
const uint16_t *src, int width, int height, int src_stride,
const uint16_t *dat, int dat_stride, int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
const int size = width * height;
for (int i = 0; i < height; ++i) {
for (int j = 0; j < width; ++j) {
const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
const int32_t s =
(int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u;
const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u;
H[0][0] += (int64_t)f1 * f1;
H[1][1] += (int64_t)f2 * f2;
H[0][1] += (int64_t)f1 * f2;
C[0] += (int64_t)f1 * s;
C[1] += (int64_t)f2 * s;
}
}
H[0][0] /= size;
H[0][1] /= size;
H[1][1] /= size;
H[1][0] = H[0][1];
C[0] /= size;
C[1] /= size;
}
static AOM_INLINE void calc_proj_params_r0_high_bd_c(
const uint16_t *src, int width, int height, int src_stride,
const uint16_t *dat, int dat_stride, int32_t *flt0, int flt0_stride,
int64_t H[2][2], int64_t C[2]) {
const int size = width * height;
for (int i = 0; i < height; ++i) {
for (int j = 0; j < width; ++j) {
const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
const int32_t s =
(int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u;
H[0][0] += (int64_t)f1 * f1;
C[0] += (int64_t)f1 * s;
}
}
H[0][0] /= size;
C[0] /= size;
}
static AOM_INLINE void calc_proj_params_r1_high_bd_c(
const uint16_t *src, int width, int height, int src_stride,
const uint16_t *dat, int dat_stride, int32_t *flt1, int flt1_stride,
int64_t H[2][2], int64_t C[2]) {
const int size = width * height;
for (int i = 0; i < height; ++i) {
for (int j = 0; j < width; ++j) {
const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS);
const int32_t s =
(int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u;
const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u;
H[1][1] += (int64_t)f2 * f2;
C[1] += (int64_t)f2 * s;
}
}
H[1][1] /= size;
C[1] /= size;
}
// The function calls 3 subfunctions for the following cases :
// 1) When params->r[0] > 0 and params->r[1] > 0. In this case all elements
// of C and H need to be computed.
// 2) When only params->r[0] > 0. In this case only H[0][0] and C[0] are
// non-zero and need to be computed.
// 3) When only params->r[1] > 0. In this case only H[1][1] and C[1] are
// non-zero and need to be computed.
static AOM_INLINE void av1_calc_proj_params_high_bd_c(
const uint16_t *src, int width, int height, int src_stride,
const uint16_t *dat, int dat_stride, int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2],
const sgr_params_type *params) {
if ((params->r[0] > 0) && (params->r[1] > 0)) {
calc_proj_params_r0_r1_high_bd_c(src, width, height, src_stride, dat,
dat_stride, flt0, flt0_stride, flt1,
flt1_stride, H, C);
} else if (params->r[0] > 0) {
calc_proj_params_r0_high_bd_c(src, width, height, src_stride, dat,
dat_stride, flt0, flt0_stride, H, C);
} else if (params->r[1] > 0) {
calc_proj_params_r1_high_bd_c(src, width, height, src_stride, dat,
dat_stride, flt1, flt1_stride, H, C);
}
}
static AOM_INLINE void get_proj_subspace(
const uint16_t *src, int width, int height, int src_stride,
const uint16_t *dat, int dat_stride, int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride, int *xq, const sgr_params_type *params) {
int64_t H[2][2] = { { 0, 0 }, { 0, 0 } };
int64_t C[2] = { 0, 0 };
// Default values to be returned if the problem becomes ill-posed
xq[0] = 0;
xq[1] = 0;
av1_calc_proj_params_high_bd_c(src, width, height, src_stride, dat,
dat_stride, flt0, flt0_stride, flt1,
flt1_stride, H, C, params);
if (params->r[0] == 0) {
// H matrix is now only the scalar H[1][1]
// C vector is now only the scalar C[1]
const int64_t Det = H[1][1];
if (Det == 0) return; // ill-posed, return default values
xq[0] = 0;
xq[1] = (int)signed_rounded_divide(C[1] * (1 << SGRPROJ_PRJ_BITS), Det);
} else if (params->r[1] == 0) {
// H matrix is now only the scalar H[0][0]
// C vector is now only the scalar C[0]
const int64_t Det = H[0][0];
if (Det == 0) return; // ill-posed, return default values
xq[0] = (int)signed_rounded_divide(C[0] * (1 << SGRPROJ_PRJ_BITS), Det);
xq[1] = 0;
} else {
const int64_t Det = H[0][0] * H[1][1] - H[0][1] * H[1][0];
if (Det == 0) return; // ill-posed, return default values
// If scaling up dividend would overflow, instead scale down the divisor
const int64_t div1 = H[1][1] * C[0] - H[0][1] * C[1];
if ((div1 > 0 && INT64_MAX / (1 << SGRPROJ_PRJ_BITS) < div1) ||
(div1 < 0 && INT64_MIN / (1 << SGRPROJ_PRJ_BITS) > div1))
xq[0] = (int)signed_rounded_divide(div1, Det / (1 << SGRPROJ_PRJ_BITS));
else
xq[0] = (int)signed_rounded_divide(div1 * (1 << SGRPROJ_PRJ_BITS), Det);
const int64_t div2 = H[0][0] * C[1] - H[1][0] * C[0];
if ((div2 > 0 && INT64_MAX / (1 << SGRPROJ_PRJ_BITS) < div2) ||
(div2 < 0 && INT64_MIN / (1 << SGRPROJ_PRJ_BITS) > div2))
xq[1] = (int)signed_rounded_divide(div2, Det / (1 << SGRPROJ_PRJ_BITS));
else
xq[1] = (int)signed_rounded_divide(div2 * (1 << SGRPROJ_PRJ_BITS), Det);
}
}
static AOM_INLINE void encode_xq(int *xq, int *xqd,
const sgr_params_type *params) {
if (params->r[0] == 0) {
xqd[0] = 0;
xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xq[1], SGRPROJ_PRJ_MIN1,
SGRPROJ_PRJ_MAX1);
} else if (params->r[1] == 0) {
xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0);
xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0], SGRPROJ_PRJ_MIN1,
SGRPROJ_PRJ_MAX1);
} else {
xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0);
xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0] - xq[1], SGRPROJ_PRJ_MIN1,
SGRPROJ_PRJ_MAX1);
}
}
// Apply the self-guided filter across an entire restoration unit.
static AOM_INLINE void apply_sgr(int sgr_params_idx, const uint16_t *dat,
int width, int height, int dat_stride,
int bit_depth, int pu_width, int pu_height,
int32_t *flt0, int32_t *flt1, int flt_stride) {
for (int i = 0; i < height; i += pu_height) {
const int h = AOMMIN(pu_height, height - i);
int32_t *flt0_row = flt0 + i * flt_stride;
int32_t *flt1_row = flt1 + i * flt_stride;
const uint16_t *dat_row = dat + i * dat_stride;
// Iterate over the stripe in blocks of width pu_width
for (int j = 0; j < width; j += pu_width) {
const int w = AOMMIN(pu_width, width - j);
const int ret = av1_selfguided_restoration_c(
dat_row + j, w, h, dat_stride, flt0_row + j, flt1_row + j, flt_stride,
sgr_params_idx, bit_depth);
(void)ret;
assert(!ret);
}
}
}
static AOM_INLINE int64_t compute_sgrproj_err(
const uint16_t *dat, const int width, const int height,
const int dat_stride, const uint16_t *src, const int src_stride,
const int bit_depth, const int pu_width, const int pu_height, const int ep,
int32_t *flt0, int32_t *flt1, const int flt_stride, int *exqd) {
int exq[2];
apply_sgr(ep, dat, width, height, dat_stride, bit_depth, pu_width, pu_height,
flt0, flt1, flt_stride);
aom_clear_system_state();
const sgr_params_type *const params = &av1_sgr_params[ep];
get_proj_subspace(src, width, height, src_stride, dat, dat_stride, flt0,
flt_stride, flt1, flt_stride, exq, params);
aom_clear_system_state();
encode_xq(exq, exqd, params);
int64_t err = finer_search_pixel_proj_error(
src, width, height, src_stride, dat, dat_stride, flt0, flt_stride, flt1,
flt_stride, 2, exqd, params);
return err;
}
static AOM_INLINE void get_best_error(int64_t *besterr, const int64_t err,
const int *exqd, int *bestxqd,
int *bestep, const int ep) {
if (*besterr == -1 || err < *besterr) {
*bestep = ep;
*besterr = err;
bestxqd[0] = exqd[0];
bestxqd[1] = exqd[1];
}
}
// If limits != NULL, calculates error for current restoration unit.
// Otherwise, calculates error for all units in the stack using stored limits.
static int64_t calc_sgrproj_err(const RestSearchCtxt *rsc,
const RestorationTileLimits *limits,
const int bit_depth, const int pu_width,
const int pu_height, const int ep,
int32_t *flt0, int32_t *flt1, int *exqd) {
int64_t err = 0;
uint16_t *dat;
const uint16_t *src;
int width, height, dat_stride, src_stride, flt_stride;
dat_stride = rsc->dgd_stride;
src_stride = rsc->src_stride;
if (limits != NULL) {
dat = rsc->dgd_buffer + limits->v_start * rsc->dgd_stride + limits->h_start;
src = rsc->src_buffer + limits->v_start * rsc->src_stride + limits->h_start;
width = limits->h_end - limits->h_start;
height = limits->v_end - limits->v_start;
flt_stride = ((width + 7) & ~7) + 8;
err = compute_sgrproj_err(dat, width, height, dat_stride, src, src_stride,
bit_depth, pu_width, pu_height, ep, flt0, flt1,
flt_stride, exqd);
} else {
#if CONFIG_LR_MERGE_COEFFS
Vector *current_unit_stack = rsc->unit_stack;
Vector *current_unit_indices = rsc->unit_indices;
assert(current_unit_stack->size > 0);
assert(current_unit_indices->size > 0);
int n = 0;
int idx = *(int *)aom_vector_const_get(current_unit_indices, n);
VECTOR_FOR_EACH(current_unit_stack, listed_unit) {
RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer);
if (old_unit->rest_unit_idx == idx) {
RestorationTileLimits old_limits = old_unit->limits;
dat = rsc->dgd_buffer + old_limits.v_start * rsc->dgd_stride +
old_limits.h_start;
src = rsc->src_buffer + old_limits.v_start * rsc->src_stride +
old_limits.h_start;
width = old_limits.h_end - old_limits.h_start;
height = old_limits.v_end - old_limits.v_start;
flt_stride = ((width + 7) & ~7) + 8;
err += compute_sgrproj_err(dat, width, height, dat_stride, src,
src_stride, bit_depth, pu_width, pu_height,
ep, flt0, flt1, flt_stride, exqd);
n++;
if (n >= (int)current_unit_indices->size) break;
idx = *(int *)aom_vector_const_get(current_unit_indices, n);
}
}
#else // CONFIG_LR_MERGE_COEFFS
assert(0 && "Tile limits should not be NULL.");
#endif // CONFIG_LR_MERGE_COEFFS
}
return err;
}
static SgrprojInfo search_selfguided_restoration(
const RestSearchCtxt *rsc, const RestorationTileLimits *limits,
int bit_depth, int pu_width, int pu_height, int32_t *rstbuf,
int enable_sgr_ep_pruning) {
int32_t *flt0 = rstbuf;
int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX;
int ep, idx, bestep = 0;
int64_t besterr = -1;
int exqd[2] = { 0 };
int bestxqd[2] = { 0, 0 };
assert(pu_width == (RESTORATION_PROC_UNIT_SIZE >> 1) ||
pu_width == RESTORATION_PROC_UNIT_SIZE);
assert(pu_height == (RESTORATION_PROC_UNIT_SIZE >> 1) ||
pu_height == RESTORATION_PROC_UNIT_SIZE);
if (!enable_sgr_ep_pruning) {
for (ep = 0; ep < SGRPROJ_PARAMS; ep++) {
int64_t err = calc_sgrproj_err(rsc, limits, bit_depth, pu_width,
pu_height, ep, flt0, flt1, exqd);
get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep);
}
} else {
// evaluate first four seed ep in first group
for (idx = 0; idx < SGRPROJ_EP_GRP1_SEARCH_COUNT; idx++) {
ep = sgproj_ep_grp1_seed[idx];
int64_t err = calc_sgrproj_err(rsc, limits, bit_depth, pu_width,
pu_height, ep, flt0, flt1, exqd);
get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep);
}
// evaluate left and right ep of winner in seed ep
int bestep_ref = bestep;
for (ep = bestep_ref - 1; ep < bestep_ref + 2; ep += 2) {
if (ep < SGRPROJ_EP_GRP1_START_IDX || ep > SGRPROJ_EP_GRP1_END_IDX)
continue;
int64_t err = calc_sgrproj_err(rsc, limits, bit_depth, pu_width,
pu_height, ep, flt0, flt1, exqd);
get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep);
}
// evaluate last two group
for (idx = 0; idx < SGRPROJ_EP_GRP2_3_SEARCH_COUNT; idx++) {
ep = sgproj_ep_grp2_3[idx][bestep];
int64_t err = calc_sgrproj_err(rsc, limits, bit_depth, pu_width,
pu_height, ep, flt0, flt1, exqd);
get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep);
}
}
SgrprojInfo ret;
ret.ep = bestep;
ret.xqd[0] = bestxqd[0];
ret.xqd[1] = bestxqd[1];
return ret;
}
static int64_t count_sgrproj_bits(const ModeCosts *mode_costs,
SgrprojInfo *sgrproj_info,
const SgrprojInfoBank *bank) {
(void)mode_costs;
int64_t bits = 0;
#if CONFIG_LR_MERGE_COEFFS
const int ref = sgrproj_info->bank_ref;
const SgrprojInfo *ref_sgrproj_info =
av1_constref_from_sgrproj_bank(bank, ref);
const int equal_ref = check_sgrproj_eq(sgrproj_info, ref_sgrproj_info);
for (int k = 0; k < AOMMAX(0, bank->bank_size - 1); ++k) {
const int match = (k == ref);
bits += (1 << AV1_PROB_COST_SHIFT);
if (match) break;
}
bits += mode_costs->merged_param_cost[equal_ref];
if (equal_ref) return bits;
#else
const SgrprojInfo *ref_sgrproj_info = av1_constref_from_sgrproj_bank(bank, 0);
#endif // CONFIG_LR_MERGE_COEFFS
bits += (SGRPROJ_PARAMS_BITS << AV1_PROB_COST_SHIFT);
const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep];
if (params->r[0] > 0) {
bits += aom_count_primitive_refsubexpfin(
SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0)
<< AV1_PROB_COST_SHIFT;
}
if (params->r[1] > 0) {
bits += aom_count_primitive_refsubexpfin(
SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1)
<< AV1_PROB_COST_SHIFT;
}
return bits;
}
#if CONFIG_LR_MERGE_COEFFS
static int64_t count_sgrproj_bits_set(const ModeCosts *mode_costs,
SgrprojInfo *info,
const SgrprojInfoBank *bank) {
int64_t best_bits = INT64_MAX;
int best_ref = -1;
for (int ref = 0; ref < AOMMAX(1, bank->bank_size); ++ref) {
info->bank_ref = ref;
const int64_t bits = count_sgrproj_bits(mode_costs, info, bank);
if (bits < best_bits) {
best_bits = bits;
best_ref = ref;
}
}
info->bank_ref = AOMMAX(0, best_ref);
return best_bits;
}
#endif // CONFIG_LR_MERGE_COEFFS
static AOM_INLINE void search_sgrproj_visitor(
const RestorationTileLimits *limits, const AV1PixelRect *tile_rect,
int rest_unit_idx, int rest_unit_idx_seq, void *priv, int32_t *tmpbuf,
RestorationLineBuffers *rlbs) {
(void)tile_rect;
(void)rlbs;
(void)rest_unit_idx_seq;
RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx];
const MACROBLOCK *const x = rsc->x;
const AV1_COMMON *const cm = rsc->cm;
const int bit_depth = cm->seq_params.bit_depth;
const int64_t bits_none = x->mode_costs.sgrproj_restore_cost[0];
// Prune evaluation of RESTORE_SGRPROJ if 'skip_sgr_eval' is set
if (rusi->skip_sgr_eval) {
rsc->bits += bits_none;
rsc->sse += rusi->sse[RESTORE_NONE];
rusi->best_rtype[RESTORE_SGRPROJ - 1] = RESTORE_NONE;
rusi->sse[RESTORE_SGRPROJ] = INT64_MAX;
return;
}
const int is_uv = rsc->plane > 0;
const int ss_x = is_uv && cm->seq_params.subsampling_x;
const int ss_y = is_uv && cm->seq_params.subsampling_y;
const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x;
const int procunit_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
rusi->sgrproj_info = search_selfguided_restoration(
rsc, limits, bit_depth, procunit_width, procunit_height, tmpbuf,
rsc->lpf_sf->enable_sgr_ep_pruning);
RestorationUnitInfo rui;
rui.restoration_type = RESTORE_SGRPROJ;
rui.sgrproj_info = rusi->sgrproj_info;
rusi->sse[RESTORE_SGRPROJ] =
try_restoration_unit(rsc, limits, &rsc->tile_rect, &rui);
double cost_none = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits_none >> 4, rusi->sse[RESTORE_NONE], bit_depth);
#if CONFIG_LR_MERGE_COEFFS
Vector *current_unit_stack = rsc->unit_stack;
int64_t bits_nomerge_base =
x->mode_costs.sgrproj_restore_cost[1] +
count_sgrproj_bits_set(&x->mode_costs, &rusi->sgrproj_info,
&rsc->sgrproj_bank);
const int bank_ref_base = rusi->sgrproj_info.bank_ref;
// Only test the reference in rusi->sgrproj_info.bank_ref, generated from
// the count call above.
double cost_nomerge_base = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits_nomerge_base >> 4, rusi->sse[RESTORE_SGRPROJ], bit_depth);
const int bits_min = x->mode_costs.sgrproj_restore_cost[1] +
x->mode_costs.merged_param_cost[1] +
(1 << AV1_PROB_COST_SHIFT);
const double cost_min = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits_min >> 4, rusi->sse[RESTORE_SGRPROJ], bit_depth);
const double cost_nomerge_thr = (cost_nomerge_base + 3 * cost_min) / 4;
RestorationType rtype =
(cost_none <= cost_nomerge_thr) ? RESTORE_NONE : RESTORE_SGRPROJ;
if (cost_none <= cost_nomerge_thr) {
bits_nomerge_base = bits_none;
cost_nomerge_base = cost_none;
}
RstUnitSnapshot unit_snapshot;
memset(&unit_snapshot, 0, sizeof(unit_snapshot));
unit_snapshot.limits = *limits;
unit_snapshot.rest_unit_idx = rest_unit_idx;
rusi->best_rtype[RESTORE_SGRPROJ - 1] = rtype;
rsc->sse += rusi->sse[rtype];
rsc->bits += bits_nomerge_base;
unit_snapshot.current_sse = rusi->sse[rtype];
unit_snapshot.current_bits = bits_nomerge_base;
// Only matters for first unit in stack.
unit_snapshot.ref_sgrproj_bank = rsc->sgrproj_bank;
// If current_unit_stack is empty, we can leave early.
if (aom_vector_is_empty(current_unit_stack)) {
if (rtype == RESTORE_SGRPROJ)
av1_add_to_sgrproj_bank(&rsc->sgrproj_bank, &rusi->sgrproj_info);
aom_vector_push_back(current_unit_stack, &unit_snapshot);
return;
}
// Handles special case where no-merge filter is equal to merged
// filter for the stack - we don't want to perform another merge and
// get a less optimal filter, but we want to continue building the stack.
int equal_ref;
if (rtype == RESTORE_SGRPROJ &&
(equal_ref = check_sgrproj_bank_eq(&rsc->sgrproj_bank,
&rusi->sgrproj_info)) >= 0) {
rsc->bits -= bits_nomerge_base;
rusi->sgrproj_info.bank_ref = equal_ref;
unit_snapshot.current_bits =
x->mode_costs.sgrproj_restore_cost[1] +
count_sgrproj_bits(&x->mode_costs, &rusi->sgrproj_info,
&rsc->sgrproj_bank);
rsc->bits += unit_snapshot.current_bits;
aom_vector_push_back(current_unit_stack, &unit_snapshot);
return;
}
// Push current unit onto stack.
aom_vector_push_back(current_unit_stack, &unit_snapshot);
const int last_idx =
((RstUnitSnapshot *)aom_vector_back(current_unit_stack))->rest_unit_idx;
double cost_merge = DBL_MAX;
double cost_nomerge = 0;
int begin_idx = -1;
int bank_ref = -1;
RestorationUnitInfo rui_temp;
// Trial start
for (int bank_ref_cand = 0;
bank_ref_cand < AOMMAX(1, rsc->sgrproj_bank.bank_size);
bank_ref_cand++) {
#if MERGE_DRL_SEARCH_LEVEL == 1
if (bank_ref_cand != 0 && bank_ref_cand != bank_ref_base) continue;
#elif MERGE_DRL_SEARCH_LEVEL == 2
if (bank_ref_cand != bank_ref_base) continue;
#else
(void)bank_ref_base;
#endif
const SgrprojInfo *ref_sgrproj_info_cand =
av1_constref_from_sgrproj_bank(&rsc->sgrproj_bank, bank_ref_cand);
SgrprojInfo ref_sgrproj_info_tmp = *ref_sgrproj_info_cand;
// Iterate once to get the begin unit of the run
int begin_idx_cand = -1;
VECTOR_FOR_EACH(current_unit_stack, listed_unit) {
RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer);
RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx];
if (old_unit->rest_unit_idx == last_idx) continue;
if (old_rusi->best_rtype[RESTORE_SGRPROJ - 1] == RESTORE_SGRPROJ &&
check_sgrproj_eq(&old_rusi->sgrproj_info, ref_sgrproj_info_cand)) {
if (check_sgrproj_bank_eq(&old_unit->ref_sgrproj_bank,
ref_sgrproj_info_cand) == -1) {
begin_idx_cand = old_unit->rest_unit_idx;
}
}
}
if (begin_idx_cand == -1) continue;
Vector *current_unit_indices = rsc->unit_indices;
aom_vector_clear(current_unit_indices);
bool has_begun = false;
VECTOR_FOR_EACH(current_unit_stack, listed_unit) {
RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer);
RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx];
if (old_unit->rest_unit_idx == begin_idx_cand) has_begun = true;
if (!has_begun) continue;
if (old_rusi->best_rtype[RESTORE_SGRPROJ - 1] == RESTORE_SGRPROJ &&
old_unit->rest_unit_idx != last_idx &&
!check_sgrproj_eq(&old_rusi->sgrproj_info, ref_sgrproj_info_cand))
continue;
int index = old_unit->rest_unit_idx;
aom_vector_push_back(current_unit_indices, &index);
}
// Generate new filter.
RestorationUnitInfo rui_temp_cand;
memset(&rui_temp_cand, 0, sizeof(rui_temp_cand));
rui_temp_cand.restoration_type = RESTORE_SGRPROJ;
rui_temp_cand.sgrproj_info = search_selfguided_restoration(
rsc, NULL, bit_depth, procunit_width, procunit_height, tmpbuf,
rsc->lpf_sf->enable_sgr_ep_pruning);
aom_vector_clear(current_unit_indices);
// Iterate once more for the no-merge cost
double cost_nomerge_cand = cost_nomerge_base;
has_begun = false;
VECTOR_FOR_EACH(current_unit_stack, listed_unit) {
RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer);
RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx];
if (old_unit->rest_unit_idx == begin_idx_cand) has_begun = true;
if (!has_begun) continue;
// last unit already in cost_nomerge
if (old_unit->rest_unit_idx == last_idx) continue;
if (old_rusi->best_rtype[RESTORE_SGRPROJ - 1] == RESTORE_SGRPROJ &&
!check_sgrproj_eq(&old_rusi->sgrproj_info, ref_sgrproj_info_cand))
continue;
cost_nomerge_cand +=
RDCOST_DBL_WITH_NATIVE_BD_DIST(x->rdmult, old_unit->current_bits >> 4,
old_unit->current_sse, bit_depth);
}
// Iterate through vector to get sse and bits for each on the new filter.
double cost_merge_cand = 0;
has_begun = false;
VECTOR_FOR_EACH(current_unit_stack, listed_unit) {
RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer);
RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx];
if (old_unit->rest_unit_idx == begin_idx_cand) has_begun = true;
if (!has_begun) continue;
if (old_rusi->best_rtype[RESTORE_SGRPROJ - 1] == RESTORE_SGRPROJ &&
old_unit->rest_unit_idx != last_idx &&
!check_sgrproj_eq(&old_rusi->sgrproj_info, ref_sgrproj_info_cand))
continue;
old_unit->merge_sse_cand = try_restoration_unit(
rsc, &old_unit->limits, &rsc->tile_rect, &rui_temp_cand);
// First unit in stack has larger unit_bits because the
// merged coeffs are linked to it.
if (old_unit->rest_unit_idx == begin_idx_cand) {
const int new_bits = (int)count_sgrproj_bits_set(
&x->mode_costs, &rui_temp_cand.sgrproj_info,
&old_unit->ref_sgrproj_bank);
old_unit->merge_bits_cand =
x->mode_costs.sgrproj_restore_cost[1] + new_bits;
} else {
equal_ref = check_sgrproj_bank_eq(&old_unit->ref_sgrproj_bank,
ref_sgrproj_info_cand);
assert(equal_ref >= 0); // Must exist in bank
ref_sgrproj_info_tmp.bank_ref = equal_ref;
const int merge_bits = (int)count_sgrproj_bits(
&x->mode_costs, &ref_sgrproj_info_tmp, &old_unit->ref_sgrproj_bank);
old_unit->merge_bits_cand =
x->mode_costs.sgrproj_restore_cost[1] + merge_bits;
}
cost_merge_cand += RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, old_unit->merge_bits_cand >> 4, old_unit->merge_sse_cand,
bit_depth);
}
if (cost_merge_cand - cost_nomerge_cand < cost_merge - cost_nomerge) {
begin_idx = begin_idx_cand;
bank_ref = bank_ref_cand;
cost_merge = cost_merge_cand;
cost_nomerge = cost_nomerge_cand;
has_begun = false;
VECTOR_FOR_EACH(current_unit_stack, listed_unit) {
RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer);
RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx];
if (old_unit->rest_unit_idx == begin_idx_cand) has_begun = true;
if (!has_begun) continue;
if (old_rusi->best_rtype[RESTORE_SGRPROJ - 1] == RESTORE_SGRPROJ &&
old_unit->rest_unit_idx != last_idx &&
!check_sgrproj_eq(&old_rusi->sgrproj_info, ref_sgrproj_info_cand))
continue;
old_unit->merge_sse = old_unit->merge_sse_cand;
old_unit->merge_bits = old_unit->merge_bits_cand;
}
rui_temp = rui_temp_cand;
}
}
// Trial end
if (cost_merge < cost_nomerge) {
const SgrprojInfo *ref_sgrproj_info =
av1_constref_from_sgrproj_bank(&rsc->sgrproj_bank, bank_ref);
// Update data within the stack.
bool has_begun = false;
VECTOR_FOR_EACH(current_unit_stack, listed_unit) {
RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer);
RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx];
if (old_unit->rest_unit_idx == begin_idx) has_begun = true;
if (!has_begun) continue;
if (old_rusi->best_rtype[RESTORE_SGRPROJ - 1] == RESTORE_SGRPROJ &&
old_unit->rest_unit_idx != last_idx &&
!check_sgrproj_eq(&old_rusi->sgrproj_info, ref_sgrproj_info))
continue;
if (old_unit->rest_unit_idx != begin_idx) {
equal_ref = check_sgrproj_bank_eq(&old_unit->ref_sgrproj_bank,
ref_sgrproj_info);
assert(equal_ref >= 0); // Must exist in bank
av1_upd_to_sgrproj_bank(&old_unit->ref_sgrproj_bank, equal_ref,
&rui_temp.sgrproj_info);
}
old_rusi->best_rtype[RESTORE_SGRPROJ - 1] = RESTORE_SGRPROJ;
old_rusi->sgrproj_info = rui_temp.sgrproj_info;
old_rusi->sse[RESTORE_SGRPROJ] = old_unit->merge_sse;
rsc->sse -= old_unit->current_sse;
rsc->sse += old_unit->merge_sse;
rsc->bits -= old_unit->current_bits;
rsc->bits += old_unit->merge_bits;
old_unit->current_sse = old_unit->merge_sse;
old_unit->current_bits = old_unit->merge_bits;
}
RstUnitSnapshot *last_unit = aom_vector_back(current_unit_stack);
equal_ref = check_sgrproj_bank_eq(&last_unit->ref_sgrproj_bank,
&rui_temp.sgrproj_info);
assert(equal_ref >= 0); // Must exist in bank
av1_upd_to_sgrproj_bank(&rsc->sgrproj_bank, equal_ref,
&rui_temp.sgrproj_info);
} else {
// Copy current unit from the top of the stack.
// memset(&unit_snapshot, 0, sizeof(unit_snapshot));
// unit_snapshot = *(RstUnitSnapshot *)aom_vector_back(current_unit_stack);
// RESTORE_NONE units are discarded if they make the sse worse compared to
// the no restore case, without consideration for bitrate.
if (rtype == RESTORE_SGRPROJ) {
av1_add_to_sgrproj_bank(&rsc->sgrproj_bank, &rusi->sgrproj_info);
// aom_vector_clear(current_unit_stack);
// aom_vector_push_back(current_unit_stack, &unit_snapshot);
} else /*if (rusi->sse[RESTORE_SGRPROJ] > rusi->sse[RESTORE_NONE])*/ {
// Remove unit of RESTORE_NONE type only if its sse is worse (higher)
// than no_restore ss.
aom_vector_pop_back(current_unit_stack);
}
}
/*
intf("sgrproj(%d) [merge %f < nomerge %f] : %d, bank_size %d\n",
rsc->plane, cost_merge, cost_nomerge, (cost_merge < cost_nomerge),
rsc->sgrproj_bank.bank_size);
*/
#else
const int64_t bits_sgr =
x->mode_costs.sgrproj_restore_cost[1] +
count_sgrproj_bits(&x->mode_costs, &rusi->sgrproj_info,
&rsc->sgrproj_bank);
double cost_sgr = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits_sgr >> 4, rusi->sse[RESTORE_SGRPROJ], bit_depth);
if (rusi->sgrproj_info.ep < 10)
cost_sgr *=
(1 + DUAL_SGR_PENALTY_MULT * rsc->lpf_sf->dual_sgr_penalty_level);
RestorationType rtype =
(cost_sgr < cost_none) ? RESTORE_SGRPROJ : RESTORE_NONE;
rusi->best_rtype[RESTORE_SGRPROJ - 1] = rtype;
rsc->sse += rusi->sse[rtype];
rsc->bits += (cost_sgr < cost_none) ? bits_sgr : bits_none;
if (cost_sgr < cost_none)
av1_add_to_sgrproj_bank(&rsc->sgrproj_bank, &rusi->sgrproj_info);
#endif // CONFIG_LR_MERGE_COEFFS
}
#if CONFIG_LR_IMPROVEMENTS
static void initialize_rui_for_nonsep_search(const RestSearchCtxt *rsc,
RestorationUnitInfo *rui) {
memset(rui, 0, sizeof(*rui));
rui->wiener_class_id_restrict = -1;
rui->wiener_class_id = rsc->cm->mi_params.wiener_class_id[rsc->plane];
rui->wiener_class_id_stride =
rsc->cm->mi_params.wiener_class_id_stride[rsc->plane];
rui->tskip = rsc->cm->mi_params.tx_skip[rsc->plane];
rui->tskip_stride = rsc->cm->mi_params.tx_skip_stride[rsc->plane];
rui->base_qindex = rsc->cm->quant_params.base_qindex;
if (rsc->plane != AOM_PLANE_Y)
rui->qindex_offset = rsc->plane == AOM_PLANE_U
? rsc->cm->quant_params.u_dc_delta_q
: rsc->cm->quant_params.v_dc_delta_q;
else
rui->qindex_offset = rsc->cm->quant_params.y_dc_delta_q;
rui->luma = rsc->luma;
rui->luma_stride = rsc->luma_stride;
rui->plane = rsc->plane;
rui->wienerns_info.num_classes = rsc->num_filter_classes;
}
static int count_pc_wiener_bits() {
// No side-information for now.
return 0;
}
static AOM_INLINE void search_pc_wiener_visitor(
const RestorationTileLimits *limits, const AV1PixelRect *tile_rect,
int rest_unit_idx, int rest_unit_idx_seq, void *priv, int32_t *tmpbuf,
RestorationLineBuffers *rlbs) {
(void)tile_rect;
(void)tmpbuf;
(void)rlbs;
(void)rest_unit_idx_seq;
RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx];
const int bit_depth = rsc->cm->seq_params.bit_depth;
const MACROBLOCK *const x = rsc->x;
const int64_t bits_none = x->mode_costs.pc_wiener_restore_cost[0];
bool skip_search = rsc->plane != AOM_PLANE_Y;
if (skip_search) {
rsc->bits += bits_none;
rsc->sse += rusi->sse[RESTORE_NONE];
rusi->best_rtype[RESTORE_PC_WIENER - 1] = RESTORE_NONE;
rusi->sse[RESTORE_PC_WIENER] = INT64_MAX;
return;
}
RestorationUnitInfo rui;
initialize_rui_for_nonsep_search(rsc, &rui);
rui.restoration_type = RESTORE_PC_WIENER;
rusi->sse[RESTORE_PC_WIENER] =
try_restoration_unit(rsc, limits, &rsc->tile_rect, &rui);
double cost_none = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits_none >> 4, rusi->sse[RESTORE_NONE], bit_depth);
const int64_t bits_pc_wiener =
x->mode_costs.pc_wiener_restore_cost[1] +
(count_pc_wiener_bits() << AV1_PROB_COST_SHIFT);
double cost_pc_wiener = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits_pc_wiener >> 4, rusi->sse[RESTORE_PC_WIENER], bit_depth);
RestorationType rtype =
(cost_pc_wiener < cost_none) ? RESTORE_PC_WIENER : RESTORE_NONE;
rusi->best_rtype[RESTORE_PC_WIENER - 1] = rtype;
rsc->sse += rusi->sse[rtype];
rsc->bits += (cost_pc_wiener < cost_none) ? bits_pc_wiener : bits_none;
// No side-information for now to copy to info.
}
#endif // CONFIG_LR_IMPROVEMENTS
void av1_compute_stats_highbd_c(int wiener_win, const uint16_t *dgd,
const uint16_t *src, int h_start, int h_end,
int v_start, int v_end, int dgd_stride,
int src_stride, int64_t *M, int64_t *H,
aom_bit_depth_t bit_depth) {
int i, j, k, l;
int32_t Y[WIENER_WIN2];
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin = (wiener_win >> 1);
uint16_t avg =
find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
uint8_t bit_depth_divider = 1;
if (bit_depth == AOM_BITS_12)
bit_depth_divider = 16;
else if (bit_depth == AOM_BITS_10)
bit_depth_divider = 4;
memset(M, 0, sizeof(*M) * wiener_win2);
memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2);
for (i = v_start; i < v_end; i++) {
for (j = h_start; j < h_end; j++) {
const int32_t X = (int32_t)src[i * src_stride + j] - (int32_t)avg;
int idx = 0;
for (k = -wiener_halfwin; k <= wiener_halfwin; k++) {
for (l = -wiener_halfwin; l <= wiener_halfwin; l++) {
Y[idx] = (int32_t)dgd[(i + l) * dgd_stride + (j + k)] - (int32_t)avg;
idx++;
}
}
assert(idx == wiener_win2);
for (k = 0; k < wiener_win2; ++k) {
M[k] += (int64_t)Y[k] * X;
for (l = k; l < wiener_win2; ++l) {
// H is a symmetric matrix, so we only need to fill out the upper
// triangle here. We can copy it down to the lower triangle outside
// the (i, j) loops.
H[k * wiener_win2 + l] += (int64_t)Y[k] * Y[l];
}
}
}
}
for (k = 0; k < wiener_win2; ++k) {
M[k] /= bit_depth_divider;
H[k * wiener_win2 + k] /= bit_depth_divider;
for (l = k + 1; l < wiener_win2; ++l) {
H[k * wiener_win2 + l] /= bit_depth_divider;
H[l * wiener_win2 + k] = H[k * wiener_win2 + l];
}
}
}
static INLINE int wrap_index(int i, int wiener_win) {
const int wiener_halfwin1 = (wiener_win >> 1) + 1;
return (i >= wiener_halfwin1 ? wiener_win - 1 - i : i);
}
// Solve linear equations to find Wiener filter tap values
// Taps are output scaled by WIENER_FILT_STEP
static int linsolve_wiener(int n, int64_t *A, int stride, int64_t *b,
int32_t *x) {
for (int k = 0; k < n - 1; k++) {
// Partial pivoting: bring the row with the largest pivot to the top
for (int i = n - 1; i > k; i--) {
// If row i has a better (bigger) pivot than row (i-1), swap them
if (llabs(A[(i - 1) * stride + k]) < llabs(A[i * stride + k])) {
for (int j = 0; j < n; j++) {
const int64_t c = A[i * stride + j];
A[i * stride + j] = A[(i - 1) * stride + j];
A[(i - 1) * stride + j] = c;
}
const int64_t c = b[i];
b[i] = b[i - 1];
b[i - 1] = c;
}
}
// Forward elimination (convert A to row-echelon form)
for (int i = k; i < n - 1; i++) {
if (A[k * stride + k] == 0) return 0;
const int64_t c = A[(i + 1) * stride + k];
const int64_t cd = A[k * stride + k];
for (int j = 0; j < n; j++) {
A[(i + 1) * stride + j] -= c / 256 * A[k * stride + j] / cd * 256;
}
if (llabs(c) > INT_MAX || llabs(b[k]) > INT_MAX) {
// Reduce the probability of overflow by computing at lower precision
b[i + 1] -= AOMMAX(c, b[k]) / 256 * AOMMIN(c, b[k]) / cd * 256;
} else {
b[i + 1] -= c * b[k] / cd;
}
}
}
// Back-substitution
for (int i = n - 1; i >= 0; i--) {
if (A[i * stride + i] == 0) return 0;
int64_t c = 0;
for (int j = i + 1; j <= n - 1; j++) {
c += A[i * stride + j] * x[j] / WIENER_TAP_SCALE_FACTOR;
}
// Store filter taps x in scaled form.
x[i] = (int32_t)(WIENER_TAP_SCALE_FACTOR * (b[i] - c) / A[i * stride + i]);
}
return 1;
}
// Fix vector b, update vector a
static AOM_INLINE void update_a_sep_sym(int wiener_win, int64_t **Mc,
int64_t **Hc, int32_t *a, int32_t *b) {
int i, j;
int32_t S[WIENER_WIN];
int64_t A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1];
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin1 = (wiener_win >> 1) + 1;
memset(A, 0, sizeof(A));
memset(B, 0, sizeof(B));
for (i = 0; i < wiener_win; i++) {
for (j = 0; j < wiener_win; ++j) {
const int jj = wrap_index(j, wiener_win);
A[jj] += Mc[i][j] * b[i] / WIENER_TAP_SCALE_FACTOR;
}
}
for (i = 0; i < wiener_win; i++) {
for (j = 0; j < wiener_win; j++) {
int k, l;
for (k = 0; k < wiener_win; ++k) {
for (l = 0; l < wiener_win; ++l) {
const int kk = wrap_index(k, wiener_win);
const int ll = wrap_index(l, wiener_win);
B[ll * wiener_halfwin1 + kk] +=
Hc[j * wiener_win + i][k * wiener_win2 + l] * b[i] /
WIENER_TAP_SCALE_FACTOR * b[j] / WIENER_TAP_SCALE_FACTOR;
}
}
}
}
// Normalization enforcement in the system of equations itself
for (i = 0; i < wiener_halfwin1 - 1; ++i) {
A[i] -=
A[wiener_halfwin1 - 1] * 2 +
B[i * wiener_halfwin1 + wiener_halfwin1 - 1] -
2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)];
}
for (i = 0; i < wiener_halfwin1 - 1; ++i) {
for (j = 0; j < wiener_halfwin1 - 1; ++j) {
B[i * wiener_halfwin1 + j] -=
2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] +
B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] -
2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 +
(wiener_halfwin1 - 1)]);
}
}
if (linsolve_wiener(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) {
S[wiener_halfwin1 - 1] = WIENER_TAP_SCALE_FACTOR;
for (i = wiener_halfwin1; i < wiener_win; ++i) {
S[i] = S[wiener_win - 1 - i];
S[wiener_halfwin1 - 1] -= 2 * S[i];
}
memcpy(a, S, wiener_win * sizeof(*a));
}
}
// Fix vector a, update vector b
static AOM_INLINE void update_b_sep_sym(int wiener_win, int64_t **Mc,
int64_t **Hc, int32_t *a, int32_t *b) {
int i, j;
int32_t S[WIENER_WIN];
int64_t A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1];
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin1 = (wiener_win >> 1) + 1;
memset(A, 0, sizeof(A));
memset(B, 0, sizeof(B));
for (i = 0; i < wiener_win; i++) {
const int ii = wrap_index(i, wiener_win);
for (j = 0; j < wiener_win; j++) {
A[ii] += Mc[i][j] * a[j] / WIENER_TAP_SCALE_FACTOR;
}
}
for (i = 0; i < wiener_win; i++) {
for (j = 0; j < wiener_win; j++) {
const int ii = wrap_index(i, wiener_win);
const int jj = wrap_index(j, wiener_win);
int k, l;
for (k = 0; k < wiener_win; ++k) {
for (l = 0; l < wiener_win; ++l) {
B[jj * wiener_halfwin1 + ii] +=
Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] /
WIENER_TAP_SCALE_FACTOR * a[l] / WIENER_TAP_SCALE_FACTOR;
}
}
}
}
// Normalization enforcement in the system of equations itself
for (i = 0; i < wiener_halfwin1 - 1; ++i) {
A[i] -=
A[wiener_halfwin1 - 1] * 2 +
B[i * wiener_halfwin1 + wiener_halfwin1 - 1] -
2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)];
}
for (i = 0; i < wiener_halfwin1 - 1; ++i) {
for (j = 0; j < wiener_halfwin1 - 1; ++j) {
B[i * wiener_halfwin1 + j] -=
2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] +
B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] -
2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 +
(wiener_halfwin1 - 1)]);
}
}
if (linsolve_wiener(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) {
S[wiener_halfwin1 - 1] = WIENER_TAP_SCALE_FACTOR;
for (i = wiener_halfwin1; i < wiener_win; ++i) {
S[i] = S[wiener_win - 1 - i];
S[wiener_halfwin1 - 1] -= 2 * S[i];
}
memcpy(b, S, wiener_win * sizeof(*b));
}
}
static int wiener_decompose_sep_sym(int wiener_win, int64_t *M, int64_t *H,
int32_t *a, int32_t *b) {
static const int32_t init_filt[WIENER_WIN] = {
WIENER_FILT_TAP0_MIDV, WIENER_FILT_TAP1_MIDV, WIENER_FILT_TAP2_MIDV,
WIENER_FILT_TAP3_MIDV, WIENER_FILT_TAP2_MIDV, WIENER_FILT_TAP1_MIDV,
WIENER_FILT_TAP0_MIDV,
};
int64_t *Hc[WIENER_WIN2];
int64_t *Mc[WIENER_WIN];
int i, j, iter;
const int plane_off = (WIENER_WIN - wiener_win) >> 1;
const int wiener_win2 = wiener_win * wiener_win;
for (i = 0; i < wiener_win; i++) {
a[i] = b[i] =
WIENER_TAP_SCALE_FACTOR / WIENER_FILT_STEP * init_filt[i + plane_off];
}
for (i = 0; i < wiener_win; i++) {
Mc[i] = M + i * wiener_win;
for (j = 0; j < wiener_win; j++) {
Hc[i * wiener_win + j] =
H + i * wiener_win * wiener_win2 + j * wiener_win;
}
}
iter = 1;
while (iter < NUM_WIENER_ITERS) {
update_a_sep_sym(wiener_win, Mc, Hc, a, b);
update_b_sep_sym(wiener_win, Mc, Hc, a, b);
iter++;
}
return 1;
}
// Computes the function x'*H*x - x'*M for the learned 2D filter x, and compares
// against identity filters; Final score is defined as the difference between
// the function values
static int64_t compute_score(int wiener_win, int64_t *M, int64_t *H,
InterpKernel vfilt, InterpKernel hfilt) {
int32_t ab[WIENER_WIN * WIENER_WIN];
int16_t a[WIENER_WIN], b[WIENER_WIN];
int64_t P = 0, Q = 0;
int64_t iP = 0, iQ = 0;
int64_t Score, iScore;
int i, k, l;
const int plane_off = (WIENER_WIN - wiener_win) >> 1;
const int wiener_win2 = wiener_win * wiener_win;
aom_clear_system_state();
a[WIENER_HALFWIN] = b[WIENER_HALFWIN] = WIENER_FILT_STEP;
for (i = 0; i < WIENER_HALFWIN; ++i) {
a[i] = a[WIENER_WIN - i - 1] = vfilt[i];
b[i] = b[WIENER_WIN - i - 1] = hfilt[i];
a[WIENER_HALFWIN] -= 2 * a[i];
b[WIENER_HALFWIN] -= 2 * b[i];
}
memset(ab, 0, sizeof(ab));
for (k = 0; k < wiener_win; ++k) {
for (l = 0; l < wiener_win; ++l)
ab[k * wiener_win + l] = a[l + plane_off] * b[k + plane_off];
}
for (k = 0; k < wiener_win2; ++k) {
P += ab[k] * M[k] / WIENER_FILT_STEP / WIENER_FILT_STEP;
for (l = 0; l < wiener_win2; ++l) {
Q += ab[k] * H[k * wiener_win2 + l] * ab[l] / WIENER_FILT_STEP /
WIENER_FILT_STEP / WIENER_FILT_STEP / WIENER_FILT_STEP;
}
}
Score = Q - 2 * P;
iP = M[wiener_win2 >> 1];
iQ = H[(wiener_win2 >> 1) * wiener_win2 + (wiener_win2 >> 1)];
iScore = iQ - 2 * iP;
return Score - iScore;
}
static AOM_INLINE void finalize_sym_filter(int wiener_win, int32_t *f,
InterpKernel fi) {
int i;
const int wiener_halfwin = (wiener_win >> 1);
for (i = 0; i < wiener_halfwin; ++i) {
const int64_t dividend = (int64_t)f[i] * WIENER_FILT_STEP;
const int64_t divisor = WIENER_TAP_SCALE_FACTOR;
// Perform this division with proper rounding rather than truncation
if (dividend < 0) {
fi[i] = (int16_t)((dividend - (divisor / 2)) / divisor);
} else {
fi[i] = (int16_t)((dividend + (divisor / 2)) / divisor);
}
}
// Specialize for 7-tap filter
if (wiener_win == WIENER_WIN) {
fi[0] = CLIP(fi[0], WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_MAXV);
fi[1] = CLIP(fi[1], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV);
fi[2] = CLIP(fi[2], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV);
} else {
fi[2] = CLIP(fi[1], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV);
fi[1] = CLIP(fi[0], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV);
fi[0] = 0;
}
// Satisfy filter constraints
fi[WIENER_WIN - 1] = fi[0];
fi[WIENER_WIN - 2] = fi[1];
fi[WIENER_WIN - 3] = fi[2];
// The central element has an implicit +WIENER_FILT_STEP
fi[3] = -2 * (fi[0] + fi[1] + fi[2]);
}
static int64_t count_wiener_bits(int wiener_win, const ModeCosts *mode_costs,
WienerInfo *wiener_info,
const WienerInfoBank *bank) {
(void)mode_costs;
int64_t bits = 0;
#if CONFIG_LR_MERGE_COEFFS
const int ref = wiener_info->bank_ref;
const WienerInfo *ref_wiener_info = av1_constref_from_wiener_bank(bank, ref);
const int equal_ref = check_wiener_eq(wiener_info, ref_wiener_info);
for (int k = 0; k < AOMMAX(0, bank->bank_size - 1); ++k) {
const int match = (k == ref);
bits += (1 << AV1_PROB_COST_SHIFT);
if (match) break;
}
bits += mode_costs->merged_param_cost[equal_ref];
if (equal_ref) return bits;
#else
const WienerInfo *ref_wiener_info = av1_constref_from_wiener_bank(bank, 0);
#endif // CONFIG_LR_MERGE_COEFFS
if (wiener_win == WIENER_WIN)
bits += aom_count_primitive_refsubexpfin(
WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
WIENER_FILT_TAP0_SUBEXP_K,
ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV)
<< AV1_PROB_COST_SHIFT;
bits += aom_count_primitive_refsubexpfin(
WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
WIENER_FILT_TAP1_SUBEXP_K,
ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV)
<< AV1_PROB_COST_SHIFT;
bits += aom_count_primitive_refsubexpfin(
WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
WIENER_FILT_TAP2_SUBEXP_K,
ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV)
<< AV1_PROB_COST_SHIFT;
if (wiener_win == WIENER_WIN)
bits += aom_count_primitive_refsubexpfin(
WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
WIENER_FILT_TAP0_SUBEXP_K,
ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV)
<< AV1_PROB_COST_SHIFT;
bits += aom_count_primitive_refsubexpfin(
WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
WIENER_FILT_TAP1_SUBEXP_K,
ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV)
<< AV1_PROB_COST_SHIFT;
bits += aom_count_primitive_refsubexpfin(
WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
WIENER_FILT_TAP2_SUBEXP_K,
ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV)
<< AV1_PROB_COST_SHIFT;
return bits;
}
#if CONFIG_LR_MERGE_COEFFS
static int64_t count_wiener_bits_set(int wiener_win,
const ModeCosts *mode_costs,
WienerInfo *info,
const WienerInfoBank *bank) {
int64_t best_bits = INT64_MAX;
int best_ref = -1;
for (int ref = 0; ref < AOMMAX(1, bank->bank_size); ++ref) {
info->bank_ref = ref;
const int64_t bits = count_wiener_bits(wiener_win, mode_costs, info, bank);
if (bits < best_bits) {
best_bits = bits;
best_ref = ref;
}
}
info->bank_ref = AOMMAX(0, best_ref);
return best_bits;
}
#endif // CONFIG_LR_MERGE_COEFFS
// If limits != NULL, calculates error for current restoration unit.
// Otherwise, calculates error for all units in the stack using stored limits.
static int64_t calc_finer_tile_search_error(const RestSearchCtxt *rsc,
const RestorationTileLimits *limits,
const AV1PixelRect *tile,
RestorationUnitInfo *rui) {
int64_t err = 0;
#if CONFIG_LR_MERGE_COEFFS
if (limits != NULL) {
err = try_restoration_unit(rsc, limits, tile, rui);
} else {
Vector *current_unit_stack = rsc->unit_stack;
Vector *current_unit_indices = rsc->unit_indices;
int n = 0;
int idx = *(int *)aom_vector_const_get(current_unit_indices, n);
VECTOR_FOR_EACH(current_unit_stack, listed_unit) {
RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer);
if (old_unit->rest_unit_idx == idx) {
err += try_restoration_unit(rsc, &old_unit->limits, tile, rui);
n++;
if (n >= (int)current_unit_indices->size) break;
idx = *(int *)aom_vector_const_get(current_unit_indices, n);
}
}
}
#else // CONFIG_LR_MERGE_COEFFS
err = try_restoration_unit(rsc, limits, tile, rui);
#endif // CONFIG_LR_MERGE_COEFFS
return err;
}
#if CONFIG_LR_IMPROVEMENTS && CONFIG_LR_MERGE_COEFFS
// This function resets the dst buffers using the correct filters.
static int64_t reset_unit_stack_dst_buffers(const RestSearchCtxt *rsc,
const RestorationTileLimits *limits,
const AV1PixelRect *tile,
RestorationUnitInfo *rui) {
int64_t err = 0;
if (limits != NULL) {
err = try_restoration_unit(rsc, limits, tile, rui);
} else {
Vector *current_unit_stack = rsc->unit_stack;
Vector *current_unit_indices = rsc->unit_indices;
const int last_idx =
((RstUnitSnapshot *)aom_vector_back(current_unit_stack))->rest_unit_idx;
// Will update filters in rui as we go along. Buffer the rui filters here.
WienerNonsepInfo last_unit_filters = rui->wienerns_info;
int n = 0;
int idx = *(int *)aom_vector_const_get(current_unit_indices, n);
VECTOR_FOR_EACH(current_unit_stack, listed_unit) {
RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer);
RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx];
if (old_unit->rest_unit_idx == idx) {
if (idx == last_idx) {
// Use the input filters on the last unit.
copy_nsfilter_taps(&rui->wienerns_info, &last_unit_filters);
} else {
// Revert to old unit's filters.
copy_nsfilter_taps(&rui->wienerns_info, &old_rusi->wienerns_info);
}
err += try_restoration_unit(rsc, &old_unit->limits, tile, rui);
n++;
if (n >= (int)current_unit_indices->size) break;
idx = *(int *)aom_vector_const_get(current_unit_indices, n);
}
}
#ifndef NDEBUG
{
const WienernsFilterParameters *nsfilter_params = get_wienerns_parameters(
rsc->cm->quant_params.base_qindex, rsc->plane != AOM_PLANE_Y);
assert(check_wienerns_eq(&rui->wienerns_info, &last_unit_filters,
nsfilter_params->ncoeffs, ALL_WIENERNS_CLASSES));
}
#endif // NDEBUG
}
return err;
}
#endif // CONFIG_LR_IMPROVEMENTS && CONFIG_LR_MERGE_COEFFS
#define USE_WIENER_REFINEMENT_SEARCH 1
#define RD_WIENER_REFINEMENT_SEARCH 0
static int64_t finer_tile_search_wiener(RestSearchCtxt *rsc,
const RestorationTileLimits *limits,
const AV1PixelRect *tile,
RestorationUnitInfo *rui,
int wiener_win, int reduced_wiener_win,
const WienerInfoBank *ref_wiener_bank) {
(void)wiener_win;
(void)ref_wiener_bank;
const int plane_off = (WIENER_WIN - reduced_wiener_win) >> 1;
int64_t err = calc_finer_tile_search_error(rsc, limits, tile, rui);
#if USE_WIENER_REFINEMENT_SEARCH
WienerInfo *plane_wiener = &rui->wiener_info;
const MACROBLOCK *const x = rsc->x;
#if RD_WIENER_REFINEMENT_SEARCH
#if CONFIG_LR_MERGE_COEFFS
int64_t bits = count_wiener_bits_set(wiener_win, &x->mode_costs, plane_wiener,
ref_wiener_bank);
#else
int64_t bits = count_wiener_bits(wiener_win, &x->mode_costs, plane_wiener,
ref_wiener_bank);
#endif // CONFIG_LR_MERGE_COEFFS
#else
int64_t bits = 0;
#endif // RD_WIENER_REFINEMENT_SEARCH
double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST(x->rdmult, bits >> 4, err,
rsc->cm->seq_params.bit_depth);
int tap_min[] = { WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP1_MINV,
WIENER_FILT_TAP2_MINV };
int tap_max[] = { WIENER_FILT_TAP0_MAXV, WIENER_FILT_TAP1_MAXV,
WIENER_FILT_TAP2_MAXV };
// printf("err pre = %"PRId64"\n", err);
const int start_step = 4;
for (int s = start_step; s >= 1; s >>= 1) {
for (int p = plane_off; p < WIENER_HALFWIN; ++p) {
int skip = 0;
do {
if (plane_wiener->hfilter[p] - s >= tap_min[p]) {
plane_wiener->hfilter[p] -= s;
plane_wiener->hfilter[WIENER_WIN - p - 1] -= s;
plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s;
int64_t err2 = calc_finer_tile_search_error(rsc, limits, tile, rui);
#if RD_WIENER_REFINEMENT_SEARCH
#if CONFIG_LR_MERGE_COEFFS
int64_t bits2 = count_wiener_bits_set(wiener_win, &x->mode_costs,
plane_wiener, ref_wiener_bank);
#else // CONFIG_LR_MERGE_COEFFS
int64_t bits2 = count_wiener_bits(wiener_win, &x->mode_costs,
plane_wiener, ref_wiener_bank);
#endif // CONFIG_LR_MERGE_COEFFS
#else
int64_t bits2 = 0;
#endif // RD_WIENER_REFINEMENT_SEARCH
double cost2 = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits2 >> 4, err2, rsc->cm->seq_params.bit_depth);
if (cost2 > cost) {
plane_wiener->hfilter[p] += s;
plane_wiener->hfilter[WIENER_WIN - p - 1] += s;
plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s;
} else {
cost = cost2;
err = err2;
skip = 1;
// At the highest step size continue moving in the same direction
if (s == start_step) continue;
}
}
break;
} while (1);
if (skip) break;
do {
if (plane_wiener->hfilter[p] + s <= tap_max[p]) {
plane_wiener->hfilter[p] += s;
plane_wiener->hfilter[WIENER_WIN - p - 1] += s;
plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s;
int64_t err2 = calc_finer_tile_search_error(rsc, limits, tile, rui);
#if RD_WIENER_REFINEMENT_SEARCH
#if CONFIG_LR_MERGE_COEFFS
int64_t bits2 = count_wiener_bits_set(wiener_win, &x->mode_costs,
plane_wiener, ref_wiener_bank);
#else // CONFIG_LR_MERGE_COEFFS
int64_t bits2 = count_wiener_bits(wiener_win, &x->mode_costs,
plane_wiener, ref_wiener_bank);
#endif // CONFIG_LR_MERGE_COEFFS
#else
int64_t bits2 = 0;
#endif // RD_WIENER_REFINEMENT_SEARCH
double cost2 = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits2 >> 4, err2, rsc->cm->seq_params.bit_depth);
if (cost2 > cost) {
plane_wiener->hfilter[p] -= s;
plane_wiener->hfilter[WIENER_WIN - p - 1] -= s;
plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s;
} else {
cost = cost2;
err = err2;
// At the highest step size continue moving in the same direction
if (s == start_step) continue;
}
}
break;
} while (1);
}
for (int p = plane_off; p < WIENER_HALFWIN; ++p) {
int skip = 0;
do {
if (plane_wiener->vfilter[p] - s >= tap_min[p]) {
plane_wiener->vfilter[p] -= s;
plane_wiener->vfilter[WIENER_WIN - p - 1] -= s;
plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s;
int64_t err2 = calc_finer_tile_search_error(rsc, limits, tile, rui);
#if RD_WIENER_REFINEMENT_SEARCH
#if CONFIG_LR_MERGE_COEFFS
int64_t bits2 = count_wiener_bits_set(wiener_win, &x->mode_costs,
plane_wiener, ref_wiener_bank);
#else // CONFIG_LR_MERGE_COEFFS
int64_t bits2 = count_wiener_bits(wiener_win, &x->mode_costs,
plane_wiener, ref_wiener_bank);
#endif // CONFIG_LR_MERGE_COEFFS
#else
int64_t bits2 = 0;
#endif // RD_WIENER_REFINEMENT_SEARCH
double cost2 = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits2 >> 4, err2, rsc->cm->seq_params.bit_depth);
if (cost2 > cost) {
plane_wiener->vfilter[p] += s;
plane_wiener->vfilter[WIENER_WIN - p - 1] += s;
plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s;
} else {
cost = cost2;
err = err2;
skip = 1;
// At the highest step size continue moving in the same direction
if (s == start_step) continue;
}
}
break;
} while (1);
if (skip) break;
do {
if (plane_wiener->vfilter[p] + s <= tap_max[p]) {
plane_wiener->vfilter[p] += s;
plane_wiener->vfilter[WIENER_WIN - p - 1] += s;
plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s;
int64_t err2 = calc_finer_tile_search_error(rsc, limits, tile, rui);
#if RD_WIENER_REFINEMENT_SEARCH
#if CONFIG_LR_MERGE_COEFFS
int64_t bits2 = count_wiener_bits_set(wiener_win, &x->mode_costs,
plane_wiener, ref_wiener_bank);
#else // CONFIG_LR_MERGE_COEFFS
int64_t bits2 = count_wiener_bits(wiener_win, &x->mode_costs,
plane_wiener, ref_wiener_bank);
#endif // CONFIG_LR_MERGE_COEFFS
#else
int64_t bits2 = 0;
#endif // RD_WIENER_REFINEMENT_SEARCH
double cost2 = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits2 >> 4, err2, rsc->cm->seq_params.bit_depth);
if (cost2 > cost) {
plane_wiener->vfilter[p] -= s;
plane_wiener->vfilter[WIENER_WIN - p - 1] -= s;
plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s;
} else {
cost = cost2;
err = err2;
// At the highest step size continue moving in the same direction
if (s == start_step) continue;
}
}
break;
} while (1);
}
}
// printf("err post = %"PRId64"\n", err);
#endif // USE_WIENER_REFINEMENT_SEARCH
#if CONFIG_LR_MERGE_COEFFS
// Set bank_ref correctly
(void)count_wiener_bits_set(wiener_win, &x->mode_costs, plane_wiener,
ref_wiener_bank);
#endif // CONFIG_LR_MERGE_COEFFS
return err;
}
static AOM_INLINE void search_wiener_visitor(
const RestorationTileLimits *limits, const AV1PixelRect *tile_rect,
int rest_unit_idx, int rest_unit_idx_seq, void *priv, int32_t *tmpbuf,
RestorationLineBuffers *rlbs) {
(void)tile_rect;
(void)tmpbuf;
(void)rlbs;
(void)rest_unit_idx_seq;
RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx];
const MACROBLOCK *const x = rsc->x;
const int64_t bits_none = x->mode_costs.wiener_restore_cost[0];
// Skip Wiener search for low variance contents
if (rsc->lpf_sf->prune_wiener_based_on_src_var) {
const int scale[3] = { 0, 1, 2 };
// Obtain the normalized Qscale
const int qs = av1_dc_quant_QTX(rsc->cm->quant_params.base_qindex, 0,
rsc->cm->seq_params.base_y_dc_delta_q,
rsc->cm->seq_params.bit_depth) >>
3;
// Derive threshold as sqr(normalized Qscale) * scale / 16,
const uint64_t thresh =
(qs * qs * scale[rsc->lpf_sf->prune_wiener_based_on_src_var]) >> 4;
const uint64_t src_var = var_restoration_unit(limits, rsc->src, rsc->plane);
// Do not perform Wiener search if source variance is lower than threshold
// or if the reconstruction error is zero
int prune_wiener = (src_var < thresh) || (rusi->sse[RESTORE_NONE] == 0);
if (prune_wiener) {
rsc->bits += bits_none;
rsc->sse += rusi->sse[RESTORE_NONE];
rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE;
rusi->sse[RESTORE_WIENER] = INT64_MAX;
if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) rusi->skip_sgr_eval = 1;
return;
}
}
const int wiener_win =
(rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA;
int reduced_wiener_win = wiener_win;
if (rsc->lpf_sf->reduce_wiener_window_size) {
reduced_wiener_win =
(rsc->plane == AOM_PLANE_Y) ? WIENER_WIN_REDUCED : WIENER_WIN_CHROMA;
}
int64_t M[WIENER_WIN2];
int64_t H[WIENER_WIN2 * WIENER_WIN2];
int32_t vfilter[WIENER_WIN], hfilter[WIENER_WIN];
const AV1_COMMON *const cm = rsc->cm;
av1_compute_stats_highbd(reduced_wiener_win, rsc->dgd_buffer, rsc->src_buffer,
limits->h_start, limits->h_end, limits->v_start,
limits->v_end, rsc->dgd_stride, rsc->src_stride, M,
H, cm->seq_params.bit_depth);
if (!wiener_decompose_sep_sym(reduced_wiener_win, M, H, vfilter, hfilter)) {
rsc->bits += bits_none;
rsc->sse += rusi->sse[RESTORE_NONE];
rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE;
rusi->sse[RESTORE_WIENER] = INT64_MAX;
if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) rusi->skip_sgr_eval = 1;
return;
}
RestorationUnitInfo rui;
memset(&rui, 0, sizeof(rui));
rui.restoration_type = RESTORE_WIENER;
finalize_sym_filter(reduced_wiener_win, vfilter, rui.wiener_info.vfilter);
finalize_sym_filter(reduced_wiener_win, hfilter, rui.wiener_info.hfilter);
// Filter score computes the value of the function x'*A*x - x'*b for the
// learned filter and compares it against identity filer. If there is no
// reduction in the function, the filter is reverted back to identity
if (compute_score(reduced_wiener_win, M, H, rui.wiener_info.vfilter,
rui.wiener_info.hfilter) > 0) {
rsc->bits += bits_none;
rsc->sse += rusi->sse[RESTORE_NONE];
rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE;
rusi->sse[RESTORE_WIENER] = INT64_MAX;
if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) rusi->skip_sgr_eval = 1;
return;
}
aom_clear_system_state();
rusi->sse[RESTORE_WIENER] =
finer_tile_search_wiener(rsc, limits, &rsc->tile_rect, &rui, wiener_win,
reduced_wiener_win, &rsc->wiener_bank);
rusi->wiener_info = rui.wiener_info;
if (reduced_wiener_win != WIENER_WIN) {
assert(rui.wiener_info.vfilter[0] == 0 &&
rui.wiener_info.vfilter[WIENER_WIN - 1] == 0);
assert(rui.wiener_info.hfilter[0] == 0 &&
rui.wiener_info.hfilter[WIENER_WIN - 1] == 0);
}
double cost_none = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits_none >> 4, rusi->sse[RESTORE_NONE],
rsc->cm->seq_params.bit_depth);
#if CONFIG_LR_MERGE_COEFFS
Vector *current_unit_stack = rsc->unit_stack;
int64_t bits_nomerge_base =
x->mode_costs.wiener_restore_cost[1] +
count_wiener_bits_set(wiener_win, &x->mode_costs, &rusi->wiener_info,
&rsc->wiener_bank);
const int bank_ref_base = rusi->wiener_info.bank_ref;
// Only test the reference in rusi->wiener_info.bank_ref, generated from
// the count call above.
double cost_nomerge_base = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits_nomerge_base >> 4, rusi->sse[RESTORE_WIENER],
rsc->cm->seq_params.bit_depth);
const int bits_min = x->mode_costs.wiener_restore_cost[1] +
x->mode_costs.merged_param_cost[1] +
(1 << AV1_PROB_COST_SHIFT);
const double cost_min = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits_min >> 4, rusi->sse[RESTORE_WIENER],
rsc->cm->seq_params.bit_depth);
const double cost_nomerge_thr = (cost_nomerge_base + 3 * cost_min) / 4;
RestorationType rtype =
(cost_none <= cost_nomerge_thr) ? RESTORE_NONE : RESTORE_WIENER;
if (cost_none <= cost_nomerge_thr) {
bits_nomerge_base = bits_none;
cost_nomerge_base = cost_none;
}
RstUnitSnapshot unit_snapshot;
memset(&unit_snapshot, 0, sizeof(unit_snapshot));
unit_snapshot.limits = *limits;
unit_snapshot.rest_unit_idx = rest_unit_idx;
memcpy(unit_snapshot.M, M, WIENER_WIN2 * sizeof(*M));
memcpy(unit_snapshot.H, H, WIENER_WIN2 * WIENER_WIN2 * sizeof(*H));
rusi->best_rtype[RESTORE_WIENER - 1] = rtype;
rsc->sse += rusi->sse[rtype];
rsc->bits += bits_nomerge_base;
unit_snapshot.current_sse = rusi->sse[rtype];
unit_snapshot.current_bits = bits_nomerge_base;
// Only matters for first unit in stack.
unit_snapshot.ref_wiener_bank = rsc->wiener_bank;
// If current_unit_stack is empty, we can leave early.
if (aom_vector_is_empty(current_unit_stack)) {
if (rtype == RESTORE_WIENER)
av1_add_to_wiener_bank(&rsc->wiener_bank, &rusi->wiener_info);
aom_vector_push_back(current_unit_stack, &unit_snapshot);
return;
}
// Handles special case where no-merge filter is equal to merged
// filter for the stack - we don't want to perform another merge and
// get a less optimal filter, but we want to continue building the stack.
int equal_ref;
if (rtype == RESTORE_WIENER &&
(equal_ref =
check_wiener_bank_eq(&rsc->wiener_bank, &rusi->wiener_info)) >= 0) {
rsc->bits -= bits_nomerge_base;
rusi->wiener_info.bank_ref = equal_ref;
unit_snapshot.current_bits =
x->mode_costs.wiener_restore_cost[1] +
count_wiener_bits_set(wiener_win, &x->mode_costs, &rusi->wiener_info,
&rsc->wiener_bank);
rsc->bits += unit_snapshot.current_bits;
aom_vector_push_back(current_unit_stack, &unit_snapshot);
return;
}
// Push current unit onto stack.
aom_vector_push_back(current_unit_stack, &unit_snapshot);
const int last_idx =
((RstUnitSnapshot *)aom_vector_back(current_unit_stack))->rest_unit_idx;
double cost_merge = DBL_MAX;
double cost_nomerge = 0;
int begin_idx = -1;
int bank_ref = -1;
RestorationUnitInfo rui_temp;
// Trial start
for (int bank_ref_cand = 0;
bank_ref_cand < AOMMAX(1, rsc->wiener_bank.bank_size); bank_ref_cand++) {
#if MERGE_DRL_SEARCH_LEVEL == 1
if (bank_ref_cand != 0 && bank_ref_cand != bank_ref_base) continue;
#elif MERGE_DRL_SEARCH_LEVEL == 2
if (bank_ref_cand != bank_ref_base) continue;
#else
(void)bank_ref_base;
#endif
const WienerInfo *ref_wiener_info_cand =
av1_constref_from_wiener_bank(&rsc->wiener_bank, bank_ref_cand);
WienerInfo ref_wiener_info_tmp = *ref_wiener_info_cand;
const WienerInfoBank *begin_wiener_bank = NULL;
// Iterate once to get the begin unit of the run
int begin_idx_cand = -1;
VECTOR_FOR_EACH(current_unit_stack, listed_unit) {
RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer);
RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx];
if (old_unit->rest_unit_idx == last_idx) continue;
if (old_rusi->best_rtype[RESTORE_WIENER - 1] == RESTORE_NONE ||
(old_rusi->best_rtype[RESTORE_WIENER - 1] == RESTORE_WIENER &&
check_wiener_eq(&old_rusi->wiener_info, ref_wiener_info_cand))) {
if (check_wiener_bank_eq(&old_unit->ref_wiener_bank,
ref_wiener_info_cand) == -1) {
begin_idx_cand = old_unit->rest_unit_idx;
begin_wiener_bank = &old_unit->ref_wiener_bank;
}
}
}
if (begin_idx_cand == -1) continue;
assert(begin_wiener_bank != NULL);
begin_wiener_bank =
begin_wiener_bank == NULL ? &rsc->wiener_bank : begin_wiener_bank;
Vector *current_unit_indices = rsc->unit_indices;
aom_vector_clear(current_unit_indices);
bool has_begun = false;
VECTOR_FOR_EACH(current_unit_stack, listed_unit) {
RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer);
RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx];
if (old_unit->rest_unit_idx == begin_idx_cand) has_begun = true;
if (!has_begun) continue;
if (old_rusi->best_rtype[RESTORE_WIENER - 1] == RESTORE_WIENER &&
old_unit->rest_unit_idx != last_idx &&
!check_wiener_eq(&old_rusi->wiener_info, ref_wiener_info_cand))
continue;
int index = old_unit->rest_unit_idx;
aom_vector_push_back(current_unit_indices, &index);
}
int64_t M_AVG[WIENER_WIN2];
int64_t H_AVG[WIENER_WIN2 * WIENER_WIN2];
for (int index = 0; index < WIENER_WIN2; ++index) {
M_AVG[index] = M[index] / current_unit_indices->size;
}
for (int index = 0; index < WIENER_WIN2 * WIENER_WIN2; ++index) {
H_AVG[index] = H[index] / current_unit_indices->size;
}
// Iterate through vector to get current cost and the sum of M and H so far.
#ifndef NDEBUG
int num_units = 0;
#endif // NDEBUG
has_begun = false;
double cost_nomerge_cand = cost_nomerge_base;
VECTOR_FOR_EACH(current_unit_stack, listed_unit) {
RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer);
RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx];
if (old_unit->rest_unit_idx == begin_idx_cand) has_begun = true;
if (!has_begun) continue;
if (old_unit->rest_unit_idx == last_idx) continue;
if (old_rusi->best_rtype[RESTORE_WIENER - 1] == RESTORE_WIENER &&
!check_wiener_eq(&old_rusi->wiener_info, ref_wiener_info_cand))
continue;
cost_nomerge_cand += RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, old_unit->current_bits >> 4, old_unit->current_sse,
rsc->cm->seq_params.bit_depth);
for (int index = 0; index < WIENER_WIN2; ++index) {
M_AVG[index] += old_unit->M[index] / current_unit_indices->size;
}
for (int index = 0; index < WIENER_WIN2 * WIENER_WIN2; ++index) {
H_AVG[index] += old_unit->H[index] / current_unit_indices->size;
}
#ifndef NDEBUG
num_units++;
#endif // NDEBUG
}
assert(num_units + 1 == (int)current_unit_indices->size);
// Generate new filter.
RestorationUnitInfo rui_temp_cand;
memset(&rui_temp_cand, 0, sizeof(rui_temp_cand));
rui_temp_cand.restoration_type = RESTORE_WIENER;
int32_t vfilter_merge[WIENER_WIN], hfilter_merge[WIENER_WIN];
wiener_decompose_sep_sym(reduced_wiener_win, M_AVG, H_AVG, vfilter_merge,
hfilter_merge);
finalize_sym_filter(reduced_wiener_win, vfilter_merge,
rui_temp_cand.wiener_info.vfilter);
finalize_sym_filter(reduced_wiener_win, hfilter_merge,
rui_temp_cand.wiener_info.hfilter);
finer_tile_search_wiener(rsc, NULL, &rsc->tile_rect, &rui_temp_cand,
wiener_win, reduced_wiener_win, begin_wiener_bank);
aom_vector_clear(current_unit_indices);
if (compute_score(reduced_wiener_win, M_AVG, H_AVG,
rui_temp_cand.wiener_info.vfilter,
rui_temp_cand.wiener_info.hfilter) > 0) {
continue;
}
// Iterate through vector to get sse and bits for each on the new filter.
double cost_merge_cand = 0;
has_begun = false;
VECTOR_FOR_EACH(current_unit_stack, listed_unit) {
RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer);
RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx];
if (old_unit->rest_unit_idx == begin_idx_cand) has_begun = true;
if (!has_begun) continue;
if (old_rusi->best_rtype[RESTORE_WIENER - 1] == RESTORE_WIENER &&
old_unit->rest_unit_idx != last_idx &&
!check_wiener_eq(&old_rusi->wiener_info, ref_wiener_info_cand))
continue;
old_unit->merge_sse_cand = try_restoration_unit(
rsc, &old_unit->limits, &rsc->tile_rect, &rui_temp_cand);
// First unit in stack has larger unit_bits because the
// merged coeffs are linked to it.
if (old_unit->rest_unit_idx == begin_idx_cand) {
const int new_bits = (int)count_wiener_bits_set(
wiener_win, &x->mode_costs, &rui_temp_cand.wiener_info,
&old_unit->ref_wiener_bank);
old_unit->merge_bits_cand =
x->mode_costs.wiener_restore_cost[1] + new_bits;
} else {
equal_ref = check_wiener_bank_eq(&old_unit->ref_wiener_bank,
ref_wiener_info_cand);
assert(equal_ref >= 0); // Must exist in bank
ref_wiener_info_tmp.bank_ref = equal_ref;
const int merge_bits = (int)count_wiener_bits(
wiener_win, &x->mode_costs, &ref_wiener_info_tmp,
&old_unit->ref_wiener_bank);
old_unit->merge_bits_cand =
x->mode_costs.wiener_restore_cost[1] + merge_bits;
}
cost_merge_cand += RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, old_unit->merge_bits_cand >> 4, old_unit->merge_sse_cand,
rsc->cm->seq_params.bit_depth);
}
if (cost_merge_cand - cost_nomerge_cand < cost_merge - cost_nomerge) {
begin_idx = begin_idx_cand;
bank_ref = bank_ref_cand;
cost_merge = cost_merge_cand;
cost_nomerge = cost_nomerge_cand;
has_begun = false;
VECTOR_FOR_EACH(current_unit_stack, listed_unit) {
RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer);
RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx];
if (old_unit->rest_unit_idx == begin_idx_cand) has_begun = true;
if (!has_begun) continue;
if (old_rusi->best_rtype[RESTORE_WIENER - 1] == RESTORE_WIENER &&
old_unit->rest_unit_idx != last_idx &&
!check_wiener_eq(&old_rusi->wiener_info, ref_wiener_info_cand))
continue;
old_unit->merge_sse = old_unit->merge_sse_cand;
old_unit->merge_bits = old_unit->merge_bits_cand;
}
rui_temp = rui_temp_cand;
}
}
// Trial end
if (cost_merge < cost_nomerge) {
const WienerInfo *ref_wiener_info =
av1_constref_from_wiener_bank(&rsc->wiener_bank, bank_ref);
// Update data within the stack.
bool has_begun = false;
VECTOR_FOR_EACH(current_unit_stack, listed_unit) {
RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer);
RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx];
if (old_unit->rest_unit_idx == begin_idx) has_begun = true;
if (!has_begun) continue;
if (old_rusi->best_rtype[RESTORE_WIENER - 1] == RESTORE_WIENER &&
old_unit->rest_unit_idx != last_idx &&
!check_wiener_eq(&old_rusi->wiener_info, ref_wiener_info))
continue;
if (old_unit->rest_unit_idx != begin_idx) { // Not the first
equal_ref =
check_wiener_bank_eq(&old_unit->ref_wiener_bank, ref_wiener_info);
assert(equal_ref >= 0); // Must exist in bank
av1_upd_to_wiener_bank(&old_unit->ref_wiener_bank, equal_ref,
&rui_temp.wiener_info);
}
old_rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_WIENER;
old_rusi->wiener_info = rui_temp.wiener_info;
old_rusi->sse[RESTORE_WIENER] = old_unit->merge_sse;
rsc->sse -= old_unit->current_sse;
rsc->sse += old_unit->merge_sse;
rsc->bits -= old_unit->current_bits;
rsc->bits += old_unit->merge_bits;
old_unit->current_sse = old_unit->merge_sse;
old_unit->current_bits = old_unit->merge_bits;
}
assert(has_begun);
RstUnitSnapshot *last_unit = aom_vector_back(current_unit_stack);
equal_ref = check_wiener_bank_eq(&last_unit->ref_wiener_bank,
&rui_temp.wiener_info);
assert(equal_ref >= 0); // Must exist in bank
av1_upd_to_wiener_bank(&rsc->wiener_bank, equal_ref, &rui_temp.wiener_info);
} else {
// Copy current unit from the top of the stack.
// memset(&unit_snapshot, 0, sizeof(unit_snapshot));
// unit_snapshot = *(RstUnitSnapshot *)aom_vector_back(current_unit_stack);
// RESTORE_WIENER units become start of new stack, and
// RESTORE_NONE units are discarded.
if (rtype == RESTORE_WIENER) {
av1_add_to_wiener_bank(&rsc->wiener_bank, &rusi->wiener_info);
// aom_vector_clear(current_unit_stack);
// aom_vector_push_back(current_unit_stack, &unit_snapshot);
} else /*if (rusi->sse[RESTORE_WIENER] > rusi->sse[RESTORE_NONE])*/ {
// Remove unit of RESTORE_NONE type only if its sse is worse (higher)
// than no_restore ss.
aom_vector_pop_back(current_unit_stack);
}
}
/*
printf("wiener(%d) [merge %f < nomerge %f] : %d, bank_size %d\n",
rsc->plane, cost_merge, cost_nomerge, (cost_merge < cost_nomerge),
rsc->wiener_bank.bank_size);
*/
#else
const int64_t bits_wiener =
x->mode_costs.wiener_restore_cost[1] +
count_wiener_bits(wiener_win, &x->mode_costs, &rusi->wiener_info,
&rsc->wiener_bank);
double cost_wiener = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits_wiener >> 4, rusi->sse[RESTORE_WIENER],
rsc->cm->seq_params.bit_depth);
RestorationType rtype =
(cost_wiener < cost_none) ? RESTORE_WIENER : RESTORE_NONE;
rusi->best_rtype[RESTORE_WIENER - 1] = rtype;
// Set 'skip_sgr_eval' based on rdcost ratio of RESTORE_WIENER and
// RESTORE_NONE or based on best_rtype
if (rsc->lpf_sf->prune_sgr_based_on_wiener == 1) {
rusi->skip_sgr_eval = cost_wiener > (1.01 * cost_none);
} else if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) {
rusi->skip_sgr_eval = rusi->best_rtype[RESTORE_WIENER - 1] == RESTORE_NONE;
}
rsc->sse += rusi->sse[rtype];
rsc->bits += (cost_wiener < cost_none) ? bits_wiener : bits_none;
if (cost_wiener < cost_none)
av1_add_to_wiener_bank(&rsc->wiener_bank, &rusi->wiener_info);
#endif // CONFIG_LR_MERGE_COEFFS
}
static AOM_INLINE void search_norestore_visitor(
const RestorationTileLimits *limits, const AV1PixelRect *tile_rect,
int rest_unit_idx, int rest_unit_idx_seq, void *priv, int32_t *tmpbuf,
RestorationLineBuffers *rlbs) {
(void)tile_rect;
(void)tmpbuf;
(void)rlbs;
(void)rest_unit_idx_seq;
RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx];
rusi->sse[RESTORE_NONE] = sse_restoration_unit(
limits, rsc->src, &rsc->cm->cur_frame->buf, rsc->plane);
rsc->sse += rusi->sse[RESTORE_NONE];
}
#if CONFIG_LR_IMPROVEMENTS
static int64_t count_wienerns_bits(
int plane, const ModeCosts *mode_costs,
const WienerNonsepInfo *wienerns_info, const WienerNonsepInfoBank *bank,
const WienernsFilterParameters *nsfilter_params, int wiener_class_id) {
(void)mode_costs;
int is_uv = (plane != AOM_PLANE_Y);
int64_t bits = 0;
int skip_filter_write_for_class[WIENERNS_MAX_CLASSES] = { 0 };
int ref_for_class[WIENERNS_MAX_CLASSES] = { 0 };
int c_id_begin = 0;
int c_id_end = wienerns_info->num_classes;
if (wiener_class_id != ALL_WIENERNS_CLASSES) {
c_id_begin = wiener_class_id;
c_id_end = wiener_class_id + 1;
}
#if CONFIG_LR_MERGE_COEFFS
for (int c_id = c_id_begin; c_id < c_id_end; ++c_id) {
const int ref = wienerns_info->bank_ref_for_class[c_id];
const WienerNonsepInfo *ref_wienerns_info =
av1_constref_from_wienerns_bank(bank, ref, c_id);
const int equal_ref = check_wienerns_eq(wienerns_info, ref_wienerns_info,
nsfilter_params->ncoeffs, c_id);
for (int k = 0; k < bank->bank_size_for_class[c_id] - 1; ++k) {
const int match = (k == ref);
bits += (1 << AV1_PROB_COST_SHIFT);
if (match) break;
}
bits += mode_costs->merged_param_cost[equal_ref];
skip_filter_write_for_class[c_id] = equal_ref;
ref_for_class[c_id] = ref;
}
#endif // CONFIG_LR_MERGE_COEFFS
const int(*length_cost)[2] = mode_costs->wienerns_length_cost;
const int *uv_sym_cost = mode_costs->wienerns_uv_sym_cost;
#if ENABLE_LR_4PART_CODE
const int(*cost_4part)[4] = mode_costs->wienerns_4part_cost;
#endif // ENABLE_LR_4PART_CODE
const int(*wienerns_coeffs)[WIENERNS_COEFCFG_LEN] = nsfilter_params->coeffs;
assert(c_id_begin >= 0);
assert(c_id_end <= WIENERNS_MAX_CLASSES);
for (int c_id = c_id_begin; c_id < c_id_end; ++c_id) {
if (skip_filter_write_for_class[c_id]) continue;
const WienerNonsepInfo *ref_wienerns_info =
av1_constref_from_wienerns_bank(bank, ref_for_class[c_id], c_id);
const int16_t *wienerns_info_nsfilter =
const_nsfilter_taps(wienerns_info, c_id);
const int16_t *ref_wienerns_info_nsfilter =
const_nsfilter_taps(ref_wienerns_info, c_id);
const int beg_feat = 0;
int end_feat = nsfilter_params->ncoeffs;
if (end_feat > 6) {
// Decide whether to signal a short (0) or long (1) filter
int filter_length_bit = 0;
for (int i = 6; i < end_feat; i++) {
if (wienerns_info_nsfilter[i] != 0) {
filter_length_bit = 1;
}
}
bits += length_cost[is_uv][filter_length_bit];
end_feat = filter_length_bit ? nsfilter_params->ncoeffs : 6;
}
assert((end_feat & 1) == 0);
int uv_sym = 0;
if (is_uv && end_feat > 6) {
uv_sym = 1;
for (int i = 6; i < end_feat; i += 2) {
if (wienerns_info_nsfilter[i + 1] != wienerns_info_nsfilter[i])
uv_sym = 0;
}
bits += uv_sym_cost[uv_sym];
}
for (int i = beg_feat; i < end_feat; ++i) {
#if ENABLE_LR_4PART_CODE
bits += aom_count_4part_wref(
ref_wienerns_info_nsfilter[i] -
wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID],
wienerns_info_nsfilter[i] -
wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID],
cost_4part[wienerns_coeffs[i - beg_feat][WIENERNS_PAR_ID]],
wienerns_coeffs[i - beg_feat][WIENERNS_BIT_ID], AV1_PROB_COST_SHIFT);
#else
bits += aom_count_primitive_refsubexpfin(
(1 << wienerns_coeffs[i - beg_feat][WIENERNS_BIT_ID]),
wienerns_coeffs[i - beg_feat][WIENERNS_PAR_ID],
ref_wienerns_info_nsfilter[i] -
wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID],
wienerns_info_nsfilter[i] -
wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID])
<< AV1_PROB_COST_SHIFT;
#endif // ENABLE_LR_4PART_CODE
if (uv_sym && i >= 6) {
// Don't code symmetrical taps
assert(wienerns_info_nsfilter[i + 1] == wienerns_info_nsfilter[i]);
i += 1;
}
}
}
return bits;
}
#if CONFIG_LR_MERGE_COEFFS
static int64_t count_wienerns_bits_set(
int plane, const ModeCosts *mode_costs, WienerNonsepInfo *info,
const WienerNonsepInfoBank *bank,
const WienernsFilterParameters *nsfilter_params, int wiener_class_id) {
int64_t total_bits = 0;
int c_id_begin = 0;
int c_id_end = info->num_classes;
if (wiener_class_id != ALL_WIENERNS_CLASSES) {
c_id_begin = wiener_class_id;
c_id_end = wiener_class_id + 1;
}
for (int c_id = c_id_begin; c_id < c_id_end; ++c_id) {
int64_t best_bits = INT64_MAX;
int best_ref = -1;
for (int ref = 0; ref < AOMMAX(1, bank->bank_size_for_class[c_id]); ++ref) {
info->bank_ref_for_class[c_id] = ref;
const int64_t bits = count_wienerns_bits(plane, mode_costs, info, bank,
nsfilter_params, c_id);
if (bits < best_bits) {
best_bits = bits;
best_ref = ref;
}
}
total_bits += best_bits;
info->bank_ref_for_class[c_id] = AOMMAX(0, best_ref);
}
return total_bits;
}
#endif // CONFIG_LR_MERGE_COEFFS
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) > (b) ? (b) : (a))
static int64_t finer_tile_search_wienerns(
RestSearchCtxt *rsc, const RestorationTileLimits *limits,
const AV1PixelRect *tile_rect, RestorationUnitInfo *rui,
const WienernsFilterParameters *nsfilter_params, int ext_search,
const WienerNonsepInfoBank *ref_wienerns_bank, int wiener_class_id) {
assert(rsc->plane == rui->plane);
const MACROBLOCK *const x = rsc->x;
WienerNonsepInfo curr = rui->wienerns_info;
WienerNonsepInfo best = curr;
int c_id_begin = wiener_class_id;
int c_id_end = wiener_class_id + 1;
rui->wiener_class_id_restrict = wiener_class_id;
if (wiener_class_id == ALL_WIENERNS_CLASSES) {
c_id_begin = 0;
c_id_end = rui->wienerns_info.num_classes;
rui->wiener_class_id_restrict = -1;
}
int64_t best_err = calc_finer_tile_search_error(rsc, limits, tile_rect, rui);
#if CONFIG_LR_MERGE_COEFFS
// When wiener_class_id != ALL_WIENERNS_CLASSES we are calculating bits for
// wiener_class_id only since that is the filter we are changing. Should be OK
// since bits for classes outside wiener_class_id are not needed for decisions
// in this fn.
int64_t best_bits = count_wienerns_bits_set(rsc->plane, &x->mode_costs, &curr,
ref_wienerns_bank,
nsfilter_params, wiener_class_id);
#else
int64_t best_bits =
count_wienerns_bits(rsc->plane, &x->mode_costs, &curr, ref_wienerns_bank,
nsfilter_params, wiener_class_id);
#endif // CONFIG_LR_MERGE_COEFFS
double best_cost = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, best_bits >> 4, best_err, rsc->cm->seq_params.bit_depth);
const int beg_feat = 0;
const int end_feat = nsfilter_params->ncoeffs;
const int num_feat = nsfilter_params->ncoeffs;
const int(*wienerns_coeffs)[WIENERNS_COEFCFG_LEN] = nsfilter_params->coeffs;
const int refine_iters = rsc->lpf_sf->wienerns_refine_iters;
for (int c_id = c_id_begin; c_id < c_id_end; ++c_id) {
int16_t *curr_nsfilter = nsfilter_taps(&curr, c_id);
int16_t *rui_wienerns_info_nsfilter =
nsfilter_taps(&rui->wienerns_info, c_id);
// calc_finer_tile_search_error() above sets dst. Update only parts of dst
// relevant to c_id.
rui->wiener_class_id_restrict = c_id;
int src_range = 2;
for (int s = 0; s < refine_iters; ++s) {
int no_improv = 1;
for (int i = beg_feat; i < end_feat; ++i) {
int cmin = MAX(curr_nsfilter[i] - src_range,
wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID]);
int cmax =
MIN(curr_nsfilter[i] + src_range,
wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID] +
(1 << wienerns_coeffs[i - beg_feat][WIENERNS_BIT_ID]));
for (int ci = cmin; ci < cmax; ++ci) {
if (ci == curr_nsfilter[i]) {
continue;
}
rui_wienerns_info_nsfilter[i] = ci;
const int64_t err =
calc_finer_tile_search_error(rsc, limits, tile_rect, rui);
#if CONFIG_LR_MERGE_COEFFS
const int64_t bits = count_wienerns_bits_set(
rsc->plane, &x->mode_costs, &rui->wienerns_info,
ref_wienerns_bank, nsfilter_params, c_id);
#else
const int64_t bits = count_wienerns_bits(
rsc->plane, &x->mode_costs, &rui->wienerns_info,
ref_wienerns_bank, nsfilter_params, c_id);
#endif // CONFIG_LR_MERGE_COEFFS
const double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits >> 4, err, rsc->cm->seq_params.bit_depth);
if (cost < best_cost) {
no_improv = 0;
best_err = err;
best_cost = cost;
copy_nsfilter_taps_for_class(&best, &rui->wienerns_info, c_id);
}
}
copy_nsfilter_taps_for_class(&curr, &best, c_id);
rui_wienerns_info_nsfilter[i] = curr_nsfilter[i];
}
if (no_improv) {
break;
}
copy_nsfilter_taps_for_class(&rui->wienerns_info, &best, c_id);
copy_nsfilter_taps_for_class(&curr, &rui->wienerns_info, c_id);
}
// Re-establish dst.
if (c_id_end - c_id_begin > 1 && rui->wiener_class_id_restrict != -1) {
copy_nsfilter_taps_for_class(&rui->wienerns_info, &best, c_id);
calc_finer_tile_search_error(rsc, limits, tile_rect, rui);
}
}
copy_nsfilter_taps(&rui->wienerns_info, &best);
if (!ext_search) return best_err;
// For UV plane, try reducing filter complexity by forcing cross-plane
// part of filter to be symmetrical
if (rsc->plane > 0) {
for (int c_id = c_id_begin; c_id < c_id_end; ++c_id) {
int16_t *rui_wienerns_info_nsfilter =
nsfilter_taps(&rui->wienerns_info, c_id);
rui->wiener_class_id_restrict = c_id;
if (end_feat > 6) {
for (int i = 6; i < end_feat; i += 2) {
int avg = ROUND_POWER_OF_TWO(
rui_wienerns_info_nsfilter[i] + rui_wienerns_info_nsfilter[i + 1],
1);
rui_wienerns_info_nsfilter[i] = avg;
rui_wienerns_info_nsfilter[i + 1] = avg;
}
const int64_t err =
calc_finer_tile_search_error(rsc, limits, tile_rect, rui);
#if CONFIG_LR_MERGE_COEFFS
const int64_t bits = count_wienerns_bits_set(
rsc->plane, &x->mode_costs, &rui->wienerns_info, ref_wienerns_bank,
nsfilter_params, c_id);
#else
const int64_t bits =
count_wienerns_bits(rsc->plane, &x->mode_costs, &rui->wienerns_info,
ref_wienerns_bank, nsfilter_params, c_id);
#endif // CONFIG_LR_MERGE_COEFFS
const double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits >> 4, err, rsc->cm->seq_params.bit_depth);
if (cost < best_cost) {
best_err = err;
best_cost = cost;
copy_nsfilter_taps_for_class(&best, &rui->wienerns_info, c_id);
} else {
copy_nsfilter_taps_for_class(&rui->wienerns_info, &best, c_id);
}
}
// Re-establish dst.
if (c_id_end - c_id_begin > 1 && rui->wiener_class_id_restrict != -1) {
copy_nsfilter_taps_for_class(&rui->wienerns_info, &best, c_id);
calc_finer_tile_search_error(rsc, limits, tile_rect, rui);
}
}
copy_nsfilter_taps(&rui->wienerns_info, &best);
}
// Try reduced filters by forcing trailing coeffs to 0
assert((end_feat & 1) == 0);
for (int c_id = c_id_begin; c_id < c_id_end; ++c_id) {
int16_t *rui_wienerns_info_nsfilter =
nsfilter_taps(&rui->wienerns_info, c_id);
rui->wiener_class_id_restrict = c_id;
if (end_feat > 6) {
// Check if already reduced
int filter_length_bit = 0;
for (int i = 6; i < end_feat; i++) {
if (rui_wienerns_info_nsfilter[i] != 0) {
filter_length_bit = 1;
}
}
if (filter_length_bit) {
for (int i = 6; i < end_feat; i++) {
rui_wienerns_info_nsfilter[i] = 0;
}
const int64_t err =
calc_finer_tile_search_error(rsc, limits, tile_rect, rui);
#if CONFIG_LR_MERGE_COEFFS
const int64_t bits = count_wienerns_bits_set(
rsc->plane, &x->mode_costs, &rui->wienerns_info, ref_wienerns_bank,
nsfilter_params, c_id);
#else
const int64_t bits =
count_wienerns_bits(rsc->plane, &x->mode_costs, &rui->wienerns_info,
ref_wienerns_bank, nsfilter_params, c_id);
#endif // CONFIG_LR_MERGE_COEFFS
const double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits >> 4, err, rsc->cm->seq_params.bit_depth);
if (cost < best_cost) {
best_err = err;
best_cost = cost;
copy_nsfilter_taps_for_class(&best, &rui->wienerns_info, c_id);
} else {
copy_nsfilter_taps_for_class(&rui->wienerns_info, &best, c_id);
}
}
}
// Re-establish dst.
if (c_id_end - c_id_begin > 1 && rui->wiener_class_id_restrict != -1) {
copy_nsfilter_taps_for_class(&rui->wienerns_info, &best, c_id);
calc_finer_tile_search_error(rsc, limits, tile_rect, rui);
}
}
copy_nsfilter_taps(&rui->wienerns_info, &best);
if (ext_search == 1) return best_err;
const int src_steps[][2] = {
{ 1, -1 }, { -1, 1 }, { 1, 1 }, { -1, -1 }, { 2, 1 }, { 1, 2 },
{ -2, 1 }, { 1, -2 }, { 2, -1 }, { -1, 2 }, { -2, -1 }, { -1, -2 },
};
const int nsrc_steps = sizeof(src_steps) / (2 * sizeof(src_steps[0][0]));
for (int c_id = c_id_begin; c_id < c_id_end; ++c_id) {
int16_t *rui_wienerns_info_nsfilter =
nsfilter_taps(&rui->wienerns_info, c_id);
int16_t *curr_nsfilter = nsfilter_taps(&curr, c_id);
rui->wiener_class_id_restrict = c_id;
for (int s = 0; s < refine_iters; ++s) {
int no_improv = 1;
for (int i = beg_feat + (num_feat & 1); i < end_feat; i += 2) {
int cmin[2] = { wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID],
wienerns_coeffs[i + 1 - beg_feat][WIENERNS_MIN_ID] };
int cmax[2] = {
wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID] +
(1 << wienerns_coeffs[i - beg_feat][WIENERNS_BIT_ID]),
wienerns_coeffs[i + 1 - beg_feat][WIENERNS_MIN_ID] +
(1 << wienerns_coeffs[i + 1 - beg_feat][WIENERNS_BIT_ID])
};
for (int ci = 0; ci < nsrc_steps; ++ci) {
rui_wienerns_info_nsfilter[i] = curr_nsfilter[i] + src_steps[ci][0];
rui_wienerns_info_nsfilter[i + 1] =
curr_nsfilter[i + 1] + src_steps[ci][1];
if (rui_wienerns_info_nsfilter[i] < cmin[0] ||
rui_wienerns_info_nsfilter[i] >= cmax[0] ||
rui_wienerns_info_nsfilter[i + 1] < cmin[1] ||
rui_wienerns_info_nsfilter[i + 1] >= cmax[1]) {
copy_nsfilter_taps_for_class(&rui->wienerns_info, &curr, c_id);
continue;
}
const int64_t err =
calc_finer_tile_search_error(rsc, limits, tile_rect, rui);
#if CONFIG_LR_MERGE_COEFFS
const int64_t bits = count_wienerns_bits_set(
rsc->plane, &x->mode_costs, &rui->wienerns_info,
ref_wienerns_bank, nsfilter_params, c_id);
#else
const int64_t bits = count_wienerns_bits(
rsc->plane, &x->mode_costs, &rui->wienerns_info,
ref_wienerns_bank, nsfilter_params, c_id);
#endif // CONFIG_LR_MERGE_COEFFS
const double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits >> 4, err, rsc->cm->seq_params.bit_depth);
if (cost < best_cost) {
no_improv = 0;
best_err = err;
best_cost = cost;
copy_nsfilter_taps_for_class(&best, &rui->wienerns_info, c_id);
}
}
copy_nsfilter_taps_for_class(&curr, &best, c_id);
rui_wienerns_info_nsfilter[i] = curr_nsfilter[i];
rui_wienerns_info_nsfilter[i + 1] = curr_nsfilter[i + 1];
}
if (no_improv) {
break;
}
copy_nsfilter_taps_for_class(&rui->wienerns_info, &best, c_id);
copy_nsfilter_taps_for_class(&curr, &rui->wienerns_info, c_id);
}
// Re-establish dst.
if (c_id_end - c_id_begin > 1 && rui->wiener_class_id_restrict != -1) {
copy_nsfilter_taps_for_class(&rui->wienerns_info, &best, c_id);
calc_finer_tile_search_error(rsc, limits, tile_rect, rui);
}
}
copy_nsfilter_taps(&rui->wienerns_info, &best);
#if CONFIG_LR_MERGE_COEFFS
(void)count_wienerns_bits_set(rsc->plane, &x->mode_costs, &rui->wienerns_info,
ref_wienerns_bank, nsfilter_params,
wiener_class_id);
#endif // CONFIG_LR_MERGE_COEFFS
return best_err;
}
static int compute_wienerns_filter(
int n, const double *A, int stride, const double *b, double *tmpbuf,
int16_t *nsfilter, const WienernsFilterParameters *nsfilter_params) {
assert(n > 0);
assert(stride > 0);
// Use temporary storage to avoid modifying A and b
double *R = tmpbuf;
double *tmp = tmpbuf + WIENERNS_R_SIZE;
// Set up quantization data
double prec[WIENERNS_MAX] = { 0 };
int32_t min[WIENERNS_MAX] = { 0 };
int32_t max[WIENERNS_MAX] = { 0 };
int32_t scale[WIENERNS_MAX] = { 0 };
assert(n <= nsfilter_params->ncoeffs);
for (int i = 0; i < n; i++) {
int min_val = nsfilter_params->coeffs[i][WIENERNS_MIN_ID];
int range = 1 << nsfilter_params->coeffs[i][WIENERNS_BIT_ID];
prec[i] = (double)(1 << nsfilter_params->nsfilter_config.prec_bits);
min[i] = min_val;
max[i] = min_val + range - 1;
scale[i] = 1;
}
// Solve problem
int32_t x[WIENERNS_MAX];
int ret =
linsolve_spd_quantize(n, A, R, stride, b, tmp, x, prec, min, max, scale);
if (!ret) goto finished;
// Convert results from 32-bit to 16-bit storage
for (int i = 0; i < n; i++) {
nsfilter[i] = x[i];
}
finished:
return ret;
}
static int64_t compute_stats_for_wienerns_filter(
const uint16_t *dgd_hbd, const uint16_t *src_hbd,
const RestorationTileLimits *limits, int dgd_stride, int src_stride,
const RestorationUnitInfo *rui, int bit_depth, double *A, double *b,
const WienernsFilterParameters *nsfilter_params, int num_classes) {
(void)rui;
const uint16_t *luma_hbd = rui->luma;
const int total_dim_A = num_classes * WIENERNS_MAX * WIENERNS_MAX;
const int stride_A = WIENERNS_MAX * WIENERNS_MAX;
const int total_dim_b = num_classes * WIENERNS_MAX;
const int stride_b = WIENERNS_MAX;
int16_t buf[WIENERNS_MAX];
memset(A, 0, sizeof(*A) * total_dim_A);
memset(b, 0, sizeof(*b) * total_dim_b);
const int(*wienerns_config)[3] = nsfilter_params->nsfilter_config.config;
int is_uv = (rui->plane != AOM_PLANE_Y);
const int(*wienerns_config2)[3] =
is_uv ? nsfilter_params->nsfilter_config.config2 : NULL;
const int end_pixel = is_uv ? nsfilter_params->nsfilter_config.num_pixels +
nsfilter_params->nsfilter_config.num_pixels2
: nsfilter_params->nsfilter_config.num_pixels;
const int num_feat = nsfilter_params->ncoeffs;
int64_t real_sse = 0; // for debuggung purposes
for (int c_id = 0; c_id < num_classes; ++c_id) {
for (int i = limits->v_start; i < limits->v_end; ++i) {
for (int j = limits->h_start; j < limits->h_end; ++j) {
int dgd_id = i * dgd_stride + j;
int src_id = i * src_stride + j;
int luma_id = i * rui->luma_stride + j;
memset(buf, 0, sizeof(buf));
for (int k = 0; k < end_pixel; ++k) {
const int cross =
(is_uv && k >= nsfilter_params->nsfilter_config.num_pixels);
if (!cross) {
const int pos = wienerns_config[k][WIENERNS_BUF_POS];
const int r = wienerns_config[k][WIENERNS_ROW_ID];
const int c = wienerns_config[k][WIENERNS_COL_ID];
if (r == 0 && c == 0) {
buf[pos] += 1;
continue;
}
buf[pos] +=
clip_base((int16_t)dgd_hbd[(i + r) * dgd_stride + (j + c)] -
(int16_t)dgd_hbd[dgd_id],
bit_depth);
} else {
const int k2 = k - nsfilter_params->nsfilter_config.num_pixels;
const int pos = wienerns_config2[k2][WIENERNS_BUF_POS];
const int r = wienerns_config2[k2][WIENERNS_ROW_ID];
const int c = wienerns_config2[k2][WIENERNS_COL_ID];
buf[pos] += clip_base(
(int16_t)luma_hbd[(i + r) * rui->luma_stride + (j + c)] -
(int16_t)luma_hbd[luma_id],
bit_depth);
}
}
int16_t y;
y = ((int64_t)src_hbd[src_id] - dgd_hbd[dgd_id]);
for (int k = 0; k < num_feat; ++k) {
for (int l = 0; l <= k; ++l) {
A[k * num_feat + l + c_id * stride_A] +=
(double)buf[k] * (double)buf[l];
}
b[k + c_id * stride_b] += (double)buf[k] * (double)y;
}
real_sse += (int64_t)y * (int64_t)y;
}
}
for (int k = 0; k < num_feat; ++k) {
for (int l = k + 1; l < num_feat; ++l) {
A[k * num_feat + l + c_id * stride_A] =
A[l * num_feat + k + c_id * stride_A];
}
}
}
return real_sse;
}
static int compute_quantized_wienerns_filter(
RestSearchCtxt *rsc, const RestorationTileLimits *limits,
const AV1PixelRect *tile_rect, RestorationUnitInfo *rui, const double *A,
const double *b, int64_t real_sse,
const WienernsFilterParameters *nsfilter_params) {
const int num_classes = rsc->num_filter_classes;
assert(num_classes == rsc->wienerns_bank.filter[0].num_classes);
const int stride_A = WIENERNS_MAX * WIENERNS_MAX;
const int total_dim_b = num_classes * WIENERNS_MAX;
const int stride_b = WIENERNS_MAX;
double solver_x[WIENERNS_MAX_CLASSES * WIENERNS_MAX];
const int num_feat = nsfilter_params->ncoeffs;
int ret = 0;
WienerNonsepInfo best = { 0 };
best.num_classes = num_classes;
double best_cost = DBL_MAX;
assert((num_feat & 1) == 0);
const int reduce_step = num_feat - 6;
const int max_reduce_steps_search = (num_feat > 6) ? reduce_step : 0;
for (int reduce = 0; reduce <= max_reduce_steps_search;
reduce += reduce_step) {
memset(solver_x, 0, sizeof(*solver_x) * total_dim_b);
// Try a filter shape with #parameters num_feat - reduce
int success = 0;
int linsolve_successful = 0;
for (int c_id = 0; c_id < num_classes; ++c_id) {
int16_t *nsfilter = nsfilter_taps(&rui->wienerns_info, c_id);
linsolve_successful = compute_wienerns_filter(
num_feat - reduce, A + c_id * stride_A, num_feat, b + c_id * stride_b,
rsc->wienerns_tmpbuf, nsfilter, nsfilter_params);
if (!linsolve_successful) break;
}
if (num_feat > reduce && linsolve_successful) {
do {
assert(rui->wiener_class_id_restrict == -1);
int64_t real_errq =
calc_finer_tile_search_error(rsc, limits, tile_rect, rui);
// Found filter is worse than no filtering.
if (real_errq > real_sse) break;
#if CONFIG_LR_MERGE_COEFFS
int64_t bits = count_wienerns_bits_set(
rui->plane, &rsc->x->mode_costs, &rui->wienerns_info,
&rsc->wienerns_bank, nsfilter_params, ALL_WIENERNS_CLASSES);
#else
int64_t bits = count_wienerns_bits(
rui->plane, &rsc->x->mode_costs, &rui->wienerns_info,
&rsc->wienerns_bank, nsfilter_params, ALL_WIENERNS_CLASSES);
#endif // CONFIG_LR_MERGE_COEFFS
double cost =
RDCOST_DBL_WITH_NATIVE_BD_DIST(rsc->x->rdmult, bits >> 4, real_errq,
rsc->cm->seq_params.bit_depth);
if (cost < best_cost) {
best_cost = cost;
copy_nsfilter_taps(&best, &rui->wienerns_info);
success = 1;
ret = 1;
} else {
copy_nsfilter_taps(&rui->wienerns_info, &best);
}
} while (0);
if (ret && !success) break;
}
}
if (ret) {
copy_nsfilter_taps(&rui->wienerns_info, &best);
}
return ret;
}
#if CONFIG_LR_MERGE_COEFFS
int get_merge_begin_index(const RestSearchCtxt *rsc,
const WienernsFilterParameters *nsfilter_params,
const WienerNonsepInfo *token_wienerns_info,
Vector *current_unit_stack,
WienerNonsepInfoBank **begin_bank,
int wiener_class_id) {
int begin_idx = -1;
const int last_idx =
((RstUnitSnapshot *)aom_vector_back(current_unit_stack))->rest_unit_idx;
int equal_ref_for_class[WIENERNS_MAX_CLASSES] = { 0 };
VECTOR_FOR_EACH(current_unit_stack, listed_unit) {
RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer);
RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx];
if (old_unit->rest_unit_idx == last_idx) continue;
if (old_rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] ==
RESTORE_WIENER_NONSEP &&
check_wienerns_eq(&old_rusi->wienerns_info, token_wienerns_info,
nsfilter_params->ncoeffs, wiener_class_id)) {
// Same filter as before.
if (check_wienerns_bank_eq(&old_unit->ref_wienerns_bank,
token_wienerns_info, nsfilter_params->ncoeffs,
wiener_class_id, equal_ref_for_class) == -1) {
// Head merge point for this filter.
begin_idx = old_unit->rest_unit_idx;
// Set merge-leader's bank.
*begin_bank = &old_unit->ref_wienerns_bank;
}
}
}
return begin_idx;
}
void populate_current_unit_indices(
const RestSearchCtxt *rsc, const WienernsFilterParameters *nsfilter_params,
const WienerNonsepInfo *token_wienerns_info, int begin_idx_cand,
Vector *current_unit_stack, Vector *current_unit_indices,
int wiener_class_id) {
const int last_idx =
((RstUnitSnapshot *)aom_vector_back(current_unit_stack))->rest_unit_idx;
bool has_begun = false;
VECTOR_FOR_EACH(current_unit_stack, listed_unit) {
RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer);
RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx];
if (old_unit->rest_unit_idx == begin_idx_cand) has_begun = true;
if (!has_begun) continue;
if (old_rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] ==
RESTORE_WIENER_NONSEP &&
old_unit->rest_unit_idx != last_idx &&
!check_wienerns_eq(&old_rusi->wienerns_info, token_wienerns_info,
nsfilter_params->ncoeffs, wiener_class_id))
continue;
int index = old_unit->rest_unit_idx;
aom_vector_push_back(current_unit_indices, &index);
}
}
double set_cand_merge_sse_and_bits(
RestSearchCtxt *rsc, const WienernsFilterParameters *nsfilter_params,
const AV1PixelRect *tile_rect, int begin_idx_cand,
Vector *current_unit_stack, WienerNonsepInfo *token_wienerns_info_cand,
RestorationUnitInfo *rui_merge_cand, int wiener_class_id) {
const int last_idx =
((RstUnitSnapshot *)aom_vector_back(current_unit_stack))->rest_unit_idx;
const int is_uv = (rsc->plane != AOM_PLANE_Y);
const MACROBLOCK *const x = rsc->x;
const int bit_depth = rsc->cm->seq_params.bit_depth;
double cost_merge_cand = 0;
int equal_ref_for_class[WIENERNS_MAX_CLASSES] = { 0 };
rui_merge_cand->wiener_class_id_restrict = wiener_class_id;
bool has_begun = false;
VECTOR_FOR_EACH(current_unit_stack, listed_unit) {
RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer);
RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx];
if (old_unit->rest_unit_idx == begin_idx_cand) has_begun = true;
if (!has_begun) continue;
if (old_rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] ==
RESTORE_WIENER_NONSEP &&
old_unit->rest_unit_idx != last_idx &&
!check_wienerns_eq(&old_rusi->wienerns_info, token_wienerns_info_cand,
nsfilter_params->ncoeffs, wiener_class_id))
continue;
old_unit->merge_sse_cand =
try_restoration_unit(rsc, &old_unit->limits, tile_rect, rui_merge_cand);
// First unit in stack has larger unit_bits because the
// merged coeffs are linked to it.
if (old_unit->rest_unit_idx == begin_idx_cand) {
// The first unit will have a different filter
// (rui_merge_cand->wienerns_info) to signal at wiener_class_id, same
// filters elsewhere.
WienerNonsepInfo tmp_filters = old_rusi->wienerns_info;
copy_nsfilter_taps_for_class(&tmp_filters, &rui_merge_cand->wienerns_info,
wiener_class_id);
const int new_bits = (int)count_wienerns_bits_set(
is_uv, &x->mode_costs, &tmp_filters, &old_unit->ref_wienerns_bank,
nsfilter_params, ALL_WIENERNS_CLASSES);
old_unit->merge_bits_cand =
x->mode_costs.wienerns_restore_cost[1] + new_bits;
} else if (old_unit->rest_unit_idx != last_idx) {
const int is_equal = check_wienerns_bank_eq(
&old_unit->ref_wienerns_bank, token_wienerns_info_cand,
nsfilter_params->ncoeffs, wiener_class_id, equal_ref_for_class);
(void)is_equal;
assert(is_equal >= 0); // Must exist in bank
const int merge_bits = (int)count_wienerns_bits(
is_uv, &x->mode_costs, &old_rusi->wienerns_info,
&old_unit->ref_wienerns_bank, nsfilter_params, ALL_WIENERNS_CLASSES);
assert(merge_bits == count_wienerns_bits_set(
is_uv, &x->mode_costs, &old_rusi->wienerns_info,
&old_unit->ref_wienerns_bank, nsfilter_params,
ALL_WIENERNS_CLASSES));
old_unit->merge_bits_cand =
x->mode_costs.wienerns_restore_cost[1] + merge_bits;
} else {
// This should be the last RU in the chain we are optimizing.
// Old bank is not updated. Use the old value in token_wienerns_info_cand
// to calculate the merge-ref.
const int is_equal = check_wienerns_bank_eq(
&old_unit->ref_wienerns_bank, token_wienerns_info_cand,
nsfilter_params->ncoeffs, wiener_class_id, equal_ref_for_class);
(void)is_equal;
assert(is_equal >= 0); // Must exist in bank
// token_wienerns_info_cand has the best filters for classes <
// wiener_class_id and the token filter at wiener_class_id. Remaining
// filters are the computed RU filters that have not entered the merge
// trial.
token_wienerns_info_cand->bank_ref_for_class[wiener_class_id] =
equal_ref_for_class[wiener_class_id];
// Using count_wienerns_bits_set just in case.
const int merge_bits = (int)count_wienerns_bits_set(
is_uv, &x->mode_costs, token_wienerns_info_cand,
&old_unit->ref_wienerns_bank, nsfilter_params, ALL_WIENERNS_CLASSES);
old_unit->merge_bits_cand =
x->mode_costs.wienerns_restore_cost[1] + merge_bits;
}
cost_merge_cand += RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, old_unit->merge_bits_cand >> 4, old_unit->merge_sse_cand,
bit_depth);
}
return cost_merge_cand;
}
double accumulate_merge_stats(const RestSearchCtxt *rsc,
const WienernsFilterParameters *nsfilter_params,
const WienerNonsepInfo *ref_wienerns_info_cand,
int begin_idx_cand, Vector *current_unit_stack,
Vector *current_unit_indices,
double *solver_A_AVG, double *solver_b_AVG,
int dim_A, int dim_b, int offset_A, int offset_b,
int wiener_class_id) {
(void)current_unit_indices;
const int last_idx =
((RstUnitSnapshot *)aom_vector_back(current_unit_stack))->rest_unit_idx;
const MACROBLOCK *const x = rsc->x;
const int bit_depth = rsc->cm->seq_params.bit_depth;
double cost_nomerge_cand = 0;
bool has_begun = false;
int num_units = 0;
VECTOR_FOR_EACH(current_unit_stack, listed_unit) {
RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer);
RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx];
if (old_unit->rest_unit_idx == begin_idx_cand) has_begun = true;
if (!has_begun) continue;
if (old_unit->rest_unit_idx == last_idx) continue;
if (old_rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] ==
RESTORE_WIENER_NONSEP &&
!check_wienerns_eq(&old_rusi->wienerns_info, ref_wienerns_info_cand,
nsfilter_params->ncoeffs, wiener_class_id))
continue;
cost_nomerge_cand +=
RDCOST_DBL_WITH_NATIVE_BD_DIST(x->rdmult, old_unit->current_bits >> 4,
old_unit->current_sse, bit_depth);
for (int index = 0; index < dim_A; ++index) {
solver_A_AVG[index] += old_unit->A[index + offset_A];
}
for (int index = 0; index < dim_b; ++index) {
solver_b_AVG[index] += old_unit->b[index + offset_b];
}
num_units++;
}
assert(num_units + 1 == (int)current_unit_indices->size);
// Divide A and b by vector size + 1 to get average.
for (int index = 0; index < dim_A; ++index) {
solver_A_AVG[index] = DIVIDE_AND_ROUND(solver_A_AVG[index], num_units + 1);
}
for (int index = 0; index < dim_b; ++index) {
solver_b_AVG[index] = DIVIDE_AND_ROUND(solver_b_AVG[index], num_units + 1);
}
return cost_nomerge_cand;
}
#endif // CONFIG_LR_MERGE_COEFFS
static void gather_stats_wienerns(const RestorationTileLimits *limits,
const AV1PixelRect *tile_rect,
int rest_unit_idx,
int rest_unit_idx_in_rutile, void *priv,
int32_t *tmpbuf,
RestorationLineBuffers *rlbs) {
(void)tmpbuf;
(void)rlbs;
(void)rest_unit_idx_in_rutile;
(void)tile_rect;
RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
RestorationUnitInfo rui;
initialize_rui_for_nonsep_search(rsc, &rui);
rui.restoration_type = RESTORE_WIENER_NONSEP;
const WienernsFilterParameters *nsfilter_params = get_wienerns_parameters(
rsc->cm->quant_params.base_qindex, rsc->plane != AOM_PLANE_Y);
assert(rsc->num_filter_classes == rsc->wienerns_bank.filter[0].num_classes);
// Calculate and save this RU's stats.
RstUnitStats unit_stats;
unit_stats.real_sse = compute_stats_for_wienerns_filter(
rsc->dgd_buffer, rsc->src_buffer, limits, rsc->dgd_stride,
rsc->src_stride, &rui, rsc->cm->seq_params.bit_depth, unit_stats.A,
unit_stats.b, nsfilter_params, rsc->num_stat_classes);
unit_stats.ru_idx = rest_unit_idx;
unit_stats.ru_idx_in_tile = rest_unit_idx_in_rutile - rsc->ru_idx_base;
unit_stats.plane = rsc->plane;
unit_stats.num_stats_classes = rsc->num_stat_classes;
aom_vector_push_back(rsc->wienerns_stats, &unit_stats);
return;
}
static void search_wienerns_visitor(const RestorationTileLimits *limits,
const AV1PixelRect *tile_rect,
int rest_unit_idx,
int rest_unit_idx_in_rutile, void *priv,
int32_t *tmpbuf,
RestorationLineBuffers *rlbs) {
(void)tile_rect;
(void)tmpbuf;
(void)rlbs;
(void)rest_unit_idx_in_rutile;
RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx];
const MACROBLOCK *const x = rsc->x;
const int64_t bits_none = x->mode_costs.wienerns_restore_cost[0];
const int bit_depth = rsc->cm->seq_params.bit_depth;
double cost_none = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits_none >> 4, rusi->sse[RESTORE_NONE], bit_depth);
RestorationUnitInfo rui;
initialize_rui_for_nonsep_search(rsc, &rui);
rui.restoration_type = RESTORE_WIENER_NONSEP;
const WienernsFilterParameters *nsfilter_params = get_wienerns_parameters(
rsc->cm->quant_params.base_qindex, rsc->plane != AOM_PLANE_Y);
const RstUnitStats *unit_stats = (const RstUnitStats *)aom_vector_const_get(
rsc->wienerns_stats, rest_unit_idx_in_rutile);
assert(unit_stats->ru_idx == rest_unit_idx);
assert(unit_stats->ru_idx_in_tile + rsc->ru_idx_base ==
rest_unit_idx_in_rutile);
assert(unit_stats->plane == rsc->plane);
if (!compute_quantized_wienerns_filter(
rsc, limits, &rsc->tile_rect, &rui, unit_stats->A, unit_stats->b,
unit_stats->real_sse, nsfilter_params)) {
rsc->bits += bits_none;
rsc->sse += rusi->sse[RESTORE_NONE];
rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] = RESTORE_NONE;
rusi->sse[RESTORE_WIENER_NONSEP] = INT64_MAX;
return;
}
aom_clear_system_state();
rusi->sse[RESTORE_WIENER_NONSEP] = finer_tile_search_wienerns(
rsc, limits, &rsc->tile_rect, &rui, nsfilter_params, 1,
&rsc->wienerns_bank, ALL_WIENERNS_CLASSES);
rusi->wienerns_info = rui.wienerns_info;
assert(rusi->sse[RESTORE_WIENER_NONSEP] != INT64_MAX);
#if CONFIG_LR_MERGE_COEFFS
const int num_classes = rsc->num_filter_classes;
assert(num_classes == rsc->wienerns_bank.filter[0].num_classes);
if (num_classes > 1) {
rui.wiener_class_id_restrict = -1;
calc_finer_tile_search_error(rsc, limits, &rsc->tile_rect, &rui);
}
double solver_A_AVG[WIENERNS_MAX * WIENERNS_MAX];
const int class_dim_A = WIENERNS_MAX * WIENERNS_MAX;
double solver_b_AVG[WIENERNS_MAX];
const int class_dim_b = WIENERNS_MAX;
int is_uv = (rsc->plane != AOM_PLANE_Y);
Vector *current_unit_stack = rsc->unit_stack;
int64_t bits_nomerge_base =
x->mode_costs.wienerns_restore_cost[1] +
count_wienerns_bits_set(rsc->plane, &x->mode_costs, &rusi->wienerns_info,
&rsc->wienerns_bank, nsfilter_params,
ALL_WIENERNS_CLASSES);
// Only test the reference in rusi->wienerns_info.bank_ref, generated from
// the count call above.
int ns_bank_ref_base[WIENERNS_MAX_CLASSES];
memcpy(ns_bank_ref_base, rusi->wienerns_info.bank_ref_for_class,
num_classes * sizeof(*ns_bank_ref_base));
// Copy the bank_refs to rui.
memcpy(rui.wienerns_info.bank_ref_for_class,
rusi->wienerns_info.bank_ref_for_class,
num_classes * sizeof(*ns_bank_ref_base));
double cost_nomerge_base = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits_nomerge_base >> 4, rusi->sse[RESTORE_WIENER_NONSEP],
bit_depth);
const int bits_min = x->mode_costs.wienerns_restore_cost[1] +
x->mode_costs.merged_param_cost[1] +
(1 << AV1_PROB_COST_SHIFT);
const double cost_min = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits_min >> 4, rusi->sse[RESTORE_WIENER_NONSEP], bit_depth);
const double cost_nomerge_thr = (cost_nomerge_base + 3 * cost_min) / 4;
const RestorationType rtype =
(cost_none <= cost_nomerge_thr) ? RESTORE_NONE : RESTORE_WIENER_NONSEP;
if (cost_none <= cost_nomerge_thr) {
bits_nomerge_base = bits_none;
cost_nomerge_base = cost_none;
}
RstUnitSnapshot unit_snapshot;
memset(&unit_snapshot, 0, sizeof(unit_snapshot));
unit_snapshot.limits = *limits;
unit_snapshot.rest_unit_idx = rest_unit_idx;
unit_snapshot.A = unit_stats->A;
unit_snapshot.b = unit_stats->b;
rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] = rtype;
rsc->sse += rusi->sse[rtype];
rsc->bits += bits_nomerge_base;
unit_snapshot.current_sse = rusi->sse[rtype];
unit_snapshot.current_bits = bits_nomerge_base;
// Only matters for first unit in stack.
unit_snapshot.ref_wienerns_bank = rsc->wienerns_bank;
// If current_unit_stack is empty, we can leave early.
if (aom_vector_is_empty(current_unit_stack)) {
if (rtype == RESTORE_WIENER_NONSEP)
av1_add_to_wienerns_bank(&rsc->wienerns_bank, &rusi->wienerns_info,
ALL_WIENERNS_CLASSES);
aom_vector_push_back(current_unit_stack, &unit_snapshot);
return;
}
// Handles special case where no-merge filter is equal to merged
// filter for the stack - we don't want to perform another merge and
// get a less optimal filter, but we want to continue building the stack.
int equal_ref_for_class[WIENERNS_MAX_CLASSES] = { 0 };
if (rtype == RESTORE_WIENER_NONSEP &&
check_wienerns_bank_eq(&rsc->wienerns_bank, &rusi->wienerns_info,
nsfilter_params->ncoeffs, ALL_WIENERNS_CLASSES,
equal_ref_for_class) >= 0) {
rsc->bits -= bits_nomerge_base;
memcpy(rusi->wienerns_info.bank_ref_for_class, equal_ref_for_class,
rusi->wienerns_info.num_classes * (*equal_ref_for_class));
unit_snapshot.current_bits =
x->mode_costs.wienerns_restore_cost[1] +
count_wienerns_bits_set(is_uv, &x->mode_costs, &rusi->wienerns_info,
&rsc->wienerns_bank, nsfilter_params,
ALL_WIENERNS_CLASSES);
rsc->bits += unit_snapshot.current_bits;
aom_vector_push_back(current_unit_stack, &unit_snapshot);
return;
}
// Push current unit onto stack.
aom_vector_push_back(current_unit_stack, &unit_snapshot);
const int last_idx =
((RstUnitSnapshot *)aom_vector_back(current_unit_stack))->rest_unit_idx;
double cost_merge = DBL_MAX;
double cost_nomerge = 0;
int begin_idx[WIENERNS_MAX_CLASSES];
int bank_ref[WIENERNS_MAX_CLASSES];
// Set rui_merge_best as the current best filters with the best refs.
RestorationUnitInfo rui_merge_best = rui;
// Trial start
int merged_class_count = 0;
for (int c_id = 0; c_id < num_classes; ++c_id) {
bank_ref[c_id] = -1;
begin_idx[c_id] = -1;
for (int bank_ref_cand = 0;
bank_ref_cand <
AOMMAX(1, rsc->wienerns_bank.bank_size_for_class[c_id]);
bank_ref_cand++) {
#if MERGE_DRL_SEARCH_LEVEL == 1
// Only check the best and zero references for the solved filter.
if (bank_ref_cand != 0 && bank_ref_cand != ns_bank_ref_base[c_id])
continue;
#elif MERGE_DRL_SEARCH_LEVEL == 2
// Only check the best reference for the solved filter.
if (bank_ref_cand != ns_bank_ref_base[c_id]) continue;
#else
(void)ns_bank_ref_base;
#endif
// Needed to track the set of merge candidate RUs.
// set_merge_sse_and_bits() uses ALL_WIENERNS_CLASSES to calculate bits.
// Hence initialize with the best filters we have from rui_merge_best but
// use the c_id filter from the bank. The latter is needed to calculate
// merge bits for c_id, the former all other bits.
WienerNonsepInfo token_wienerns_info_cand = rui_merge_best.wienerns_info;
copy_nsfilter_taps_for_class(
&token_wienerns_info_cand,
av1_constref_from_wienerns_bank(&rsc->wienerns_bank, bank_ref_cand,
c_id),
c_id);
token_wienerns_info_cand.bank_ref_for_class[c_id] = bank_ref_cand;
// Keep track of would be merge leader's bank.
WienerNonsepInfoBank *begin_wienerns_bank = NULL;
// Get the begin unit of the run using the candidate taps.
int begin_idx_cand =
get_merge_begin_index(rsc, nsfilter_params, &token_wienerns_info_cand,
current_unit_stack, &begin_wienerns_bank, c_id);
if (begin_idx_cand == -1) continue;
assert(begin_wienerns_bank != NULL);
begin_wienerns_bank = begin_wienerns_bank != NULL ? &rsc->wienerns_bank
: begin_wienerns_bank;
// Populate current_unit_indices with the indices of RUs using this
// filter.
Vector *current_unit_indices = rsc->unit_indices;
aom_vector_clear(current_unit_indices);
populate_current_unit_indices(
rsc, nsfilter_params, &token_wienerns_info_cand, begin_idx_cand,
current_unit_stack, current_unit_indices, c_id);
// Initialize stats.
double cost_nomerge_cand = cost_nomerge_base;
const int offset_A = c_id * class_dim_A;
memcpy(solver_A_AVG, unit_stats->A + offset_A,
class_dim_A * sizeof(*unit_stats->A));
const int offset_b = c_id * class_dim_b;
memcpy(solver_b_AVG, unit_stats->b + offset_b,
class_dim_b * sizeof(*unit_stats->b));
// Get current cost and the average of A and b.
cost_nomerge_cand += accumulate_merge_stats(
rsc, nsfilter_params, &token_wienerns_info_cand, begin_idx_cand,
current_unit_stack, current_unit_indices, solver_A_AVG, solver_b_AVG,
class_dim_A, class_dim_b, offset_A, offset_b, c_id);
// Generate new filter.
RestorationUnitInfo rui_merge_cand = rui_merge_best;
rui_merge_cand.restoration_type = RESTORE_WIENER_NONSEP;
const int num_feat = nsfilter_params->ncoeffs;
int16_t *nsfilter = nsfilter_taps(&rui_merge_cand.wienerns_info, c_id);
int linsolve_successful = compute_wienerns_filter(
num_feat, solver_A_AVG, num_feat, solver_b_AVG, rsc->wienerns_tmpbuf,
nsfilter, nsfilter_params);
if (!linsolve_successful) continue;
aom_clear_system_state();
// After this call rsc will have updated buffers. We will reset below if
// not merging.
finer_tile_search_wienerns(rsc, NULL, &rsc->tile_rect, &rui_merge_cand,
nsfilter_params, 1, begin_wienerns_bank, c_id);
// Iterate through vector to set candidate merge sse and bits on
// current_unit_stack.
const double cost_merge_cand = set_cand_merge_sse_and_bits(
rsc, nsfilter_params, &rsc->tile_rect, begin_idx_cand,
current_unit_stack, &token_wienerns_info_cand, &rui_merge_cand, c_id);
// Find the candidate that brings the largest improvement over touched
// RUs. The best such candidate can still be worse than nomerge.
if (cost_merge_cand - cost_nomerge_cand < cost_merge - cost_nomerge) {
begin_idx[c_id] = begin_idx_cand;
bank_ref[c_id] = bank_ref_cand;
cost_merge = cost_merge_cand;
cost_nomerge = cost_nomerge_cand;
bool has_begun = false;
VECTOR_FOR_EACH(current_unit_stack, listed_unit) {
RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer);
RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx];
if (old_unit->rest_unit_idx == begin_idx_cand) has_begun = true;
if (!has_begun) continue;
if (old_rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] ==
RESTORE_WIENER_NONSEP &&
old_unit->rest_unit_idx != last_idx &&
!check_wienerns_eq(&old_rusi->wienerns_info,
&token_wienerns_info_cand,
nsfilter_params->ncoeffs, c_id))
continue;
old_unit->merge_sse = old_unit->merge_sse_cand;
old_unit->merge_bits = old_unit->merge_bits_cand;
}
if (cost_merge < cost_nomerge) {
// We found a better merge candidate that will be merged. Update best
// filters.
// Keep track of bank_ref_for_class as we will assign rui_merge_best
// to token_wienerns_info_cand which in turn will be used to calculate
// bits in set_cand_merge_sse_and_bits().
rui_merge_cand.wienerns_info.bank_ref_for_class[c_id] = bank_ref_cand;
copy_nsfilter_taps_for_class(&rui_merge_best.wienerns_info,
&rui_merge_cand.wienerns_info, c_id);
}
}
if (num_classes > 1 &&
(begin_idx[c_id] != begin_idx_cand || cost_merge >= cost_nomerge)) {
// We will not be merging this trial even if it is the best cand. Reset
// rsc buffers to the best solution so far. Re-establish dst.
rui_merge_best.wiener_class_id_restrict = c_id;
reset_unit_stack_dst_buffers(rsc, NULL, &rsc->tile_rect,
&rui_merge_best);
}
aom_vector_clear(current_unit_indices);
}
// Trial end
RstUnitSnapshot *last_unit = aom_vector_back(current_unit_stack);
RestUnitSearchInfo *last_rusi = &rsc->rusi[last_unit->rest_unit_idx];
(void)last_rusi;
if (cost_merge < cost_nomerge && begin_idx[c_id] != -1) {
++merged_class_count;
const WienerNonsepInfo *token_wienerns_info =
av1_constref_from_wienerns_bank(&rsc->wienerns_bank, bank_ref[c_id],
c_id);
// Update data within the stack.
bool has_begun = false;
VECTOR_FOR_EACH(current_unit_stack, listed_unit) {
RstUnitSnapshot *old_unit = (RstUnitSnapshot *)(listed_unit.pointer);
RestUnitSearchInfo *old_rusi = &rsc->rusi[old_unit->rest_unit_idx];
if (old_unit->rest_unit_idx == begin_idx[c_id]) has_begun = true;
if (!has_begun) continue;
if (old_rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] ==
RESTORE_WIENER_NONSEP &&
old_unit->rest_unit_idx != last_idx &&
!check_wienerns_eq(&old_rusi->wienerns_info, token_wienerns_info,
nsfilter_params->ncoeffs, c_id))
continue;
if (old_unit->rest_unit_idx != begin_idx[c_id]) {
const int is_equal = check_wienerns_bank_eq(
&old_unit->ref_wienerns_bank, token_wienerns_info,
nsfilter_params->ncoeffs, c_id, equal_ref_for_class);
(void)is_equal;
assert(is_equal >= 0); // Must exist in bank
// Update bank.
av1_upd_to_wienerns_bank(&old_unit->ref_wienerns_bank,
equal_ref_for_class[c_id],
&rui_merge_best.wienerns_info, c_id);
// Copy filter taps.
copy_nsfilter_taps_for_class(&old_rusi->wienerns_info,
&rui_merge_best.wienerns_info, c_id);
// Keep track of bank_ref as copy_nsfilter_taps_for_class updates it.
old_rusi->wienerns_info.bank_ref_for_class[c_id] =
equal_ref_for_class[c_id];
} else {
// Merge leader. Copy filter taps.
copy_nsfilter_taps_for_class(&old_rusi->wienerns_info,
&rui_merge_best.wienerns_info, c_id);
// Keep track of bank_ref as copy_nsfilter_taps_for_class updates it.
count_wienerns_bits_set(
is_uv, &x->mode_costs, &old_rusi->wienerns_info,
&old_unit->ref_wienerns_bank, nsfilter_params, c_id);
}
old_rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] = RESTORE_WIENER_NONSEP;
old_rusi->sse[RESTORE_WIENER_NONSEP] = old_unit->merge_sse;
rsc->sse -= old_unit->current_sse;
rsc->sse += old_unit->merge_sse;
rsc->bits -= old_unit->current_bits;
rsc->bits += old_unit->merge_bits;
old_unit->current_sse = old_unit->merge_sse;
old_unit->current_bits = old_unit->merge_bits;
}
// Above we updated the entire stack. Here we update rsc->wienerns_bank.
const int is_equal = check_wienerns_bank_eq(
&last_unit->ref_wienerns_bank, &rui_merge_best.wienerns_info,
nsfilter_params->ncoeffs, c_id, equal_ref_for_class);
(void)is_equal;
assert(is_equal >= 0); // Must exist in bank
assert(rui_merge_best.wienerns_info.bank_ref_for_class[c_id] ==
equal_ref_for_class[c_id]);
av1_upd_to_wienerns_bank(&rsc->wienerns_bank, equal_ref_for_class[c_id],
&rui_merge_best.wienerns_info, c_id);
} else {
assert(check_wienerns_eq(&last_rusi->wienerns_info,
&rui_merge_best.wienerns_info,
nsfilter_params->ncoeffs, c_id));
// Copy current unit from the top of the stack.
// memset(&unit_snapshot, 0, sizeof(unit_snapshot));
// unit_snapshot = *(RstUnitSnapshot
// *)aom_vector_back(current_unit_stack); RESTORE_WIENER_NONSEP units
// become start of new stack, and RESTORE_NONE units are discarded.
if (rtype == RESTORE_WIENER_NONSEP) {
// We may be merging some c_ids but not this one.
av1_add_to_wienerns_bank(&rsc->wienerns_bank, &rusi->wienerns_info,
c_id);
// aom_vector_clear(current_unit_stack);
// aom_vector_push_back(current_unit_stack, &unit_snapshot);
}
}
}
if (merged_class_count == 0 && rtype != RESTORE_WIENER_NONSEP) {
aom_vector_pop_back(current_unit_stack);
}
#else // CONFIG_LR_MERGE_COEFFS
const int64_t bits_wienerns =
x->mode_costs.wienerns_restore_cost[1] +
count_wienerns_bits(rui.plane, &x->mode_costs, &rusi->wienerns_info,
&rsc->wienerns_bank, nsfilter_params,
ALL_WIENERNS_CLASSES);
double cost_wienerns = RDCOST_DBL_WITH_NATIVE_BD_DIST(
x->rdmult, bits_wienerns >> 4, rusi->sse[RESTORE_WIENER_NONSEP],
bit_depth);
const RestorationType rtype =
(cost_wienerns < cost_none) ? RESTORE_WIENER_NONSEP : RESTORE_NONE;
rusi->best_rtype[RESTORE_WIENER_NONSEP - 1] = rtype;
rsc->sse += rusi->sse[rtype];
rsc->bits += (cost_wienerns < cost_none) ? bits_wienerns : bits_none;
if (cost_wienerns < cost_none)
av1_add_to_wienerns_bank(&rsc->wienerns_bank, &rusi->wienerns_info,
ALL_WIENERNS_CLASSES);
#endif // CONFIG_LR_MERGE_COEFFS
}
#endif // CONFIG_LR_IMPROVEMENTS
static int get_switchable_restore_cost(const AV1_COMMON *const cm,
const MACROBLOCK *const x, int plane,
int rest_type) {
(void)cm;
(void)plane;
#if CONFIG_LR_IMPROVEMENTS
int cost = 0;
for (int re = 0; re <= cm->features.lr_last_switchable_ndx[plane]; re++) {
if (cm->features.lr_tools_disable_mask[plane] & (1 << re)) continue;
const int found = (re == rest_type);
cost += x->mode_costs.switchable_flex_restore_cost[re][plane][found];
if (found) break;
}
return cost;
#else
return x->mode_costs.switchable_restore_cost[rest_type];
#endif // CONFIG_LR_IMPROVEMENTS
}
static int64_t count_switchable_bits(int rest_type, RestSearchCtxt *rsc,
RestUnitSearchInfo *rusi) {
const MACROBLOCK *const x = rsc->x;
#if CONFIG_LR_IMPROVEMENTS
const WienernsFilterParameters *nsfilter_params = get_wienerns_parameters(
rsc->cm->quant_params.base_qindex, rsc->plane != AOM_PLANE_Y);
#endif // CONFIG_LR_IMPROVEMENTS
const int wiener_win =
(rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA;
if (rest_type > RESTORE_NONE) {
if (rusi->best_rtype[rest_type - 1] == RESTORE_NONE)
rest_type = RESTORE_NONE;
}
int64_t coeff_bits = 0;
switch (rest_type) {
case RESTORE_NONE: coeff_bits = 0; break;
case RESTORE_WIENER:
#if CONFIG_LR_MERGE_COEFFS
coeff_bits = count_wiener_bits_set(wiener_win, &x->mode_costs,
&rusi->wiener_info, &rsc->wiener_bank);
#else
coeff_bits = count_wiener_bits(wiener_win, &x->mode_costs,
&rusi->wiener_info, &rsc->wiener_bank);
#endif // CONFIG_LR_MERGE_COEFFS
break;
case RESTORE_SGRPROJ:
#if CONFIG_LR_MERGE_COEFFS
coeff_bits = count_sgrproj_bits_set(&x->mode_costs, &rusi->sgrproj_info,
&rsc->sgrproj_bank);
#else
coeff_bits = count_sgrproj_bits(&x->mode_costs, &rusi->sgrproj_info,
&rsc->sgrproj_bank);
#endif // CONFIG_LR_MERGE_COEFFS
break;
#if CONFIG_LR_IMPROVEMENTS
case RESTORE_PC_WIENER:
// No side-information for now.
coeff_bits = 0;
break;
case RESTORE_WIENER_NONSEP:
#if CONFIG_LR_MERGE_COEFFS
coeff_bits = count_wienerns_bits_set(
rsc->plane, &x->mode_costs, &rusi->wienerns_info, &rsc->wienerns_bank,
nsfilter_params, ALL_WIENERNS_CLASSES);
#else
coeff_bits = count_wienerns_bits(
rsc->plane, &x->mode_costs, &rusi->wienerns_info, &rsc->wienerns_bank,
nsfilter_params, ALL_WIENERNS_CLASSES);
#endif // CONFIG_LR_MERGE_COEFFS
break;
#endif // CONFIG_LR_IMPROVEMENTS
default: assert(0); break;
}
const int64_t bits =
get_switchable_restore_cost(rsc->cm, x, rsc->plane, rest_type) +
coeff_bits;
return bits;
}
static void search_switchable_visitor(const RestorationTileLimits *limits,
const AV1PixelRect *tile_rect,
int rest_unit_idx, int rest_unit_idx_seq,
void *priv, int32_t *tmpbuf,
RestorationLineBuffers *rlbs) {
(void)limits;
(void)tile_rect;
(void)tmpbuf;
(void)rlbs;
(void)rest_unit_idx_seq;
RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx];
const MACROBLOCK *const x = rsc->x;
double best_cost = 0;
int64_t best_bits = 0;
RestorationType best_rtype = RESTORE_NONE;
for (RestorationType r = 0; r < RESTORE_SWITCHABLE_TYPES; ++r) {
// Check for the condition that wiener or sgrproj search could not
// find a solution or the solution was worse than RESTORE_NONE.
// In either case the best_rtype will be set as RESTORE_NONE. These
// should be skipped from the test below.
if (r > RESTORE_NONE) {
if (rusi->best_rtype[r - 1] == RESTORE_NONE) continue;
}
#if CONFIG_LR_IMPROVEMENTS
if (rsc->cm->features.lr_tools_disable_mask[rsc->plane] & (1 << r))
continue;
if (rsc->plane != AOM_PLANE_Y && r == RESTORE_PC_WIENER) continue;
#endif // CONFIG_LR_IMPROVEMENTS
const int64_t sse = rusi->sse[r];
int64_t bits = count_switchable_bits(r, rsc, rusi);
double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST(x->rdmult, bits >> 4, sse,
rsc->cm->seq_params.bit_depth);
if (r == RESTORE_SGRPROJ && rusi->sgrproj_info.ep < 10)
cost *= (1 + DUAL_SGR_PENALTY_MULT * rsc->lpf_sf->dual_sgr_penalty_level);
if (r == 0 || cost < best_cost) {
best_cost = cost;
best_bits = bits;
best_rtype = r;
}
}
rusi->best_rtype[RESTORE_SWITCHABLE - 1] = best_rtype;
rsc->sse += rusi->sse[best_rtype];
rsc->bits += best_bits;
if (best_rtype == RESTORE_WIENER) {
#if CONFIG_LR_MERGE_COEFFS
const int equal_ref =
check_wiener_bank_eq(&rsc->wiener_bank, &rusi->wiener_info);
if (equal_ref == -1 || rsc->wiener_bank.bank_size == 0)
av1_add_to_wiener_bank(&rsc->wiener_bank, &rusi->wiener_info);
#else
av1_add_to_wiener_bank(&rsc->wiener_bank, &rusi->wiener_info);
#endif // CONFIG_LR_MERGE_COEFFS
} else if (best_rtype == RESTORE_SGRPROJ) {
#if CONFIG_LR_MERGE_COEFFS
const int equal_ref =
check_sgrproj_bank_eq(&rsc->sgrproj_bank, &rusi->sgrproj_info);
if (equal_ref == -1 || rsc->sgrproj_bank.bank_size == 0)
av1_add_to_sgrproj_bank(&rsc->sgrproj_bank, &rusi->sgrproj_info);
#else
av1_add_to_sgrproj_bank(&rsc->sgrproj_bank, &rusi->sgrproj_info);
#endif // CONFIG_LR_MERGE_COEFFS
#if CONFIG_LR_IMPROVEMENTS
} else if (best_rtype == RESTORE_PC_WIENER) {
// No side-information for now.
} else if (best_rtype == RESTORE_WIENER_NONSEP) {
#if CONFIG_LR_MERGE_COEFFS
const WienernsFilterParameters *nsfilter_params = get_wienerns_parameters(
rsc->cm->quant_params.base_qindex, rsc->plane != AOM_PLANE_Y);
int equal_ref_for_class[WIENERNS_MAX_CLASSES] = { 0 };
for (int c_id = 0; c_id < rusi->wienerns_info.num_classes; ++c_id) {
const int is_equal = check_wienerns_bank_eq(
&rsc->wienerns_bank, &rusi->wienerns_info, nsfilter_params->ncoeffs,
c_id, equal_ref_for_class);
if (is_equal == -1) {
av1_add_to_wienerns_bank(&rsc->wienerns_bank, &rusi->wienerns_info,
c_id);
}
}
#else
av1_add_to_wienerns_bank(&rsc->wienerns_bank, &rusi->wienerns_info,
ALL_WIENERNS_CLASSES);
#endif // CONFIG_LR_MERGE_COEFFS
#endif // CONFIG_LR_IMPROVEMENTS
}
}
static void adjust_frame_rtype(RestorationInfo *rsi, int plane_ntiles,
RestSearchCtxt *rsc, const ToolCfg *tool_cfg) {
(void)rsc;
(void)tool_cfg;
#if CONFIG_LR_IMPROVEMENTS
rsi->sw_lr_tools_disable_mask = 0;
uint8_t sw_lr_tools_disable_mask = 0;
#endif // CONFIG_LR_IMPROVEMENTS
if (rsi->frame_restoration_type == RESTORE_NONE) return;
int tool_count[RESTORE_SWITCHABLE_TYPES] = { 0 };
for (int u = 0; u < plane_ntiles; ++u) {
RestorationType rt = rsi->unit_info[u].restoration_type;
tool_count[rt]++;
}
int ntools = 0;
RestorationType rused = RESTORE_NONE;
for (int j = 1; j < RESTORE_SWITCHABLE_TYPES; ++j) {
if (tool_count[j] > 0) {
ntools++;
rused = j;
#if CONFIG_LR_IMPROVEMENTS
assert((rsc->cm->features.lr_tools_disable_mask[rsc->plane] & (1 << j)) ==
0);
} else {
sw_lr_tools_disable_mask |= (1 << j);
#else
assert(IMPLIES(j == RESTORE_WIENER, tool_cfg->enable_wiener));
assert(IMPLIES(j == RESTORE_SGRPROJ, tool_cfg->enable_sgrproj));
#endif // CONFIG_LR_IMPROVEMENTS
}
}
rsi->frame_restoration_type = ntools < 2 ? rused : RESTORE_SWITCHABLE;
#if CONFIG_LR_IMPROVEMENTS
rsi->num_filter_classes = rsc->num_filter_classes;
if (rsi->frame_restoration_type == RESTORE_SWITCHABLE &&
rsc->cm->features.lr_tools_count[rsc->plane] > 2) {
rsi->sw_lr_tools_disable_mask = sw_lr_tools_disable_mask;
}
#endif // CONFIG_LR_IMPROVEMENTS
return;
}
static AOM_INLINE void copy_unit_info(RestorationType frame_rtype,
const RestUnitSearchInfo *rusi,
RestorationUnitInfo *rui,
RestSearchCtxt *rsc) {
#if CONFIG_LR_MERGE_COEFFS
const ModeCosts *mode_costs = &rsc->x->mode_costs;
#else
(void)rsc;
#endif // CONFIG_LR_MERGE_COEFFS
assert(frame_rtype > 0);
rui->restoration_type = frame_rtype == RESTORE_NONE
? RESTORE_NONE
: rusi->best_rtype[frame_rtype - 1];
if (rui->restoration_type == RESTORE_WIENER) {
rui->wiener_info = rusi->wiener_info;
#if CONFIG_LR_MERGE_COEFFS
const int wiener_win =
(rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA;
const int equal_ref =
check_wiener_bank_eq(&rsc->wiener_bank, &rui->wiener_info);
if (equal_ref >= 0) {
rui->wiener_info.bank_ref = equal_ref;
if (rsc->wiener_bank.bank_size == 0)
av1_add_to_wiener_bank(&rsc->wiener_bank, &rui->wiener_info);
} else {
count_wiener_bits_set(wiener_win, mode_costs, &rui->wiener_info,
&rsc->wiener_bank);
av1_add_to_wiener_bank(&rsc->wiener_bank, &rui->wiener_info);
}
#endif // CONFIG_LR_MERGE_COEFFS
} else if (rui->restoration_type == RESTORE_SGRPROJ) {
rui->sgrproj_info = rusi->sgrproj_info;
#if CONFIG_LR_MERGE_COEFFS
const int equal_ref =
check_sgrproj_bank_eq(&rsc->sgrproj_bank, &rui->sgrproj_info);
if (equal_ref >= 0) {
rui->sgrproj_info.bank_ref = equal_ref;
if (rsc->sgrproj_bank.bank_size == 0)
av1_add_to_sgrproj_bank(&rsc->sgrproj_bank, &rui->sgrproj_info);
} else {
count_sgrproj_bits_set(mode_costs, &rui->sgrproj_info,
&rsc->sgrproj_bank);
av1_add_to_sgrproj_bank(&rsc->sgrproj_bank, &rui->sgrproj_info);
}
#endif // CONFIG_LR_MERGE_COEFFS
#if CONFIG_LR_IMPROVEMENTS
} else if (rui->restoration_type == RESTORE_PC_WIENER) {
// No side-information for now.
} else if (rui->restoration_type == RESTORE_WIENER_NONSEP) {
rui->wienerns_info = rusi->wienerns_info;
#if CONFIG_LR_MERGE_COEFFS
const WienernsFilterParameters *nsfilter_params = get_wienerns_parameters(
rsc->cm->quant_params.base_qindex, rsc->plane != AOM_PLANE_Y);
int equal_ref_for_class[WIENERNS_MAX_CLASSES] = { 0 };
count_wienerns_bits_set(rsc->plane, mode_costs, &rui->wienerns_info,
&rsc->wienerns_bank, nsfilter_params,
ALL_WIENERNS_CLASSES);
for (int c_id = 0; c_id < rui->wienerns_info.num_classes; ++c_id) {
const int is_equal = check_wienerns_bank_eq(
&rsc->wienerns_bank, &rui->wienerns_info, nsfilter_params->ncoeffs,
c_id, equal_ref_for_class);
if (is_equal == -1) {
av1_add_to_wienerns_bank(&rsc->wienerns_bank, &rui->wienerns_info,
c_id);
}
}
#endif // CONFIG_LR_MERGE_COEFFS
#endif // CONFIG_LR_IMPROVEMENTS
}
}
// Calls visitor function fun() for one specific RU in frame
// Note that RU-tiles are different from coded tiles since the RU sizes can be
// different from Sb sizes and also because there could be super-resolution.
// A RU-tile is a rectangle in the upsampled domain that includes all RUs
// that are signaled for the SBs in a given tile in the coded domain.
// This function processes the vistor function fun() for all RUs within
// the Ru-tile in the order in which they are signaled in the bit-stream.
static void process_one_rutile(RestSearchCtxt *rsc, int tile_row, int tile_col,
int *processed, rest_unit_visitor_t fun) {
const int is_uv = rsc->plane > 0;
const int ss_y = is_uv && rsc->cm->seq_params.subsampling_y;
const RestorationInfo *rsi = &rsc->cm->rst_info[rsc->plane];
const int ru_size = rsi->restoration_unit_size;
TileInfo tile_info;
av1_tile_set_row(&tile_info, rsc->cm, tile_row);
av1_tile_set_col(&tile_info, rsc->cm, tile_col);
assert(tile_info.mi_row_start < tile_info.mi_row_end);
assert(tile_info.mi_col_start < tile_info.mi_col_end);
reset_rsc(rsc);
rsc_on_tile(rsc, *processed);
for (int mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end;
mi_row += rsc->cm->mib_size) {
for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end;
mi_col += rsc->cm->mib_size) {
int rrow0, rrow1, rcol0, rcol1;
if (av1_loop_restoration_corners_in_sb(rsc->cm, rsc->plane, mi_row,
mi_col, rsc->cm->sb_size, &rcol0,
&rcol1, &rrow0, &rrow1)) {
// RU domain rectangle for the coded SB
AV1PixelRect ru_sb_rect = av1_get_rutile_rect(
rsc->cm, is_uv, rrow0, rrow1, rcol0, rcol1, ru_size, ru_size);
const int unit_idx0 = rrow0 * rsi->horz_units_per_tile + rcol0;
av1_foreach_rest_unit_in_sb(&ru_sb_rect, unit_idx0, rcol1 - rcol0,
rrow1 - rrow0, rsi->horz_units_per_tile,
ru_size, ss_y, rsc->plane, fun, rsc,
rsc->cm->rst_tmpbuf, NULL, processed);
}
}
}
}
// Calls visitor function fun() for all RUs in frame in RUtile-by-RUtile order
static void process_by_rutile(RestSearchCtxt *rsc, rest_unit_visitor_t fun) {
int processed = 0;
for (int tile_row = 0; tile_row < rsc->cm->tiles.rows; tile_row++) {
for (int tile_col = 0; tile_col < rsc->cm->tiles.cols; tile_col++) {
process_one_rutile(rsc, tile_row, tile_col, &processed, fun);
}
}
}
// Calls visitor function fun() for all RUs in frame in RUtile-by-RUtile order,
// aggregates the bits and sse returned in rsc for each RUtile, and returns
// the overall RD cost for the frame over all RUs in all RUtiles.
static double process_rd_by_rutile(RestSearchCtxt *rsc,
rest_unit_visitor_t fun) {
int processed = 0;
int64_t total_bits = 0;
int64_t total_sse = 0;
for (int tile_row = 0; tile_row < rsc->cm->tiles.rows; tile_row++) {
for (int tile_col = 0; tile_col < rsc->cm->tiles.cols; tile_col++) {
process_one_rutile(rsc, tile_row, tile_col, &processed, fun);
total_bits += rsc->bits;
total_sse += rsc->sse;
}
}
return RDCOST_DBL_WITH_NATIVE_BD_DIST(rsc->x->rdmult, total_bits >> 4,
total_sse,
rsc->cm->seq_params.bit_depth);
}
#if CONFIG_LR_IMPROVEMENTS
static void gather_stats_rest_type(RestSearchCtxt *rsc, RestorationType rtype) {
static const rest_unit_visitor_t funs[RESTORE_TYPES] = {
NULL, NULL, NULL, NULL, gather_stats_wienerns, NULL
};
if (rtype == RESTORE_WIENER_NONSEP) aom_vector_clear(rsc->wienerns_stats);
if (funs[rtype]) process_by_rutile(rsc, funs[rtype]);
}
#endif // CONFIG_LR_IMPROVEMENTS
static double search_rest_type(RestSearchCtxt *rsc, RestorationType rtype) {
static const rest_unit_visitor_t funs[RESTORE_TYPES] = {
search_norestore_visitor,
search_wiener_visitor,
search_sgrproj_visitor,
#if CONFIG_LR_IMPROVEMENTS
search_pc_wiener_visitor,
search_wienerns_visitor,
#endif // CONFIG_LR_IMPROVEMENTS
search_switchable_visitor
};
if (funs[rtype])
return process_rd_by_rutile(rsc, funs[rtype]);
else
return DBL_MAX;
}
static void copy_unit_info_visitor(const RestorationTileLimits *limits,
const AV1PixelRect *tile_rect,
int rest_unit_idx, int rest_unit_idx_seq,
void *priv, int32_t *tmpbuf,
RestorationLineBuffers *rlbs) {
(void)limits;
(void)tile_rect;
(void)rest_unit_idx_seq;
(void)tmpbuf;
(void)rlbs;
RestSearchCtxt *rsc = (RestSearchCtxt *)priv;
const RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx];
const RestorationInfo *rsi = &rsc->cm->rst_info[rsc->plane];
copy_unit_info(rsi->frame_restoration_type, rusi,
&rsi->unit_info[rest_unit_idx], rsc);
}
static void finalize_frame_and_unit_info(RestorationType frame_rtype,
RestorationInfo *rsi,
RestSearchCtxt *rsc) {
rsi->frame_restoration_type = frame_rtype;
if (frame_rtype != RESTORE_NONE) {
process_by_rutile(rsc, copy_unit_info_visitor);
}
}
static int rest_tiles_in_plane(const AV1_COMMON *cm, int plane) {
const RestorationInfo *rsi = &cm->rst_info[plane];
return rsi->units_per_tile;
}
#if CONFIG_LR_IMPROVEMENTS
// Set the value of number of units, for a given unit size.
void av1_reset_restoration_struct(AV1_COMMON *cm, RestorationInfo *rsi,
int is_uv) {
const AV1PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv);
const int max_tile_w = tile_rect.right - tile_rect.left;
const int max_tile_h = tile_rect.bottom - tile_rect.top;
// To calculate hpertile and vpertile (horizontal and vertical units per
// tile), we basically want to divide the largest tile width or height by the
// size of a restoration unit. Rather than rounding up unconditionally as you
// might expect, we round to nearest, which models the way a right or bottom
// restoration unit can extend to up to 150% its normal width or height. The
// max with 1 is to deal with tiles that are smaller than half of a
// restoration unit.
const int unit_size = rsi->restoration_unit_size;
const int hpertile = av1_lr_count_units_in_tile(unit_size, max_tile_w);
const int vpertile = av1_lr_count_units_in_tile(unit_size, max_tile_h);
rsi->units_per_tile = hpertile * vpertile;
rsi->horz_units_per_tile = hpertile;
rsi->vert_units_per_tile = vpertile;
}
#endif // CONFIG_LR_IMPROVEMENTS
void av1_pick_filter_restoration(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->td.mb;
const int num_planes = av1_num_planes(cm);
assert(!cm->features.all_lossless);
av1_fill_lr_rates(&x->mode_costs, x->e_mbd.tile_ctx);
int ntiles[2];
for (int is_uv = 0; is_uv < 2; ++is_uv)
ntiles[is_uv] = rest_tiles_in_plane(cm, is_uv);
assert(ntiles[1] <= ntiles[0]);
RestUnitSearchInfo *rusi =
(RestUnitSearchInfo *)aom_memalign(16, sizeof(*rusi) * ntiles[0]);
// If the restoration unit dimensions are not multiples of
// rsi->restoration_unit_size then some elements of the rusi array may be
// left uninitialised when we reach copy_unit_info(...). This is not a
// problem, as these elements are ignored later, but in order to quiet
// Valgrind's warnings we initialise the array below.
memset(rusi, 0, sizeof(*rusi) * ntiles[0]);
x->rdmult = cpi->rd.RDMULT;
#if CONFIG_LR_MERGE_COEFFS
Vector unit_stack;
aom_vector_setup(&unit_stack,
1, // resizable capacity
sizeof(struct RstUnitSnapshot)); // element size
Vector unit_indices;
aom_vector_setup(&unit_indices,
1, // resizable capacity
sizeof(int)); // element size
#endif // CONFIG_LR_MERGE_COEFFS
RestSearchCtxt rsc;
const int plane_start = AOM_PLANE_Y;
const int plane_end = num_planes > 1 ? AOM_PLANE_V : AOM_PLANE_Y;
#if CONFIG_LR_IMPROVEMENTS
Vector wienerns_stats;
aom_vector_setup(&wienerns_stats,
1, // resizable capacity
sizeof(struct RstUnitStats)); // element size
rsc.wienerns_stats = &wienerns_stats;
uint16_t *luma = NULL;
uint16_t *luma_buf;
const YV12_BUFFER_CONFIG *dgd = &cpi->common.cur_frame->buf;
rsc.luma_stride = dgd->crop_widths[1] + 2 * WIENERNS_UV_BRD;
luma_buf = wienerns_copy_luma_highbd(
dgd->buffers[AOM_PLANE_Y], dgd->crop_heights[AOM_PLANE_Y],
dgd->crop_widths[AOM_PLANE_Y], dgd->strides[AOM_PLANE_Y], &luma,
dgd->crop_heights[1], dgd->crop_widths[1], WIENERNS_UV_BRD,
rsc.luma_stride, cm->seq_params.bit_depth
#if WIENERNS_CROSS_FILT_LUMA_TYPE == 2
,
#if CONFIG_IMPROVED_DS_CC_WIENER
cm->seq_params.enable_cfl_ds_filter
#else
cm->seq_params.enable_cfl_ds_filter == 1
#endif // CONFIG_IMPROVED_DS_CC_WIENER
#endif
);
assert(luma_buf != NULL);
rsc.luma = luma;
rsc.wienerns_tmpbuf =
(double *)aom_malloc(WIENERNS_TMPBUF_SIZE * sizeof(*rsc.wienerns_tmpbuf));
#endif // CONFIG_LR_IMPROVEMENTS
for (int plane = plane_start; plane <= plane_end; ++plane) {
init_rsc(src, &cpi->common, x, &cpi->sf.lpf_sf, plane, rusi,
#if CONFIG_LR_MERGE_COEFFS
&unit_stack, &unit_indices,
#endif // CONFIG_LR_MERGE_COEFFS
&cpi->trial_frame_rst, &rsc);
const int plane_ntiles = ntiles[plane > 0];
const RestorationType num_rtypes =
(plane_ntiles > 1) ? RESTORE_TYPES : RESTORE_SWITCHABLE_TYPES;
#if CONFIG_LR_IMPROVEMENTS
double best_cost = DBL_MAX;
#else
double best_cost = 0;
#endif // CONFIG_LR_IMPROVEMENTS
RestorationType best_rtype = RESTORE_NONE;
#if CONFIG_LR_IMPROVEMENTS
RestorationInfo *rsi = &cm->rst_info[plane];
const int max_unit_size = rsi->max_restoration_unit_size;
const int min_unit_size = rsi->min_restoration_unit_size;
int best_unit_size = min_unit_size;
for (int unit_size = min_unit_size; unit_size <= max_unit_size;
unit_size <<= 1) {
if (plane == 2 && unit_size != cm->rst_info[1].restoration_unit_size) {
continue;
}
aom_vector_clear(&wienerns_stats);
rsi->restoration_unit_size = unit_size;
av1_reset_restoration_struct(cm, rsi, plane > 0);
#endif // CONFIG_LR_IMPROVEMENTS
if (!cpi->sf.lpf_sf.disable_loop_restoration_chroma || !plane) {
av1_extend_frame(rsc.dgd_buffer, rsc.plane_width, rsc.plane_height,
rsc.dgd_stride, RESTORATION_BORDER,
RESTORATION_BORDER);
for (RestorationType r = 0; r < num_rtypes; ++r) {
#if CONFIG_LR_IMPROVEMENTS
if (cpi->common.features.lr_tools_disable_mask[plane > 0] & (1 << r))
continue;
if (plane != AOM_PLANE_Y && r == RESTORE_PC_WIENER) continue;
gather_stats_rest_type(&rsc, r);
if (r == RESTORE_WIENER_NONSEP) {
rsc.num_filter_classes = rsc.plane == AOM_PLANE_Y
? NUM_WIENERNS_CLASS_INIT_LUMA
: NUM_WIENERNS_CLASS_INIT_CHROMA;
}
#else
const ToolCfg *const tool_cfg = &cpi->oxcf.tool_cfg;
switch (r) {
case RESTORE_WIENER:
if (!tool_cfg->enable_wiener) continue;
break;
case RESTORE_SGRPROJ:
if (!tool_cfg->enable_sgrproj) continue;
break;
default: break;
};
#endif // CONFIG_LR_IMPROVEMENTS
double cost = search_rest_type(&rsc, r);
#if CONFIG_LR_IMPROVEMENTS
if (cost < best_cost) {
best_cost = cost;
best_rtype = r;
best_unit_size = unit_size;
}
#else
if (r == 0 || cost < best_cost) {
best_cost = cost;
best_rtype = r;
}
#endif // CONFIG_LR_IMPROVEMENTS
}
}
#if CONFIG_LR_IMPROVEMENTS
if (rsi->restoration_unit_size == min_unit_size ||
best_unit_size == rsi->restoration_unit_size) {
#endif // CONFIG_LR_IMPROVEMENTS
finalize_frame_and_unit_info(best_rtype, &cm->rst_info[plane], &rsc);
#if CONFIG_LR_IMPROVEMENTS
}
}
assert(IMPLIES(
cm->features.lr_tools_count[plane] < 2,
cm->rst_info[plane].frame_restoration_type != RESTORE_SWITCHABLE));
rsi->restoration_unit_size = best_unit_size;
av1_reset_restoration_struct(cm, rsi, plane > 0);
int ru_num = rest_tiles_in_plane(cm, plane > 0);
adjust_frame_rtype(&cm->rst_info[plane], ru_num, &rsc, &cpi->oxcf.tool_cfg);
#else
adjust_frame_rtype(&cm->rst_info[plane], plane_ntiles, &rsc,
&cpi->oxcf.tool_cfg);
#endif // CONFIG_LR_IMPROVEMENTS
}
aom_free(rusi);
#if CONFIG_LR_IMPROVEMENTS
free(luma_buf);
aom_free(rsc.wienerns_tmpbuf);
aom_vector_destroy(&wienerns_stats);
#endif // CONFIG_LR_IMPROVEMENTS
#if CONFIG_LR_MERGE_COEFFS
aom_vector_destroy(&unit_stack);
aom_vector_destroy(&unit_indices);
#endif // CONFIG_LR_MERGE_COEFFS
}