| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #ifndef AV1_COMMON_RECONINTER_H_ |
| #define AV1_COMMON_RECONINTER_H_ |
| |
| #include "av1/common/filter.h" |
| #include "av1/common/onyxc_int.h" |
| #include "av1/common/av1_convolve.h" |
| #include "aom/aom_integer.h" |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| static INLINE void inter_predictor(const uint8_t *src, int src_stride, |
| uint8_t *dst, int dst_stride, |
| const int subpel_x, const int subpel_y, |
| const struct scale_factors *sf, int w, int h, |
| int ref_idx, |
| #if CONFIG_DUAL_FILTER |
| const InterpFilter *interp_filter, |
| #else |
| const InterpFilter interp_filter, |
| #endif |
| int xs, int ys) { |
| #if CONFIG_DUAL_FILTER |
| InterpFilterParams interp_filter_params_x = |
| av1_get_interp_filter_params(interp_filter[1 + 2 * ref_idx]); |
| InterpFilterParams interp_filter_params_y = |
| av1_get_interp_filter_params(interp_filter[0 + 2 * ref_idx]); |
| #else |
| InterpFilterParams interp_filter_params = |
| av1_get_interp_filter_params(interp_filter); |
| #endif |
| |
| #if CONFIG_DUAL_FILTER |
| if (interp_filter_params_x.taps == SUBPEL_TAPS && |
| interp_filter_params_y.taps == SUBPEL_TAPS && w > 2 && h > 2) { |
| const int16_t *kernel_x = |
| av1_get_interp_filter_subpel_kernel(interp_filter_params_x, subpel_x); |
| const int16_t *kernel_y = |
| av1_get_interp_filter_subpel_kernel(interp_filter_params_y, subpel_y); |
| #else |
| if (interp_filter_params.taps == SUBPEL_TAPS) { |
| const int16_t *kernel_x = |
| av1_get_interp_filter_subpel_kernel(interp_filter_params, subpel_x); |
| const int16_t *kernel_y = |
| av1_get_interp_filter_subpel_kernel(interp_filter_params, subpel_y); |
| #endif |
| #if CONFIG_EXT_INTERP && SUPPORT_NONINTERPOLATING_FILTERS |
| if (IsInterpolatingFilter(interp_filter)) { |
| // Interpolating filter |
| sf->predict[subpel_x != 0][subpel_y != 0][ref]( |
| src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h); |
| } else { |
| sf->predict_ni[subpel_x != 0][subpel_y != 0][ref]( |
| src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h); |
| } |
| #else |
| sf->predict[subpel_x != 0][subpel_y != 0][ref_idx]( |
| src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h); |
| #endif // CONFIG_EXT_INTERP && SUPPORT_NONINTERPOLATING_FILTERS |
| } else { |
| // ref_idx > 0 means this is the second reference frame |
| // first reference frame's prediction result is already in dst |
| // therefore we need to average the first and second results |
| av1_convolve(src, src_stride, dst, dst_stride, w, h, interp_filter, |
| subpel_x, xs, subpel_y, ys, ref_idx); |
| } |
| } |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| static INLINE void highbd_inter_predictor(const uint8_t *src, int src_stride, |
| uint8_t *dst, int dst_stride, |
| const int subpel_x, |
| const int subpel_y, |
| const struct scale_factors *sf, int w, |
| int h, int ref, |
| #if CONFIG_DUAL_FILTER |
| const InterpFilter *interp_filter, |
| #else |
| const InterpFilter interp_filter, |
| #endif |
| int xs, int ys, int bd) { |
| #if CONFIG_DUAL_FILTER |
| InterpFilterParams interp_filter_params_x = |
| av1_get_interp_filter_params(interp_filter[1 + 2 * ref]); |
| InterpFilterParams interp_filter_params_y = |
| av1_get_interp_filter_params(interp_filter[0 + 2 * ref]); |
| #else |
| InterpFilterParams interp_filter_params = |
| av1_get_interp_filter_params(interp_filter); |
| #endif |
| |
| #if CONFIG_DUAL_FILTER |
| if (interp_filter_params_x.taps == SUBPEL_TAPS && |
| interp_filter_params_y.taps == SUBPEL_TAPS && w > 2 && h > 2) { |
| const int16_t *kernel_x = |
| av1_get_interp_filter_subpel_kernel(interp_filter_params_x, subpel_x); |
| const int16_t *kernel_y = |
| av1_get_interp_filter_subpel_kernel(interp_filter_params_y, subpel_y); |
| #else |
| if (interp_filter_params.taps == SUBPEL_TAPS) { |
| const int16_t *kernel_x = |
| av1_get_interp_filter_subpel_kernel(interp_filter_params, subpel_x); |
| const int16_t *kernel_y = |
| av1_get_interp_filter_subpel_kernel(interp_filter_params, subpel_y); |
| #endif // CONFIG_DUAL_FILTER |
| #if CONFIG_EXT_INTERP && SUPPORT_NONINTERPOLATING_FILTERS |
| if (IsInterpolatingFilter(interp_filter)) { |
| // Interpolating filter |
| sf->highbd_predict[subpel_x != 0][subpel_y != 0][ref]( |
| src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h, |
| bd); |
| } else { |
| sf->highbd_predict_ni[subpel_x != 0][subpel_y != 0][ref]( |
| src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h, |
| bd); |
| } |
| #else |
| sf->highbd_predict[subpel_x != 0][subpel_y != 0][ref]( |
| src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h, bd); |
| #endif // CONFIG_EXT_INTERP && SUPPORT_NONINTERPOLATING_FILTERS |
| } else { |
| // ref > 0 means this is the second reference frame |
| // first reference frame's prediction result is already in dst |
| // therefore we need to average the first and second results |
| int avg = ref > 0; |
| av1_highbd_convolve(src, src_stride, dst, dst_stride, w, h, interp_filter, |
| subpel_x, xs, subpel_y, ys, avg, bd); |
| } |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| #if CONFIG_EXT_INTER |
| // Set to one to use larger codebooks |
| #define USE_LARGE_WEDGE_CODEBOOK 0 |
| |
| #if USE_LARGE_WEDGE_CODEBOOK |
| #define MAX_WEDGE_TYPES (1 << 5) |
| #else |
| #define MAX_WEDGE_TYPES (1 << 4) |
| #endif |
| |
| #define MAX_WEDGE_SIZE_LOG2 5 // 32x32 |
| #define MAX_WEDGE_SIZE (1 << MAX_WEDGE_SIZE_LOG2) |
| #define MAX_WEDGE_SQUARE (MAX_WEDGE_SIZE * MAX_WEDGE_SIZE) |
| |
| #define WEDGE_WEIGHT_BITS 6 |
| |
| #define WEDGE_NONE -1 |
| |
| // Angles are with respect to horizontal anti-clockwise |
| typedef enum { |
| WEDGE_HORIZONTAL = 0, |
| WEDGE_VERTICAL = 1, |
| WEDGE_OBLIQUE27 = 2, |
| WEDGE_OBLIQUE63 = 3, |
| WEDGE_OBLIQUE117 = 4, |
| WEDGE_OBLIQUE153 = 5, |
| WEDGE_DIRECTIONS |
| } WedgeDirectionType; |
| |
| // 3-tuple: {direction, x_offset, y_offset} |
| typedef struct { |
| WedgeDirectionType direction; |
| int x_offset; |
| int y_offset; |
| } wedge_code_type; |
| |
| typedef uint8_t *wedge_masks_type[MAX_WEDGE_TYPES]; |
| |
| typedef struct { |
| int bits; |
| const wedge_code_type *codebook; |
| uint8_t *signflip; |
| int smoother; |
| wedge_masks_type *masks; |
| } wedge_params_type; |
| |
| extern const wedge_params_type wedge_params_lookup[BLOCK_SIZES]; |
| |
| static INLINE int get_wedge_bits_lookup(BLOCK_SIZE sb_type) { |
| return wedge_params_lookup[sb_type].bits; |
| } |
| |
| static INLINE int is_interinter_wedge_used(BLOCK_SIZE sb_type) { |
| (void)sb_type; |
| return wedge_params_lookup[sb_type].bits > 0; |
| } |
| |
| static INLINE int get_interinter_wedge_bits(BLOCK_SIZE sb_type) { |
| const int wbits = wedge_params_lookup[sb_type].bits; |
| return (wbits > 0) ? wbits + 1 : 0; |
| } |
| |
| static INLINE int is_interintra_wedge_used(BLOCK_SIZE sb_type) { |
| (void)sb_type; |
| return wedge_params_lookup[sb_type].bits > 0; |
| } |
| |
| static INLINE int get_interintra_wedge_bits(BLOCK_SIZE sb_type) { |
| return wedge_params_lookup[sb_type].bits; |
| } |
| #endif // CONFIG_EXT_INTER |
| |
| void build_inter_predictors(MACROBLOCKD *xd, int plane, |
| #if CONFIG_OBMC |
| int mi_col_offset, int mi_row_offset, |
| #endif // CONFIG_OBMC |
| int block, int bw, int bh, int x, int y, int w, |
| int h, |
| #if CONFIG_SUPERTX && CONFIG_EXT_INTER |
| int wedge_offset_x, int wedge_offset_y, |
| #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER |
| int mi_x, int mi_y); |
| |
| static INLINE void av1_make_inter_predictor( |
| const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, |
| const int subpel_x, const int subpel_y, const struct scale_factors *sf, |
| int w, int h, int ref, |
| #if CONFIG_DUAL_FILTER |
| const InterpFilter *interp_filter, |
| #else |
| const InterpFilter interp_filter, |
| #endif |
| int xs, int ys, const MACROBLOCKD *xd) { |
| (void)xd; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| highbd_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, |
| sf, w, h, ref, interp_filter, xs, ys, xd->bd); |
| else |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w, |
| h, ref, interp_filter, xs, ys); |
| } |
| |
| #if CONFIG_EXT_INTER |
| void av1_make_masked_inter_predictor(const uint8_t *pre, int pre_stride, |
| uint8_t *dst, int dst_stride, |
| const int subpel_x, const int subpel_y, |
| const struct scale_factors *sf, int w, |
| int h, |
| #if CONFIG_DUAL_FILTER |
| const InterpFilter *interp_filter, |
| #else |
| const InterpFilter interp_filter, |
| #endif |
| int xs, int ys, |
| #if CONFIG_SUPERTX |
| int wedge_offset_x, int wedge_offset_y, |
| #endif // CONFIG_SUPERTX |
| const MACROBLOCKD *xd); |
| #endif // CONFIG_EXT_INTER |
| |
| static INLINE int round_mv_comp_q4(int value) { |
| return (value < 0 ? value - 2 : value + 2) / 4; |
| } |
| |
| static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) { |
| MV res = { |
| round_mv_comp_q4( |
| mi->bmi[0].as_mv[idx].as_mv.row + mi->bmi[1].as_mv[idx].as_mv.row + |
| mi->bmi[2].as_mv[idx].as_mv.row + mi->bmi[3].as_mv[idx].as_mv.row), |
| round_mv_comp_q4( |
| mi->bmi[0].as_mv[idx].as_mv.col + mi->bmi[1].as_mv[idx].as_mv.col + |
| mi->bmi[2].as_mv[idx].as_mv.col + mi->bmi[3].as_mv[idx].as_mv.col) |
| }; |
| return res; |
| } |
| |
| static INLINE int round_mv_comp_q2(int value) { |
| return (value < 0 ? value - 1 : value + 1) / 2; |
| } |
| |
| static MV mi_mv_pred_q2(const MODE_INFO *mi, int idx, int block0, int block1) { |
| MV res = { round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.row + |
| mi->bmi[block1].as_mv[idx].as_mv.row), |
| round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.col + |
| mi->bmi[block1].as_mv[idx].as_mv.col) }; |
| return res; |
| } |
| |
| // TODO(jkoleszar): yet another mv clamping function :-( |
| static INLINE MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, |
| const MV *src_mv, int bw, int bh, |
| int ss_x, int ss_y) { |
| // If the MV points so far into the UMV border that no visible pixels |
| // are used for reconstruction, the subpel part of the MV can be |
| // discarded and the MV limited to 16 pixels with equivalent results. |
| const int spel_left = (AOM_INTERP_EXTEND + bw) << SUBPEL_BITS; |
| const int spel_right = spel_left - SUBPEL_SHIFTS; |
| const int spel_top = (AOM_INTERP_EXTEND + bh) << SUBPEL_BITS; |
| const int spel_bottom = spel_top - SUBPEL_SHIFTS; |
| MV clamped_mv = { src_mv->row * (1 << (1 - ss_y)), |
| src_mv->col * (1 << (1 - ss_x)) }; |
| assert(ss_x <= 1); |
| assert(ss_y <= 1); |
| |
| clamp_mv(&clamped_mv, xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left, |
| xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right, |
| xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top, |
| xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom); |
| |
| return clamped_mv; |
| } |
| |
| static INLINE MV average_split_mvs(const struct macroblockd_plane *pd, |
| const MODE_INFO *mi, int ref, int block) { |
| const int ss_idx = ((pd->subsampling_x > 0) << 1) | (pd->subsampling_y > 0); |
| MV res = { 0, 0 }; |
| switch (ss_idx) { |
| case 0: res = mi->bmi[block].as_mv[ref].as_mv; break; |
| case 1: res = mi_mv_pred_q2(mi, ref, block, block + 2); break; |
| case 2: res = mi_mv_pred_q2(mi, ref, block, block + 1); break; |
| case 3: res = mi_mv_pred_q4(mi, ref); break; |
| default: assert(ss_idx <= 3 && ss_idx >= 0); |
| } |
| return res; |
| } |
| |
| void av1_build_inter_predictor_sub8x8(MACROBLOCKD *xd, int plane, int i, int ir, |
| int ic, int mi_row, int mi_col); |
| |
| void av1_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col, |
| BLOCK_SIZE bsize); |
| |
| void av1_build_inter_predictors_sbp(MACROBLOCKD *xd, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, int plane); |
| |
| void av1_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col, |
| BLOCK_SIZE bsize); |
| |
| void av1_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col, |
| BLOCK_SIZE bsize); |
| |
| #if CONFIG_SUPERTX |
| void av1_build_inter_predictors_sb_sub8x8_extend(MACROBLOCKD *xd, |
| #if CONFIG_EXT_INTER |
| int mi_row_ori, int mi_col_ori, |
| #endif // CONFIG_EXT_INTER |
| int mi_row, int mi_col, |
| BLOCK_SIZE bsize, int block); |
| |
| void av1_build_inter_predictors_sb_extend(MACROBLOCKD *xd, |
| #if CONFIG_EXT_INTER |
| int mi_row_ori, int mi_col_ori, |
| #endif // CONFIG_EXT_INTER |
| int mi_row, int mi_col, |
| BLOCK_SIZE bsize); |
| struct macroblockd_plane; |
| void av1_build_masked_inter_predictor_complex( |
| MACROBLOCKD *xd, uint8_t *dst, int dst_stride, const uint8_t *pre, |
| int pre_stride, int mi_row, int mi_col, int mi_row_ori, int mi_col_ori, |
| BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, PARTITION_TYPE partition, |
| int plane); |
| #endif // CONFIG_SUPERTX |
| |
| void av1_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, |
| int dst_stride, const MV *mv_q3, |
| const struct scale_factors *sf, int w, int h, |
| int do_avg, |
| #if CONFIG_DUAL_FILTER |
| const InterpFilter *interp_filter, |
| #else |
| const InterpFilter interp_filter, |
| #endif |
| enum mv_precision precision, int x, int y); |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| void av1_highbd_build_inter_predictor( |
| const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, |
| const MV *mv_q3, const struct scale_factors *sf, int w, int h, int do_avg, |
| #if CONFIG_DUAL_FILTER |
| const InterpFilter *interp_filter, |
| #else |
| const InterpFilter interp_filter, |
| #endif |
| enum mv_precision precision, int x, int y, int bd); |
| #endif |
| |
| static INLINE int scaled_buffer_offset(int x_offset, int y_offset, int stride, |
| const struct scale_factors *sf) { |
| const int x = sf ? sf->scale_value_x(x_offset, sf) : x_offset; |
| const int y = sf ? sf->scale_value_y(y_offset, sf) : y_offset; |
| return y * stride + x; |
| } |
| |
| static INLINE void setup_pred_plane(struct buf_2d *dst, uint8_t *src, int width, |
| int height, int stride, int mi_row, |
| int mi_col, |
| const struct scale_factors *scale, |
| int subsampling_x, int subsampling_y) { |
| const int x = (MI_SIZE * mi_col) >> subsampling_x; |
| const int y = (MI_SIZE * mi_row) >> subsampling_y; |
| dst->buf = src + scaled_buffer_offset(x, y, stride, scale); |
| dst->buf0 = src; |
| dst->width = width; |
| dst->height = height; |
| dst->stride = stride; |
| } |
| |
| void av1_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE], |
| const YV12_BUFFER_CONFIG *src, int mi_row, |
| int mi_col); |
| |
| void av1_setup_pre_planes(MACROBLOCKD *xd, int idx, |
| const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, |
| const struct scale_factors *sf); |
| |
| #if CONFIG_DUAL_FILTER |
| // Detect if the block have sub-pixel level motion vectors |
| // per component. |
| static INLINE int has_subpel_mv_component(const MODE_INFO *const mi, |
| const MACROBLOCKD *const xd, |
| int dir) { |
| const MB_MODE_INFO *const mbmi = &mi->mbmi; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| int plane; |
| int ref = (dir >> 1); |
| |
| if (bsize >= BLOCK_8X8) { |
| if (dir & 0x01) { |
| if (mbmi->mv[ref].as_mv.col & SUBPEL_MASK) return 1; |
| } else { |
| if (mbmi->mv[ref].as_mv.row & SUBPEL_MASK) return 1; |
| } |
| } else { |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| const PARTITION_TYPE bp = BLOCK_8X8 - bsize; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int have_vsplit = bp != PARTITION_HORZ; |
| const int have_hsplit = bp != PARTITION_VERT; |
| const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x); |
| const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y); |
| |
| int x, y; |
| for (y = 0; y < num_4x4_h; ++y) { |
| for (x = 0; x < num_4x4_w; ++x) { |
| const MV mv = average_split_mvs(pd, mi, ref, y * 2 + x); |
| if (dir & 0x01) { |
| if (mv.col & SUBPEL_MASK) return 1; |
| } else { |
| if (mv.row & SUBPEL_MASK) return 1; |
| } |
| } |
| } |
| } |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| #if CONFIG_EXT_INTERP |
| static INLINE int av1_is_interp_needed(const MACROBLOCKD *const xd) { |
| MODE_INFO *const mi = xd->mi[0]; |
| MB_MODE_INFO *const mbmi = &mi->mbmi; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| const int is_compound = has_second_ref(mbmi); |
| int intpel_mv = 1; |
| int plane; |
| |
| #if SUPPORT_NONINTERPOLATING_FILTERS |
| // TODO(debargha): This is is currently only for experimentation |
| // with non-interpolating filters. Remove later. |
| // If any of the filters are non-interpolating, then indicate the |
| // interpolation filter always. |
| int i; |
| for (i = 0; i < SWITCHABLE_FILTERS; ++i) { |
| if (!IsInterpolatingFilter(i)) return 1; |
| } |
| #endif |
| |
| // For scaled references, interpolation filter is indicated all the time. |
| if (av1_is_scaled(&xd->block_refs[0]->sf)) return 1; |
| if (is_compound && av1_is_scaled(&xd->block_refs[1]->sf)) return 1; |
| |
| if (bsize < BLOCK_8X8) { |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| const PARTITION_TYPE bp = BLOCK_8X8 - bsize; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int have_vsplit = bp != PARTITION_HORZ; |
| const int have_hsplit = bp != PARTITION_VERT; |
| const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x); |
| const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y); |
| int ref; |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| int x, y; |
| for (y = 0; y < num_4x4_h; ++y) |
| for (x = 0; x < num_4x4_w; ++x) { |
| const MV mv = average_split_mvs(pd, mi, ref, y * 2 + x); |
| if (mv_has_subpel(&mv)) return 1; |
| } |
| } |
| } |
| return 0; |
| } else { |
| intpel_mv = !mv_has_subpel(&mbmi->mv[0].as_mv); |
| if (is_compound && intpel_mv) { |
| intpel_mv &= !mv_has_subpel(&mbmi->mv[1].as_mv); |
| } |
| } |
| return !intpel_mv; |
| } |
| #endif // CONFIG_EXT_INTERP |
| |
| #if CONFIG_OBMC |
| const uint8_t *av1_get_obmc_mask(int length); |
| void av1_build_obmc_inter_prediction(AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, |
| uint8_t *above[MAX_MB_PLANE], |
| int above_stride[MAX_MB_PLANE], |
| uint8_t *left[MAX_MB_PLANE], |
| int left_stride[MAX_MB_PLANE]); |
| void av1_build_prediction_by_above_preds(AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, |
| uint8_t *tmp_buf[MAX_MB_PLANE], |
| int tmp_width[MAX_MB_PLANE], |
| int tmp_height[MAX_MB_PLANE], |
| int tmp_stride[MAX_MB_PLANE]); |
| void av1_build_prediction_by_left_preds(AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, |
| uint8_t *tmp_buf[MAX_MB_PLANE], |
| int tmp_width[MAX_MB_PLANE], |
| int tmp_height[MAX_MB_PLANE], |
| int tmp_stride[MAX_MB_PLANE]); |
| #endif // CONFIG_OBMC |
| |
| #if CONFIG_EXT_INTER |
| #define MASK_MASTER_SIZE (2 * MAX_SB_SIZE) |
| #define MASK_MASTER_STRIDE (2 * MAX_SB_SIZE) |
| |
| void av1_init_wedge_masks(); |
| |
| static INLINE const uint8_t *av1_get_contiguous_soft_mask(int wedge_index, |
| int wedge_sign, |
| BLOCK_SIZE sb_type) { |
| return wedge_params_lookup[sb_type].masks[wedge_sign][wedge_index]; |
| } |
| |
| const uint8_t *av1_get_soft_mask(int wedge_index, int wedge_sign, |
| BLOCK_SIZE sb_type, int wedge_offset_x, |
| int wedge_offset_y); |
| |
| void av1_build_interintra_predictors(MACROBLOCKD *xd, uint8_t *ypred, |
| uint8_t *upred, uint8_t *vpred, |
| int ystride, int ustride, int vstride, |
| BLOCK_SIZE bsize); |
| void av1_build_interintra_predictors_sby(MACROBLOCKD *xd, uint8_t *ypred, |
| int ystride, BLOCK_SIZE bsize); |
| void av1_build_interintra_predictors_sbc(MACROBLOCKD *xd, uint8_t *upred, |
| int ustride, int plane, |
| BLOCK_SIZE bsize); |
| void av1_build_interintra_predictors_sbuv(MACROBLOCKD *xd, uint8_t *upred, |
| uint8_t *vpred, int ustride, |
| int vstride, BLOCK_SIZE bsize); |
| |
| void av1_build_intra_predictors_for_interintra(MACROBLOCKD *xd, |
| BLOCK_SIZE bsize, int plane, |
| uint8_t *intra_pred, |
| int intra_stride); |
| void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, |
| const uint8_t *inter_pred, int inter_stride, |
| const uint8_t *intra_pred, int intra_stride); |
| void av1_build_interintra_predictors_sbuv(MACROBLOCKD *xd, uint8_t *upred, |
| uint8_t *vpred, int ustride, |
| int vstride, BLOCK_SIZE bsize); |
| void av1_build_interintra_predictors_sby(MACROBLOCKD *xd, uint8_t *ypred, |
| int ystride, BLOCK_SIZE bsize); |
| |
| // Encoder only |
| void av1_build_inter_predictors_for_planes_single_buf( |
| MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, int mi_row, |
| int mi_col, int ref, uint8_t *ext_dst[3], int ext_dst_stride[3]); |
| void av1_build_wedge_inter_predictor_from_buf(MACROBLOCKD *xd, BLOCK_SIZE bsize, |
| int plane_from, int plane_to, |
| uint8_t *ext_dst0[3], |
| int ext_dst_stride0[3], |
| uint8_t *ext_dst1[3], |
| int ext_dst_stride1[3]); |
| #endif // CONFIG_EXT_INTER |
| |
| #ifdef __cplusplus |
| } // extern "C" |
| #endif |
| |
| #endif // AV1_COMMON_RECONINTER_H_ |