|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <limits.h> | 
|  | #include <math.h> | 
|  | #include <stdio.h> | 
|  |  | 
|  | #include "./aom_dsp_rtcd.h" | 
|  | #include "./aom_scale_rtcd.h" | 
|  |  | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "aom_mem/aom_mem.h" | 
|  | #include "aom_ports/mem.h" | 
|  | #include "aom_ports/system_state.h" | 
|  | #include "aom_scale/aom_scale.h" | 
|  | #include "aom_scale/yv12config.h" | 
|  |  | 
|  | #include "aom_dsp/variance.h" | 
|  | #include "av1/common/entropymv.h" | 
|  | #include "av1/common/quant_common.h" | 
|  | #include "av1/common/reconinter.h"  // av1_setup_dst_planes() | 
|  | #if CONFIG_LV_MAP | 
|  | #include "av1/common/txb_common.h" | 
|  | #endif | 
|  | #include "av1/encoder/aq_variance.h" | 
|  | #include "av1/encoder/av1_quantize.h" | 
|  | #include "av1/encoder/block.h" | 
|  | #include "av1/encoder/encodeframe.h" | 
|  | #include "av1/encoder/encodemb.h" | 
|  | #include "av1/encoder/encodemv.h" | 
|  | #include "av1/encoder/encoder.h" | 
|  | #include "av1/encoder/extend.h" | 
|  | #include "av1/encoder/firstpass.h" | 
|  | #include "av1/encoder/mcomp.h" | 
|  | #include "av1/encoder/rd.h" | 
|  |  | 
|  | #define OUTPUT_FPF 0 | 
|  | #define ARF_STATS_OUTPUT 0 | 
|  |  | 
|  | #define GROUP_ADAPTIVE_MAXQ 1 | 
|  |  | 
|  | #define BOOST_BREAKOUT 12.5 | 
|  | #define BOOST_FACTOR 12.5 | 
|  | #define FACTOR_PT_LOW 0.70 | 
|  | #define FACTOR_PT_HIGH 0.90 | 
|  | #define FIRST_PASS_Q 10.0 | 
|  | #define GF_MAX_BOOST 96.0 | 
|  | #define INTRA_MODE_PENALTY 1024 | 
|  | #define KF_MAX_BOOST 128.0 | 
|  | #define MIN_ARF_GF_BOOST 240 | 
|  | #define MIN_DECAY_FACTOR 0.01 | 
|  | #define MIN_KF_BOOST 300 | 
|  | #define NEW_MV_MODE_PENALTY 32 | 
|  | #define DARK_THRESH 64 | 
|  | #define DEFAULT_GRP_WEIGHT 1.0 | 
|  | #define RC_FACTOR_MIN 0.75 | 
|  | #define RC_FACTOR_MAX 1.75 | 
|  |  | 
|  | #define NCOUNT_INTRA_THRESH 8192 | 
|  | #define NCOUNT_INTRA_FACTOR 3 | 
|  | #define NCOUNT_FRAME_II_THRESH 5.0 | 
|  |  | 
|  | #define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x)-0.000001 : (x) + 0.000001) | 
|  |  | 
|  | #if ARF_STATS_OUTPUT | 
|  | unsigned int arf_count = 0; | 
|  | #endif | 
|  |  | 
|  | // Resets the first pass file to the given position using a relative seek from | 
|  | // the current position. | 
|  | static void reset_fpf_position(TWO_PASS *p, const FIRSTPASS_STATS *position) { | 
|  | p->stats_in = position; | 
|  | } | 
|  |  | 
|  | // Read frame stats at an offset from the current position. | 
|  | static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) { | 
|  | if ((offset >= 0 && p->stats_in + offset >= p->stats_in_end) || | 
|  | (offset < 0 && p->stats_in + offset < p->stats_in_start)) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return &p->stats_in[offset]; | 
|  | } | 
|  |  | 
|  | static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) { | 
|  | if (p->stats_in >= p->stats_in_end) return EOF; | 
|  |  | 
|  | *fps = *p->stats_in; | 
|  | ++p->stats_in; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void output_stats(FIRSTPASS_STATS *stats, | 
|  | struct aom_codec_pkt_list *pktlist) { | 
|  | struct aom_codec_cx_pkt pkt; | 
|  | pkt.kind = AOM_CODEC_STATS_PKT; | 
|  | pkt.data.twopass_stats.buf = stats; | 
|  | pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); | 
|  | aom_codec_pkt_list_add(pktlist, &pkt); | 
|  |  | 
|  | // TEMP debug code | 
|  | #if OUTPUT_FPF | 
|  | { | 
|  | FILE *fpfile; | 
|  | fpfile = fopen("firstpass.stt", "a"); | 
|  |  | 
|  | fprintf(fpfile, | 
|  | "%12.0lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf" | 
|  | "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf" | 
|  | "%12.4lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf\n", | 
|  | stats->frame, stats->weight, stats->intra_error, stats->coded_error, | 
|  | stats->sr_coded_error, stats->pcnt_inter, stats->pcnt_motion, | 
|  | stats->pcnt_second_ref, stats->pcnt_neutral, stats->intra_skip_pct, | 
|  | stats->inactive_zone_rows, stats->inactive_zone_cols, stats->MVr, | 
|  | stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv, | 
|  | stats->MVcv, stats->mv_in_out_count, stats->new_mv_count, | 
|  | stats->count, stats->duration); | 
|  | fclose(fpfile); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if CONFIG_FP_MB_STATS | 
|  | static void output_fpmb_stats(uint8_t *this_frame_mb_stats, int stats_size, | 
|  | struct aom_codec_pkt_list *pktlist) { | 
|  | struct aom_codec_cx_pkt pkt; | 
|  | pkt.kind = AOM_CODEC_FPMB_STATS_PKT; | 
|  | pkt.data.firstpass_mb_stats.buf = this_frame_mb_stats; | 
|  | pkt.data.firstpass_mb_stats.sz = stats_size * sizeof(*this_frame_mb_stats); | 
|  | aom_codec_pkt_list_add(pktlist, &pkt); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void zero_stats(FIRSTPASS_STATS *section) { | 
|  | section->frame = 0.0; | 
|  | section->weight = 0.0; | 
|  | section->intra_error = 0.0; | 
|  | section->coded_error = 0.0; | 
|  | section->sr_coded_error = 0.0; | 
|  | section->pcnt_inter = 0.0; | 
|  | section->pcnt_motion = 0.0; | 
|  | section->pcnt_second_ref = 0.0; | 
|  | section->pcnt_neutral = 0.0; | 
|  | section->intra_skip_pct = 0.0; | 
|  | section->inactive_zone_rows = 0.0; | 
|  | section->inactive_zone_cols = 0.0; | 
|  | section->MVr = 0.0; | 
|  | section->mvr_abs = 0.0; | 
|  | section->MVc = 0.0; | 
|  | section->mvc_abs = 0.0; | 
|  | section->MVrv = 0.0; | 
|  | section->MVcv = 0.0; | 
|  | section->mv_in_out_count = 0.0; | 
|  | section->new_mv_count = 0.0; | 
|  | section->count = 0.0; | 
|  | section->duration = 1.0; | 
|  | } | 
|  |  | 
|  | static void accumulate_stats(FIRSTPASS_STATS *section, | 
|  | const FIRSTPASS_STATS *frame) { | 
|  | section->frame += frame->frame; | 
|  | section->weight += frame->weight; | 
|  | section->intra_error += frame->intra_error; | 
|  | section->coded_error += frame->coded_error; | 
|  | section->sr_coded_error += frame->sr_coded_error; | 
|  | section->pcnt_inter += frame->pcnt_inter; | 
|  | section->pcnt_motion += frame->pcnt_motion; | 
|  | section->pcnt_second_ref += frame->pcnt_second_ref; | 
|  | section->pcnt_neutral += frame->pcnt_neutral; | 
|  | section->intra_skip_pct += frame->intra_skip_pct; | 
|  | section->inactive_zone_rows += frame->inactive_zone_rows; | 
|  | section->inactive_zone_cols += frame->inactive_zone_cols; | 
|  | section->MVr += frame->MVr; | 
|  | section->mvr_abs += frame->mvr_abs; | 
|  | section->MVc += frame->MVc; | 
|  | section->mvc_abs += frame->mvc_abs; | 
|  | section->MVrv += frame->MVrv; | 
|  | section->MVcv += frame->MVcv; | 
|  | section->mv_in_out_count += frame->mv_in_out_count; | 
|  | section->new_mv_count += frame->new_mv_count; | 
|  | section->count += frame->count; | 
|  | section->duration += frame->duration; | 
|  | } | 
|  |  | 
|  | static void subtract_stats(FIRSTPASS_STATS *section, | 
|  | const FIRSTPASS_STATS *frame) { | 
|  | section->frame -= frame->frame; | 
|  | section->weight -= frame->weight; | 
|  | section->intra_error -= frame->intra_error; | 
|  | section->coded_error -= frame->coded_error; | 
|  | section->sr_coded_error -= frame->sr_coded_error; | 
|  | section->pcnt_inter -= frame->pcnt_inter; | 
|  | section->pcnt_motion -= frame->pcnt_motion; | 
|  | section->pcnt_second_ref -= frame->pcnt_second_ref; | 
|  | section->pcnt_neutral -= frame->pcnt_neutral; | 
|  | section->intra_skip_pct -= frame->intra_skip_pct; | 
|  | section->inactive_zone_rows -= frame->inactive_zone_rows; | 
|  | section->inactive_zone_cols -= frame->inactive_zone_cols; | 
|  | section->MVr -= frame->MVr; | 
|  | section->mvr_abs -= frame->mvr_abs; | 
|  | section->MVc -= frame->MVc; | 
|  | section->mvc_abs -= frame->mvc_abs; | 
|  | section->MVrv -= frame->MVrv; | 
|  | section->MVcv -= frame->MVcv; | 
|  | section->mv_in_out_count -= frame->mv_in_out_count; | 
|  | section->new_mv_count -= frame->new_mv_count; | 
|  | section->count -= frame->count; | 
|  | section->duration -= frame->duration; | 
|  | } | 
|  |  | 
|  | // Calculate the linear size relative to a baseline of 1080P | 
|  | #define BASE_SIZE 2073600.0  // 1920x1080 | 
|  | static double get_linear_size_factor(const AV1_COMP *cpi) { | 
|  | const double this_area = cpi->initial_width * cpi->initial_height; | 
|  | return pow(this_area / BASE_SIZE, 0.5); | 
|  | } | 
|  |  | 
|  | // Calculate an active area of the image that discounts formatting | 
|  | // bars and partially discounts other 0 energy areas. | 
|  | #define MIN_ACTIVE_AREA 0.5 | 
|  | #define MAX_ACTIVE_AREA 1.0 | 
|  | static double calculate_active_area(const AV1_COMP *cpi, | 
|  | const FIRSTPASS_STATS *this_frame) { | 
|  | double active_pct; | 
|  |  | 
|  | active_pct = | 
|  | 1.0 - | 
|  | ((this_frame->intra_skip_pct / 2) + | 
|  | ((this_frame->inactive_zone_rows * 2) / (double)cpi->common.mb_rows)); | 
|  | return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA); | 
|  | } | 
|  |  | 
|  | // Calculate a modified Error used in distributing bits between easier and | 
|  | // harder frames. | 
|  | #define ACT_AREA_CORRECTION 0.5 | 
|  | static double calculate_modified_err(const AV1_COMP *cpi, | 
|  | const TWO_PASS *twopass, | 
|  | const AV1EncoderConfig *oxcf, | 
|  | const FIRSTPASS_STATS *this_frame) { | 
|  | const FIRSTPASS_STATS *const stats = &twopass->total_stats; | 
|  | const double av_weight = stats->weight / stats->count; | 
|  | const double av_err = (stats->coded_error * av_weight) / stats->count; | 
|  | double modified_error = | 
|  | av_err * pow(this_frame->coded_error * this_frame->weight / | 
|  | DOUBLE_DIVIDE_CHECK(av_err), | 
|  | oxcf->two_pass_vbrbias / 100.0); | 
|  |  | 
|  | // Correction for active area. Frames with a reduced active area | 
|  | // (eg due to formatting bars) have a higher error per mb for the | 
|  | // remaining active MBs. The correction here assumes that coding | 
|  | // 0.5N blocks of complexity 2X is a little easier than coding N | 
|  | // blocks of complexity X. | 
|  | modified_error *= | 
|  | pow(calculate_active_area(cpi, this_frame), ACT_AREA_CORRECTION); | 
|  |  | 
|  | return fclamp(modified_error, twopass->modified_error_min, | 
|  | twopass->modified_error_max); | 
|  | } | 
|  |  | 
|  | // This function returns the maximum target rate per frame. | 
|  | static int frame_max_bits(const RATE_CONTROL *rc, | 
|  | const AV1EncoderConfig *oxcf) { | 
|  | int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth * | 
|  | (int64_t)oxcf->two_pass_vbrmax_section) / | 
|  | 100; | 
|  | if (max_bits < 0) | 
|  | max_bits = 0; | 
|  | else if (max_bits > rc->max_frame_bandwidth) | 
|  | max_bits = rc->max_frame_bandwidth; | 
|  |  | 
|  | return (int)max_bits; | 
|  | } | 
|  |  | 
|  | void av1_init_first_pass(AV1_COMP *cpi) { | 
|  | zero_stats(&cpi->twopass.total_stats); | 
|  | } | 
|  |  | 
|  | void av1_end_first_pass(AV1_COMP *cpi) { | 
|  | output_stats(&cpi->twopass.total_stats, cpi->output_pkt_list); | 
|  | } | 
|  |  | 
|  | static aom_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) { | 
|  | switch (bsize) { | 
|  | case BLOCK_8X8: return aom_mse8x8; | 
|  | case BLOCK_16X8: return aom_mse16x8; | 
|  | case BLOCK_8X16: return aom_mse8x16; | 
|  | default: return aom_mse16x16; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned int get_prediction_error(BLOCK_SIZE bsize, | 
|  | const struct buf_2d *src, | 
|  | const struct buf_2d *ref) { | 
|  | unsigned int sse; | 
|  | const aom_variance_fn_t fn = get_block_variance_fn(bsize); | 
|  | fn(src->buf, src->stride, ref->buf, ref->stride, &sse); | 
|  | return sse; | 
|  | } | 
|  |  | 
|  | static aom_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize, | 
|  | int bd) { | 
|  | switch (bd) { | 
|  | default: | 
|  | switch (bsize) { | 
|  | case BLOCK_8X8: return aom_highbd_8_mse8x8; | 
|  | case BLOCK_16X8: return aom_highbd_8_mse16x8; | 
|  | case BLOCK_8X16: return aom_highbd_8_mse8x16; | 
|  | default: return aom_highbd_8_mse16x16; | 
|  | } | 
|  | break; | 
|  | case 10: | 
|  | switch (bsize) { | 
|  | case BLOCK_8X8: return aom_highbd_10_mse8x8; | 
|  | case BLOCK_16X8: return aom_highbd_10_mse16x8; | 
|  | case BLOCK_8X16: return aom_highbd_10_mse8x16; | 
|  | default: return aom_highbd_10_mse16x16; | 
|  | } | 
|  | break; | 
|  | case 12: | 
|  | switch (bsize) { | 
|  | case BLOCK_8X8: return aom_highbd_12_mse8x8; | 
|  | case BLOCK_16X8: return aom_highbd_12_mse16x8; | 
|  | case BLOCK_8X16: return aom_highbd_12_mse8x16; | 
|  | default: return aom_highbd_12_mse16x16; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize, | 
|  | const struct buf_2d *src, | 
|  | const struct buf_2d *ref, | 
|  | int bd) { | 
|  | unsigned int sse; | 
|  | const aom_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd); | 
|  | fn(src->buf, src->stride, ref->buf, ref->stride, &sse); | 
|  | return sse; | 
|  | } | 
|  |  | 
|  | // Refine the motion search range according to the frame dimension | 
|  | // for first pass test. | 
|  | static int get_search_range(const AV1_COMP *cpi) { | 
|  | int sr = 0; | 
|  | const int dim = AOMMIN(cpi->initial_width, cpi->initial_height); | 
|  |  | 
|  | while ((dim << sr) < MAX_FULL_PEL_VAL) ++sr; | 
|  | return sr; | 
|  | } | 
|  |  | 
|  | static void first_pass_motion_search(AV1_COMP *cpi, MACROBLOCK *x, | 
|  | const MV *ref_mv, MV *best_mv, | 
|  | int *best_motion_err) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MV tmp_mv = { 0, 0 }; | 
|  | MV ref_mv_full = { ref_mv->row >> 3, ref_mv->col >> 3 }; | 
|  | int num00, tmp_err, n; | 
|  | const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; | 
|  | aom_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize]; | 
|  | const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY; | 
|  |  | 
|  | int step_param = 3; | 
|  | int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; | 
|  | const int sr = get_search_range(cpi); | 
|  | step_param += sr; | 
|  | further_steps -= sr; | 
|  |  | 
|  | // Override the default variance function to use MSE. | 
|  | v_fn_ptr.vf = get_block_variance_fn(bsize); | 
|  | if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
|  | v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, xd->bd); | 
|  | } | 
|  |  | 
|  | // Center the initial step/diamond search on best mv. | 
|  | tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv, | 
|  | step_param, x->sadperbit16, &num00, | 
|  | &v_fn_ptr, ref_mv); | 
|  | if (tmp_err < INT_MAX) | 
|  | tmp_err = av1_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1); | 
|  | if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty; | 
|  |  | 
|  | if (tmp_err < *best_motion_err) { | 
|  | *best_motion_err = tmp_err; | 
|  | *best_mv = tmp_mv; | 
|  | } | 
|  |  | 
|  | // Carry out further step/diamond searches as necessary. | 
|  | n = num00; | 
|  | num00 = 0; | 
|  |  | 
|  | while (n < further_steps) { | 
|  | ++n; | 
|  |  | 
|  | if (num00) { | 
|  | --num00; | 
|  | } else { | 
|  | tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv, | 
|  | step_param + n, x->sadperbit16, &num00, | 
|  | &v_fn_ptr, ref_mv); | 
|  | if (tmp_err < INT_MAX) | 
|  | tmp_err = av1_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1); | 
|  | if (tmp_err < INT_MAX - new_mv_mode_penalty) | 
|  | tmp_err += new_mv_mode_penalty; | 
|  |  | 
|  | if (tmp_err < *best_motion_err) { | 
|  | *best_motion_err = tmp_err; | 
|  | *best_mv = tmp_mv; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static BLOCK_SIZE get_bsize(const AV1_COMMON *cm, int mb_row, int mb_col) { | 
|  | if (mi_size_wide[BLOCK_16X16] * mb_col + mi_size_wide[BLOCK_8X8] < | 
|  | cm->mi_cols) { | 
|  | return mi_size_wide[BLOCK_16X16] * mb_row + mi_size_wide[BLOCK_8X8] < | 
|  | cm->mi_rows | 
|  | ? BLOCK_16X16 | 
|  | : BLOCK_16X8; | 
|  | } else { | 
|  | return mi_size_wide[BLOCK_16X16] * mb_row + mi_size_wide[BLOCK_8X8] < | 
|  | cm->mi_rows | 
|  | ? BLOCK_8X16 | 
|  | : BLOCK_8X8; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int find_fp_qindex(aom_bit_depth_t bit_depth) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < QINDEX_RANGE; ++i) | 
|  | if (av1_convert_qindex_to_q(i, bit_depth) >= FIRST_PASS_Q) break; | 
|  |  | 
|  | if (i == QINDEX_RANGE) i--; | 
|  |  | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static void set_first_pass_params(AV1_COMP *cpi) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | if (!cpi->refresh_alt_ref_frame && | 
|  | (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY))) { | 
|  | cm->frame_type = KEY_FRAME; | 
|  | } else { | 
|  | cm->frame_type = INTER_FRAME; | 
|  | } | 
|  | // Do not use periodic key frames. | 
|  | cpi->rc.frames_to_key = INT_MAX; | 
|  | } | 
|  |  | 
|  | static double raw_motion_error_stdev(int *raw_motion_err_list, | 
|  | int raw_motion_err_counts) { | 
|  | int64_t sum_raw_err = 0; | 
|  | double raw_err_avg = 0; | 
|  | double raw_err_stdev = 0; | 
|  | if (raw_motion_err_counts == 0) return 0; | 
|  |  | 
|  | int i; | 
|  | for (i = 0; i < raw_motion_err_counts; i++) { | 
|  | sum_raw_err += raw_motion_err_list[i]; | 
|  | } | 
|  | raw_err_avg = (double)sum_raw_err / raw_motion_err_counts; | 
|  | for (i = 0; i < raw_motion_err_counts; i++) { | 
|  | raw_err_stdev += (raw_motion_err_list[i] - raw_err_avg) * | 
|  | (raw_motion_err_list[i] - raw_err_avg); | 
|  | } | 
|  | // Calculate the standard deviation for the motion error of all the inter | 
|  | // blocks of the 0,0 motion using the last source | 
|  | // frame as the reference. | 
|  | raw_err_stdev = sqrt(raw_err_stdev / raw_motion_err_counts); | 
|  | return raw_err_stdev; | 
|  | } | 
|  |  | 
|  | #define UL_INTRA_THRESH 50 | 
|  | #define INVALID_ROW -1 | 
|  | void av1_first_pass(AV1_COMP *cpi, const struct lookahead_entry *source) { | 
|  | int mb_row, mb_col; | 
|  | MACROBLOCK *const x = &cpi->td.mb; | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | TileInfo tile; | 
|  | struct macroblock_plane *const p = x->plane; | 
|  | struct macroblockd_plane *const pd = xd->plane; | 
|  | const PICK_MODE_CONTEXT *ctx = | 
|  | &cpi->td.pc_root[MAX_MIB_SIZE_LOG2 - MIN_MIB_SIZE_LOG2]->none; | 
|  | int i; | 
|  |  | 
|  | int recon_yoffset, recon_uvoffset; | 
|  | int64_t intra_error = 0; | 
|  | int64_t coded_error = 0; | 
|  | int64_t sr_coded_error = 0; | 
|  |  | 
|  | int sum_mvr = 0, sum_mvc = 0; | 
|  | int sum_mvr_abs = 0, sum_mvc_abs = 0; | 
|  | int64_t sum_mvrs = 0, sum_mvcs = 0; | 
|  | int mvcount = 0; | 
|  | int intercount = 0; | 
|  | int second_ref_count = 0; | 
|  | const int intrapenalty = INTRA_MODE_PENALTY; | 
|  | double neutral_count; | 
|  | int intra_skip_count = 0; | 
|  | int image_data_start_row = INVALID_ROW; | 
|  | int new_mv_count = 0; | 
|  | int sum_in_vectors = 0; | 
|  | MV lastmv = { 0, 0 }; | 
|  | TWO_PASS *twopass = &cpi->twopass; | 
|  | const MV zero_mv = { 0, 0 }; | 
|  | int recon_y_stride, recon_uv_stride, uv_mb_height; | 
|  |  | 
|  | YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); | 
|  | YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME); | 
|  | YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm); | 
|  | const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12; | 
|  | double intra_factor; | 
|  | double brightness_factor; | 
|  | BufferPool *const pool = cm->buffer_pool; | 
|  | const int qindex = find_fp_qindex(cm->bit_depth); | 
|  | const int mb_scale = mi_size_wide[BLOCK_16X16]; | 
|  |  | 
|  | int *raw_motion_err_list; | 
|  | int raw_motion_err_counts = 0; | 
|  | CHECK_MEM_ERROR( | 
|  | cm, raw_motion_err_list, | 
|  | aom_calloc(cm->mb_rows * cm->mb_cols, sizeof(*raw_motion_err_list))); | 
|  | // First pass code requires valid last and new frame buffers. | 
|  | assert(new_yv12 != NULL); | 
|  | assert(frame_is_intra_only(cm) || (lst_yv12 != NULL)); | 
|  |  | 
|  | #if CONFIG_FP_MB_STATS | 
|  | if (cpi->use_fp_mb_stats) { | 
|  | av1_zero_array(cpi->twopass.frame_mb_stats_buf, cpi->initial_mbs); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | xd->mi = cm->mi_grid_visible; | 
|  | xd->mi[0] = cm->mi; | 
|  | x->e_mbd.mi[0]->mbmi.sb_type = BLOCK_16X16; | 
|  |  | 
|  | intra_factor = 0.0; | 
|  | brightness_factor = 0.0; | 
|  | neutral_count = 0.0; | 
|  |  | 
|  | set_first_pass_params(cpi); | 
|  | av1_set_quantizer(cm, qindex); | 
|  |  | 
|  | av1_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y, | 
|  | num_planes); | 
|  |  | 
|  | av1_setup_src_planes(x, cpi->source, 0, 0, num_planes); | 
|  | av1_setup_dst_planes(xd->plane, cm->sb_size, new_yv12, 0, 0, num_planes); | 
|  |  | 
|  | if (!frame_is_intra_only(cm)) { | 
|  | av1_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL, num_planes); | 
|  | } | 
|  |  | 
|  | xd->mi = cm->mi_grid_visible; | 
|  | xd->mi[0] = cm->mi; | 
|  |  | 
|  | #if CONFIG_CFL | 
|  | // Don't store luma on the fist pass since chroma is not computed | 
|  | xd->cfl.store_y = 0; | 
|  | #endif  // CONFIG_CFL | 
|  | av1_frame_init_quantizer(cpi); | 
|  |  | 
|  | for (i = 0; i < num_planes; ++i) { | 
|  | p[i].coeff = ctx->coeff[i]; | 
|  | p[i].qcoeff = ctx->qcoeff[i]; | 
|  | pd[i].dqcoeff = ctx->dqcoeff[i]; | 
|  | p[i].eobs = ctx->eobs[i]; | 
|  | #if CONFIG_LV_MAP | 
|  | p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | av1_init_mv_probs(cm); | 
|  | #if CONFIG_LV_MAP | 
|  | av1_init_lv_map(cm); | 
|  | #endif | 
|  | av1_initialize_rd_consts(cpi); | 
|  |  | 
|  | // Tiling is ignored in the first pass. | 
|  | av1_tile_init(&tile, cm, 0, 0); | 
|  |  | 
|  | recon_y_stride = new_yv12->y_stride; | 
|  | recon_uv_stride = new_yv12->uv_stride; | 
|  | uv_mb_height = 16 >> (new_yv12->y_height > new_yv12->uv_height); | 
|  |  | 
|  | for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { | 
|  | MV best_ref_mv = { 0, 0 }; | 
|  |  | 
|  | // Reset above block coeffs. | 
|  | xd->up_available = (mb_row != 0); | 
|  | recon_yoffset = (mb_row * recon_y_stride * 16); | 
|  | recon_uvoffset = (mb_row * recon_uv_stride * uv_mb_height); | 
|  |  | 
|  | // Set up limit values for motion vectors to prevent them extending | 
|  | // outside the UMV borders. | 
|  | x->mv_limits.row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16); | 
|  | x->mv_limits.row_max = | 
|  | ((cm->mb_rows - 1 - mb_row) * 16) + BORDER_MV_PIXELS_B16; | 
|  |  | 
|  | for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { | 
|  | int this_error; | 
|  | const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); | 
|  | const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col); | 
|  | double log_intra; | 
|  | int level_sample; | 
|  |  | 
|  | #if CONFIG_FP_MB_STATS | 
|  | const int mb_index = mb_row * cm->mb_cols + mb_col; | 
|  | #endif | 
|  |  | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset; | 
|  | xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset; | 
|  | xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset; | 
|  | xd->left_available = (mb_col != 0); | 
|  | xd->mi[0]->mbmi.sb_type = bsize; | 
|  | xd->mi[0]->mbmi.ref_frame[0] = INTRA_FRAME; | 
|  | set_mi_row_col(xd, &tile, mb_row * mb_scale, mi_size_high[bsize], | 
|  | mb_col * mb_scale, mi_size_wide[bsize], | 
|  | #if CONFIG_DEPENDENT_HORZTILES | 
|  | cm->dependent_horz_tiles, | 
|  | #endif  // CONFIG_DEPENDENT_HORZTILES | 
|  | cm->mi_rows, cm->mi_cols); | 
|  |  | 
|  | set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize], num_planes); | 
|  |  | 
|  | // Do intra 16x16 prediction. | 
|  | xd->mi[0]->mbmi.segment_id = 0; | 
|  | xd->lossless[xd->mi[0]->mbmi.segment_id] = (qindex == 0); | 
|  | xd->mi[0]->mbmi.mode = DC_PRED; | 
|  | xd->mi[0]->mbmi.tx_size = | 
|  | use_dc_pred ? (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4; | 
|  | av1_encode_intra_block_plane(cpi, x, bsize, 0, 0, mb_row * 2, mb_col * 2); | 
|  | this_error = aom_get_mb_ss(x->plane[0].src_diff); | 
|  |  | 
|  | // Keep a record of blocks that have almost no intra error residual | 
|  | // (i.e. are in effect completely flat and untextured in the intra | 
|  | // domain). In natural videos this is uncommon, but it is much more | 
|  | // common in animations, graphics and screen content, so may be used | 
|  | // as a signal to detect these types of content. | 
|  | if (this_error < UL_INTRA_THRESH) { | 
|  | ++intra_skip_count; | 
|  | } else if ((mb_col > 0) && (image_data_start_row == INVALID_ROW)) { | 
|  | image_data_start_row = mb_row; | 
|  | } | 
|  |  | 
|  | if (cm->use_highbitdepth) { | 
|  | switch (cm->bit_depth) { | 
|  | case AOM_BITS_8: break; | 
|  | case AOM_BITS_10: this_error >>= 4; break; | 
|  | case AOM_BITS_12: this_error >>= 8; break; | 
|  | default: | 
|  | assert(0 && | 
|  | "cm->bit_depth should be AOM_BITS_8, " | 
|  | "AOM_BITS_10 or AOM_BITS_12"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | aom_clear_system_state(); | 
|  | log_intra = log(this_error + 1.0); | 
|  | if (log_intra < 10.0) | 
|  | intra_factor += 1.0 + ((10.0 - log_intra) * 0.05); | 
|  | else | 
|  | intra_factor += 1.0; | 
|  |  | 
|  | if (cm->use_highbitdepth) | 
|  | level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0]; | 
|  | else | 
|  | level_sample = x->plane[0].src.buf[0]; | 
|  | if ((level_sample < DARK_THRESH) && (log_intra < 9.0)) | 
|  | brightness_factor += 1.0 + (0.01 * (DARK_THRESH - level_sample)); | 
|  | else | 
|  | brightness_factor += 1.0; | 
|  |  | 
|  | // Intrapenalty below deals with situations where the intra and inter | 
|  | // error scores are very low (e.g. a plain black frame). | 
|  | // We do not have special cases in first pass for 0,0 and nearest etc so | 
|  | // all inter modes carry an overhead cost estimate for the mv. | 
|  | // When the error score is very low this causes us to pick all or lots of | 
|  | // INTRA modes and throw lots of key frames. | 
|  | // This penalty adds a cost matching that of a 0,0 mv to the intra case. | 
|  | this_error += intrapenalty; | 
|  |  | 
|  | // Accumulate the intra error. | 
|  | intra_error += (int64_t)this_error; | 
|  |  | 
|  | #if CONFIG_FP_MB_STATS | 
|  | if (cpi->use_fp_mb_stats) { | 
|  | // initialization | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] = 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Set up limit values for motion vectors to prevent them extending | 
|  | // outside the UMV borders. | 
|  | x->mv_limits.col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16); | 
|  | x->mv_limits.col_max = | 
|  | ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16; | 
|  |  | 
|  | if (!frame_is_intra_only(cm)) {  // Do a motion search | 
|  | int tmp_err, motion_error, raw_motion_error; | 
|  | // Assume 0,0 motion with no mv overhead. | 
|  | MV mv = { 0, 0 }, tmp_mv = { 0, 0 }; | 
|  | struct buf_2d unscaled_last_source_buf_2d; | 
|  |  | 
|  | xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset; | 
|  | if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
|  | motion_error = highbd_get_prediction_error( | 
|  | bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd); | 
|  | } else { | 
|  | motion_error = get_prediction_error(bsize, &x->plane[0].src, | 
|  | &xd->plane[0].pre[0]); | 
|  | } | 
|  |  | 
|  | // Compute the motion error of the 0,0 motion using the last source | 
|  | // frame as the reference. Skip the further motion search on | 
|  | // reconstructed frame if this error is small. | 
|  | unscaled_last_source_buf_2d.buf = | 
|  | cpi->unscaled_last_source->y_buffer + recon_yoffset; | 
|  | unscaled_last_source_buf_2d.stride = | 
|  | cpi->unscaled_last_source->y_stride; | 
|  | if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
|  | raw_motion_error = highbd_get_prediction_error( | 
|  | bsize, &x->plane[0].src, &unscaled_last_source_buf_2d, xd->bd); | 
|  | } else { | 
|  | raw_motion_error = get_prediction_error(bsize, &x->plane[0].src, | 
|  | &unscaled_last_source_buf_2d); | 
|  | } | 
|  |  | 
|  | // TODO(pengchong): Replace the hard-coded threshold | 
|  | if (raw_motion_error > 25) { | 
|  | // Test last reference frame using the previous best mv as the | 
|  | // starting point (best reference) for the search. | 
|  | first_pass_motion_search(cpi, x, &best_ref_mv, &mv, &motion_error); | 
|  |  | 
|  | // If the current best reference mv is not centered on 0,0 then do a | 
|  | // 0,0 based search as well. | 
|  | if (!is_zero_mv(&best_ref_mv)) { | 
|  | tmp_err = INT_MAX; | 
|  | first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &tmp_err); | 
|  |  | 
|  | if (tmp_err < motion_error) { | 
|  | motion_error = tmp_err; | 
|  | mv = tmp_mv; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Search in an older reference frame. | 
|  | if ((cm->current_video_frame > 1) && gld_yv12 != NULL) { | 
|  | // Assume 0,0 motion with no mv overhead. | 
|  | int gf_motion_error; | 
|  |  | 
|  | xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset; | 
|  | if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
|  | gf_motion_error = highbd_get_prediction_error( | 
|  | bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd); | 
|  | } else { | 
|  | gf_motion_error = get_prediction_error(bsize, &x->plane[0].src, | 
|  | &xd->plane[0].pre[0]); | 
|  | } | 
|  |  | 
|  | first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, | 
|  | &gf_motion_error); | 
|  |  | 
|  | if (gf_motion_error < motion_error && gf_motion_error < this_error) | 
|  | ++second_ref_count; | 
|  |  | 
|  | // Reset to last frame as reference buffer. | 
|  | xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset; | 
|  | xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset; | 
|  | xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset; | 
|  |  | 
|  | // In accumulating a score for the older reference frame take the | 
|  | // best of the motion predicted score and the intra coded error | 
|  | // (just as will be done for) accumulation of "coded_error" for | 
|  | // the last frame. | 
|  | if (gf_motion_error < this_error) | 
|  | sr_coded_error += gf_motion_error; | 
|  | else | 
|  | sr_coded_error += this_error; | 
|  | } else { | 
|  | sr_coded_error += motion_error; | 
|  | } | 
|  | } else { | 
|  | sr_coded_error += motion_error; | 
|  | } | 
|  |  | 
|  | // Start by assuming that intra mode is best. | 
|  | best_ref_mv.row = 0; | 
|  | best_ref_mv.col = 0; | 
|  |  | 
|  | #if CONFIG_FP_MB_STATS | 
|  | if (cpi->use_fp_mb_stats) { | 
|  | // intra predication statistics | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] = 0; | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_DCINTRA_MASK; | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK; | 
|  | if (this_error > FPMB_ERROR_LARGE_TH) { | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK; | 
|  | } else if (this_error < FPMB_ERROR_SMALL_TH) { | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (motion_error <= this_error) { | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | // Keep a count of cases where the inter and intra were very close | 
|  | // and very low. This helps with scene cut detection for example in | 
|  | // cropped clips with black bars at the sides or top and bottom. | 
|  | if (((this_error - intrapenalty) * 9 <= motion_error * 10) && | 
|  | (this_error < (2 * intrapenalty))) { | 
|  | neutral_count += 1.0; | 
|  | // Also track cases where the intra is not much worse than the inter | 
|  | // and use this in limiting the GF/arf group length. | 
|  | } else if ((this_error > NCOUNT_INTRA_THRESH) && | 
|  | (this_error < (NCOUNT_INTRA_FACTOR * motion_error))) { | 
|  | neutral_count += | 
|  | (double)motion_error / DOUBLE_DIVIDE_CHECK((double)this_error); | 
|  | } | 
|  |  | 
|  | mv.row *= 8; | 
|  | mv.col *= 8; | 
|  | this_error = motion_error; | 
|  | xd->mi[0]->mbmi.mode = NEWMV; | 
|  | xd->mi[0]->mbmi.mv[0].as_mv = mv; | 
|  | xd->mi[0]->mbmi.tx_size = TX_4X4; | 
|  | xd->mi[0]->mbmi.ref_frame[0] = LAST_FRAME; | 
|  | xd->mi[0]->mbmi.ref_frame[1] = NONE_FRAME; | 
|  | av1_build_inter_predictors_sby(cm, xd, mb_row * mb_scale, | 
|  | mb_col * mb_scale, NULL, bsize); | 
|  | av1_encode_sby_pass1(cm, x, bsize); | 
|  | sum_mvr += mv.row; | 
|  | sum_mvr_abs += abs(mv.row); | 
|  | sum_mvc += mv.col; | 
|  | sum_mvc_abs += abs(mv.col); | 
|  | sum_mvrs += mv.row * mv.row; | 
|  | sum_mvcs += mv.col * mv.col; | 
|  | ++intercount; | 
|  |  | 
|  | best_ref_mv = mv; | 
|  |  | 
|  | #if CONFIG_FP_MB_STATS | 
|  | if (cpi->use_fp_mb_stats) { | 
|  | // inter predication statistics | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] = 0; | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_DCINTRA_MASK; | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK; | 
|  | if (this_error > FPMB_ERROR_LARGE_TH) { | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] |= | 
|  | FPMB_ERROR_LARGE_MASK; | 
|  | } else if (this_error < FPMB_ERROR_SMALL_TH) { | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] |= | 
|  | FPMB_ERROR_SMALL_MASK; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (!is_zero_mv(&mv)) { | 
|  | ++mvcount; | 
|  |  | 
|  | #if CONFIG_FP_MB_STATS | 
|  | if (cpi->use_fp_mb_stats) { | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] &= | 
|  | ~FPMB_MOTION_ZERO_MASK; | 
|  | // check estimated motion direction | 
|  | if (mv.col > 0 && mv.col >= abs(mv.row)) { | 
|  | // right direction | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] |= | 
|  | FPMB_MOTION_RIGHT_MASK; | 
|  | } else if (mv.row < 0 && abs(mv.row) >= abs(mv.col)) { | 
|  | // up direction | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] |= | 
|  | FPMB_MOTION_UP_MASK; | 
|  | } else if (mv.col < 0 && abs(mv.col) >= abs(mv.row)) { | 
|  | // left direction | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] |= | 
|  | FPMB_MOTION_LEFT_MASK; | 
|  | } else { | 
|  | // down direction | 
|  | cpi->twopass.frame_mb_stats_buf[mb_index] |= | 
|  | FPMB_MOTION_DOWN_MASK; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Non-zero vector, was it different from the last non zero vector? | 
|  | if (!is_equal_mv(&mv, &lastmv)) ++new_mv_count; | 
|  | lastmv = mv; | 
|  |  | 
|  | // Does the row vector point inwards or outwards? | 
|  | if (mb_row < cm->mb_rows / 2) { | 
|  | if (mv.row > 0) | 
|  | --sum_in_vectors; | 
|  | else if (mv.row < 0) | 
|  | ++sum_in_vectors; | 
|  | } else if (mb_row > cm->mb_rows / 2) { | 
|  | if (mv.row > 0) | 
|  | ++sum_in_vectors; | 
|  | else if (mv.row < 0) | 
|  | --sum_in_vectors; | 
|  | } | 
|  |  | 
|  | // Does the col vector point inwards or outwards? | 
|  | if (mb_col < cm->mb_cols / 2) { | 
|  | if (mv.col > 0) | 
|  | --sum_in_vectors; | 
|  | else if (mv.col < 0) | 
|  | ++sum_in_vectors; | 
|  | } else if (mb_col > cm->mb_cols / 2) { | 
|  | if (mv.col > 0) | 
|  | ++sum_in_vectors; | 
|  | else if (mv.col < 0) | 
|  | --sum_in_vectors; | 
|  | } | 
|  | } | 
|  | } | 
|  | raw_motion_err_list[raw_motion_err_counts++] = raw_motion_error; | 
|  | } else { | 
|  | sr_coded_error += (int64_t)this_error; | 
|  | } | 
|  | coded_error += (int64_t)this_error; | 
|  |  | 
|  | // Adjust to the next column of MBs. | 
|  | x->plane[0].src.buf += 16; | 
|  | x->plane[1].src.buf += uv_mb_height; | 
|  | x->plane[2].src.buf += uv_mb_height; | 
|  |  | 
|  | recon_yoffset += 16; | 
|  | recon_uvoffset += uv_mb_height; | 
|  | } | 
|  | // Adjust to the next row of MBs. | 
|  | x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols; | 
|  | x->plane[1].src.buf += | 
|  | uv_mb_height * x->plane[1].src.stride - uv_mb_height * cm->mb_cols; | 
|  | x->plane[2].src.buf += | 
|  | uv_mb_height * x->plane[1].src.stride - uv_mb_height * cm->mb_cols; | 
|  |  | 
|  | aom_clear_system_state(); | 
|  | } | 
|  | const double raw_err_stdev = | 
|  | raw_motion_error_stdev(raw_motion_err_list, raw_motion_err_counts); | 
|  | aom_free(raw_motion_err_list); | 
|  |  | 
|  | // Clamp the image start to rows/2. This number of rows is discarded top | 
|  | // and bottom as dead data so rows / 2 means the frame is blank. | 
|  | if ((image_data_start_row > cm->mb_rows / 2) || | 
|  | (image_data_start_row == INVALID_ROW)) { | 
|  | image_data_start_row = cm->mb_rows / 2; | 
|  | } | 
|  | // Exclude any image dead zone | 
|  | if (image_data_start_row > 0) { | 
|  | intra_skip_count = | 
|  | AOMMAX(0, intra_skip_count - (image_data_start_row * cm->mb_cols * 2)); | 
|  | } | 
|  |  | 
|  | { | 
|  | FIRSTPASS_STATS fps; | 
|  | // The minimum error here insures some bit allocation to frames even | 
|  | // in static regions. The allocation per MB declines for larger formats | 
|  | // where the typical "real" energy per MB also falls. | 
|  | // Initial estimate here uses sqrt(mbs) to define the min_err, where the | 
|  | // number of mbs is proportional to the image area. | 
|  | const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) | 
|  | ? cpi->initial_mbs | 
|  | : cpi->common.MBs; | 
|  | const double min_err = 200 * sqrt(num_mbs); | 
|  |  | 
|  | intra_factor = intra_factor / (double)num_mbs; | 
|  | brightness_factor = brightness_factor / (double)num_mbs; | 
|  | fps.weight = intra_factor * brightness_factor; | 
|  |  | 
|  | fps.frame = cm->current_video_frame; | 
|  | fps.coded_error = (double)(coded_error >> 8) + min_err; | 
|  | fps.sr_coded_error = (double)(sr_coded_error >> 8) + min_err; | 
|  | fps.intra_error = (double)(intra_error >> 8) + min_err; | 
|  | fps.count = 1.0; | 
|  | fps.pcnt_inter = (double)intercount / num_mbs; | 
|  | fps.pcnt_second_ref = (double)second_ref_count / num_mbs; | 
|  | fps.pcnt_neutral = (double)neutral_count / num_mbs; | 
|  | fps.intra_skip_pct = (double)intra_skip_count / num_mbs; | 
|  | fps.inactive_zone_rows = (double)image_data_start_row; | 
|  | fps.inactive_zone_cols = (double)0;  // TODO(paulwilkins): fix | 
|  | fps.raw_error_stdev = raw_err_stdev; | 
|  |  | 
|  | if (mvcount > 0) { | 
|  | fps.MVr = (double)sum_mvr / mvcount; | 
|  | fps.mvr_abs = (double)sum_mvr_abs / mvcount; | 
|  | fps.MVc = (double)sum_mvc / mvcount; | 
|  | fps.mvc_abs = (double)sum_mvc_abs / mvcount; | 
|  | fps.MVrv = | 
|  | ((double)sum_mvrs - ((double)sum_mvr * sum_mvr / mvcount)) / mvcount; | 
|  | fps.MVcv = | 
|  | ((double)sum_mvcs - ((double)sum_mvc * sum_mvc / mvcount)) / mvcount; | 
|  | fps.mv_in_out_count = (double)sum_in_vectors / (mvcount * 2); | 
|  | fps.new_mv_count = new_mv_count; | 
|  | fps.pcnt_motion = (double)mvcount / num_mbs; | 
|  | } else { | 
|  | fps.MVr = 0.0; | 
|  | fps.mvr_abs = 0.0; | 
|  | fps.MVc = 0.0; | 
|  | fps.mvc_abs = 0.0; | 
|  | fps.MVrv = 0.0; | 
|  | fps.MVcv = 0.0; | 
|  | fps.mv_in_out_count = 0.0; | 
|  | fps.new_mv_count = 0.0; | 
|  | fps.pcnt_motion = 0.0; | 
|  | } | 
|  |  | 
|  | // TODO(paulwilkins):  Handle the case when duration is set to 0, or | 
|  | // something less than the full time between subsequent values of | 
|  | // cpi->source_time_stamp. | 
|  | fps.duration = (double)(source->ts_end - source->ts_start); | 
|  |  | 
|  | // Don't want to do output stats with a stack variable! | 
|  | twopass->this_frame_stats = fps; | 
|  | output_stats(&twopass->this_frame_stats, cpi->output_pkt_list); | 
|  | accumulate_stats(&twopass->total_stats, &fps); | 
|  |  | 
|  | #if CONFIG_FP_MB_STATS | 
|  | if (cpi->use_fp_mb_stats) { | 
|  | output_fpmb_stats(twopass->frame_mb_stats_buf, cpi->initial_mbs, | 
|  | cpi->output_pkt_list); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // Copy the previous Last Frame back into gf and and arf buffers if | 
|  | // the prediction is good enough... but also don't allow it to lag too far. | 
|  | if ((twopass->sr_update_lag > 3) || | 
|  | ((cm->current_video_frame > 0) && | 
|  | (twopass->this_frame_stats.pcnt_inter > 0.20) && | 
|  | ((twopass->this_frame_stats.intra_error / | 
|  | DOUBLE_DIVIDE_CHECK(twopass->this_frame_stats.coded_error)) > 2.0))) { | 
|  | if (gld_yv12 != NULL) { | 
|  | ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], | 
|  | cm->ref_frame_map[cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME]]); | 
|  | } | 
|  | twopass->sr_update_lag = 1; | 
|  | } else { | 
|  | ++twopass->sr_update_lag; | 
|  | } | 
|  |  | 
|  | aom_extend_frame_borders(new_yv12, num_planes); | 
|  |  | 
|  | // The frame we just compressed now becomes the last frame. | 
|  | ref_cnt_fb(pool->frame_bufs, | 
|  | &cm->ref_frame_map[cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME]], | 
|  | cm->new_fb_idx); | 
|  |  | 
|  | // Special case for the first frame. Copy into the GF buffer as a second | 
|  | // reference. | 
|  | if (cm->current_video_frame == 0 && cpi->gld_fb_idx != INVALID_IDX) { | 
|  | ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], | 
|  | cm->ref_frame_map[cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME]]); | 
|  | } | 
|  |  | 
|  | // Use this to see what the first pass reconstruction looks like. | 
|  | if (0) { | 
|  | char filename[512]; | 
|  | FILE *recon_file; | 
|  | snprintf(filename, sizeof(filename), "enc%04d.yuv", | 
|  | (int)cm->current_video_frame); | 
|  |  | 
|  | if (cm->current_video_frame == 0) | 
|  | recon_file = fopen(filename, "wb"); | 
|  | else | 
|  | recon_file = fopen(filename, "ab"); | 
|  |  | 
|  | (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file); | 
|  | fclose(recon_file); | 
|  | } | 
|  |  | 
|  | ++cm->current_video_frame; | 
|  | } | 
|  |  | 
|  | static double calc_correction_factor(double err_per_mb, double err_divisor, | 
|  | double pt_low, double pt_high, int q, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | const double error_term = err_per_mb / err_divisor; | 
|  |  | 
|  | // Adjustment based on actual quantizer to power term. | 
|  | const double power_term = | 
|  | AOMMIN(av1_convert_qindex_to_q(q, bit_depth) * 0.01 + pt_low, pt_high); | 
|  |  | 
|  | // Calculate correction factor. | 
|  | if (power_term < 1.0) assert(error_term >= 0.0); | 
|  |  | 
|  | return fclamp(pow(error_term, power_term), 0.05, 5.0); | 
|  | } | 
|  |  | 
|  | #define ERR_DIVISOR 100.0 | 
|  | static int get_twopass_worst_quality(const AV1_COMP *cpi, | 
|  | const double section_err, | 
|  | double inactive_zone, | 
|  | int section_target_bandwidth, | 
|  | double group_weight_factor) { | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  |  | 
|  | inactive_zone = fclamp(inactive_zone, 0.0, 1.0); | 
|  |  | 
|  | if (section_target_bandwidth <= 0) { | 
|  | return rc->worst_quality;  // Highest value allowed | 
|  | } else { | 
|  | const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) | 
|  | ? cpi->initial_mbs | 
|  | : cpi->common.MBs; | 
|  | const int active_mbs = AOMMAX(1, num_mbs - (int)(num_mbs * inactive_zone)); | 
|  | const double av_err_per_mb = section_err / active_mbs; | 
|  | const double speed_term = 1.0; | 
|  | double ediv_size_correction; | 
|  | const int target_norm_bits_per_mb = | 
|  | (int)((uint64_t)section_target_bandwidth << BPER_MB_NORMBITS) / | 
|  | active_mbs; | 
|  | int q; | 
|  |  | 
|  | // Larger image formats are expected to be a little harder to code | 
|  | // relatively given the same prediction error score. This in part at | 
|  | // least relates to the increased size and hence coding overheads of | 
|  | // motion vectors. Some account of this is made through adjustment of | 
|  | // the error divisor. | 
|  | ediv_size_correction = | 
|  | AOMMAX(0.2, AOMMIN(5.0, get_linear_size_factor(cpi))); | 
|  | if (ediv_size_correction < 1.0) | 
|  | ediv_size_correction = -(1.0 / ediv_size_correction); | 
|  | ediv_size_correction *= 4.0; | 
|  |  | 
|  | // Try and pick a max Q that will be high enough to encode the | 
|  | // content at the given rate. | 
|  | for (q = rc->best_quality; q < rc->worst_quality; ++q) { | 
|  | const double factor = calc_correction_factor( | 
|  | av_err_per_mb, ERR_DIVISOR - ediv_size_correction, FACTOR_PT_LOW, | 
|  | FACTOR_PT_HIGH, q, cpi->common.bit_depth); | 
|  | const int bits_per_mb = av1_rc_bits_per_mb( | 
|  | INTER_FRAME, q, factor * speed_term * group_weight_factor, | 
|  | cpi->common.bit_depth); | 
|  | if (bits_per_mb <= target_norm_bits_per_mb) break; | 
|  | } | 
|  |  | 
|  | // Restriction on active max q for constrained quality mode. | 
|  | if (cpi->oxcf.rc_mode == AOM_CQ) q = AOMMAX(q, oxcf->cq_level); | 
|  | return q; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void setup_rf_level_maxq(AV1_COMP *cpi) { | 
|  | int i; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | for (i = INTER_NORMAL; i < RATE_FACTOR_LEVELS; ++i) { | 
|  | int qdelta = av1_frame_type_qdelta(cpi, i, rc->worst_quality); | 
|  | rc->rf_level_maxq[i] = AOMMAX(rc->worst_quality + qdelta, rc->best_quality); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_init_second_pass(AV1_COMP *cpi) { | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | double frame_rate; | 
|  | FIRSTPASS_STATS *stats; | 
|  |  | 
|  | zero_stats(&twopass->total_stats); | 
|  | zero_stats(&twopass->total_left_stats); | 
|  |  | 
|  | if (!twopass->stats_in_end) return; | 
|  |  | 
|  | stats = &twopass->total_stats; | 
|  |  | 
|  | *stats = *twopass->stats_in_end; | 
|  | twopass->total_left_stats = *stats; | 
|  |  | 
|  | frame_rate = 10000000.0 * stats->count / stats->duration; | 
|  | // Each frame can have a different duration, as the frame rate in the source | 
|  | // isn't guaranteed to be constant. The frame rate prior to the first frame | 
|  | // encoded in the second pass is a guess. However, the sum duration is not. | 
|  | // It is calculated based on the actual durations of all frames from the | 
|  | // first pass. | 
|  | av1_new_framerate(cpi, frame_rate); | 
|  | twopass->bits_left = | 
|  | (int64_t)(stats->duration * oxcf->target_bandwidth / 10000000.0); | 
|  |  | 
|  | // This variable monitors how far behind the second ref update is lagging. | 
|  | twopass->sr_update_lag = 1; | 
|  |  | 
|  | // Scan the first pass file and calculate a modified total error based upon | 
|  | // the bias/power function used to allocate bits. | 
|  | { | 
|  | const double avg_error = | 
|  | stats->coded_error / DOUBLE_DIVIDE_CHECK(stats->count); | 
|  | const FIRSTPASS_STATS *s = twopass->stats_in; | 
|  | double modified_error_total = 0.0; | 
|  | twopass->modified_error_min = | 
|  | (avg_error * oxcf->two_pass_vbrmin_section) / 100; | 
|  | twopass->modified_error_max = | 
|  | (avg_error * oxcf->two_pass_vbrmax_section) / 100; | 
|  | while (s < twopass->stats_in_end) { | 
|  | modified_error_total += calculate_modified_err(cpi, twopass, oxcf, s); | 
|  | ++s; | 
|  | } | 
|  | twopass->modified_error_left = modified_error_total; | 
|  | } | 
|  |  | 
|  | // Reset the vbr bits off target counters | 
|  | cpi->rc.vbr_bits_off_target = 0; | 
|  | cpi->rc.vbr_bits_off_target_fast = 0; | 
|  |  | 
|  | cpi->rc.rate_error_estimate = 0; | 
|  |  | 
|  | // Static sequence monitor variables. | 
|  | twopass->kf_zeromotion_pct = 100; | 
|  | twopass->last_kfgroup_zeromotion_pct = 100; | 
|  |  | 
|  | if (oxcf->resize_mode != RESIZE_NONE) { | 
|  | setup_rf_level_maxq(cpi); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define SR_DIFF_PART 0.0015 | 
|  | #define MOTION_AMP_PART 0.003 | 
|  | #define INTRA_PART 0.005 | 
|  | #define DEFAULT_DECAY_LIMIT 0.75 | 
|  | #define LOW_SR_DIFF_TRHESH 0.1 | 
|  | #define SR_DIFF_MAX 128.0 | 
|  |  | 
|  | static double get_sr_decay_rate(const AV1_COMP *cpi, | 
|  | const FIRSTPASS_STATS *frame) { | 
|  | const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs | 
|  | : cpi->common.MBs; | 
|  | double sr_diff = (frame->sr_coded_error - frame->coded_error) / num_mbs; | 
|  | double sr_decay = 1.0; | 
|  | double modified_pct_inter; | 
|  | double modified_pcnt_intra; | 
|  | const double motion_amplitude_factor = | 
|  | frame->pcnt_motion * ((frame->mvc_abs + frame->mvr_abs) / 2); | 
|  |  | 
|  | modified_pct_inter = frame->pcnt_inter; | 
|  | if ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) < | 
|  | (double)NCOUNT_FRAME_II_THRESH) { | 
|  | modified_pct_inter = frame->pcnt_inter - frame->pcnt_neutral; | 
|  | } | 
|  | modified_pcnt_intra = 100 * (1.0 - modified_pct_inter); | 
|  |  | 
|  | if ((sr_diff > LOW_SR_DIFF_TRHESH)) { | 
|  | sr_diff = AOMMIN(sr_diff, SR_DIFF_MAX); | 
|  | sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) - | 
|  | (MOTION_AMP_PART * motion_amplitude_factor) - | 
|  | (INTRA_PART * modified_pcnt_intra); | 
|  | } | 
|  | return AOMMAX(sr_decay, AOMMIN(DEFAULT_DECAY_LIMIT, modified_pct_inter)); | 
|  | } | 
|  |  | 
|  | // This function gives an estimate of how badly we believe the prediction | 
|  | // quality is decaying from frame to frame. | 
|  | static double get_zero_motion_factor(const AV1_COMP *cpi, | 
|  | const FIRSTPASS_STATS *frame) { | 
|  | const double zero_motion_pct = frame->pcnt_inter - frame->pcnt_motion; | 
|  | double sr_decay = get_sr_decay_rate(cpi, frame); | 
|  | return AOMMIN(sr_decay, zero_motion_pct); | 
|  | } | 
|  |  | 
|  | #define ZM_POWER_FACTOR 0.75 | 
|  |  | 
|  | static double get_prediction_decay_rate(const AV1_COMP *cpi, | 
|  | const FIRSTPASS_STATS *next_frame) { | 
|  | const double sr_decay_rate = get_sr_decay_rate(cpi, next_frame); | 
|  | const double zero_motion_factor = | 
|  | (0.95 * pow((next_frame->pcnt_inter - next_frame->pcnt_motion), | 
|  | ZM_POWER_FACTOR)); | 
|  |  | 
|  | return AOMMAX(zero_motion_factor, | 
|  | (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor))); | 
|  | } | 
|  |  | 
|  | // Function to test for a condition where a complex transition is followed | 
|  | // by a static section. For example in slide shows where there is a fade | 
|  | // between slides. This is to help with more optimal kf and gf positioning. | 
|  | static int detect_transition_to_still(AV1_COMP *cpi, int frame_interval, | 
|  | int still_interval, | 
|  | double loop_decay_rate, | 
|  | double last_decay_rate) { | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  |  | 
|  | // Break clause to detect very still sections after motion | 
|  | // For example a static image after a fade or other transition | 
|  | // instead of a clean scene cut. | 
|  | if (frame_interval > rc->min_gf_interval && loop_decay_rate >= 0.999 && | 
|  | last_decay_rate < 0.9) { | 
|  | int j; | 
|  |  | 
|  | // Look ahead a few frames to see if static condition persists... | 
|  | for (j = 0; j < still_interval; ++j) { | 
|  | const FIRSTPASS_STATS *stats = &twopass->stats_in[j]; | 
|  | if (stats >= twopass->stats_in_end) break; | 
|  |  | 
|  | if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break; | 
|  | } | 
|  |  | 
|  | // Only if it does do we signal a transition to still. | 
|  | return j == still_interval; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // This function detects a flash through the high relative pcnt_second_ref | 
|  | // score in the frame following a flash frame. The offset passed in should | 
|  | // reflect this. | 
|  | static int detect_flash(const TWO_PASS *twopass, int offset) { | 
|  | const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset); | 
|  |  | 
|  | // What we are looking for here is a situation where there is a | 
|  | // brief break in prediction (such as a flash) but subsequent frames | 
|  | // are reasonably well predicted by an earlier (pre flash) frame. | 
|  | // The recovery after a flash is indicated by a high pcnt_second_ref | 
|  | // compared to pcnt_inter. | 
|  | return next_frame != NULL && | 
|  | next_frame->pcnt_second_ref > next_frame->pcnt_inter && | 
|  | next_frame->pcnt_second_ref >= 0.5; | 
|  | } | 
|  |  | 
|  | // Update the motion related elements to the GF arf boost calculation. | 
|  | static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats, | 
|  | double *mv_in_out, | 
|  | double *mv_in_out_accumulator, | 
|  | double *abs_mv_in_out_accumulator, | 
|  | double *mv_ratio_accumulator) { | 
|  | const double pct = stats->pcnt_motion; | 
|  |  | 
|  | // Accumulate Motion In/Out of frame stats. | 
|  | *mv_in_out = stats->mv_in_out_count * pct; | 
|  | *mv_in_out_accumulator += *mv_in_out; | 
|  | *abs_mv_in_out_accumulator += fabs(*mv_in_out); | 
|  |  | 
|  | // Accumulate a measure of how uniform (or conversely how random) the motion | 
|  | // field is (a ratio of abs(mv) / mv). | 
|  | if (pct > 0.05) { | 
|  | const double mvr_ratio = | 
|  | fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr)); | 
|  | const double mvc_ratio = | 
|  | fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc)); | 
|  |  | 
|  | *mv_ratio_accumulator += | 
|  | pct * (mvr_ratio < stats->mvr_abs ? mvr_ratio : stats->mvr_abs); | 
|  | *mv_ratio_accumulator += | 
|  | pct * (mvc_ratio < stats->mvc_abs ? mvc_ratio : stats->mvc_abs); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define BASELINE_ERR_PER_MB 1000.0 | 
|  | static double calc_frame_boost(AV1_COMP *cpi, const FIRSTPASS_STATS *this_frame, | 
|  | double this_frame_mv_in_out, double max_boost) { | 
|  | double frame_boost; | 
|  | const double lq = av1_convert_qindex_to_q( | 
|  | cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.bit_depth); | 
|  | const double boost_q_correction = AOMMIN((0.5 + (lq * 0.015)), 1.5); | 
|  | int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs | 
|  | : cpi->common.MBs; | 
|  |  | 
|  | // Correct for any inactive region in the image | 
|  | num_mbs = (int)AOMMAX(1, num_mbs * calculate_active_area(cpi, this_frame)); | 
|  |  | 
|  | // Underlying boost factor is based on inter error ratio. | 
|  | frame_boost = (BASELINE_ERR_PER_MB * num_mbs) / | 
|  | DOUBLE_DIVIDE_CHECK(this_frame->coded_error); | 
|  | frame_boost = frame_boost * BOOST_FACTOR * boost_q_correction; | 
|  |  | 
|  | // Increase boost for frames where new data coming into frame (e.g. zoom out). | 
|  | // Slightly reduce boost if there is a net balance of motion out of the frame | 
|  | // (zoom in). The range for this_frame_mv_in_out is -1.0 to +1.0. | 
|  | if (this_frame_mv_in_out > 0.0) | 
|  | frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); | 
|  | // In the extreme case the boost is halved. | 
|  | else | 
|  | frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); | 
|  |  | 
|  | return AOMMIN(frame_boost, max_boost * boost_q_correction); | 
|  | } | 
|  |  | 
|  | static int calc_arf_boost(AV1_COMP *cpi, int offset, int f_frames, int b_frames, | 
|  | int *f_boost, int *b_boost) { | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | int i; | 
|  | double boost_score = 0.0; | 
|  | double mv_ratio_accumulator = 0.0; | 
|  | double decay_accumulator = 1.0; | 
|  | double this_frame_mv_in_out = 0.0; | 
|  | double mv_in_out_accumulator = 0.0; | 
|  | double abs_mv_in_out_accumulator = 0.0; | 
|  | int arf_boost; | 
|  | int flash_detected = 0; | 
|  |  | 
|  | // Search forward from the proposed arf/next gf position. | 
|  | for (i = 0; i < f_frames; ++i) { | 
|  | const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset); | 
|  | if (this_frame == NULL) break; | 
|  |  | 
|  | // Update the motion related elements to the boost calculation. | 
|  | accumulate_frame_motion_stats( | 
|  | this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, | 
|  | &abs_mv_in_out_accumulator, &mv_ratio_accumulator); | 
|  |  | 
|  | // We want to discount the flash frame itself and the recovery | 
|  | // frame that follows as both will have poor scores. | 
|  | flash_detected = detect_flash(twopass, i + offset) || | 
|  | detect_flash(twopass, i + offset + 1); | 
|  |  | 
|  | // Accumulate the effect of prediction quality decay. | 
|  | if (!flash_detected) { | 
|  | decay_accumulator *= get_prediction_decay_rate(cpi, this_frame); | 
|  | decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR | 
|  | ? MIN_DECAY_FACTOR | 
|  | : decay_accumulator; | 
|  | } | 
|  |  | 
|  | boost_score += | 
|  | decay_accumulator * | 
|  | calc_frame_boost(cpi, this_frame, this_frame_mv_in_out, GF_MAX_BOOST); | 
|  | } | 
|  |  | 
|  | *f_boost = (int)boost_score; | 
|  |  | 
|  | // Reset for backward looking loop. | 
|  | boost_score = 0.0; | 
|  | mv_ratio_accumulator = 0.0; | 
|  | decay_accumulator = 1.0; | 
|  | this_frame_mv_in_out = 0.0; | 
|  | mv_in_out_accumulator = 0.0; | 
|  | abs_mv_in_out_accumulator = 0.0; | 
|  |  | 
|  | // Search backward towards last gf position. | 
|  | for (i = -1; i >= -b_frames; --i) { | 
|  | const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset); | 
|  | if (this_frame == NULL) break; | 
|  |  | 
|  | // Update the motion related elements to the boost calculation. | 
|  | accumulate_frame_motion_stats( | 
|  | this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, | 
|  | &abs_mv_in_out_accumulator, &mv_ratio_accumulator); | 
|  |  | 
|  | // We want to discount the the flash frame itself and the recovery | 
|  | // frame that follows as both will have poor scores. | 
|  | flash_detected = detect_flash(twopass, i + offset) || | 
|  | detect_flash(twopass, i + offset + 1); | 
|  |  | 
|  | // Cumulative effect of prediction quality decay. | 
|  | if (!flash_detected) { | 
|  | decay_accumulator *= get_prediction_decay_rate(cpi, this_frame); | 
|  | decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR | 
|  | ? MIN_DECAY_FACTOR | 
|  | : decay_accumulator; | 
|  | } | 
|  |  | 
|  | boost_score += | 
|  | decay_accumulator * | 
|  | calc_frame_boost(cpi, this_frame, this_frame_mv_in_out, GF_MAX_BOOST); | 
|  | } | 
|  | *b_boost = (int)boost_score; | 
|  |  | 
|  | arf_boost = (*f_boost + *b_boost); | 
|  | if (arf_boost < ((b_frames + f_frames) * 20)) | 
|  | arf_boost = ((b_frames + f_frames) * 20); | 
|  | arf_boost = AOMMAX(arf_boost, MIN_ARF_GF_BOOST); | 
|  |  | 
|  | return arf_boost; | 
|  | } | 
|  |  | 
|  | // Calculate a section intra ratio used in setting max loop filter. | 
|  | static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin, | 
|  | const FIRSTPASS_STATS *end, | 
|  | int section_length) { | 
|  | const FIRSTPASS_STATS *s = begin; | 
|  | double intra_error = 0.0; | 
|  | double coded_error = 0.0; | 
|  | int i = 0; | 
|  |  | 
|  | while (s < end && i < section_length) { | 
|  | intra_error += s->intra_error; | 
|  | coded_error += s->coded_error; | 
|  | ++s; | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error)); | 
|  | } | 
|  |  | 
|  | // Calculate the total bits to allocate in this GF/ARF group. | 
|  | static int64_t calculate_total_gf_group_bits(AV1_COMP *cpi, | 
|  | double gf_group_err) { | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const TWO_PASS *const twopass = &cpi->twopass; | 
|  | const int max_bits = frame_max_bits(rc, &cpi->oxcf); | 
|  | int64_t total_group_bits; | 
|  |  | 
|  | // Calculate the bits to be allocated to the group as a whole. | 
|  | if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0)) { | 
|  | total_group_bits = (int64_t)(twopass->kf_group_bits * | 
|  | (gf_group_err / twopass->kf_group_error_left)); | 
|  | } else { | 
|  | total_group_bits = 0; | 
|  | } | 
|  |  | 
|  | // Clamp odd edge cases. | 
|  | total_group_bits = (total_group_bits < 0) | 
|  | ? 0 | 
|  | : (total_group_bits > twopass->kf_group_bits) | 
|  | ? twopass->kf_group_bits | 
|  | : total_group_bits; | 
|  |  | 
|  | // Clip based on user supplied data rate variability limit. | 
|  | if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval) | 
|  | total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval; | 
|  |  | 
|  | return total_group_bits; | 
|  | } | 
|  |  | 
|  | // Calculate the number bits extra to assign to boosted frames in a group. | 
|  | static int calculate_boost_bits(int frame_count, int boost, | 
|  | int64_t total_group_bits) { | 
|  | int allocation_chunks; | 
|  |  | 
|  | // return 0 for invalid inputs (could arise e.g. through rounding errors) | 
|  | if (!boost || (total_group_bits <= 0) || (frame_count <= 0)) return 0; | 
|  |  | 
|  | allocation_chunks = (frame_count * 100) + boost; | 
|  |  | 
|  | // Prevent overflow. | 
|  | if (boost > 1023) { | 
|  | int divisor = boost >> 10; | 
|  | boost /= divisor; | 
|  | allocation_chunks /= divisor; | 
|  | } | 
|  |  | 
|  | // Calculate the number of extra bits for use in the boosted frame or frames. | 
|  | return AOMMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks), | 
|  | 0); | 
|  | } | 
|  |  | 
|  | #if USE_GF16_MULTI_LAYER | 
|  | // === GF Group of 16 === | 
|  | #define GF_INTERVAL_16 16 | 
|  | #define GF_FRAME_PARAMS (REF_FRAMES + 5) | 
|  |  | 
|  | // GF Group of 16: multi-layer hierarchical coding structure | 
|  | //   1st Layer: Frame 0 and Frame 16 (ALTREF) | 
|  | //   2nd Layer: Frame 8 (ALTREF2) | 
|  | //   3rd Layer: Frame 4 and 12 (ALTREF2) | 
|  | //   4th Layer: Frame 2, 6, 10, and 14 (BWDREF) | 
|  | //   5th Layer: Frame 1, 3, 5, 7, 9, 11, 13, and 15 | 
|  | static const unsigned char gf16_multi_layer_params[][GF_FRAME_PARAMS] = { | 
|  | // gf_group->index: coding order | 
|  | // (Frame #)      : display order | 
|  | { | 
|  | // gf_group->index == 0 (Frame 0) | 
|  | OVERLAY_UPDATE,  // update_type | 
|  | 0,               // arf_src_offset | 
|  | 0,               // brf_src_offset | 
|  | // References (previous ===> current) | 
|  | LAST_FRAME,     // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] | 
|  | LAST2_FRAME,    // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] | 
|  | LAST3_FRAME,    // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] | 
|  | GOLDEN_FRAME,   // cpi->gld_fb_idx (GOLDEN_FRAME) | 
|  | BWDREF_FRAME,   // cpi->bwd_fb_idx (BWDREF_FRAME) | 
|  | ALTREF2_FRAME,  // cpi->alt2_fb_idx (ALTREF2_FRAME) | 
|  | ALTREF_FRAME,   // cpi->alt_fb_idx (ALTREF_FRAME) | 
|  | REF_FRAMES,     // cpi->ext_fb_idx (extra ref frame) | 
|  | // Refreshment (index, flag) | 
|  | ALTREF_FRAME,  // Index (current) of reference to get updated | 
|  | GOLDEN_FRAME   // cpi->refresh_golden_frame = 1 | 
|  | }, | 
|  | { | 
|  | // gf_group->index == 1 (Frame 16) | 
|  | ARF_UPDATE,          // update_type | 
|  | GF_INTERVAL_16 - 1,  // arf_src_offset | 
|  | 0,                   // brf_src_offset | 
|  | // Reference frame indexes (previous ===> current) | 
|  | LAST_FRAME,     // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] | 
|  | LAST2_FRAME,    // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] | 
|  | LAST3_FRAME,    // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] | 
|  | ALTREF_FRAME,   // cpi->alt_fb_idx ===> cpi->gld_fb_idx (GOLDEN_FRAME) | 
|  | BWDREF_FRAME,   // cpi->bwd_fb_idx (BWDREF_FRAME) | 
|  | ALTREF2_FRAME,  // cpi->alt2_fb_idx (ALTREF2_FRAME) | 
|  | GOLDEN_FRAME,   // cpi->gld_fb_idx ===> cpi->alt_fb_idx (ALTREF_FRAME) | 
|  | REF_FRAMES,     // cpi->ext_fb_idx (extra ref frame) | 
|  | // Refreshment (index, flag) | 
|  | ALTREF_FRAME,  // Index (current) of reference to get updated | 
|  | ALTREF_FRAME   // cpi->refresh_alt_ref_frame = 1 | 
|  | }, | 
|  | { | 
|  | // gf_group->index == 2 (Frame 8) | 
|  | INTNL_ARF_UPDATE,           // update_type | 
|  | (GF_INTERVAL_16 >> 1) - 1,  // arf_src_offset | 
|  | 0,                          // brf_src_offset | 
|  | // Reference frame indexes (previous ===> current) | 
|  | LAST_FRAME,     // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] | 
|  | LAST2_FRAME,    // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] | 
|  | LAST3_FRAME,    // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] | 
|  | GOLDEN_FRAME,   // cpi->gld_fb_idx (GOLDEN_FRAME) | 
|  | BWDREF_FRAME,   // cpi->bwd_fb_idx (BWDREF_FRAME) | 
|  | ALTREF2_FRAME,  // cpi->alt2_fb_idx (ALTREF2_FRAME) | 
|  | ALTREF_FRAME,   // cpi->alt_fb_idx (ALTREF_FRAME) | 
|  | REF_FRAMES,     // cpi->ext_fb_idx (extra ref frame) | 
|  | // Refreshment (index, flag) | 
|  | ALTREF2_FRAME,  // Index (current) of reference to get updated | 
|  | ALTREF2_FRAME   // cpi->refresh_alt2_ref_frame = 1 | 
|  | }, | 
|  | { | 
|  | // gf_group->index == 3 (Frame 4) | 
|  | INTNL_ARF_UPDATE,           // update_type | 
|  | (GF_INTERVAL_16 >> 2) - 1,  // arf_src_offset | 
|  | 0,                          // brf_src_offset | 
|  | // Reference frame indexes (previous ===> current) | 
|  | LAST_FRAME,     // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] | 
|  | LAST2_FRAME,    // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] | 
|  | LAST3_FRAME,    // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] | 
|  | GOLDEN_FRAME,   // cpi->gld_fb_idx (GOLDEN_FRAME) | 
|  | ALTREF2_FRAME,  // cpi->alt2_fb_idx ===> cpi->bwd_fb_idx | 
|  | // (BWDREF_FRAME) | 
|  | BWDREF_FRAME,   // cpi->bwd_fb_idx ===> cpi->alt2_fb_idx | 
|  | // (ALTREF2_FRAME) | 
|  | ALTREF_FRAME,   // cpi->alt_fb_idx (ALTREF_FRAME) | 
|  | REF_FRAMES,     // cpi->ext_fb_idx (extra ref frame) | 
|  | // Refreshment (index, flag) | 
|  | ALTREF2_FRAME,  // Index (current) of reference to get updated | 
|  | ALTREF2_FRAME   // cpi->refresh_alt2_ref_frame = 1 | 
|  | }, | 
|  | { | 
|  | // gf_group->index == 4 (Frame 2) | 
|  | BRF_UPDATE,  // update_type | 
|  | 0,           // arf_src_offset | 
|  | 1,           // brf_src_offset | 
|  | // Reference frame indexes (previous ===> current) | 
|  | LAST_FRAME,     // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] | 
|  | LAST2_FRAME,    // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] | 
|  | LAST3_FRAME,    // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] | 
|  | GOLDEN_FRAME,   // cpi->gld_fb_idx (GOLDEN_FRAME) | 
|  | ALTREF2_FRAME,  // cpi->alt2_fb_idx ===> cpi->bwd_fb_idx | 
|  | // (BWDREF_FRAME) | 
|  | BWDREF_FRAME,   // cpi->bwd_fb_idx ===> cpi->alt2_fb_idx | 
|  | // (ALTREF2_FRAME) | 
|  | ALTREF_FRAME,   // cpi->alt_fb_idx (ALTREF_FRAME) | 
|  | REF_FRAMES,     // cpi->ext_fb_idx (extra ref frame) | 
|  | // Refreshment (index, flag) | 
|  | REF_FRAMES,   // Index (current) of reference to get updated | 
|  | BWDREF_FRAME  // cpi->refresh_bwd_ref_frame = 1 | 
|  | }, | 
|  | { | 
|  | // gf_group->index == 5 (Frame 1) | 
|  | LAST_BIPRED_UPDATE,  // update_type | 
|  | 0,                   // arf_src_offset | 
|  | 0,                   // brf_src_offset | 
|  | // Reference frame indexes (previous ===> current) | 
|  | LAST_FRAME,     // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] | 
|  | LAST2_FRAME,    // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] | 
|  | LAST3_FRAME,    // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] | 
|  | GOLDEN_FRAME,   // cpi->gld_fb_idx (GOLDEN_FRAME) | 
|  | REF_FRAMES,     // cpi->ext_fb_idx ===> cpi->bwd_fb_idx (BWDREF_FRAME) | 
|  | BWDREF_FRAME,   // cpi->bwd_fb_idx ===> cpi->alt2_fb_idx (ALTREF2_FRAME) | 
|  | ALTREF2_FRAME,  // cpi->alt2_fb_idx ===> cpi->alt_fb_idx (ALTREF_FRAME) | 
|  | ALTREF_FRAME,   // cpi->alt_fb_idx ===> cpi->ext_fb_idx (extra ref frame) | 
|  | // Refreshment (index, flag) | 
|  | LAST3_FRAME,  // Index (current) of reference to get updated | 
|  | LAST_FRAME    // cpi->refresh_last_frame = 1 | 
|  | }, | 
|  | { | 
|  | // gf_group->index == 6 (Frame 3) | 
|  | LF_UPDATE,  // update_type | 
|  | 0,          // arf_src_offset | 
|  | 0,          // brf_src_offset | 
|  | // Reference frame indexes (previous ===> current) | 
|  | BWDREF_FRAME,   // cpi->bwd_fb_idx ===> cpi->lst_fb_idxes[LAST_FRAME - | 
|  | // LAST_FRAME] | 
|  | LAST3_FRAME,    // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] | 
|  | LAST_FRAME,     // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] | 
|  | GOLDEN_FRAME,   // cpi->gld_fb_idx (GOLDEN_FRAME) | 
|  | ALTREF2_FRAME,  // cpi->alt2_fb_idx ===> cpi->bwd_fb_idx (BWDREF_FRAME) | 
|  | ALTREF_FRAME,   // cpi->alt_fb_idx ===> cpi->alt2_fb_idx (ALTREF2_FRAME) | 
|  | REF_FRAMES,     // cpi->ext_fb_idx ===> cpi->alt_fb_idx (ALTREF_FRAME) | 
|  | LAST2_FRAME,    // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] ===> | 
|  | // cpi->ext_fb_idx (extra ref frame) | 
|  | // Refreshment (index, flag) | 
|  | LAST3_FRAME,  // Index (current) of reference to get updated | 
|  | LAST_FRAME    // cpi->refresh_last_frame = 1 | 
|  | }, | 
|  | { | 
|  | // gf_group->index == 7 (Frame 4 - OVERLAY) | 
|  | INTNL_OVERLAY_UPDATE,  // update_type | 
|  | 0,                     // arf_src_offset | 
|  | 0,                     // brf_src_offset | 
|  | // Reference frame indexes (previous ===> current) | 
|  | LAST3_FRAME,    // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] | 
|  | LAST_FRAME,     // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] | 
|  | LAST2_FRAME,    // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] | 
|  | GOLDEN_FRAME,   // cpi->gld_fb_idx (GOLDEN_FRAME) | 
|  | BWDREF_FRAME,   // cpi->bwd_fb_idx (BWDREF_FRAME) | 
|  | ALTREF2_FRAME,  // cpi->alt2_fb_idx (ALTREF2_FRAME) | 
|  | ALTREF_FRAME,   // cpi->alt_fb_idx (ALTREF_FRAME) | 
|  | REF_FRAMES,     // cpi->ext_fb_idx (extra ref frame) | 
|  | // Refreshment (index, flag) | 
|  | BWDREF_FRAME,  // Index (current) of reference to get updated | 
|  | ALTREF2_FRAME  // cpi->refresh_alt2_ref_frame = 1 | 
|  | }, | 
|  | { | 
|  | // gf_group->index == 8 (Frame 6) | 
|  | BRF_UPDATE,  // update_type | 
|  | 0,           // arf_src_offset | 
|  | 1,           // brf_src_offset | 
|  | // Reference frame indexes (previous ===> current) | 
|  | BWDREF_FRAME,   // cpi->bwd_fb_idx ===> cpi->lst_fb_idxes[LAST_FRAME - | 
|  | // LAST_FRAME] | 
|  | LAST_FRAME,     // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] | 
|  | LAST2_FRAME,    // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] | 
|  | GOLDEN_FRAME,   // cpi->gld_fb_idx (GOLDEN_FRAME) | 
|  | ALTREF2_FRAME,  // cpi->alt2_fb_idx -> cpi->bwd_fb_idx (BWDREF_FRAME) | 
|  | LAST3_FRAME,    // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] ===> | 
|  | // cpi->alt2_fb_idx (ALTREF2_FRAME) | 
|  | ALTREF_FRAME,   // cpi->alt_fb_idx (ALTREF_FRAME) | 
|  | REF_FRAMES,     // cpi->ext_fb_idx (extra ref frame) | 
|  | // Refreshment (index, flag) | 
|  | ALTREF2_FRAME,  // Index (current) of reference to get updated | 
|  | BWDREF_FRAME    // cpi->refresh_bwd_frame = 1 | 
|  | }, | 
|  | { | 
|  | // gf_group->index == 9 (Frame 5) | 
|  | LAST_BIPRED_UPDATE,  // update_type | 
|  | 0,                   // arf_src_offset | 
|  | 0,                   // brf_src_offset | 
|  | // Reference frame indexes (previous ===> current) | 
|  | LAST_FRAME,     // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] | 
|  | LAST2_FRAME,    // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] | 
|  | LAST3_FRAME,    // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] | 
|  | GOLDEN_FRAME,   // cpi->gld_fb_idx (GOLDEN_FRAME) | 
|  | ALTREF2_FRAME,  // cpi->alt2_fb_idx ===> cpi->bwd_fb_idx (BWDREF_FRAME) | 
|  | BWDREF_FRAME,   // cpi->bwd_fb_idx ===> cpi->alt2_fb_idx (ALTREF2_FRAME) | 
|  | ALTREF_FRAME,   // cpi->alt_fb_idx (ALTREF_FRAME) | 
|  | REF_FRAMES,     // cpi->ext_fb_idx (extra ref frame) | 
|  | // Refreshment (index, flag) | 
|  | LAST3_FRAME,  // Index (current) of reference to get updated | 
|  | LAST_FRAME    // cpi->refresh_last_frame = 1 | 
|  | }, | 
|  | { | 
|  | // gf_group->index == 10 (Frame 7) | 
|  | LF_UPDATE,  // update_type | 
|  | 0,          // arf_src_offset | 
|  | 0,          // brf_src_offset | 
|  | // Reference frame indexes (previous ===> current) | 
|  | BWDREF_FRAME,   // cpi->bwd_fb_idx ===> cpi->lst_fb_idxes[LAST_FRAME - | 
|  | // LAST_FRAME] | 
|  | LAST3_FRAME,    // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] | 
|  | LAST_FRAME,     // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] | 
|  | GOLDEN_FRAME,   // cpi->gld_fb_idx (GOLDEN_FRAME) | 
|  | ALTREF2_FRAME,  // cpi->alt2_fb_idx ===> cpi->bwd_fb_idx (BWDREF_FRAME) | 
|  | LAST2_FRAME,    // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] ===> | 
|  | // cpi->alt2_fb_idx (ALTREF2_FRAME) | 
|  | ALTREF_FRAME,   // cpi->alt_fb_idx (ALTREF_FRAME) | 
|  | REF_FRAMES,     // cpi->ext_fb_idx (extra ref frame) | 
|  | // Refreshment (index, flag) | 
|  | LAST3_FRAME,  // Index (current) of reference to get updated | 
|  | LAST_FRAME    // cpi->refresh_last_frame = 1 | 
|  | }, | 
|  | { | 
|  | // gf_group->index == 11 (Frame 8 - OVERLAY) | 
|  | INTNL_OVERLAY_UPDATE,  // update_type | 
|  | 0,                     // arf_src_offset | 
|  | 0,                     // brf_src_offset | 
|  | // Reference frame indexes (previous ===> current) | 
|  | LAST3_FRAME,    // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] | 
|  | LAST_FRAME,     // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] | 
|  | LAST2_FRAME,    // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] | 
|  | GOLDEN_FRAME,   // cpi->gld_fb_idx (GOLDEN_FRAME) | 
|  | BWDREF_FRAME,   // cpi->bwd_fb_idx (BWDREF_FRAME) | 
|  | ALTREF2_FRAME,  // cpi->alt2_fb_idx (ALTREF2_FRAME) | 
|  | ALTREF_FRAME,   // cpi->alt_fb_idx (ALTREF_FRAME) | 
|  | REF_FRAMES,     // cpi->ext_fb_idx (extra ref frame) | 
|  | // Refreshment (index, flag) | 
|  | BWDREF_FRAME,  // Index (current) of reference to get updated | 
|  | ALTREF2_FRAME  // cpi->refresh_alt2_ref_frame = 1 | 
|  | }, | 
|  | { | 
|  | // gf_group->index == 12 (Frame 12) | 
|  | INTNL_ARF_UPDATE,           // update_type | 
|  | (GF_INTERVAL_16 >> 2) - 1,  // arf_src_offset | 
|  | 0,                          // brf_src_offset | 
|  | // Reference frame indexes (previous ===> current) | 
|  | BWDREF_FRAME,   // cpi->bwd_fb_idx ===> cpi->lst_fb_idxes[LAST_FRAME - | 
|  | // LAST_FRAME] | 
|  | LAST_FRAME,     // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] | 
|  | LAST2_FRAME,    //  cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] ===> | 
|  | //  cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] | 
|  | GOLDEN_FRAME,   // cpi->gld_fb_idx (GOLDEN_FRAME) | 
|  | LAST3_FRAME,    // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] ===> | 
|  | // cpi->bwd_fb_idx (BWDREF_FRAME) | 
|  | ALTREF2_FRAME,  // cpi->alt2_fb_idx (ALTREF2_FRAME) | 
|  | ALTREF_FRAME,   // cpi->alt_fb_idx (ALTREF_FRAME) | 
|  | REF_FRAMES,     // cpi->ext_fb_idx (extra ref frame) | 
|  | // Refreshment (index, flag) | 
|  | ALTREF2_FRAME,  // Index (current) of reference to get updated | 
|  | ALTREF2_FRAME   // cpi->refresh_alt2_ref_frame = 1 | 
|  | }, | 
|  | { | 
|  | // gf_group->index == 13 (Frame 10) | 
|  | BRF_UPDATE,  // update_type | 
|  | 0,           // arf_src_offset | 
|  | 1,           // brf_src_offset | 
|  | // Reference frame indexes (previous ===> current) | 
|  | LAST_FRAME,     // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] | 
|  | LAST2_FRAME,    // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] | 
|  | LAST3_FRAME,    // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] | 
|  | GOLDEN_FRAME,   // cpi->gld_fb_idx (GOLDEN_FRAME) | 
|  | ALTREF2_FRAME,  // cpi->alt2_fb_idx ===> cpi->bwd_fb_idx (BWDREF_FRAME) | 
|  | BWDREF_FRAME,   // cpi->bwd_fb_idx ===> cpi->alt2_fb_idx (ALTREF2_FRAME) | 
|  | ALTREF_FRAME,   // cpi->alt_fb_idx (ALTREF_FRAME) | 
|  | REF_FRAMES,     // cpi->ext_fb_idx (extra ref frame) | 
|  | // Refreshment (index, flag) | 
|  | ALTREF2_FRAME,  // Index (current) of reference to get updated | 
|  | BWDREF_FRAME    // cpi->refresh_bwd_frame = 1 | 
|  | }, | 
|  | { | 
|  | // gf_group->index == 14 (Frame 9) | 
|  | LAST_BIPRED_UPDATE,  // update_type | 
|  | 0,                   // arf_src_offset | 
|  | 0,                   // brf_src_offset | 
|  | // Reference frame indexes (previous ===> current) | 
|  | LAST_FRAME,     // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] | 
|  | LAST2_FRAME,    // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] | 
|  | LAST3_FRAME,    // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] | 
|  | GOLDEN_FRAME,   // cpi->gld_fb_idx (GOLDEN_FRAME) | 
|  | ALTREF2_FRAME,  // cpi->alt2_fb_idx ===> cpi->bwd_fb_idx (BWDREF_FRAME) | 
|  | BWDREF_FRAME,   // cpi->bwd_fb_idx ===> cpi->alt2_fb_idx (ALTREF2_FRAME) | 
|  | ALTREF_FRAME,   // cpi->alt_fb_idx (ALTREF_FRAME) | 
|  | REF_FRAMES,     // cpi->ext_fb_idx (extra ref frame) | 
|  | // Refreshment (index, flag) | 
|  | LAST3_FRAME,  // Index (current) of reference to get updated | 
|  | LAST_FRAME    // cpi->refresh_last_frame = 1 | 
|  | }, | 
|  | { | 
|  | // gf_group->index == 15 (Frame 11) | 
|  | LF_UPDATE,  // update_type | 
|  | 0,          // arf_src_offset | 
|  | 0,          // brf_src_offset | 
|  | // Reference frame indexes (previous ===> current) | 
|  | BWDREF_FRAME,   // cpi->bwd_fb_idx ===> cpi->lst_fb_idxes[LAST_FRAME - | 
|  | // LAST_FRAME] | 
|  | LAST3_FRAME,    // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] | 
|  | LAST_FRAME,     // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] | 
|  | GOLDEN_FRAME,   // cpi->gld_fb_idx (GOLDEN_FRAME) | 
|  | ALTREF2_FRAME,  // cpi->alt2_fb_idx ===> cpi->bwd_fb_idx (BWDREF_FRAME) | 
|  | LAST2_FRAME,    // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] ===> | 
|  | // cpi->alt2_fb_idx (ALTREF2_FRAME) | 
|  | ALTREF_FRAME,   // cpi->alt_fb_idx (ALTREF_FRAME) | 
|  | REF_FRAMES,     // cpi->ext_fb_idx (extra ref frame) | 
|  | // Refreshment (index, flag) | 
|  | LAST3_FRAME,  // Index (current) of reference to get updated | 
|  | LAST_FRAME    // cpi->refresh_last_frame = 1 | 
|  | }, | 
|  | { | 
|  | // gf_group->index == 16 (Frame 12 - OVERLAY) | 
|  | INTNL_OVERLAY_UPDATE,  // update_type | 
|  | 0,                     // arf_src_offset | 
|  | 0,                     // brf_src_offset | 
|  | // Reference frame indexes (previous ===> current) | 
|  | LAST3_FRAME,    // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] | 
|  | LAST_FRAME,     // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] | 
|  | LAST2_FRAME,    // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] | 
|  | GOLDEN_FRAME,   // cpi->gld_fb_idx (GOLDEN_FRAME) | 
|  | BWDREF_FRAME,   // cpi->bwd_fb_idx (BWDREF_FRAME) | 
|  | ALTREF2_FRAME,  // cpi->alt2_fb_idx (ALTREF2_FRAME) | 
|  | ALTREF_FRAME,   // cpi->alt_fb_idx (ALTREF_FRAME) | 
|  | REF_FRAMES,     // cpi->ext_fb_idx (extra ref frame) | 
|  | // Refreshment (index, flag) | 
|  | BWDREF_FRAME,  // Index (current) of reference to get updated | 
|  | ALTREF2_FRAME  // cpi->refresh_alt2_ref_frame = 1 | 
|  | }, | 
|  | { | 
|  | // gf_group->index == 17 (Frame 14) | 
|  | BRF_UPDATE,  // update_type | 
|  | 0,           // arf_src_offset | 
|  | 1,           // brf_src_offset | 
|  | // Reference frame indexes (previous ===> current) | 
|  | BWDREF_FRAME,   // cpi->bwd_fb_idx ===> cpi->lst_fb_idxes[LAST_FRAME - | 
|  | // LAST_FRAME] | 
|  | LAST_FRAME,     // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] | 
|  | LAST2_FRAME,    // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] | 
|  | GOLDEN_FRAME,   // cpi->gld_fb_idx (GOLDEN_FRAME) | 
|  | LAST3_FRAME,    // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] ===> | 
|  | // cpi->bwd_fb_idx (BWDREF_FRAME) | 
|  | ALTREF2_FRAME,  // cpi->alt2_fb_idx (ALTREF2_FRAME) | 
|  | ALTREF_FRAME,   // cpi->alt_fb_idx (ALTREF_FRAME) | 
|  | REF_FRAMES,     // cpi->ext_fb_idx (extra ref frame) | 
|  | // Refreshment (index, flag) | 
|  | BWDREF_FRAME,  // Index (current) of reference to get updated | 
|  | BWDREF_FRAME   // cpi->refresh_bwd_frame = 1 | 
|  | }, | 
|  | { | 
|  | // gf_group->index == 18 (Frame 13) | 
|  | LAST_BIPRED_UPDATE,  // update_type | 
|  | 0,                   // arf_src_offset | 
|  | 0,                   // brf_src_offset | 
|  | // Reference frame indexes (previous ===> current) | 
|  | LAST_FRAME,     // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] | 
|  | LAST2_FRAME,    // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] | 
|  | LAST3_FRAME,    // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] | 
|  | GOLDEN_FRAME,   // cpi->gld_fb_idx (GOLDEN_FRAME) | 
|  | BWDREF_FRAME,   // cpi->bwd_fb_idx (BWDREF_FRAME) | 
|  | ALTREF2_FRAME,  // cpi->alt2_fb_idx (ALTREF2_FRAME) | 
|  | ALTREF_FRAME,   // cpi->alt_fb_idx (ALTREF_FRAME) | 
|  | REF_FRAMES,     // cpi->ext_fb_idx (extra ref frame) | 
|  | // Refreshment (index, flag) | 
|  | LAST3_FRAME,  // Index (current) of reference to get updated | 
|  | LAST_FRAME    // cpi->refresh_last_frame = 1 | 
|  | }, | 
|  | { | 
|  | // gf_group->index == 19 (Frame 15) | 
|  | LF_UPDATE,  // update_type | 
|  | 0,          // arf_src_offset | 
|  | 0,          // brf_src_offset | 
|  | // Reference frame indexes (previous ===> current) | 
|  | BWDREF_FRAME,   // cpi->bwd_fb_idx ===> cpi->lst_fb_idxes[LAST_FRAME - | 
|  | // LAST_FRAME] | 
|  | LAST3_FRAME,    // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] | 
|  | LAST_FRAME,     // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] | 
|  | GOLDEN_FRAME,   // cpi->gld_fb_idx (GOLDEN_FRAME) | 
|  | LAST2_FRAME,    // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] ===> | 
|  | // cpi->bwd_fb_idx (BWDREF_FRAME) | 
|  | ALTREF2_FRAME,  // cpi->alt2_fb_idx (ALTREF2_FRAME) | 
|  | ALTREF_FRAME,   // cpi->alt_fb_idx (ALTREF_FRAME) | 
|  | REF_FRAMES,     // cpi->ext_fb_idx (extra ref frame) | 
|  | // Refreshment (index, flag) | 
|  | LAST3_FRAME,  // Index (current) of reference to get updated | 
|  | LAST_FRAME    // cpi->refresh_last_frame = 1 | 
|  | }, | 
|  | { | 
|  | // gf_group->index == 20 (Frame 16 - OVERLAY: Belonging to the next GF | 
|  | // group) | 
|  | OVERLAY_UPDATE,  // update_type | 
|  | 0,               // arf_src_offset | 
|  | 0,               // brf_src_offset | 
|  | // Reference frame indexes (previous ===> current) | 
|  | LAST3_FRAME,    // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] | 
|  | LAST_FRAME,     // cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] | 
|  | LAST2_FRAME,    // cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] ===> | 
|  | // cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] | 
|  | GOLDEN_FRAME,   // cpi->gld_fb_idx (GOLDEN_FRAME) | 
|  | BWDREF_FRAME,   // cpi->bwd_fb_idx (BWDREF_FRAME) | 
|  | ALTREF2_FRAME,  // cpi->alt2_fb_idx (ALTREF2_FRAME) | 
|  | ALTREF_FRAME,   // cpi->alt_fb_idx (ALTREF_FRAME) | 
|  | REF_FRAMES,     // cpi->ext_fb_idx (extra ref frame) | 
|  | // Refreshment (index, flag) | 
|  | ALTREF_FRAME,  // Index (current) of reference to get updated | 
|  | GOLDEN_FRAME   // cpi->refresh_golden_frame = 1 | 
|  | } | 
|  | }; | 
|  |  | 
|  | // === GF Group of 16 === | 
|  | static void define_gf_group_structure_16(AV1_COMP *cpi) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | GF_GROUP *const gf_group = &twopass->gf_group; | 
|  | const int key_frame = cpi->common.frame_type == KEY_FRAME; | 
|  |  | 
|  | assert(rc->baseline_gf_interval == GF_INTERVAL_16); | 
|  |  | 
|  | // Total number of frames to consider for GF group of 16: | 
|  | //   = GF group interval + number of OVERLAY's | 
|  | //   = rc->baseline_gf_interval + MAX_EXT_ARFS + 1 + 1 | 
|  | // NOTE: The OVERLAY frame for the next GF group also needs to consider to | 
|  | //       prepare for the reference frame index mapping. | 
|  |  | 
|  | const int gf_update_frames = rc->baseline_gf_interval + MAX_EXT_ARFS + 2; | 
|  |  | 
|  | for (int frame_index = 0; frame_index < gf_update_frames; ++frame_index) { | 
|  | int param_idx = 0; | 
|  |  | 
|  | // Treat KEY_FRAME differently | 
|  | if (frame_index == 0 && key_frame) { | 
|  | gf_group->update_type[frame_index] = KF_UPDATE; | 
|  |  | 
|  | gf_group->rf_level[frame_index] = KF_STD; | 
|  | gf_group->arf_src_offset[frame_index] = 0; | 
|  | gf_group->brf_src_offset[frame_index] = 0; | 
|  | gf_group->bidir_pred_enabled[frame_index] = 0; | 
|  | for (int ref_idx = 0; ref_idx < REF_FRAMES; ++ref_idx) | 
|  | gf_group->ref_fb_idx_map[frame_index][ref_idx] = ref_idx; | 
|  | gf_group->refresh_idx[frame_index] = | 
|  | cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME]; | 
|  | gf_group->refresh_flag[frame_index] = | 
|  | cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME]; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // == update_type == | 
|  | gf_group->update_type[frame_index] = | 
|  | gf16_multi_layer_params[frame_index][param_idx++]; | 
|  |  | 
|  | // == rf_level == | 
|  | // Derive rf_level from update_type | 
|  | switch (gf_group->update_type[frame_index]) { | 
|  | case LF_UPDATE: gf_group->rf_level[frame_index] = INTER_NORMAL; break; | 
|  | case ARF_UPDATE: gf_group->rf_level[frame_index] = GF_ARF_LOW; break; | 
|  | case OVERLAY_UPDATE: | 
|  | gf_group->rf_level[frame_index] = INTER_NORMAL; | 
|  | break; | 
|  | case BRF_UPDATE: gf_group->rf_level[frame_index] = GF_ARF_LOW; break; | 
|  | case LAST_BIPRED_UPDATE: | 
|  | gf_group->rf_level[frame_index] = INTER_NORMAL; | 
|  | break; | 
|  | case BIPRED_UPDATE: gf_group->rf_level[frame_index] = INTER_NORMAL; break; | 
|  | case INTNL_ARF_UPDATE: | 
|  | gf_group->rf_level[frame_index] = GF_ARF_LOW; | 
|  | break; | 
|  | case INTNL_OVERLAY_UPDATE: | 
|  | gf_group->rf_level[frame_index] = INTER_NORMAL; | 
|  | break; | 
|  | default: gf_group->rf_level[frame_index] = INTER_NORMAL; break; | 
|  | } | 
|  |  | 
|  | // == arf_src_offset == | 
|  | gf_group->arf_src_offset[frame_index] = | 
|  | gf16_multi_layer_params[frame_index][param_idx++]; | 
|  |  | 
|  | // == brf_src_offset == | 
|  | gf_group->brf_src_offset[frame_index] = | 
|  | gf16_multi_layer_params[frame_index][param_idx++]; | 
|  |  | 
|  | // == bidir_pred_enabled == | 
|  | // Derive bidir_pred_enabled from bidir_src_offset | 
|  | gf_group->bidir_pred_enabled[frame_index] = | 
|  | gf_group->brf_src_offset[frame_index] ? 1 : 0; | 
|  |  | 
|  | // == ref_fb_idx_map == | 
|  | for (int ref_idx = 0; ref_idx < REF_FRAMES; ++ref_idx) | 
|  | gf_group->ref_fb_idx_map[frame_index][ref_idx] = | 
|  | gf16_multi_layer_params[frame_index][param_idx++]; | 
|  |  | 
|  | // == refresh_idx == | 
|  | gf_group->refresh_idx[frame_index] = | 
|  | gf16_multi_layer_params[frame_index][param_idx++]; | 
|  |  | 
|  | // == refresh_flag == | 
|  | gf_group->refresh_flag[frame_index] = | 
|  | gf16_multi_layer_params[frame_index][param_idx]; | 
|  | } | 
|  |  | 
|  | // Mark the ARF_UPDATE / INTNL_ARF_UPDATE and OVERLAY_UPDATE / | 
|  | // INTNL_OVERLAY_UPDATE for rate allocation | 
|  | // NOTE: Indexes are designed in the display order backward: | 
|  | //       ALT[3] .. ALT[2] .. ALT[1] .. ALT[0], | 
|  | //       but their coding order is as follows: | 
|  | // ALT0-ALT2-ALT3 .. OVERLAY3 .. OVERLAY2-ALT1 .. OVERLAY1 .. OVERLAY0 | 
|  |  | 
|  | const int num_arfs_in_gf = cpi->num_extra_arfs + 1; | 
|  | const int sub_arf_interval = rc->baseline_gf_interval / num_arfs_in_gf; | 
|  |  | 
|  | // == arf_pos_for_ovrly ==: Position for OVERLAY | 
|  | for (int arf_idx = 0; arf_idx < num_arfs_in_gf; arf_idx++) { | 
|  | const int prior_num_arfs = | 
|  | (arf_idx <= 1) ? num_arfs_in_gf : (num_arfs_in_gf - 1); | 
|  | cpi->arf_pos_for_ovrly[arf_idx] = | 
|  | sub_arf_interval * (num_arfs_in_gf - arf_idx) + prior_num_arfs; | 
|  | } | 
|  |  | 
|  | // == arf_pos_in_gf ==: Position for ALTREF | 
|  | cpi->arf_pos_in_gf[0] = 1; | 
|  | cpi->arf_pos_in_gf[1] = cpi->arf_pos_for_ovrly[2] + 1; | 
|  | cpi->arf_pos_in_gf[2] = 2; | 
|  | cpi->arf_pos_in_gf[3] = 3; | 
|  |  | 
|  | // == arf_update_idx == | 
|  | // == arf_ref_idx == | 
|  | // NOTE: Due to the hierarchical nature of GF16, these two parameters only | 
|  | //       relect the index to the nearest future overlay. | 
|  | int start_frame_index = 0; | 
|  | for (int arf_idx = (num_arfs_in_gf - 1); arf_idx >= 0; --arf_idx) { | 
|  | const int end_frame_index = cpi->arf_pos_for_ovrly[arf_idx]; | 
|  | for (int frame_index = start_frame_index; frame_index <= end_frame_index; | 
|  | ++frame_index) { | 
|  | gf_group->arf_update_idx[frame_index] = arf_idx; | 
|  | gf_group->arf_ref_idx[frame_index] = arf_idx; | 
|  | } | 
|  | start_frame_index = end_frame_index + 1; | 
|  | } | 
|  | } | 
|  | #endif  // USE_GF16_MULTI_LAYER | 
|  |  | 
|  | static void define_gf_group_structure(AV1_COMP *cpi) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  |  | 
|  | #if USE_GF16_MULTI_LAYER | 
|  | if (rc->baseline_gf_interval == 16) { | 
|  | define_gf_group_structure_16(cpi); | 
|  | return; | 
|  | } | 
|  | #endif  // USE_GF16_MULTI_LAYER | 
|  |  | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | GF_GROUP *const gf_group = &twopass->gf_group; | 
|  | int i; | 
|  | int frame_index = 0; | 
|  | const int key_frame = cpi->common.frame_type == KEY_FRAME; | 
|  |  | 
|  | // The use of bi-predictive frames are only enabled when following 3 | 
|  | // conditions are met: | 
|  | // (1) ALTREF is enabled; | 
|  | // (2) The bi-predictive group interval is at least 2; and | 
|  | // (3) The bi-predictive group interval is strictly smaller than the | 
|  | //     golden group interval. | 
|  | const int is_bipred_enabled = | 
|  | cpi->bwd_ref_allowed && rc->source_alt_ref_pending && | 
|  | rc->bipred_group_interval && | 
|  | rc->bipred_group_interval <= | 
|  | (rc->baseline_gf_interval - rc->source_alt_ref_pending); | 
|  | int bipred_group_end = 0; | 
|  | int bipred_frame_index = 0; | 
|  |  | 
|  | const unsigned char ext_arf_interval = | 
|  | (unsigned char)(rc->baseline_gf_interval / (cpi->num_extra_arfs + 1) - 1); | 
|  | int which_arf = cpi->num_extra_arfs; | 
|  | int subgroup_interval[MAX_EXT_ARFS + 1]; | 
|  | int is_sg_bipred_enabled = is_bipred_enabled; | 
|  | int accumulative_subgroup_interval = 0; | 
|  |  | 
|  | // For key frames the frame target rate is already set and it | 
|  | // is also the golden frame. | 
|  | // === [frame_index == 0] === | 
|  | if (!key_frame) { | 
|  | if (rc->source_alt_ref_active) { | 
|  | gf_group->update_type[frame_index] = OVERLAY_UPDATE; | 
|  | gf_group->rf_level[frame_index] = INTER_NORMAL; | 
|  | } else { | 
|  | gf_group->update_type[frame_index] = GF_UPDATE; | 
|  | gf_group->rf_level[frame_index] = GF_ARF_STD; | 
|  | } | 
|  | gf_group->arf_update_idx[frame_index] = 0; | 
|  | gf_group->arf_ref_idx[frame_index] = 0; | 
|  | } | 
|  |  | 
|  | gf_group->bidir_pred_enabled[frame_index] = 0; | 
|  | gf_group->brf_src_offset[frame_index] = 0; | 
|  |  | 
|  | frame_index++; | 
|  |  | 
|  | bipred_frame_index++; | 
|  |  | 
|  | // === [frame_index == 1] === | 
|  | if (rc->source_alt_ref_pending) { | 
|  | gf_group->update_type[frame_index] = ARF_UPDATE; | 
|  | gf_group->rf_level[frame_index] = GF_ARF_STD; | 
|  | gf_group->arf_src_offset[frame_index] = | 
|  | (unsigned char)(rc->baseline_gf_interval - 1); | 
|  |  | 
|  | gf_group->arf_update_idx[frame_index] = 0; | 
|  | gf_group->arf_ref_idx[frame_index] = 0; | 
|  |  | 
|  | gf_group->bidir_pred_enabled[frame_index] = 0; | 
|  | gf_group->brf_src_offset[frame_index] = 0; | 
|  | // NOTE: "bidir_pred_frame_index" stays unchanged for ARF_UPDATE frames. | 
|  |  | 
|  | // Work out the ARFs' positions in this gf group | 
|  | // NOTE(weitinglin): ALT_REFs' are indexed inversely, but coded in display | 
|  | // order (except for the original ARF). In the example of three ALT_REF's, | 
|  | // We index ALTREF's as: KEY ----- ALT2 ----- ALT1 ----- ALT0 | 
|  | // but code them in the following order: | 
|  | // KEY-ALT0-ALT2 ----- OVERLAY2-ALT1 ----- OVERLAY1 ----- OVERLAY0 | 
|  | // | 
|  | // arf_pos_for_ovrly[]: Position for OVERLAY | 
|  | // arf_pos_in_gf[]:     Position for ALTREF | 
|  | cpi->arf_pos_for_ovrly[0] = frame_index + cpi->num_extra_arfs + | 
|  | gf_group->arf_src_offset[frame_index] + 1; | 
|  | for (i = 0; i < cpi->num_extra_arfs; ++i) { | 
|  | cpi->arf_pos_for_ovrly[i + 1] = | 
|  | frame_index + (cpi->num_extra_arfs - i) * (ext_arf_interval + 2); | 
|  | subgroup_interval[i] = cpi->arf_pos_for_ovrly[i] - | 
|  | cpi->arf_pos_for_ovrly[i + 1] - (i == 0 ? 1 : 2); | 
|  | } | 
|  | subgroup_interval[cpi->num_extra_arfs] = | 
|  | cpi->arf_pos_for_ovrly[cpi->num_extra_arfs] - frame_index - | 
|  | (cpi->num_extra_arfs == 0 ? 1 : 2); | 
|  |  | 
|  | ++frame_index; | 
|  |  | 
|  | // Insert an extra ARF | 
|  | // === [frame_index == 2] === | 
|  | if (cpi->num_extra_arfs) { | 
|  | gf_group->update_type[frame_index] = INTNL_ARF_UPDATE; | 
|  | gf_group->rf_level[frame_index] = GF_ARF_LOW; | 
|  | gf_group->arf_src_offset[frame_index] = ext_arf_interval; | 
|  |  | 
|  | gf_group->arf_update_idx[frame_index] = which_arf; | 
|  | gf_group->arf_ref_idx[frame_index] = 0; | 
|  | ++frame_index; | 
|  | } | 
|  | accumulative_subgroup_interval += subgroup_interval[cpi->num_extra_arfs]; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < rc->baseline_gf_interval - rc->source_alt_ref_pending; ++i) { | 
|  | gf_group->arf_update_idx[frame_index] = which_arf; | 
|  | gf_group->arf_ref_idx[frame_index] = which_arf; | 
|  |  | 
|  | // If we are going to have ARFs, check whether we can have BWDREF in this | 
|  | // subgroup, and further, whether we can have ARF subgroup which contains | 
|  | // the BWDREF subgroup but contained within the GF group: | 
|  | // | 
|  | // GF group --> ARF subgroup --> BWDREF subgroup | 
|  | if (rc->source_alt_ref_pending) { | 
|  | is_sg_bipred_enabled = | 
|  | is_bipred_enabled && | 
|  | (subgroup_interval[which_arf] > rc->bipred_group_interval); | 
|  | } | 
|  |  | 
|  | // NOTE: BIDIR_PRED is only enabled when the length of the bi-predictive | 
|  | //       frame group interval is strictly smaller than that of the GOLDEN | 
|  | //       FRAME group interval. | 
|  | // TODO(zoeliu): Currently BIDIR_PRED is only enabled when alt-ref is on. | 
|  | if (is_sg_bipred_enabled && !bipred_group_end) { | 
|  | const int cur_brf_src_offset = rc->bipred_group_interval - 1; | 
|  |  | 
|  | if (bipred_frame_index == 1) { | 
|  | // --- BRF_UPDATE --- | 
|  | gf_group->update_type[frame_index] = BRF_UPDATE; | 
|  | gf_group->rf_level[frame_index] = GF_ARF_LOW; | 
|  | gf_group->brf_src_offset[frame_index] = cur_brf_src_offset; | 
|  | } else if (bipred_frame_index == rc->bipred_group_interval) { | 
|  | // --- LAST_BIPRED_UPDATE --- | 
|  | gf_group->update_type[frame_index] = LAST_BIPRED_UPDATE; | 
|  | gf_group->rf_level[frame_index] = INTER_NORMAL; | 
|  | gf_group->brf_src_offset[frame_index] = 0; | 
|  |  | 
|  | // Reset the bi-predictive frame index. | 
|  | bipred_frame_index = 0; | 
|  | } else { | 
|  | // --- BIPRED_UPDATE --- | 
|  | gf_group->update_type[frame_index] = BIPRED_UPDATE; | 
|  | gf_group->rf_level[frame_index] = INTER_NORMAL; | 
|  | gf_group->brf_src_offset[frame_index] = 0; | 
|  | } | 
|  | gf_group->bidir_pred_enabled[frame_index] = 1; | 
|  |  | 
|  | bipred_frame_index++; | 
|  | // Check whether the next bi-predictive frame group would entirely be | 
|  | // included within the current golden frame group. | 
|  | // In addition, we need to avoid coding a BRF right before an ARF. | 
|  | if (bipred_frame_index == 1 && | 
|  | (i + 2 + cur_brf_src_offset) >= accumulative_subgroup_interval) { | 
|  | bipred_group_end = 1; | 
|  | } | 
|  | } else { | 
|  | gf_group->update_type[frame_index] = LF_UPDATE; | 
|  | gf_group->rf_level[frame_index] = INTER_NORMAL; | 
|  | gf_group->bidir_pred_enabled[frame_index] = 0; | 
|  | gf_group->brf_src_offset[frame_index] = 0; | 
|  | } | 
|  |  | 
|  | ++frame_index; | 
|  |  | 
|  | // Check if we need to update the ARF. | 
|  | if (is_sg_bipred_enabled && cpi->num_extra_arfs && which_arf > 0 && | 
|  | frame_index > cpi->arf_pos_for_ovrly[which_arf]) { | 
|  | --which_arf; | 
|  | accumulative_subgroup_interval += subgroup_interval[which_arf] + 1; | 
|  |  | 
|  | // Meet the new subgroup; Reset the bipred_group_end flag. | 
|  | bipred_group_end = 0; | 
|  | // Insert another extra ARF after the overlay frame | 
|  | if (which_arf) { | 
|  | gf_group->update_type[frame_index] = INTNL_ARF_UPDATE; | 
|  | gf_group->rf_level[frame_index] = GF_ARF_LOW; | 
|  | gf_group->arf_src_offset[frame_index] = ext_arf_interval; | 
|  |  | 
|  | gf_group->arf_update_idx[frame_index] = which_arf; | 
|  | gf_group->arf_ref_idx[frame_index] = 0; | 
|  | ++frame_index; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // NOTE: We need to configure the frame at the end of the sequence + 1 that | 
|  | // will | 
|  | //       be the start frame for the next group. Otherwise prior to the call to | 
|  | //       av1_rc_get_second_pass_params() the data will be undefined. | 
|  | gf_group->arf_update_idx[frame_index] = 0; | 
|  | gf_group->arf_ref_idx[frame_index] = 0; | 
|  |  | 
|  | if (rc->source_alt_ref_pending) { | 
|  | gf_group->update_type[frame_index] = OVERLAY_UPDATE; | 
|  | gf_group->rf_level[frame_index] = INTER_NORMAL; | 
|  |  | 
|  | cpi->arf_pos_in_gf[0] = 1; | 
|  | if (cpi->num_extra_arfs) { | 
|  | // Overwrite the update_type for extra-ARF's corresponding internal | 
|  | // OVERLAY's: Change from LF_UPDATE to INTNL_OVERLAY_UPDATE. | 
|  | for (i = cpi->num_extra_arfs; i > 0; --i) { | 
|  | cpi->arf_pos_in_gf[i] = | 
|  | (i == cpi->num_extra_arfs ? 2 : cpi->arf_pos_for_ovrly[i + 1] + 1); | 
|  |  | 
|  | gf_group->update_type[cpi->arf_pos_for_ovrly[i]] = INTNL_OVERLAY_UPDATE; | 
|  | gf_group->rf_level[cpi->arf_pos_for_ovrly[i]] = INTER_NORMAL; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | gf_group->update_type[frame_index] = GF_UPDATE; | 
|  | gf_group->rf_level[frame_index] = GF_ARF_STD; | 
|  | } | 
|  |  | 
|  | gf_group->bidir_pred_enabled[frame_index] = 0; | 
|  | gf_group->brf_src_offset[frame_index] = 0; | 
|  | } | 
|  |  | 
|  | static void allocate_gf_group_bits(AV1_COMP *cpi, int64_t gf_group_bits, | 
|  | double group_error, int gf_arf_bits) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | GF_GROUP *const gf_group = &twopass->gf_group; | 
|  | FIRSTPASS_STATS frame_stats; | 
|  | int i; | 
|  | int frame_index = 0; | 
|  | int target_frame_size; | 
|  | int key_frame; | 
|  | const int max_bits = frame_max_bits(&cpi->rc, &cpi->oxcf); | 
|  | int64_t total_group_bits = gf_group_bits; | 
|  | double modified_err = 0.0; | 
|  | double err_fraction; | 
|  | int mid_boost_bits = 0; | 
|  | int ext_arf_boost[MAX_EXT_ARFS]; | 
|  |  | 
|  | define_gf_group_structure(cpi); | 
|  |  | 
|  | av1_zero_array(ext_arf_boost, MAX_EXT_ARFS); | 
|  |  | 
|  | key_frame = cpi->common.frame_type == KEY_FRAME; | 
|  |  | 
|  | // For key frames the frame target rate is already set and it | 
|  | // is also the golden frame. | 
|  | // === [frame_index == 0] === | 
|  | if (!key_frame) { | 
|  | if (rc->source_alt_ref_active) | 
|  | gf_group->bit_allocation[frame_index] = 0; | 
|  | else | 
|  | gf_group->bit_allocation[frame_index] = gf_arf_bits; | 
|  |  | 
|  | // Step over the golden frame / overlay frame | 
|  | if (EOF == input_stats(twopass, &frame_stats)) return; | 
|  | } | 
|  |  | 
|  | // Deduct the boost bits for arf (or gf if it is not a key frame) | 
|  | // from the group total. | 
|  | if (rc->source_alt_ref_pending || !key_frame) total_group_bits -= gf_arf_bits; | 
|  |  | 
|  | frame_index++; | 
|  |  | 
|  | // Store the bits to spend on the ARF if there is one. | 
|  | // === [frame_index == 1] === | 
|  | if (rc->source_alt_ref_pending) { | 
|  | gf_group->bit_allocation[frame_index] = gf_arf_bits; | 
|  |  | 
|  | ++frame_index; | 
|  |  | 
|  | // Skip all the extra-ARF's right after ARF at the starting segment of | 
|  | // the current GF group. | 
|  | if (cpi->num_extra_arfs) { | 
|  | while (gf_group->update_type[frame_index] == INTNL_ARF_UPDATE) | 
|  | ++frame_index; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Allocate bits to the other frames in the group. | 
|  | for (i = 0; i < rc->baseline_gf_interval - rc->source_alt_ref_pending; ++i) { | 
|  | if (EOF == input_stats(twopass, &frame_stats)) break; | 
|  |  | 
|  | modified_err = calculate_modified_err(cpi, twopass, oxcf, &frame_stats); | 
|  |  | 
|  | if (group_error > 0) | 
|  | err_fraction = modified_err / DOUBLE_DIVIDE_CHECK(group_error); | 
|  | else | 
|  | err_fraction = 0.0; | 
|  |  | 
|  | target_frame_size = (int)((double)total_group_bits * err_fraction); | 
|  |  | 
|  | if (rc->source_alt_ref_pending && cpi->multi_arf_enabled) { | 
|  | mid_boost_bits += (target_frame_size >> 4); | 
|  | target_frame_size -= (target_frame_size >> 4); | 
|  | } | 
|  |  | 
|  | target_frame_size = | 
|  | clamp(target_frame_size, 0, AOMMIN(max_bits, (int)total_group_bits)); | 
|  |  | 
|  | if (gf_group->update_type[frame_index] == BRF_UPDATE) { | 
|  | // Boost up the allocated bits on BWDREF_FRAME | 
|  | gf_group->bit_allocation[frame_index] = | 
|  | target_frame_size + (target_frame_size >> 2); | 
|  | } else if (gf_group->update_type[frame_index] == LAST_BIPRED_UPDATE) { | 
|  | // Press down the allocated bits on LAST_BIPRED_UPDATE frames | 
|  | gf_group->bit_allocation[frame_index] = | 
|  | target_frame_size - (target_frame_size >> 1); | 
|  | } else if (gf_group->update_type[frame_index] == BIPRED_UPDATE) { | 
|  | // TODO(zoeliu): To investigate whether the allocated bits on | 
|  | // BIPRED_UPDATE frames need to be further adjusted. | 
|  | gf_group->bit_allocation[frame_index] = target_frame_size; | 
|  | } else { | 
|  | assert(gf_group->update_type[frame_index] == LF_UPDATE || | 
|  | gf_group->update_type[frame_index] == INTNL_OVERLAY_UPDATE); | 
|  | gf_group->bit_allocation[frame_index] = target_frame_size; | 
|  | } | 
|  |  | 
|  | ++frame_index; | 
|  |  | 
|  | // Skip all the extra-ARF's. | 
|  | if (cpi->num_extra_arfs) { | 
|  | while (gf_group->update_type[frame_index] == INTNL_ARF_UPDATE) | 
|  | ++frame_index; | 
|  | } | 
|  | } | 
|  |  | 
|  | // NOTE: We need to configure the frame at the end of the sequence + 1 that | 
|  | //       will be the start frame for the next group. Otherwise prior to the | 
|  | //       call to av1_rc_get_second_pass_params() the data will be undefined. | 
|  | if (rc->source_alt_ref_pending) { | 
|  | if (cpi->num_extra_arfs) { | 
|  | // NOTE: For bit allocation, move the allocated bits associated with | 
|  | //       INTNL_OVERLAY_UPDATE to the corresponding INTNL_ARF_UPDATE. | 
|  | //       i > 0 for extra-ARF's and i == 0 for ARF: | 
|  | //         arf_pos_for_ovrly[i]: Position for INTNL_OVERLAY_UPDATE | 
|  | //         arf_pos_in_gf[i]: Position for INTNL_ARF_UPDATE | 
|  | for (i = cpi->num_extra_arfs; i > 0; --i) { | 
|  | assert(gf_group->update_type[cpi->arf_pos_for_ovrly[i]] == | 
|  | INTNL_OVERLAY_UPDATE); | 
|  |  | 
|  | // Encoder's choice: | 
|  | //   Set show_existing_frame == 1 for all extra-ARF's, and hence | 
|  | //   allocate zero bit for both all internal OVERLAY frames. | 
|  | gf_group->bit_allocation[cpi->arf_pos_in_gf[i]] = | 
|  | gf_group->bit_allocation[cpi->arf_pos_for_ovrly[i]]; | 
|  | gf_group->bit_allocation[cpi->arf_pos_for_ovrly[i]] = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Note whether multi-arf was enabled this group for next time. | 
|  | cpi->multi_arf_last_grp_enabled = cpi->multi_arf_enabled; | 
|  | } | 
|  |  | 
|  | // Analyse and define a gf/arf group. | 
|  | static void define_gf_group(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | FIRSTPASS_STATS next_frame; | 
|  | const FIRSTPASS_STATS *const start_pos = twopass->stats_in; | 
|  | int i; | 
|  |  | 
|  | double boost_score = 0.0; | 
|  | double old_boost_score = 0.0; | 
|  | double gf_group_err = 0.0; | 
|  | #if GROUP_ADAPTIVE_MAXQ | 
|  | double gf_group_raw_error = 0.0; | 
|  | #endif | 
|  | double gf_group_skip_pct = 0.0; | 
|  | double gf_group_inactive_zone_rows = 0.0; | 
|  | double gf_first_frame_err = 0.0; | 
|  | double mod_frame_err = 0.0; | 
|  |  | 
|  | double mv_ratio_accumulator = 0.0; | 
|  | double decay_accumulator = 1.0; | 
|  | double zero_motion_accumulator = 1.0; | 
|  |  | 
|  | double loop_decay_rate = 1.00; | 
|  | double last_loop_decay_rate = 1.00; | 
|  |  | 
|  | double this_frame_mv_in_out = 0.0; | 
|  | double mv_in_out_accumulator = 0.0; | 
|  | double abs_mv_in_out_accumulator = 0.0; | 
|  | double mv_ratio_accumulator_thresh; | 
|  | unsigned int allow_alt_ref = is_altref_enabled(cpi); | 
|  |  | 
|  | int f_boost = 0; | 
|  | int b_boost = 0; | 
|  | int flash_detected; | 
|  | int active_max_gf_interval; | 
|  | int active_min_gf_interval; | 
|  | int64_t gf_group_bits; | 
|  | double gf_group_error_left; | 
|  | int gf_arf_bits; | 
|  | const int is_key_frame = frame_is_intra_only(cm); | 
|  | const int arf_active_or_kf = is_key_frame || rc->source_alt_ref_active; | 
|  |  | 
|  | cpi->extra_arf_allowed = 1; | 
|  | cpi->bwd_ref_allowed = 1; | 
|  |  | 
|  | // Reset the GF group data structures unless this is a key | 
|  | // frame in which case it will already have been done. | 
|  | if (is_key_frame == 0) { | 
|  | av1_zero(twopass->gf_group); | 
|  | } | 
|  |  | 
|  | aom_clear_system_state(); | 
|  | av1_zero(next_frame); | 
|  |  | 
|  | // Load stats for the current frame. | 
|  | mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame); | 
|  |  | 
|  | // Note the error of the frame at the start of the group. This will be | 
|  | // the GF frame error if we code a normal gf. | 
|  | gf_first_frame_err = mod_frame_err; | 
|  |  | 
|  | // If this is a key frame or the overlay from a previous arf then | 
|  | // the error score / cost of this frame has already been accounted for. | 
|  | if (arf_active_or_kf) { | 
|  | gf_group_err -= gf_first_frame_err; | 
|  | #if GROUP_ADAPTIVE_MAXQ | 
|  | gf_group_raw_error -= this_frame->coded_error; | 
|  | #endif | 
|  | gf_group_skip_pct -= this_frame->intra_skip_pct; | 
|  | gf_group_inactive_zone_rows -= this_frame->inactive_zone_rows; | 
|  | } | 
|  |  | 
|  | // Motion breakout threshold for loop below depends on image size. | 
|  | mv_ratio_accumulator_thresh = | 
|  | (cpi->initial_height + cpi->initial_width) / 4.0; | 
|  |  | 
|  | // Set a maximum and minimum interval for the GF group. | 
|  | // If the image appears almost completely static we can extend beyond this. | 
|  | { | 
|  | int int_max_q = (int)(av1_convert_qindex_to_q(twopass->active_worst_quality, | 
|  | cpi->common.bit_depth)); | 
|  | int int_lbq = (int)(av1_convert_qindex_to_q(rc->last_boosted_qindex, | 
|  | cpi->common.bit_depth)); | 
|  |  | 
|  | active_min_gf_interval = rc->min_gf_interval + AOMMIN(2, int_max_q / 200); | 
|  | if (active_min_gf_interval > rc->max_gf_interval) | 
|  | active_min_gf_interval = rc->max_gf_interval; | 
|  |  | 
|  | if (cpi->multi_arf_allowed) { | 
|  | active_max_gf_interval = rc->max_gf_interval; | 
|  | } else { | 
|  | // The value chosen depends on the active Q range. At low Q we have | 
|  | // bits to spare and are better with a smaller interval and smaller boost. | 
|  | // At high Q when there are few bits to spare we are better with a longer | 
|  | // interval to spread the cost of the GF. | 
|  | active_max_gf_interval = 12 + AOMMIN(4, (int_lbq / 6)); | 
|  |  | 
|  | // We have: active_min_gf_interval <= rc->max_gf_interval | 
|  | if (active_max_gf_interval < active_min_gf_interval) | 
|  | active_max_gf_interval = active_min_gf_interval; | 
|  | else if (active_max_gf_interval > rc->max_gf_interval) | 
|  | active_max_gf_interval = rc->max_gf_interval; | 
|  | } | 
|  | } | 
|  |  | 
|  | double avg_sr_coded_error = 0; | 
|  | double avg_raw_err_stdev = 0; | 
|  | int non_zero_stdev_count = 0; | 
|  | #if CONFIG_BGSPRITE | 
|  | double avg_pcnt_second_ref = 0; | 
|  | int non_zero_pcnt_second_ref_count = 0; | 
|  | #endif | 
|  |  | 
|  | i = 0; | 
|  | while (i < rc->static_scene_max_gf_interval && i < rc->frames_to_key) { | 
|  | ++i; | 
|  |  | 
|  | // Accumulate error score of frames in this gf group. | 
|  | mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame); | 
|  | gf_group_err += mod_frame_err; | 
|  | #if GROUP_ADAPTIVE_MAXQ | 
|  | gf_group_raw_error += this_frame->coded_error; | 
|  | #endif | 
|  | gf_group_skip_pct += this_frame->intra_skip_pct; | 
|  | gf_group_inactive_zone_rows += this_frame->inactive_zone_rows; | 
|  |  | 
|  | if (EOF == input_stats(twopass, &next_frame)) break; | 
|  |  | 
|  | // Test for the case where there is a brief flash but the prediction | 
|  | // quality back to an earlier frame is then restored. | 
|  | flash_detected = detect_flash(twopass, 0); | 
|  |  | 
|  | // Update the motion related elements to the boost calculation. | 
|  | accumulate_frame_motion_stats( | 
|  | &next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, | 
|  | &abs_mv_in_out_accumulator, &mv_ratio_accumulator); | 
|  | // sum up the metric values of current gf group | 
|  | avg_sr_coded_error += next_frame.sr_coded_error; | 
|  | if (fabs(next_frame.raw_error_stdev) > 0.000001) { | 
|  | non_zero_stdev_count++; | 
|  | avg_raw_err_stdev += next_frame.raw_error_stdev; | 
|  | } | 
|  | #if CONFIG_BGSPRITE | 
|  | if (this_frame->pcnt_second_ref) { | 
|  | avg_pcnt_second_ref += this_frame->pcnt_second_ref; | 
|  | } | 
|  | non_zero_pcnt_second_ref_count++; | 
|  | #endif  // CONFIG_BGSPRITE | 
|  |  | 
|  | // Accumulate the effect of prediction quality decay. | 
|  | if (!flash_detected) { | 
|  | last_loop_decay_rate = loop_decay_rate; | 
|  | loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); | 
|  |  | 
|  | decay_accumulator = decay_accumulator * loop_decay_rate; | 
|  |  | 
|  | // Monitor for static sections. | 
|  | zero_motion_accumulator = AOMMIN( | 
|  | zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame)); | 
|  |  | 
|  | // Break clause to detect very still sections after motion. For example, | 
|  | // a static image after a fade or other transition. | 
|  | if (detect_transition_to_still(cpi, i, 5, loop_decay_rate, | 
|  | last_loop_decay_rate)) { | 
|  | allow_alt_ref = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calculate a boost number for this frame. | 
|  | boost_score += | 
|  | decay_accumulator * | 
|  | calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out, GF_MAX_BOOST); | 
|  |  | 
|  | // Break out conditions. | 
|  | if ( | 
|  | // Break at active_max_gf_interval unless almost totally static. | 
|  | (i >= (active_max_gf_interval + arf_active_or_kf) && | 
|  | zero_motion_accumulator < 0.995) || | 
|  | ( | 
|  | // Don't break out with a very short interval. | 
|  | (i >= active_min_gf_interval + arf_active_or_kf) && | 
|  | (!flash_detected) && | 
|  | ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) || | 
|  | (abs_mv_in_out_accumulator > 3.0) || | 
|  | (mv_in_out_accumulator < -2.0) || | 
|  | ((boost_score - old_boost_score) < BOOST_BREAKOUT)))) { | 
|  | // If GF group interval is < 12, we force it to be 8. Otherwise, | 
|  | // if it is >= 12, we keep it as is. | 
|  | // NOTE: 'i' is 1 more than the GF group interval candidate that is being | 
|  | //       checked. | 
|  | if (i == (8 + 1) || i >= (12 + 1)) { | 
|  | boost_score = old_boost_score; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | *this_frame = next_frame; | 
|  | old_boost_score = boost_score; | 
|  | } | 
|  | twopass->gf_zeromotion_pct = (int)(zero_motion_accumulator * 1000.0); | 
|  |  | 
|  | // Was the group length constrained by the requirement for a new KF? | 
|  | rc->constrained_gf_group = (i >= rc->frames_to_key) ? 1 : 0; | 
|  |  | 
|  | const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs | 
|  | : cpi->common.MBs; | 
|  | assert(num_mbs > 0); | 
|  | if (i) avg_sr_coded_error /= i; | 
|  |  | 
|  | // Should we use the alternate reference frame. | 
|  | if (allow_alt_ref && (i < cpi->oxcf.lag_in_frames) && | 
|  | (i >= rc->min_gf_interval)) { | 
|  | // Calculate the boost for alt ref. | 
|  | rc->gfu_boost = | 
|  | calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost, &b_boost); | 
|  | rc->source_alt_ref_pending = 1; | 
|  |  | 
|  | // Test to see if multi arf is appropriate. | 
|  | cpi->multi_arf_enabled = | 
|  | (cpi->multi_arf_allowed && (rc->baseline_gf_interval >= 6) && | 
|  | (zero_motion_accumulator < 0.995)) | 
|  | ? 1 | 
|  | : 0; | 
|  | #if CONFIG_BGSPRITE | 
|  | if (non_zero_pcnt_second_ref_count) { | 
|  | avg_pcnt_second_ref /= non_zero_pcnt_second_ref_count; | 
|  | } | 
|  |  | 
|  | cpi->bgsprite_allowed = 1; | 
|  | if (abs_mv_in_out_accumulator > 0.30 || decay_accumulator < 0.90 || | 
|  | avg_sr_coded_error / num_mbs < 20 || avg_pcnt_second_ref < 0.30) { | 
|  | cpi->bgsprite_allowed = 0; | 
|  | } | 
|  | #endif  // CONFIG_BGSPRITE | 
|  | } else { | 
|  | rc->gfu_boost = AOMMAX((int)boost_score, MIN_ARF_GF_BOOST); | 
|  | rc->source_alt_ref_pending = 0; | 
|  | } | 
|  |  | 
|  | // Set the interval until the next gf. | 
|  | rc->baseline_gf_interval = i - (is_key_frame || rc->source_alt_ref_pending); | 
|  | if (non_zero_stdev_count) avg_raw_err_stdev /= non_zero_stdev_count; | 
|  |  | 
|  | // Disable extra altrefs and backward refs for "still" gf group: | 
|  | //   zero_motion_accumulator: minimum percentage of (0,0) motion; | 
|  | //   avg_sr_coded_error:      average of the SSE per pixel of each frame; | 
|  | //   avg_raw_err_stdev:       average of the standard deviation of (0,0) | 
|  | //                            motion error per block of each frame. | 
|  | assert(num_mbs > 0); | 
|  | const int disable_bwd_extarf = | 
|  | (zero_motion_accumulator > MIN_ZERO_MOTION && | 
|  | avg_sr_coded_error / num_mbs < MAX_SR_CODED_ERROR && | 
|  | avg_raw_err_stdev < MAX_RAW_ERR_VAR); | 
|  |  | 
|  | if (disable_bwd_extarf) cpi->extra_arf_allowed = cpi->bwd_ref_allowed = 0; | 
|  |  | 
|  | if (!cpi->extra_arf_allowed) { | 
|  | cpi->num_extra_arfs = 0; | 
|  | } else { | 
|  | // Compute how many extra alt_refs we can have | 
|  | cpi->num_extra_arfs = get_number_of_extra_arfs(rc->baseline_gf_interval, | 
|  | rc->source_alt_ref_pending); | 
|  | } | 
|  | // Currently at maximum two extra ARFs' are allowed | 
|  | assert(cpi->num_extra_arfs <= MAX_EXT_ARFS); | 
|  |  | 
|  | rc->frames_till_gf_update_due = rc->baseline_gf_interval; | 
|  |  | 
|  | rc->bipred_group_interval = BFG_INTERVAL; | 
|  | // The minimum bi-predictive frame group interval is 2. | 
|  | if (rc->bipred_group_interval < 2) rc->bipred_group_interval = 0; | 
|  |  | 
|  | // Reset the file position. | 
|  | reset_fpf_position(twopass, start_pos); | 
|  |  | 
|  | // Calculate the bits to be allocated to the gf/arf group as a whole | 
|  | gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err); | 
|  |  | 
|  | #if GROUP_ADAPTIVE_MAXQ | 
|  | // Calculate an estimate of the maxq needed for the group. | 
|  | // We are more agressive about correcting for sections | 
|  | // where there could be significant overshoot than for easier | 
|  | // sections where we do not wish to risk creating an overshoot | 
|  | // of the allocated bit budget. | 
|  | if ((cpi->oxcf.rc_mode != AOM_Q) && (rc->baseline_gf_interval > 1)) { | 
|  | const int vbr_group_bits_per_frame = | 
|  | (int)(gf_group_bits / rc->baseline_gf_interval); | 
|  | const double group_av_err = gf_group_raw_error / rc->baseline_gf_interval; | 
|  | const double group_av_skip_pct = | 
|  | gf_group_skip_pct / rc->baseline_gf_interval; | 
|  | const double group_av_inactive_zone = | 
|  | ((gf_group_inactive_zone_rows * 2) / | 
|  | (rc->baseline_gf_interval * (double)cm->mb_rows)); | 
|  |  | 
|  | int tmp_q; | 
|  | // rc factor is a weight factor that corrects for local rate control drift. | 
|  | double rc_factor = 1.0; | 
|  | if (rc->rate_error_estimate > 0) { | 
|  | rc_factor = AOMMAX(RC_FACTOR_MIN, | 
|  | (double)(100 - rc->rate_error_estimate) / 100.0); | 
|  | } else { | 
|  | rc_factor = AOMMIN(RC_FACTOR_MAX, | 
|  | (double)(100 - rc->rate_error_estimate) / 100.0); | 
|  | } | 
|  | tmp_q = get_twopass_worst_quality( | 
|  | cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone), | 
|  | vbr_group_bits_per_frame, twopass->kfgroup_inter_fraction * rc_factor); | 
|  | twopass->active_worst_quality = | 
|  | AOMMAX(tmp_q, twopass->active_worst_quality >> 1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Calculate the extra bits to be used for boosted frame(s) | 
|  | gf_arf_bits = calculate_boost_bits(rc->baseline_gf_interval, rc->gfu_boost, | 
|  | gf_group_bits); | 
|  |  | 
|  | // Adjust KF group bits and error remaining. | 
|  | twopass->kf_group_error_left -= (int64_t)gf_group_err; | 
|  |  | 
|  | // If this is an arf update we want to remove the score for the overlay | 
|  | // frame at the end which will usually be very cheap to code. | 
|  | // The overlay frame has already, in effect, been coded so we want to spread | 
|  | // the remaining bits among the other frames. | 
|  | // For normal GFs remove the score for the GF itself unless this is | 
|  | // also a key frame in which case it has already been accounted for. | 
|  | if (rc->source_alt_ref_pending) { | 
|  | gf_group_error_left = gf_group_err - mod_frame_err; | 
|  | } else if (is_key_frame == 0) { | 
|  | gf_group_error_left = gf_group_err - gf_first_frame_err; | 
|  | } else { | 
|  | gf_group_error_left = gf_group_err; | 
|  | } | 
|  |  | 
|  | // Allocate bits to each of the frames in the GF group. | 
|  | allocate_gf_group_bits(cpi, gf_group_bits, gf_group_error_left, gf_arf_bits); | 
|  |  | 
|  | // Reset the file position. | 
|  | reset_fpf_position(twopass, start_pos); | 
|  |  | 
|  | // Calculate a section intra ratio used in setting max loop filter. | 
|  | if (cpi->common.frame_type != KEY_FRAME) { | 
|  | twopass->section_intra_rating = calculate_section_intra_ratio( | 
|  | start_pos, twopass->stats_in_end, rc->baseline_gf_interval); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Threshold for use of the lagging second reference frame. High second ref | 
|  | // usage may point to a transient event like a flash or occlusion rather than | 
|  | // a real scene cut. | 
|  | #define SECOND_REF_USEAGE_THRESH 0.1 | 
|  | // Minimum % intra coding observed in first pass (1.0 = 100%) | 
|  | #define MIN_INTRA_LEVEL 0.25 | 
|  | // Minimum ratio between the % of intra coding and inter coding in the first | 
|  | // pass after discounting neutral blocks (discounting neutral blocks in this | 
|  | // way helps catch scene cuts in clips with very flat areas or letter box | 
|  | // format clips with image padding. | 
|  | #define INTRA_VS_INTER_THRESH 2.0 | 
|  | // Hard threshold where the first pass chooses intra for almost all blocks. | 
|  | // In such a case even if the frame is not a scene cut coding a key frame | 
|  | // may be a good option. | 
|  | #define VERY_LOW_INTER_THRESH 0.05 | 
|  | // Maximum threshold for the relative ratio of intra error score vs best | 
|  | // inter error score. | 
|  | #define KF_II_ERR_THRESHOLD 2.5 | 
|  | // In real scene cuts there is almost always a sharp change in the intra | 
|  | // or inter error score. | 
|  | #define ERR_CHANGE_THRESHOLD 0.4 | 
|  | // For real scene cuts we expect an improvment in the intra inter error | 
|  | // ratio in the next frame. | 
|  | #define II_IMPROVEMENT_THRESHOLD 3.5 | 
|  | #define KF_II_MAX 128.0 | 
|  |  | 
|  | static int test_candidate_kf(TWO_PASS *twopass, | 
|  | const FIRSTPASS_STATS *last_frame, | 
|  | const FIRSTPASS_STATS *this_frame, | 
|  | const FIRSTPASS_STATS *next_frame) { | 
|  | int is_viable_kf = 0; | 
|  | double pcnt_intra = 1.0 - this_frame->pcnt_inter; | 
|  | double modified_pcnt_inter = | 
|  | this_frame->pcnt_inter - this_frame->pcnt_neutral; | 
|  |  | 
|  | // Does the frame satisfy the primary criteria of a key frame? | 
|  | // See above for an explanation of the test criteria. | 
|  | // If so, then examine how well it predicts subsequent frames. | 
|  | if ((this_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) && | 
|  | (next_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) && | 
|  | ((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) || | 
|  | ((pcnt_intra > MIN_INTRA_LEVEL) && | 
|  | (pcnt_intra > (INTRA_VS_INTER_THRESH * modified_pcnt_inter)) && | 
|  | ((this_frame->intra_error / | 
|  | DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < | 
|  | KF_II_ERR_THRESHOLD) && | 
|  | ((fabs(last_frame->coded_error - this_frame->coded_error) / | 
|  | DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > | 
|  | ERR_CHANGE_THRESHOLD) || | 
|  | (fabs(last_frame->intra_error - this_frame->intra_error) / | 
|  | DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > | 
|  | ERR_CHANGE_THRESHOLD) || | 
|  | ((next_frame->intra_error / | 
|  | DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > | 
|  | II_IMPROVEMENT_THRESHOLD))))) { | 
|  | int i; | 
|  | const FIRSTPASS_STATS *start_pos = twopass->stats_in; | 
|  | FIRSTPASS_STATS local_next_frame = *next_frame; | 
|  | double boost_score = 0.0; | 
|  | double old_boost_score = 0.0; | 
|  | double decay_accumulator = 1.0; | 
|  |  | 
|  | // Examine how well the key frame predicts subsequent frames. | 
|  | for (i = 0; i < 16; ++i) { | 
|  | double next_iiratio = (BOOST_FACTOR * local_next_frame.intra_error / | 
|  | DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)); | 
|  |  | 
|  | if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX; | 
|  |  | 
|  | // Cumulative effect of decay in prediction quality. | 
|  | if (local_next_frame.pcnt_inter > 0.85) | 
|  | decay_accumulator *= local_next_frame.pcnt_inter; | 
|  | else | 
|  | decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0; | 
|  |  | 
|  | // Keep a running total. | 
|  | boost_score += (decay_accumulator * next_iiratio); | 
|  |  | 
|  | // Test various breakout clauses. | 
|  | if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) || | 
|  | (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) < | 
|  | 0.20) && | 
|  | (next_iiratio < 3.0)) || | 
|  | ((boost_score - old_boost_score) < 3.0) || | 
|  | (local_next_frame.intra_error < 200)) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | old_boost_score = boost_score; | 
|  |  | 
|  | // Get the next frame details | 
|  | if (EOF == input_stats(twopass, &local_next_frame)) break; | 
|  | } | 
|  |  | 
|  | // If there is tolerable prediction for at least the next 3 frames then | 
|  | // break out else discard this potential key frame and move on | 
|  | if (boost_score > 30.0 && (i > 3)) { | 
|  | is_viable_kf = 1; | 
|  | } else { | 
|  | // Reset the file position | 
|  | reset_fpf_position(twopass, start_pos); | 
|  |  | 
|  | is_viable_kf = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return is_viable_kf; | 
|  | } | 
|  |  | 
|  | #define FRAMES_TO_CHECK_DECAY 8 | 
|  |  | 
|  | static void find_next_key_frame(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame) { | 
|  | int i, j; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | GF_GROUP *const gf_group = &twopass->gf_group; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | const FIRSTPASS_STATS first_frame = *this_frame; | 
|  | const FIRSTPASS_STATS *const start_position = twopass->stats_in; | 
|  | FIRSTPASS_STATS next_frame; | 
|  | FIRSTPASS_STATS last_frame; | 
|  | int kf_bits = 0; | 
|  | int loop_decay_counter = 0; | 
|  | double decay_accumulator = 1.0; | 
|  | double av_decay_accumulator = 0.0; | 
|  | double zero_motion_accumulator = 1.0; | 
|  | double boost_score = 0.0; | 
|  | double kf_mod_err = 0.0; | 
|  | double kf_group_err = 0.0; | 
|  | double recent_loop_decay[FRAMES_TO_CHECK_DECAY]; | 
|  |  | 
|  | av1_zero(next_frame); | 
|  |  | 
|  | cpi->common.frame_type = KEY_FRAME; | 
|  |  | 
|  | // Reset the GF group data structures. | 
|  | av1_zero(*gf_group); | 
|  |  | 
|  | // Is this a forced key frame by interval. | 
|  | rc->this_key_frame_forced = rc->next_key_frame_forced; | 
|  |  | 
|  | // Clear the alt ref active flag and last group multi arf flags as they | 
|  | // can never be set for a key frame. | 
|  | rc->source_alt_ref_active = 0; | 
|  | cpi->multi_arf_last_grp_enabled = 0; | 
|  |  | 
|  | // KF is always a GF so clear frames till next gf counter. | 
|  | rc->frames_till_gf_update_due = 0; | 
|  |  | 
|  | rc->frames_to_key = 1; | 
|  |  | 
|  | twopass->kf_group_bits = 0;        // Total bits available to kf group | 
|  | twopass->kf_group_error_left = 0;  // Group modified error score. | 
|  |  | 
|  | kf_mod_err = calculate_modified_err(cpi, twopass, oxcf, this_frame); | 
|  |  | 
|  | // Initialize the decay rates for the recent frames to check | 
|  | for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) recent_loop_decay[j] = 1.0; | 
|  |  | 
|  | // Find the next keyframe. | 
|  | i = 0; | 
|  | while (twopass->stats_in < twopass->stats_in_end && | 
|  | rc->frames_to_key < cpi->oxcf.key_freq) { | 
|  | // Accumulate kf group error. | 
|  | kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame); | 
|  |  | 
|  | // Load the next frame's stats. | 
|  | last_frame = *this_frame; | 
|  | input_stats(twopass, this_frame); | 
|  |  | 
|  | // Provided that we are not at the end of the file... | 
|  | if (cpi->oxcf.auto_key && twopass->stats_in < twopass->stats_in_end) { | 
|  | double loop_decay_rate; | 
|  |  | 
|  | // Check for a scene cut. | 
|  | if (test_candidate_kf(twopass, &last_frame, this_frame, | 
|  | twopass->stats_in)) | 
|  | break; | 
|  |  | 
|  | // How fast is the prediction quality decaying? | 
|  | loop_decay_rate = get_prediction_decay_rate(cpi, twopass->stats_in); | 
|  |  | 
|  | // We want to know something about the recent past... rather than | 
|  | // as used elsewhere where we are concerned with decay in prediction | 
|  | // quality since the last GF or KF. | 
|  | recent_loop_decay[i % FRAMES_TO_CHECK_DECAY] = loop_decay_rate; | 
|  | decay_accumulator = 1.0; | 
|  | for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) | 
|  | decay_accumulator *= recent_loop_decay[j]; | 
|  |  | 
|  | // Special check for transition or high motion followed by a | 
|  | // static scene. | 
|  | if (detect_transition_to_still(cpi, i, cpi->oxcf.key_freq - i, | 
|  | loop_decay_rate, decay_accumulator)) | 
|  | break; | 
|  |  | 
|  | // Step on to the next frame. | 
|  | ++rc->frames_to_key; | 
|  |  | 
|  | // If we don't have a real key frame within the next two | 
|  | // key_freq intervals then break out of the loop. | 
|  | if (rc->frames_to_key >= 2 * cpi->oxcf.key_freq) break; | 
|  | } else { | 
|  | ++rc->frames_to_key; | 
|  | } | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | // If there is a max kf interval set by the user we must obey it. | 
|  | // We already breakout of the loop above at 2x max. | 
|  | // This code centers the extra kf if the actual natural interval | 
|  | // is between 1x and 2x. | 
|  | if (cpi->oxcf.auto_key && rc->frames_to_key > cpi->oxcf.key_freq) { | 
|  | FIRSTPASS_STATS tmp_frame = first_frame; | 
|  |  | 
|  | rc->frames_to_key /= 2; | 
|  |  | 
|  | // Reset to the start of the group. | 
|  | reset_fpf_position(twopass, start_position); | 
|  |  | 
|  | kf_group_err = 0.0; | 
|  |  | 
|  | // Rescan to get the correct error data for the forced kf group. | 
|  | for (i = 0; i < rc->frames_to_key; ++i) { | 
|  | kf_group_err += calculate_modified_err(cpi, twopass, oxcf, &tmp_frame); | 
|  | input_stats(twopass, &tmp_frame); | 
|  | } | 
|  | rc->next_key_frame_forced = 1; | 
|  | } else if (twopass->stats_in == twopass->stats_in_end || | 
|  | rc->frames_to_key >= cpi->oxcf.key_freq) { | 
|  | rc->next_key_frame_forced = 1; | 
|  | } else { | 
|  | rc->next_key_frame_forced = 0; | 
|  | } | 
|  |  | 
|  | // Special case for the last key frame of the file. | 
|  | if (twopass->stats_in >= twopass->stats_in_end) { | 
|  | // Accumulate kf group error. | 
|  | kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame); | 
|  | } | 
|  |  | 
|  | // Calculate the number of bits that should be assigned to the kf group. | 
|  | if (twopass->bits_left > 0 && twopass->modified_error_left > 0.0) { | 
|  | // Maximum number of bits for a single normal frame (not key frame). | 
|  | const int max_bits = frame_max_bits(rc, &cpi->oxcf); | 
|  |  | 
|  | // Maximum number of bits allocated to the key frame group. | 
|  | int64_t max_grp_bits; | 
|  |  | 
|  | // Default allocation based on bits left and relative | 
|  | // complexity of the section. | 
|  | twopass->kf_group_bits = (int64_t)( | 
|  | twopass->bits_left * (kf_group_err / twopass->modified_error_left)); | 
|  |  | 
|  | // Clip based on maximum per frame rate defined by the user. | 
|  | max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key; | 
|  | if (twopass->kf_group_bits > max_grp_bits) | 
|  | twopass->kf_group_bits = max_grp_bits; | 
|  | } else { | 
|  | twopass->kf_group_bits = 0; | 
|  | } | 
|  | twopass->kf_group_bits = AOMMAX(0, twopass->kf_group_bits); | 
|  |  | 
|  | // Reset the first pass file position. | 
|  | reset_fpf_position(twopass, start_position); | 
|  |  | 
|  | // Scan through the kf group collating various stats used to determine | 
|  | // how many bits to spend on it. | 
|  | decay_accumulator = 1.0; | 
|  | boost_score = 0.0; | 
|  | for (i = 0; i < (rc->frames_to_key - 1); ++i) { | 
|  | if (EOF == input_stats(twopass, &next_frame)) break; | 
|  |  | 
|  | // Monitor for static sections. | 
|  | zero_motion_accumulator = AOMMIN(zero_motion_accumulator, | 
|  | get_zero_motion_factor(cpi, &next_frame)); | 
|  |  | 
|  | // Not all frames in the group are necessarily used in calculating boost. | 
|  | if ((i <= rc->max_gf_interval) || | 
|  | ((i <= (rc->max_gf_interval * 4)) && (decay_accumulator > 0.5))) { | 
|  | const double frame_boost = | 
|  | calc_frame_boost(cpi, this_frame, 0, KF_MAX_BOOST); | 
|  |  | 
|  | // How fast is prediction quality decaying. | 
|  | if (!detect_flash(twopass, 0)) { | 
|  | const double loop_decay_rate = | 
|  | get_prediction_decay_rate(cpi, &next_frame); | 
|  | decay_accumulator *= loop_decay_rate; | 
|  | decay_accumulator = AOMMAX(decay_accumulator, MIN_DECAY_FACTOR); | 
|  | av_decay_accumulator += decay_accumulator; | 
|  | ++loop_decay_counter; | 
|  | } | 
|  | boost_score += (decay_accumulator * frame_boost); | 
|  | } | 
|  | } | 
|  | if (loop_decay_counter > 0) | 
|  | av_decay_accumulator /= (double)loop_decay_counter; | 
|  |  | 
|  | reset_fpf_position(twopass, start_position); | 
|  |  | 
|  | // Store the zero motion percentage | 
|  | twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0); | 
|  |  | 
|  | // Calculate a section intra ratio used in setting max loop filter. | 
|  | twopass->section_intra_rating = calculate_section_intra_ratio( | 
|  | start_position, twopass->stats_in_end, rc->frames_to_key); | 
|  |  | 
|  | // Apply various clamps for min and max boost | 
|  | rc->kf_boost = (int)(av_decay_accumulator * boost_score); | 
|  | rc->kf_boost = AOMMAX(rc->kf_boost, (rc->frames_to_key * 3)); | 
|  | rc->kf_boost = AOMMAX(rc->kf_boost, MIN_KF_BOOST); | 
|  |  | 
|  | // Work out how many bits to allocate for the key frame itself. | 
|  | kf_bits = calculate_boost_bits((rc->frames_to_key - 1), rc->kf_boost, | 
|  | twopass->kf_group_bits); | 
|  |  | 
|  | // Work out the fraction of the kf group bits reserved for the inter frames | 
|  | // within the group after discounting the bits for the kf itself. | 
|  | if (twopass->kf_group_bits) { | 
|  | twopass->kfgroup_inter_fraction = | 
|  | (double)(twopass->kf_group_bits - kf_bits) / | 
|  | (double)twopass->kf_group_bits; | 
|  | } else { | 
|  | twopass->kfgroup_inter_fraction = 1.0; | 
|  | } | 
|  |  | 
|  | twopass->kf_group_bits -= kf_bits; | 
|  |  | 
|  | // Save the bits to spend on the key frame. | 
|  | gf_group->bit_allocation[0] = kf_bits; | 
|  | gf_group->update_type[0] = KF_UPDATE; | 
|  | gf_group->rf_level[0] = KF_STD; | 
|  |  | 
|  | // Note the total error score of the kf group minus the key frame itself. | 
|  | twopass->kf_group_error_left = (int)(kf_group_err - kf_mod_err); | 
|  |  | 
|  | // Adjust the count of total modified error left. | 
|  | // The count of bits left is adjusted elsewhere based on real coded frame | 
|  | // sizes. | 
|  | twopass->modified_error_left -= kf_group_err; | 
|  | } | 
|  |  | 
|  | #if USE_GF16_MULTI_LAYER | 
|  | // === GF Group of 16 === | 
|  | void av1_ref_frame_map_idx_updates(AV1_COMP *cpi, int gf_frame_index) { | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | GF_GROUP *const gf_group = &twopass->gf_group; | 
|  |  | 
|  | int ref_fb_idx_prev[REF_FRAMES]; | 
|  | int ref_fb_idx_curr[REF_FRAMES]; | 
|  |  | 
|  | ref_fb_idx_prev[LAST_FRAME - LAST_FRAME] = | 
|  | cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME]; | 
|  | ref_fb_idx_prev[LAST2_FRAME - LAST_FRAME] = | 
|  | cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME]; | 
|  | ref_fb_idx_prev[LAST3_FRAME - LAST_FRAME] = | 
|  | cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME]; | 
|  | ref_fb_idx_prev[GOLDEN_FRAME - LAST_FRAME] = cpi->gld_fb_idx; | 
|  | ref_fb_idx_prev[BWDREF_FRAME - LAST_FRAME] = cpi->bwd_fb_idx; | 
|  | ref_fb_idx_prev[ALTREF2_FRAME - LAST_FRAME] = cpi->alt2_fb_idx; | 
|  | ref_fb_idx_prev[ALTREF_FRAME - LAST_FRAME] = cpi->alt_fb_idx; | 
|  | ref_fb_idx_prev[REF_FRAMES - LAST_FRAME] = cpi->ext_fb_idx; | 
|  |  | 
|  | // Update map index for each reference frame | 
|  | for (int ref_idx = 0; ref_idx < REF_FRAMES; ++ref_idx) { | 
|  | int ref_frame = gf_group->ref_fb_idx_map[gf_frame_index][ref_idx]; | 
|  | ref_fb_idx_curr[ref_idx] = ref_fb_idx_prev[ref_frame - LAST_FRAME]; | 
|  | } | 
|  |  | 
|  | cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME] = | 
|  | ref_fb_idx_curr[LAST_FRAME - LAST_FRAME]; | 
|  | cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME] = | 
|  | ref_fb_idx_curr[LAST2_FRAME - LAST_FRAME]; | 
|  | cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME] = | 
|  | ref_fb_idx_curr[LAST3_FRAME - LAST_FRAME]; | 
|  | cpi->gld_fb_idx = ref_fb_idx_curr[GOLDEN_FRAME - LAST_FRAME]; | 
|  | cpi->bwd_fb_idx = ref_fb_idx_curr[BWDREF_FRAME - LAST_FRAME]; | 
|  | cpi->alt2_fb_idx = ref_fb_idx_curr[ALTREF2_FRAME - LAST_FRAME]; | 
|  | cpi->alt_fb_idx = ref_fb_idx_curr[ALTREF_FRAME - LAST_FRAME]; | 
|  | cpi->ext_fb_idx = ref_fb_idx_curr[REF_FRAMES - LAST_FRAME]; | 
|  | } | 
|  |  | 
|  | // Define the reference buffers that will be updated post encode. | 
|  | static void configure_buffer_updates_16(AV1_COMP *cpi) { | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | GF_GROUP *const gf_group = &twopass->gf_group; | 
|  |  | 
|  | if (gf_group->update_type[gf_group->index] == KF_UPDATE) { | 
|  | cpi->refresh_fb_idx = 0; | 
|  |  | 
|  | cpi->refresh_last_frame = 1; | 
|  | cpi->refresh_golden_frame = 1; | 
|  | cpi->refresh_bwd_ref_frame = 1; | 
|  | cpi->refresh_alt2_ref_frame = 1; | 
|  | cpi->refresh_alt_ref_frame = 1; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Update reference frame map indexes | 
|  | av1_ref_frame_map_idx_updates(cpi, gf_group->index); | 
|  |  | 
|  | // Update refresh index | 
|  | switch (gf_group->refresh_idx[gf_group->index]) { | 
|  | case LAST_FRAME: | 
|  | cpi->refresh_fb_idx = cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME]; | 
|  | break; | 
|  |  | 
|  | case LAST2_FRAME: | 
|  | cpi->refresh_fb_idx = cpi->lst_fb_idxes[LAST2_FRAME - LAST_FRAME]; | 
|  | break; | 
|  |  | 
|  | case LAST3_FRAME: | 
|  | cpi->refresh_fb_idx = cpi->lst_fb_idxes[LAST3_FRAME - LAST_FRAME]; | 
|  | break; | 
|  |  | 
|  | case GOLDEN_FRAME: cpi->refresh_fb_idx = cpi->gld_fb_idx; break; | 
|  |  | 
|  | case BWDREF_FRAME: cpi->refresh_fb_idx = cpi->bwd_fb_idx; break; | 
|  |  | 
|  | case ALTREF2_FRAME: cpi->refresh_fb_idx = cpi->alt2_fb_idx; break; | 
|  |  | 
|  | case ALTREF_FRAME: cpi->refresh_fb_idx = cpi->alt_fb_idx; break; | 
|  |  | 
|  | case REF_FRAMES: cpi->refresh_fb_idx = cpi->ext_fb_idx; break; | 
|  |  | 
|  | default: assert(0); break; | 
|  | } | 
|  |  | 
|  | // Update refresh flags | 
|  | switch (gf_group->refresh_flag[gf_group->index]) { | 
|  | case LAST_FRAME: | 
|  | cpi->refresh_last_frame = 1; | 
|  | cpi->refresh_golden_frame = 0; | 
|  | cpi->refresh_bwd_ref_frame = 0; | 
|  | cpi->refresh_alt2_ref_frame = 0; | 
|  | cpi->refresh_alt_ref_frame = 0; | 
|  | break; | 
|  |  | 
|  | case GOLDEN_FRAME: | 
|  | cpi->refresh_last_frame = 0; | 
|  | cpi->refresh_golden_frame = 1; | 
|  | cpi->refresh_bwd_ref_frame = 0; | 
|  | cpi->refresh_alt2_ref_frame = 0; | 
|  | cpi->refresh_alt_ref_frame = 0; | 
|  | break; | 
|  |  | 
|  | case BWDREF_FRAME: | 
|  | cpi->refresh_last_frame = 0; | 
|  | cpi->refresh_golden_frame = 0; | 
|  | cpi->refresh_bwd_ref_frame = 1; | 
|  | cpi->refresh_alt2_ref_frame = 0; | 
|  | cpi->refresh_alt_ref_frame = 0; | 
|  | break; | 
|  |  | 
|  | case ALTREF2_FRAME: | 
|  | cpi->refresh_last_frame = 0; | 
|  | cpi->refresh_golden_frame = 0; | 
|  | cpi->refresh_bwd_ref_frame = 0; | 
|  | cpi->refresh_alt2_ref_frame = 1; | 
|  | cpi->refresh_alt_ref_frame = 0; | 
|  | break; | 
|  |  | 
|  | case ALTREF_FRAME: | 
|  | cpi->refresh_last_frame = 0; | 
|  | cpi->refresh_golden_frame = 0; | 
|  | cpi->refresh_bwd_ref_frame = 0; | 
|  | cpi->refresh_alt2_ref_frame = 0; | 
|  | cpi->refresh_alt_ref_frame = 1; | 
|  | break; | 
|  |  | 
|  | default: assert(0); break; | 
|  | } | 
|  |  | 
|  | switch (gf_group->update_type[gf_group->index]) { | 
|  | case BRF_UPDATE: cpi->rc.is_bwd_ref_frame = 1; break; | 
|  |  | 
|  | case LAST_BIPRED_UPDATE: cpi->rc.is_last_bipred_frame = 1; break; | 
|  |  | 
|  | case BIPRED_UPDATE: cpi->rc.is_bipred_frame = 1; break; | 
|  |  | 
|  | case INTNL_OVERLAY_UPDATE: cpi->rc.is_src_frame_ext_arf = 1; | 
|  | case OVERLAY_UPDATE: cpi->rc.is_src_frame_alt_ref = 1; break; | 
|  |  | 
|  | default: break; | 
|  | } | 
|  | } | 
|  | #endif  // USE_GF16_MULTI_LAYER | 
|  |  | 
|  | // Define the reference buffers that will be updated post encode. | 
|  | static void configure_buffer_updates(AV1_COMP *cpi) { | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  |  | 
|  | // NOTE(weitinglin): Should we define another function to take care of | 
|  | // cpi->rc.is_$Source_Type to make this function as it is in the comment? | 
|  |  | 
|  | cpi->rc.is_src_frame_alt_ref = 0; | 
|  | cpi->rc.is_bwd_ref_frame = 0; | 
|  | cpi->rc.is_last_bipred_frame = 0; | 
|  | cpi->rc.is_bipred_frame = 0; | 
|  | cpi->rc.is_src_frame_ext_arf = 0; | 
|  |  | 
|  | #if USE_GF16_MULTI_LAYER | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | if (rc->baseline_gf_interval == 16) { | 
|  | configure_buffer_updates_16(cpi); | 
|  | return; | 
|  | } | 
|  | #endif  // USE_GF16_MULTI_LAYER | 
|  |  | 
|  | switch (twopass->gf_group.update_type[twopass->gf_group.index]) { | 
|  | case KF_UPDATE: | 
|  | cpi->refresh_last_frame = 1; | 
|  | cpi->refresh_golden_frame = 1; | 
|  | cpi->refresh_bwd_ref_frame = 1; | 
|  | cpi->refresh_alt2_ref_frame = 1; | 
|  | cpi->refresh_alt_ref_frame = 1; | 
|  | break; | 
|  |  | 
|  | case LF_UPDATE: | 
|  | cpi->refresh_last_frame = 1; | 
|  | cpi->refresh_golden_frame = 0; | 
|  | cpi->refresh_bwd_ref_frame = 0; | 
|  | cpi->refresh_alt2_ref_frame = 0; | 
|  | cpi->refresh_alt_ref_frame = 0; | 
|  | break; | 
|  |  | 
|  | case GF_UPDATE: | 
|  | // TODO(zoeliu): To further investigate whether 'refresh_last_frame' is | 
|  | //               needed. | 
|  | cpi->refresh_last_frame = 1; | 
|  | cpi->refresh_golden_frame = 1; | 
|  | cpi->refresh_bwd_ref_frame = 0; | 
|  | cpi->refresh_alt2_ref_frame = 0; | 
|  | cpi->refresh_alt_ref_frame = 0; | 
|  | break; | 
|  |  | 
|  | case OVERLAY_UPDATE: | 
|  | cpi->refresh_last_frame = 0; | 
|  | cpi->refresh_golden_frame = 1; | 
|  | cpi->refresh_bwd_ref_frame = 0; | 
|  | cpi->refresh_alt2_ref_frame = 0; | 
|  | cpi->refresh_alt_ref_frame = 0; | 
|  |  | 
|  | cpi->rc.is_src_frame_alt_ref = 1; | 
|  | break; | 
|  |  | 
|  | case ARF_UPDATE: | 
|  | cpi->refresh_last_frame = 0; | 
|  | cpi->refresh_golden_frame = 0; | 
|  | // NOTE: BWDREF does not get updated along with ALTREF_FRAME. | 
|  | cpi->refresh_bwd_ref_frame = 0; | 
|  | cpi->refresh_alt2_ref_frame = 0; | 
|  | cpi->refresh_alt_ref_frame = 1; | 
|  | break; | 
|  |  | 
|  | case BRF_UPDATE: | 
|  | cpi->refresh_last_frame = 0; | 
|  | cpi->refresh_golden_frame = 0; | 
|  | cpi->refresh_bwd_ref_frame = 1; | 
|  | cpi->refresh_alt2_ref_frame = 0; | 
|  | cpi->refresh_alt_ref_frame = 0; | 
|  |  | 
|  | cpi->rc.is_bwd_ref_frame = 1; | 
|  | break; | 
|  |  | 
|  | case LAST_BIPRED_UPDATE: | 
|  | cpi->refresh_last_frame = 1; | 
|  | cpi->refresh_golden_frame = 0; | 
|  | cpi->refresh_bwd_ref_frame = 0; | 
|  | cpi->refresh_alt2_ref_frame = 0; | 
|  | cpi->refresh_alt_ref_frame = 0; | 
|  |  | 
|  | cpi->rc.is_last_bipred_frame = 1; | 
|  | break; | 
|  |  | 
|  | case BIPRED_UPDATE: | 
|  | cpi->refresh_last_frame = 1; | 
|  | cpi->refresh_golden_frame = 0; | 
|  | cpi->refresh_bwd_ref_frame = 0; | 
|  | cpi->refresh_alt2_ref_frame = 0; | 
|  | cpi->refresh_alt_ref_frame = 0; | 
|  |  | 
|  | cpi->rc.is_bipred_frame = 1; | 
|  | break; | 
|  |  | 
|  | case INTNL_OVERLAY_UPDATE: | 
|  | cpi->refresh_last_frame = 1; | 
|  | cpi->refresh_golden_frame = 0; | 
|  | cpi->refresh_bwd_ref_frame = 0; | 
|  | cpi->refresh_alt2_ref_frame = 0; | 
|  | cpi->refresh_alt_ref_frame = 0; | 
|  |  | 
|  | cpi->rc.is_src_frame_alt_ref = 1; | 
|  | cpi->rc.is_src_frame_ext_arf = 1; | 
|  | break; | 
|  |  | 
|  | case INTNL_ARF_UPDATE: | 
|  | cpi->refresh_last_frame = 0; | 
|  | cpi->refresh_golden_frame = 0; | 
|  | cpi->refresh_bwd_ref_frame = 0; | 
|  | cpi->refresh_alt2_ref_frame = 1; | 
|  | cpi->refresh_alt_ref_frame = 0; | 
|  | break; | 
|  |  | 
|  | default: assert(0); break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int is_skippable_frame(const AV1_COMP *cpi) { | 
|  | // If the current frame does not have non-zero motion vector detected in the | 
|  | // first  pass, and so do its previous and forward frames, then this frame | 
|  | // can be skipped for partition check, and the partition size is assigned | 
|  | // according to the variance | 
|  | const TWO_PASS *const twopass = &cpi->twopass; | 
|  |  | 
|  | return (!frame_is_intra_only(&cpi->common) && | 
|  | twopass->stats_in - 2 > twopass->stats_in_start && | 
|  | twopass->stats_in < twopass->stats_in_end && | 
|  | (twopass->stats_in - 1)->pcnt_inter - | 
|  | (twopass->stats_in - 1)->pcnt_motion == | 
|  | 1 && | 
|  | (twopass->stats_in - 2)->pcnt_inter - | 
|  | (twopass->stats_in - 2)->pcnt_motion == | 
|  | 1 && | 
|  | twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1); | 
|  | } | 
|  |  | 
|  | void av1_rc_get_second_pass_params(AV1_COMP *cpi) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | GF_GROUP *const gf_group = &twopass->gf_group; | 
|  | int frames_left; | 
|  | FIRSTPASS_STATS this_frame; | 
|  |  | 
|  | int target_rate; | 
|  |  | 
|  | frames_left = (int)(twopass->total_stats.count - cm->current_video_frame); | 
|  |  | 
|  | if (!twopass->stats_in) return; | 
|  |  | 
|  | // If this is an arf frame then we dont want to read the stats file or | 
|  | // advance the input pointer as we already have what we need. | 
|  | if (gf_group->update_type[gf_group->index] == ARF_UPDATE || | 
|  | gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE) { | 
|  | configure_buffer_updates(cpi); | 
|  | target_rate = gf_group->bit_allocation[gf_group->index]; | 
|  | target_rate = av1_rc_clamp_pframe_target_size(cpi, target_rate); | 
|  | rc->base_frame_target = target_rate; | 
|  |  | 
|  | cm->frame_type = INTER_FRAME; | 
|  |  | 
|  | // Do the firstpass stats indicate that this frame is skippable for the | 
|  | // partition search? | 
|  | if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) { | 
|  | cpi->partition_search_skippable_frame = is_skippable_frame(cpi); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | if (cpi->oxcf.rc_mode == AOM_Q) { | 
|  | twopass->active_worst_quality = cpi->oxcf.cq_level; | 
|  | } else if (cm->current_video_frame == 0) { | 
|  | // Special case code for first frame. | 
|  | const int section_target_bandwidth = | 
|  | (int)(twopass->bits_left / frames_left); | 
|  | const double section_length = twopass->total_left_stats.count; | 
|  | const double section_error = | 
|  | twopass->total_left_stats.coded_error / section_length; | 
|  | const double section_intra_skip = | 
|  | twopass->total_left_stats.intra_skip_pct / section_length; | 
|  | const double section_inactive_zone = | 
|  | (twopass->total_left_stats.inactive_zone_rows * 2) / | 
|  | ((double)cm->mb_rows * section_length); | 
|  | const int tmp_q = get_twopass_worst_quality( | 
|  | cpi, section_error, section_intra_skip + section_inactive_zone, | 
|  | section_target_bandwidth, DEFAULT_GRP_WEIGHT); | 
|  |  | 
|  | twopass->active_worst_quality = tmp_q; | 
|  | twopass->baseline_active_worst_quality = tmp_q; | 
|  | rc->ni_av_qi = tmp_q; | 
|  | rc->last_q[INTER_FRAME] = tmp_q; | 
|  | rc->avg_q = av1_convert_qindex_to_q(tmp_q, cm->bit_depth); | 
|  | rc->avg_frame_qindex[INTER_FRAME] = tmp_q; | 
|  | rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.best_allowed_q) / 2; | 
|  | rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME]; | 
|  | } | 
|  |  | 
|  | av1_zero(this_frame); | 
|  | if (EOF == input_stats(twopass, &this_frame)) return; | 
|  |  | 
|  | // Set the frame content type flag. | 
|  | if (this_frame.intra_skip_pct >= FC_ANIMATION_THRESH) | 
|  | twopass->fr_content_type = FC_GRAPHICS_ANIMATION; | 
|  | else | 
|  | twopass->fr_content_type = FC_NORMAL; | 
|  |  | 
|  | // Keyframe and section processing. | 
|  | if (rc->frames_to_key == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY)) { | 
|  | FIRSTPASS_STATS this_frame_copy; | 
|  | this_frame_copy = this_frame; | 
|  | // Define next KF group and assign bits to it. | 
|  | find_next_key_frame(cpi, &this_frame); | 
|  | this_frame = this_frame_copy; | 
|  | } else { | 
|  | cm->frame_type = INTER_FRAME; | 
|  | } | 
|  |  | 
|  | // Define a new GF/ARF group. (Should always enter here for key frames). | 
|  | if (rc->frames_till_gf_update_due == 0) { | 
|  | define_gf_group(cpi, &this_frame); | 
|  |  | 
|  | rc->frames_till_gf_update_due = rc->baseline_gf_interval; | 
|  |  | 
|  | #if ARF_STATS_OUTPUT | 
|  | { | 
|  | FILE *fpfile; | 
|  | fpfile = fopen("arf.stt", "a"); | 
|  | ++arf_count; | 
|  | fprintf(fpfile, "%10d %10d %10d %10d %10d\n", cm->current_video_frame, | 
|  | rc->frames_till_gf_update_due, rc->kf_boost, arf_count, | 
|  | rc->gfu_boost); | 
|  |  | 
|  | fclose(fpfile); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | configure_buffer_updates(cpi); | 
|  |  | 
|  | // Do the firstpass stats indicate that this frame is skippable for the | 
|  | // partition search? | 
|  | if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) { | 
|  | cpi->partition_search_skippable_frame = is_skippable_frame(cpi); | 
|  | } | 
|  |  | 
|  | target_rate = gf_group->bit_allocation[gf_group->index]; | 
|  |  | 
|  | if (cpi->common.frame_type == KEY_FRAME) | 
|  | target_rate = av1_rc_clamp_iframe_target_size(cpi, target_rate); | 
|  | else | 
|  | target_rate = av1_rc_clamp_pframe_target_size(cpi, target_rate); | 
|  |  | 
|  | rc->base_frame_target = target_rate; | 
|  |  | 
|  | { | 
|  | const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) | 
|  | ? cpi->initial_mbs | 
|  | : cpi->common.MBs; | 
|  | // The multiplication by 256 reverses a scaling factor of (>> 8) | 
|  | // applied when combining MB error values for the frame. | 
|  | twopass->mb_av_energy = | 
|  | log(((this_frame.intra_error * 256.0) / num_mbs) + 1.0); | 
|  | } | 
|  |  | 
|  | // Update the total stats remaining structure. | 
|  | subtract_stats(&twopass->total_left_stats, &this_frame); | 
|  | } | 
|  |  | 
|  | #define MINQ_ADJ_LIMIT 48 | 
|  | #define MINQ_ADJ_LIMIT_CQ 20 | 
|  | #define HIGH_UNDERSHOOT_RATIO 2 | 
|  | void av1_twopass_postencode_update(AV1_COMP *cpi) { | 
|  | TWO_PASS *const twopass = &cpi->twopass; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | const int bits_used = rc->base_frame_target; | 
|  |  | 
|  | // VBR correction is done through rc->vbr_bits_off_target. Based on the | 
|  | // sign of this value, a limited % adjustment is made to the target rate | 
|  | // of subsequent frames, to try and push it back towards 0. This method | 
|  | // is designed to prevent extreme behaviour at the end of a clip | 
|  | // or group of frames. | 
|  | rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size; | 
|  | twopass->bits_left = AOMMAX(twopass->bits_left - bits_used, 0); | 
|  |  | 
|  | // Calculate the pct rc error. | 
|  | if (rc->total_actual_bits) { | 
|  | rc->rate_error_estimate = | 
|  | (int)((rc->vbr_bits_off_target * 100) / rc->total_actual_bits); | 
|  | rc->rate_error_estimate = clamp(rc->rate_error_estimate, -100, 100); | 
|  | } else { | 
|  | rc->rate_error_estimate = 0; | 
|  | } | 
|  |  | 
|  | if (cpi->common.frame_type != KEY_FRAME) { | 
|  | twopass->kf_group_bits -= bits_used; | 
|  | twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct; | 
|  | } | 
|  | twopass->kf_group_bits = AOMMAX(twopass->kf_group_bits, 0); | 
|  |  | 
|  | // Increment the gf group index ready for the next frame. | 
|  | ++twopass->gf_group.index; | 
|  |  | 
|  | // If the rate control is drifting consider adjustment to min or maxq. | 
|  | if ((cpi->oxcf.rc_mode != AOM_Q) && | 
|  | (cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD) && | 
|  | !cpi->rc.is_src_frame_alt_ref) { | 
|  | const int maxq_adj_limit = | 
|  | rc->worst_quality - twopass->active_worst_quality; | 
|  | const int minq_adj_limit = | 
|  | (cpi->oxcf.rc_mode == AOM_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT); | 
|  |  | 
|  | // Undershoot. | 
|  | if (rc->rate_error_estimate > cpi->oxcf.under_shoot_pct) { | 
|  | --twopass->extend_maxq; | 
|  | if (rc->rolling_target_bits >= rc->rolling_actual_bits) | 
|  | ++twopass->extend_minq; | 
|  | // Overshoot. | 
|  | } else if (rc->rate_error_estimate < -cpi->oxcf.over_shoot_pct) { | 
|  | --twopass->extend_minq; | 
|  | if (rc->rolling_target_bits < rc->rolling_actual_bits) | 
|  | ++twopass->extend_maxq; | 
|  | } else { | 
|  | // Adjustment for extreme local overshoot. | 
|  | if (rc->projected_frame_size > (2 * rc->base_frame_target) && | 
|  | rc->projected_frame_size > (2 * rc->avg_frame_bandwidth)) | 
|  | ++twopass->extend_maxq; | 
|  |  | 
|  | // Unwind undershoot or overshoot adjustment. | 
|  | if (rc->rolling_target_bits < rc->rolling_actual_bits) | 
|  | --twopass->extend_minq; | 
|  | else if (rc->rolling_target_bits > rc->rolling_actual_bits) | 
|  | --twopass->extend_maxq; | 
|  | } | 
|  |  | 
|  | twopass->extend_minq = clamp(twopass->extend_minq, 0, minq_adj_limit); | 
|  | twopass->extend_maxq = clamp(twopass->extend_maxq, 0, maxq_adj_limit); | 
|  |  | 
|  | // If there is a big and undexpected undershoot then feed the extra | 
|  | // bits back in quickly. One situation where this may happen is if a | 
|  | // frame is unexpectedly almost perfectly predicted by the ARF or GF | 
|  | // but not very well predcited by the previous frame. | 
|  | if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) { | 
|  | int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO; | 
|  | if (rc->projected_frame_size < fast_extra_thresh) { | 
|  | rc->vbr_bits_off_target_fast += | 
|  | fast_extra_thresh - rc->projected_frame_size; | 
|  | rc->vbr_bits_off_target_fast = | 
|  | AOMMIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth)); | 
|  |  | 
|  | // Fast adaptation of minQ if necessary to use up the extra bits. | 
|  | if (rc->avg_frame_bandwidth) { | 
|  | twopass->extend_minq_fast = | 
|  | (int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth); | 
|  | } | 
|  | twopass->extend_minq_fast = AOMMIN( | 
|  | twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq); | 
|  | } else if (rc->vbr_bits_off_target_fast) { | 
|  | twopass->extend_minq_fast = AOMMIN( | 
|  | twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq); | 
|  | } else { | 
|  | twopass->extend_minq_fast = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } |