|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  | #include <math.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "aom_mem/aom_mem.h" | 
|  | #include "aom_ports/mem.h" | 
|  | #include "aom_ports/system_state.h" | 
|  |  | 
|  | #include "av1/common/alloccommon.h" | 
|  | #include "av1/encoder/aq_cyclicrefresh.h" | 
|  | #include "av1/common/common.h" | 
|  | #include "av1/common/entropymode.h" | 
|  | #include "av1/common/quant_common.h" | 
|  | #include "av1/common/seg_common.h" | 
|  |  | 
|  | #include "av1/encoder/encodemv.h" | 
|  | #include "av1/encoder/random.h" | 
|  | #include "av1/encoder/ratectrl.h" | 
|  |  | 
|  | // Max rate target for 1080P and below encodes under normal circumstances | 
|  | // (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB | 
|  | #define MAX_MB_RATE 250 | 
|  | #define MAXRATE_1080P 2025000 | 
|  |  | 
|  | #define DEFAULT_KF_BOOST 2000 | 
|  | #define DEFAULT_GF_BOOST 2000 | 
|  |  | 
|  | #define MIN_BPB_FACTOR 0.005 | 
|  | #define MAX_BPB_FACTOR 50 | 
|  |  | 
|  | #define FRAME_OVERHEAD_BITS 200 | 
|  | #define ASSIGN_MINQ_TABLE(bit_depth, name)                   \ | 
|  | do {                                                       \ | 
|  | switch (bit_depth) {                                     \ | 
|  | case AOM_BITS_8: name = name##_8; break;               \ | 
|  | case AOM_BITS_10: name = name##_10; break;             \ | 
|  | case AOM_BITS_12: name = name##_12; break;             \ | 
|  | default:                                               \ | 
|  | assert(0 &&                                          \ | 
|  | "bit_depth should be AOM_BITS_8, AOM_BITS_10" \ | 
|  | " or AOM_BITS_12");                           \ | 
|  | name = NULL;                                         \ | 
|  | }                                                        \ | 
|  | } while (0) | 
|  |  | 
|  | // Tables relating active max Q to active min Q | 
|  | static int kf_low_motion_minq_8[QINDEX_RANGE]; | 
|  | static int kf_high_motion_minq_8[QINDEX_RANGE]; | 
|  | static int arfgf_low_motion_minq_8[QINDEX_RANGE]; | 
|  | static int arfgf_high_motion_minq_8[QINDEX_RANGE]; | 
|  | static int inter_minq_8[QINDEX_RANGE]; | 
|  | static int rtc_minq_8[QINDEX_RANGE]; | 
|  |  | 
|  | static int kf_low_motion_minq_10[QINDEX_RANGE]; | 
|  | static int kf_high_motion_minq_10[QINDEX_RANGE]; | 
|  | static int arfgf_low_motion_minq_10[QINDEX_RANGE]; | 
|  | static int arfgf_high_motion_minq_10[QINDEX_RANGE]; | 
|  | static int inter_minq_10[QINDEX_RANGE]; | 
|  | static int rtc_minq_10[QINDEX_RANGE]; | 
|  | static int kf_low_motion_minq_12[QINDEX_RANGE]; | 
|  | static int kf_high_motion_minq_12[QINDEX_RANGE]; | 
|  | static int arfgf_low_motion_minq_12[QINDEX_RANGE]; | 
|  | static int arfgf_high_motion_minq_12[QINDEX_RANGE]; | 
|  | static int inter_minq_12[QINDEX_RANGE]; | 
|  | static int rtc_minq_12[QINDEX_RANGE]; | 
|  |  | 
|  | static int gf_high = 2000; | 
|  | static int gf_low = 400; | 
|  | static int kf_high = 5000; | 
|  | static int kf_low = 400; | 
|  |  | 
|  | // How many times less pixels there are to encode given the current scaling. | 
|  | // Temporary replacement for rcf_mult and rate_thresh_mult. | 
|  | static double resize_rate_factor(const AV1_COMP *cpi, int width, int height) { | 
|  | (void)cpi; | 
|  | return (double)(cpi->oxcf.width * cpi->oxcf.height) / (width * height); | 
|  | } | 
|  |  | 
|  | // Functions to compute the active minq lookup table entries based on a | 
|  | // formulaic approach to facilitate easier adjustment of the Q tables. | 
|  | // The formulae were derived from computing a 3rd order polynomial best | 
|  | // fit to the original data (after plotting real maxq vs minq (not q index)) | 
|  | static int get_minq_index(double maxq, double x3, double x2, double x1, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | int i; | 
|  | const double minqtarget = AOMMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq); | 
|  |  | 
|  | // Special case handling to deal with the step from q2.0 | 
|  | // down to lossless mode represented by q 1.0. | 
|  | if (minqtarget <= 2.0) return 0; | 
|  |  | 
|  | for (i = 0; i < QINDEX_RANGE; i++) { | 
|  | if (minqtarget <= av1_convert_qindex_to_q(i, bit_depth)) return i; | 
|  | } | 
|  |  | 
|  | return QINDEX_RANGE - 1; | 
|  | } | 
|  |  | 
|  | static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low, | 
|  | int *arfgf_high, int *inter, int *rtc, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | int i; | 
|  | for (i = 0; i < QINDEX_RANGE; i++) { | 
|  | const double maxq = av1_convert_qindex_to_q(i, bit_depth); | 
|  | kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth); | 
|  | kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth); | 
|  | arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth); | 
|  | arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth); | 
|  | inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth); | 
|  | rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_rc_init_minq_luts(void) { | 
|  | init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8, | 
|  | arfgf_low_motion_minq_8, arfgf_high_motion_minq_8, | 
|  | inter_minq_8, rtc_minq_8, AOM_BITS_8); | 
|  | init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10, | 
|  | arfgf_low_motion_minq_10, arfgf_high_motion_minq_10, | 
|  | inter_minq_10, rtc_minq_10, AOM_BITS_10); | 
|  | init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12, | 
|  | arfgf_low_motion_minq_12, arfgf_high_motion_minq_12, | 
|  | inter_minq_12, rtc_minq_12, AOM_BITS_12); | 
|  | } | 
|  |  | 
|  | // These functions use formulaic calculations to make playing with the | 
|  | // quantizer tables easier. If necessary they can be replaced by lookup | 
|  | // tables if and when things settle down in the experimental bitstream | 
|  | double av1_convert_qindex_to_q(int qindex, aom_bit_depth_t bit_depth) { | 
|  | // Convert the index to a real Q value (scaled down to match old Q values) | 
|  | switch (bit_depth) { | 
|  | case AOM_BITS_8: return av1_ac_quant_Q3(qindex, 0, bit_depth) / 4.0; | 
|  | case AOM_BITS_10: return av1_ac_quant_Q3(qindex, 0, bit_depth) / 16.0; | 
|  | case AOM_BITS_12: return av1_ac_quant_Q3(qindex, 0, bit_depth) / 64.0; | 
|  | default: | 
|  | assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); | 
|  | return -1.0; | 
|  | } | 
|  | } | 
|  |  | 
|  | int av1_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex, | 
|  | double correction_factor, aom_bit_depth_t bit_depth) { | 
|  | const double q = av1_convert_qindex_to_q(qindex, bit_depth); | 
|  | int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000; | 
|  |  | 
|  | assert(correction_factor <= MAX_BPB_FACTOR && | 
|  | correction_factor >= MIN_BPB_FACTOR); | 
|  |  | 
|  | // q based adjustment to baseline enumerator | 
|  | enumerator += (int)(enumerator * q) >> 12; | 
|  | return (int)(enumerator * correction_factor / q); | 
|  | } | 
|  |  | 
|  | int av1_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs, | 
|  | double correction_factor, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | const int bpm = | 
|  | (int)(av1_rc_bits_per_mb(frame_type, q, correction_factor, bit_depth)); | 
|  | return AOMMAX(FRAME_OVERHEAD_BITS, | 
|  | (int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS); | 
|  | } | 
|  |  | 
|  | int av1_rc_clamp_pframe_target_size(const AV1_COMP *const cpi, int target) { | 
|  | const RATE_CONTROL *rc = &cpi->rc; | 
|  | const AV1EncoderConfig *oxcf = &cpi->oxcf; | 
|  | const int min_frame_target = | 
|  | AOMMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5); | 
|  | // Clip the frame target to the minimum setup value. | 
|  | if (cpi->rc.is_src_frame_alt_ref) { | 
|  | // If there is an active ARF at this location use the minimum | 
|  | // bits on this frame even if it is a constructed arf. | 
|  | // The active maximum quantizer insures that an appropriate | 
|  | // number of bits will be spent if needed for constructed ARFs. | 
|  | target = min_frame_target; | 
|  | } else if (target < min_frame_target) { | 
|  | target = min_frame_target; | 
|  | } | 
|  |  | 
|  | // Clip the frame target to the maximum allowed value. | 
|  | if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth; | 
|  | if (oxcf->rc_max_inter_bitrate_pct) { | 
|  | const int max_rate = | 
|  | rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100; | 
|  | target = AOMMIN(target, max_rate); | 
|  | } | 
|  |  | 
|  | return target; | 
|  | } | 
|  |  | 
|  | int av1_rc_clamp_iframe_target_size(const AV1_COMP *const cpi, int target) { | 
|  | const RATE_CONTROL *rc = &cpi->rc; | 
|  | const AV1EncoderConfig *oxcf = &cpi->oxcf; | 
|  | if (oxcf->rc_max_intra_bitrate_pct) { | 
|  | const int max_rate = | 
|  | rc->avg_frame_bandwidth * oxcf->rc_max_intra_bitrate_pct / 100; | 
|  | target = AOMMIN(target, max_rate); | 
|  | } | 
|  | if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth; | 
|  | return target; | 
|  | } | 
|  |  | 
|  | // Update the buffer level: leaky bucket model. | 
|  | static void update_buffer_level(AV1_COMP *cpi, int encoded_frame_size) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  |  | 
|  | // Non-viewable frames are a special case and are treated as pure overhead. | 
|  | // TODO(zoeliu): To further explore whether we should treat BWDREF_FRAME | 
|  | //               differently, since it is a no-show frame. | 
|  | if (!cm->show_frame && !rc->is_bwd_ref_frame) | 
|  | rc->bits_off_target -= encoded_frame_size; | 
|  | else | 
|  | rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size; | 
|  |  | 
|  | // Clip the buffer level to the maximum specified buffer size. | 
|  | rc->bits_off_target = AOMMIN(rc->bits_off_target, rc->maximum_buffer_size); | 
|  | rc->buffer_level = rc->bits_off_target; | 
|  | } | 
|  |  | 
|  | int av1_rc_get_default_min_gf_interval(int width, int height, | 
|  | double framerate) { | 
|  | // Assume we do not need any constraint lower than 4K 20 fps | 
|  | static const double factor_safe = 3840 * 2160 * 20.0; | 
|  | const double factor = width * height * framerate; | 
|  | const int default_interval = | 
|  | clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL); | 
|  |  | 
|  | if (factor <= factor_safe) | 
|  | return default_interval; | 
|  | else | 
|  | return AOMMAX(default_interval, | 
|  | (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5)); | 
|  | // Note this logic makes: | 
|  | // 4K24: 5 | 
|  | // 4K30: 6 | 
|  | // 4K60: 12 | 
|  | } | 
|  |  | 
|  | int av1_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) { | 
|  | int interval = AOMMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75)); | 
|  | interval += (interval & 0x01);  // Round to even value | 
|  | return AOMMAX(interval, min_gf_interval); | 
|  | } | 
|  |  | 
|  | void av1_rc_init(const AV1EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) { | 
|  | int i; | 
|  |  | 
|  | if (pass == 0 && oxcf->rc_mode == AOM_CBR) { | 
|  | rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q; | 
|  | rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q; | 
|  | } else { | 
|  | rc->avg_frame_qindex[KEY_FRAME] = | 
|  | (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2; | 
|  | rc->avg_frame_qindex[INTER_FRAME] = | 
|  | (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2; | 
|  | } | 
|  |  | 
|  | rc->last_q[KEY_FRAME] = oxcf->best_allowed_q; | 
|  | rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q; | 
|  |  | 
|  | rc->buffer_level = rc->starting_buffer_level; | 
|  | rc->bits_off_target = rc->starting_buffer_level; | 
|  |  | 
|  | rc->rolling_target_bits = rc->avg_frame_bandwidth; | 
|  | rc->rolling_actual_bits = rc->avg_frame_bandwidth; | 
|  | rc->long_rolling_target_bits = rc->avg_frame_bandwidth; | 
|  | rc->long_rolling_actual_bits = rc->avg_frame_bandwidth; | 
|  |  | 
|  | rc->total_actual_bits = 0; | 
|  | rc->total_target_bits = 0; | 
|  | rc->total_target_vs_actual = 0; | 
|  |  | 
|  | rc->frames_since_key = 8;  // Sensible default for first frame. | 
|  | rc->this_key_frame_forced = 0; | 
|  | rc->next_key_frame_forced = 0; | 
|  | rc->source_alt_ref_pending = 0; | 
|  | rc->source_alt_ref_active = 0; | 
|  |  | 
|  | rc->frames_till_gf_update_due = 0; | 
|  | rc->ni_av_qi = oxcf->worst_allowed_q; | 
|  | rc->ni_tot_qi = 0; | 
|  | rc->ni_frames = 0; | 
|  |  | 
|  | rc->tot_q = 0.0; | 
|  | rc->avg_q = av1_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth); | 
|  |  | 
|  | for (i = 0; i < RATE_FACTOR_LEVELS; ++i) { | 
|  | rc->rate_correction_factors[i] = 1.0; | 
|  | } | 
|  |  | 
|  | rc->min_gf_interval = oxcf->min_gf_interval; | 
|  | rc->max_gf_interval = oxcf->max_gf_interval; | 
|  | if (rc->min_gf_interval == 0) | 
|  | rc->min_gf_interval = av1_rc_get_default_min_gf_interval( | 
|  | oxcf->width, oxcf->height, oxcf->init_framerate); | 
|  | if (rc->max_gf_interval == 0) | 
|  | rc->max_gf_interval = av1_rc_get_default_max_gf_interval( | 
|  | oxcf->init_framerate, rc->min_gf_interval); | 
|  | rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2; | 
|  | } | 
|  |  | 
|  | int av1_rc_drop_frame(AV1_COMP *cpi) { | 
|  | const AV1EncoderConfig *oxcf = &cpi->oxcf; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  |  | 
|  | if (!oxcf->drop_frames_water_mark) { | 
|  | return 0; | 
|  | } else { | 
|  | if (rc->buffer_level < 0) { | 
|  | // Always drop if buffer is below 0. | 
|  | return 1; | 
|  | } else { | 
|  | // If buffer is below drop_mark, for now just drop every other frame | 
|  | // (starting with the next frame) until it increases back over drop_mark. | 
|  | int drop_mark = | 
|  | (int)(oxcf->drop_frames_water_mark * rc->optimal_buffer_level / 100); | 
|  | if ((rc->buffer_level > drop_mark) && (rc->decimation_factor > 0)) { | 
|  | --rc->decimation_factor; | 
|  | } else if (rc->buffer_level <= drop_mark && rc->decimation_factor == 0) { | 
|  | rc->decimation_factor = 1; | 
|  | } | 
|  | if (rc->decimation_factor > 0) { | 
|  | if (rc->decimation_count > 0) { | 
|  | --rc->decimation_count; | 
|  | return 1; | 
|  | } else { | 
|  | rc->decimation_count = rc->decimation_factor; | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | rc->decimation_count = 0; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static double get_rate_correction_factor(const AV1_COMP *cpi, int width, | 
|  | int height) { | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | double rcf; | 
|  |  | 
|  | if (cpi->common.frame_type == KEY_FRAME) { | 
|  | rcf = rc->rate_correction_factors[KF_STD]; | 
|  | } else if (cpi->oxcf.pass == 2) { | 
|  | RATE_FACTOR_LEVEL rf_lvl = | 
|  | cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index]; | 
|  | rcf = rc->rate_correction_factors[rf_lvl]; | 
|  | } else { | 
|  | if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) && | 
|  | !rc->is_src_frame_alt_ref && | 
|  | (cpi->oxcf.rc_mode != AOM_CBR || cpi->oxcf.gf_cbr_boost_pct > 20)) | 
|  | rcf = rc->rate_correction_factors[GF_ARF_STD]; | 
|  | else | 
|  | rcf = rc->rate_correction_factors[INTER_NORMAL]; | 
|  | } | 
|  | rcf *= resize_rate_factor(cpi, width, height); | 
|  | return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR); | 
|  | } | 
|  |  | 
|  | static void set_rate_correction_factor(AV1_COMP *cpi, double factor, int width, | 
|  | int height) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  |  | 
|  | // Normalize RCF to account for the size-dependent scaling factor. | 
|  | factor /= resize_rate_factor(cpi, width, height); | 
|  |  | 
|  | factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR); | 
|  |  | 
|  | if (cpi->common.frame_type == KEY_FRAME) { | 
|  | rc->rate_correction_factors[KF_STD] = factor; | 
|  | } else if (cpi->oxcf.pass == 2) { | 
|  | RATE_FACTOR_LEVEL rf_lvl = | 
|  | cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index]; | 
|  | rc->rate_correction_factors[rf_lvl] = factor; | 
|  | } else { | 
|  | if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) && | 
|  | !rc->is_src_frame_alt_ref && | 
|  | (cpi->oxcf.rc_mode != AOM_CBR || cpi->oxcf.gf_cbr_boost_pct > 20)) | 
|  | rc->rate_correction_factors[GF_ARF_STD] = factor; | 
|  | else | 
|  | rc->rate_correction_factors[INTER_NORMAL] = factor; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_rc_update_rate_correction_factors(AV1_COMP *cpi, int width, | 
|  | int height) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | int correction_factor = 100; | 
|  | double rate_correction_factor = | 
|  | get_rate_correction_factor(cpi, width, height); | 
|  | double adjustment_limit; | 
|  | const int MBs = av1_get_MBs(width, height); | 
|  |  | 
|  | int projected_size_based_on_q = 0; | 
|  |  | 
|  | // Do not update the rate factors for arf overlay frames. | 
|  | if (cpi->rc.is_src_frame_alt_ref) return; | 
|  |  | 
|  | // Clear down mmx registers to allow floating point in what follows | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | // Work out how big we would have expected the frame to be at this Q given | 
|  | // the current correction factor. | 
|  | // Stay in double to avoid int overflow when values are large | 
|  | if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) { | 
|  | projected_size_based_on_q = | 
|  | av1_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor); | 
|  | } else { | 
|  | projected_size_based_on_q = | 
|  | av1_estimate_bits_at_q(cpi->common.frame_type, cm->base_qindex, MBs, | 
|  | rate_correction_factor, cm->bit_depth); | 
|  | } | 
|  | // Work out a size correction factor. | 
|  | if (projected_size_based_on_q > FRAME_OVERHEAD_BITS) | 
|  | correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) / | 
|  | projected_size_based_on_q); | 
|  |  | 
|  | // More heavily damped adjustment used if we have been oscillating either side | 
|  | // of target. | 
|  | if (correction_factor > 0) { | 
|  | adjustment_limit = | 
|  | 0.25 + 0.5 * AOMMIN(1, fabs(log10(0.01 * correction_factor))); | 
|  | } else { | 
|  | adjustment_limit = 0.75; | 
|  | } | 
|  |  | 
|  | cpi->rc.q_2_frame = cpi->rc.q_1_frame; | 
|  | cpi->rc.q_1_frame = cm->base_qindex; | 
|  | cpi->rc.rc_2_frame = cpi->rc.rc_1_frame; | 
|  | if (correction_factor > 110) | 
|  | cpi->rc.rc_1_frame = -1; | 
|  | else if (correction_factor < 90) | 
|  | cpi->rc.rc_1_frame = 1; | 
|  | else | 
|  | cpi->rc.rc_1_frame = 0; | 
|  |  | 
|  | if (correction_factor > 102) { | 
|  | // We are not already at the worst allowable quality | 
|  | correction_factor = | 
|  | (int)(100 + ((correction_factor - 100) * adjustment_limit)); | 
|  | rate_correction_factor = (rate_correction_factor * correction_factor) / 100; | 
|  | // Keep rate_correction_factor within limits | 
|  | if (rate_correction_factor > MAX_BPB_FACTOR) | 
|  | rate_correction_factor = MAX_BPB_FACTOR; | 
|  | } else if (correction_factor < 99) { | 
|  | // We are not already at the best allowable quality | 
|  | correction_factor = | 
|  | (int)(100 - ((100 - correction_factor) * adjustment_limit)); | 
|  | rate_correction_factor = (rate_correction_factor * correction_factor) / 100; | 
|  |  | 
|  | // Keep rate_correction_factor within limits | 
|  | if (rate_correction_factor < MIN_BPB_FACTOR) | 
|  | rate_correction_factor = MIN_BPB_FACTOR; | 
|  | } | 
|  |  | 
|  | set_rate_correction_factor(cpi, rate_correction_factor, width, height); | 
|  | } | 
|  |  | 
|  | int av1_rc_regulate_q(const AV1_COMP *cpi, int target_bits_per_frame, | 
|  | int active_best_quality, int active_worst_quality, | 
|  | int width, int height) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | int q = active_worst_quality; | 
|  | int last_error = INT_MAX; | 
|  | int i, target_bits_per_mb, bits_per_mb_at_this_q; | 
|  | const int MBs = av1_get_MBs(width, height); | 
|  | const double correction_factor = | 
|  | get_rate_correction_factor(cpi, width, height); | 
|  |  | 
|  | // Calculate required scaling factor based on target frame size and size of | 
|  | // frame produced using previous Q. | 
|  | target_bits_per_mb = | 
|  | (int)((uint64_t)(target_bits_per_frame) << BPER_MB_NORMBITS) / MBs; | 
|  |  | 
|  | i = active_best_quality; | 
|  |  | 
|  | do { | 
|  | if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) { | 
|  | bits_per_mb_at_this_q = | 
|  | (int)av1_cyclic_refresh_rc_bits_per_mb(cpi, i, correction_factor); | 
|  | } else { | 
|  | bits_per_mb_at_this_q = (int)av1_rc_bits_per_mb( | 
|  | cm->frame_type, i, correction_factor, cm->bit_depth); | 
|  | } | 
|  |  | 
|  | if (bits_per_mb_at_this_q <= target_bits_per_mb) { | 
|  | if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error) | 
|  | q = i; | 
|  | else | 
|  | q = i - 1; | 
|  |  | 
|  | break; | 
|  | } else { | 
|  | last_error = bits_per_mb_at_this_q - target_bits_per_mb; | 
|  | } | 
|  | } while (++i <= active_worst_quality); | 
|  |  | 
|  | // In CBR mode, this makes sure q is between oscillating Qs to prevent | 
|  | // resonance. | 
|  | if (cpi->oxcf.rc_mode == AOM_CBR && | 
|  | (cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) && | 
|  | cpi->rc.q_1_frame != cpi->rc.q_2_frame) { | 
|  | q = clamp(q, AOMMIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame), | 
|  | AOMMAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame)); | 
|  | } | 
|  | return q; | 
|  | } | 
|  |  | 
|  | static int get_active_quality(int q, int gfu_boost, int low, int high, | 
|  | int *low_motion_minq, int *high_motion_minq) { | 
|  | if (gfu_boost > high) { | 
|  | return low_motion_minq[q]; | 
|  | } else if (gfu_boost < low) { | 
|  | return high_motion_minq[q]; | 
|  | } else { | 
|  | const int gap = high - low; | 
|  | const int offset = high - gfu_boost; | 
|  | const int qdiff = high_motion_minq[q] - low_motion_minq[q]; | 
|  | const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap; | 
|  | return low_motion_minq[q] + adjustment; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int get_kf_active_quality(const RATE_CONTROL *const rc, int q, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | int *kf_low_motion_minq; | 
|  | int *kf_high_motion_minq; | 
|  | ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq); | 
|  | ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq); | 
|  | return get_active_quality(q, rc->kf_boost, kf_low, kf_high, | 
|  | kf_low_motion_minq, kf_high_motion_minq); | 
|  | } | 
|  |  | 
|  | static int get_gf_active_quality(const RATE_CONTROL *const rc, int q, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | int *arfgf_low_motion_minq; | 
|  | int *arfgf_high_motion_minq; | 
|  | ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq); | 
|  | ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq); | 
|  | return get_active_quality(q, rc->gfu_boost, gf_low, gf_high, | 
|  | arfgf_low_motion_minq, arfgf_high_motion_minq); | 
|  | } | 
|  |  | 
|  | static int calc_active_worst_quality_one_pass_vbr(const AV1_COMP *cpi) { | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const unsigned int curr_frame = cpi->common.current_video_frame; | 
|  | int active_worst_quality; | 
|  |  | 
|  | if (cpi->common.frame_type == KEY_FRAME) { | 
|  | active_worst_quality = | 
|  | curr_frame == 0 ? rc->worst_quality : rc->last_q[KEY_FRAME] * 2; | 
|  | } else { | 
|  | if (!rc->is_src_frame_alt_ref && | 
|  | (cpi->refresh_golden_frame || cpi->refresh_alt2_ref_frame || | 
|  | cpi->refresh_alt_ref_frame)) { | 
|  | active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 / 4 | 
|  | : rc->last_q[INTER_FRAME]; | 
|  | } else { | 
|  | active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 2 | 
|  | : rc->last_q[INTER_FRAME] * 2; | 
|  | } | 
|  | } | 
|  | return AOMMIN(active_worst_quality, rc->worst_quality); | 
|  | } | 
|  |  | 
|  | // Adjust active_worst_quality level based on buffer level. | 
|  | static int calc_active_worst_quality_one_pass_cbr(const AV1_COMP *cpi) { | 
|  | // Adjust active_worst_quality: If buffer is above the optimal/target level, | 
|  | // bring active_worst_quality down depending on fullness of buffer. | 
|  | // If buffer is below the optimal level, let the active_worst_quality go from | 
|  | // ambient Q (at buffer = optimal level) to worst_quality level | 
|  | // (at buffer = critical level). | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *rc = &cpi->rc; | 
|  | // Buffer level below which we push active_worst to worst_quality. | 
|  | int64_t critical_level = rc->optimal_buffer_level >> 3; | 
|  | int64_t buff_lvl_step = 0; | 
|  | int adjustment = 0; | 
|  | int active_worst_quality; | 
|  | int ambient_qp; | 
|  | if (cm->frame_type == KEY_FRAME) return rc->worst_quality; | 
|  | // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME] | 
|  | // for the first few frames following key frame. These are both initialized | 
|  | // to worst_quality and updated with (3/4, 1/4) average in postencode_update. | 
|  | // So for first few frames following key, the qp of that key frame is weighted | 
|  | // into the active_worst_quality setting. | 
|  | ambient_qp = (cm->current_video_frame < 5) | 
|  | ? AOMMIN(rc->avg_frame_qindex[INTER_FRAME], | 
|  | rc->avg_frame_qindex[KEY_FRAME]) | 
|  | : rc->avg_frame_qindex[INTER_FRAME]; | 
|  | active_worst_quality = AOMMIN(rc->worst_quality, ambient_qp * 5 / 4); | 
|  | if (rc->buffer_level > rc->optimal_buffer_level) { | 
|  | // Adjust down. | 
|  | // Maximum limit for down adjustment, ~30%. | 
|  | int max_adjustment_down = active_worst_quality / 3; | 
|  | if (max_adjustment_down) { | 
|  | buff_lvl_step = ((rc->maximum_buffer_size - rc->optimal_buffer_level) / | 
|  | max_adjustment_down); | 
|  | if (buff_lvl_step) | 
|  | adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) / | 
|  | buff_lvl_step); | 
|  | active_worst_quality -= adjustment; | 
|  | } | 
|  | } else if (rc->buffer_level > critical_level) { | 
|  | // Adjust up from ambient Q. | 
|  | if (critical_level) { | 
|  | buff_lvl_step = (rc->optimal_buffer_level - critical_level); | 
|  | if (buff_lvl_step) { | 
|  | adjustment = (int)((rc->worst_quality - ambient_qp) * | 
|  | (rc->optimal_buffer_level - rc->buffer_level) / | 
|  | buff_lvl_step); | 
|  | } | 
|  | active_worst_quality = ambient_qp + adjustment; | 
|  | } | 
|  | } else { | 
|  | // Set to worst_quality if buffer is below critical level. | 
|  | active_worst_quality = rc->worst_quality; | 
|  | } | 
|  | return active_worst_quality; | 
|  | } | 
|  |  | 
|  | static int rc_pick_q_and_bounds_one_pass_cbr(const AV1_COMP *cpi, int width, | 
|  | int height, int *bottom_index, | 
|  | int *top_index) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | int active_best_quality; | 
|  | int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi); | 
|  | int q; | 
|  | int *rtc_minq; | 
|  | ASSIGN_MINQ_TABLE(cm->bit_depth, rtc_minq); | 
|  |  | 
|  | if (frame_is_intra_only(cm)) { | 
|  | active_best_quality = rc->best_quality; | 
|  | // Handle the special case for key frames forced when we have reached | 
|  | // the maximum key frame interval. Here force the Q to a range | 
|  | // based on the ambient Q to reduce the risk of popping. | 
|  | if (rc->this_key_frame_forced) { | 
|  | int qindex = rc->last_boosted_qindex; | 
|  | double last_boosted_q = av1_convert_qindex_to_q(qindex, cm->bit_depth); | 
|  | int delta_qindex = av1_compute_qdelta( | 
|  | rc, last_boosted_q, (last_boosted_q * 0.75), cm->bit_depth); | 
|  | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); | 
|  | } else if (cm->current_video_frame > 0) { | 
|  | // not first frame of one pass and kf_boost is set | 
|  | double q_adj_factor = 1.0; | 
|  | double q_val; | 
|  |  | 
|  | active_best_quality = get_kf_active_quality( | 
|  | rc, rc->avg_frame_qindex[KEY_FRAME], cm->bit_depth); | 
|  |  | 
|  | // Allow somewhat lower kf minq with small image formats. | 
|  | if ((width * height) <= (352 * 288)) { | 
|  | q_adj_factor -= 0.25; | 
|  | } | 
|  |  | 
|  | // Convert the adjustment factor to a qindex delta | 
|  | // on active_best_quality. | 
|  | q_val = av1_convert_qindex_to_q(active_best_quality, cm->bit_depth); | 
|  | active_best_quality += | 
|  | av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth); | 
|  | } | 
|  | } else if (!rc->is_src_frame_alt_ref && | 
|  | (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { | 
|  | // Use the lower of active_worst_quality and recent | 
|  | // average Q as basis for GF/ARF best Q limit unless last frame was | 
|  | // a key frame. | 
|  | if (rc->frames_since_key > 1 && | 
|  | rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { | 
|  | q = rc->avg_frame_qindex[INTER_FRAME]; | 
|  | } else { | 
|  | q = active_worst_quality; | 
|  | } | 
|  | active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); | 
|  | } else { | 
|  | // Use the lower of active_worst_quality and recent/average Q. | 
|  | if (cm->current_video_frame > 1) { | 
|  | if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) | 
|  | active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]]; | 
|  | else | 
|  | active_best_quality = rtc_minq[active_worst_quality]; | 
|  | } else { | 
|  | if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality) | 
|  | active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]]; | 
|  | else | 
|  | active_best_quality = rtc_minq[active_worst_quality]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Clip the active best and worst quality values to limits | 
|  | active_best_quality = | 
|  | clamp(active_best_quality, rc->best_quality, rc->worst_quality); | 
|  | active_worst_quality = | 
|  | clamp(active_worst_quality, active_best_quality, rc->worst_quality); | 
|  |  | 
|  | *top_index = active_worst_quality; | 
|  | *bottom_index = active_best_quality; | 
|  |  | 
|  | // Limit Q range for the adaptive loop. | 
|  | if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced && | 
|  | !(cm->current_video_frame == 0)) { | 
|  | int qdelta = 0; | 
|  | aom_clear_system_state(); | 
|  | qdelta = av1_compute_qdelta_by_rate( | 
|  | &cpi->rc, cm->frame_type, active_worst_quality, 2.0, cm->bit_depth); | 
|  | *top_index = active_worst_quality + qdelta; | 
|  | *top_index = AOMMAX(*top_index, *bottom_index); | 
|  | } | 
|  |  | 
|  | // Special case code to try and match quality with forced key frames | 
|  | if (cm->frame_type == KEY_FRAME && rc->this_key_frame_forced) { | 
|  | q = rc->last_boosted_qindex; | 
|  | } else { | 
|  | q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, | 
|  | active_worst_quality, width, height); | 
|  | if (q > *top_index) { | 
|  | // Special case when we are targeting the max allowed rate | 
|  | if (rc->this_frame_target >= rc->max_frame_bandwidth) | 
|  | *top_index = q; | 
|  | else | 
|  | q = *top_index; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); | 
|  | assert(*bottom_index <= rc->worst_quality && | 
|  | *bottom_index >= rc->best_quality); | 
|  | assert(q <= rc->worst_quality && q >= rc->best_quality); | 
|  | return q; | 
|  | } | 
|  |  | 
|  | static int get_active_cq_level(const RATE_CONTROL *rc, | 
|  | const AV1EncoderConfig *const oxcf) { | 
|  | static const double cq_adjust_threshold = 0.1; | 
|  | int active_cq_level = oxcf->cq_level; | 
|  | if (oxcf->rc_mode == AOM_CQ && rc->total_target_bits > 0) { | 
|  | const double x = (double)rc->total_actual_bits / rc->total_target_bits; | 
|  | if (x < cq_adjust_threshold) { | 
|  | active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold); | 
|  | } | 
|  | } | 
|  | return active_cq_level; | 
|  | } | 
|  |  | 
|  | static int rc_pick_q_and_bounds_one_pass_vbr(const AV1_COMP *cpi, int width, | 
|  | int height, int *bottom_index, | 
|  | int *top_index) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | const int cq_level = get_active_cq_level(rc, oxcf); | 
|  | int active_best_quality; | 
|  | int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi); | 
|  | int q; | 
|  | int *inter_minq; | 
|  | ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq); | 
|  |  | 
|  | if (frame_is_intra_only(cm)) { | 
|  | if (oxcf->rc_mode == AOM_Q) { | 
|  | const int qindex = cq_level; | 
|  | const double q_val = av1_convert_qindex_to_q(qindex, cm->bit_depth); | 
|  | const int delta_qindex = | 
|  | av1_compute_qdelta(rc, q_val, q_val * 0.25, cm->bit_depth); | 
|  | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); | 
|  | } else if (rc->this_key_frame_forced) { | 
|  | const int qindex = rc->last_boosted_qindex; | 
|  | const double last_boosted_q = | 
|  | av1_convert_qindex_to_q(qindex, cm->bit_depth); | 
|  | const int delta_qindex = av1_compute_qdelta( | 
|  | rc, last_boosted_q, last_boosted_q * 0.75, cm->bit_depth); | 
|  | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); | 
|  | } else {  // not first frame of one pass and kf_boost is set | 
|  | double q_adj_factor = 1.0; | 
|  |  | 
|  | active_best_quality = get_kf_active_quality( | 
|  | rc, rc->avg_frame_qindex[KEY_FRAME], cm->bit_depth); | 
|  |  | 
|  | // Allow somewhat lower kf minq with small image formats. | 
|  | if ((width * height) <= (352 * 288)) { | 
|  | q_adj_factor -= 0.25; | 
|  | } | 
|  |  | 
|  | // Convert the adjustment factor to a qindex delta on active_best_quality. | 
|  | { | 
|  | const double q_val = | 
|  | av1_convert_qindex_to_q(active_best_quality, cm->bit_depth); | 
|  | active_best_quality += | 
|  | av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth); | 
|  | } | 
|  | } | 
|  | } else if (!rc->is_src_frame_alt_ref && | 
|  | (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { | 
|  | // Use the lower of active_worst_quality and recent | 
|  | // average Q as basis for GF/ARF best Q limit unless last frame was | 
|  | // a key frame. | 
|  | q = (rc->frames_since_key > 1 && | 
|  | rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) | 
|  | ? rc->avg_frame_qindex[INTER_FRAME] | 
|  | : rc->avg_frame_qindex[KEY_FRAME]; | 
|  | // For constrained quality dont allow Q less than the cq level | 
|  | if (oxcf->rc_mode == AOM_CQ) { | 
|  | if (q < cq_level) q = cq_level; | 
|  | active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); | 
|  | // Constrained quality use slightly lower active best. | 
|  | active_best_quality = active_best_quality * 15 / 16; | 
|  | } else if (oxcf->rc_mode == AOM_Q) { | 
|  | const int qindex = cq_level; | 
|  | const double q_val = av1_convert_qindex_to_q(qindex, cm->bit_depth); | 
|  | const int delta_qindex = | 
|  | (cpi->refresh_alt_ref_frame) | 
|  | ? av1_compute_qdelta(rc, q_val, q_val * 0.40, cm->bit_depth) | 
|  | : av1_compute_qdelta(rc, q_val, q_val * 0.50, cm->bit_depth); | 
|  | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); | 
|  | } else { | 
|  | active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); | 
|  | } | 
|  | } else { | 
|  | if (oxcf->rc_mode == AOM_Q) { | 
|  | const int qindex = cq_level; | 
|  | const double q_val = av1_convert_qindex_to_q(qindex, cm->bit_depth); | 
|  | const double delta_rate[FIXED_GF_INTERVAL] = { 0.50, 1.0, 0.85, 1.0, | 
|  | 0.70, 1.0, 0.85, 1.0 }; | 
|  | const int delta_qindex = av1_compute_qdelta( | 
|  | rc, q_val, | 
|  | q_val * delta_rate[cm->current_video_frame % FIXED_GF_INTERVAL], | 
|  | cm->bit_depth); | 
|  | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); | 
|  | } else { | 
|  | // Use the lower of active_worst_quality and recent/average Q. | 
|  | active_best_quality = (cm->current_video_frame > 1) | 
|  | ? inter_minq[rc->avg_frame_qindex[INTER_FRAME]] | 
|  | : inter_minq[rc->avg_frame_qindex[KEY_FRAME]]; | 
|  | // For the constrained quality mode we don't want | 
|  | // q to fall below the cq level. | 
|  | if ((oxcf->rc_mode == AOM_CQ) && (active_best_quality < cq_level)) { | 
|  | active_best_quality = cq_level; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Clip the active best and worst quality values to limits | 
|  | active_best_quality = | 
|  | clamp(active_best_quality, rc->best_quality, rc->worst_quality); | 
|  | active_worst_quality = | 
|  | clamp(active_worst_quality, active_best_quality, rc->worst_quality); | 
|  |  | 
|  | *top_index = active_worst_quality; | 
|  | *bottom_index = active_best_quality; | 
|  |  | 
|  | // Limit Q range for the adaptive loop. | 
|  | { | 
|  | int qdelta = 0; | 
|  | aom_clear_system_state(); | 
|  | if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced && | 
|  | !(cm->current_video_frame == 0)) { | 
|  | qdelta = av1_compute_qdelta_by_rate( | 
|  | &cpi->rc, cm->frame_type, active_worst_quality, 2.0, cm->bit_depth); | 
|  | } else if (!rc->is_src_frame_alt_ref && | 
|  | (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { | 
|  | qdelta = av1_compute_qdelta_by_rate( | 
|  | &cpi->rc, cm->frame_type, active_worst_quality, 1.75, cm->bit_depth); | 
|  | } | 
|  | *top_index = active_worst_quality + qdelta; | 
|  | *top_index = AOMMAX(*top_index, *bottom_index); | 
|  | } | 
|  |  | 
|  | if (oxcf->rc_mode == AOM_Q) { | 
|  | q = active_best_quality; | 
|  | // Special case code to try and match quality with forced key frames | 
|  | } else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) { | 
|  | q = rc->last_boosted_qindex; | 
|  | } else { | 
|  | q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, | 
|  | active_worst_quality, width, height); | 
|  | if (q > *top_index) { | 
|  | // Special case when we are targeting the max allowed rate | 
|  | if (rc->this_frame_target >= rc->max_frame_bandwidth) | 
|  | *top_index = q; | 
|  | else | 
|  | q = *top_index; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); | 
|  | assert(*bottom_index <= rc->worst_quality && | 
|  | *bottom_index >= rc->best_quality); | 
|  | assert(q <= rc->worst_quality && q >= rc->best_quality); | 
|  | return q; | 
|  | } | 
|  |  | 
|  | int av1_frame_type_qdelta(const AV1_COMP *cpi, int rf_level, int q) { | 
|  | static const FRAME_TYPE frame_type[RATE_FACTOR_LEVELS] = { | 
|  | INTER_FRAME, INTER_FRAME, INTER_FRAME, INTER_FRAME, INTER_FRAME, KEY_FRAME | 
|  | }; | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | int qdelta = | 
|  | av1_compute_qdelta_by_rate(&cpi->rc, frame_type[rf_level], q, | 
|  | rate_factor_deltas[rf_level], cm->bit_depth); | 
|  | return qdelta; | 
|  | } | 
|  |  | 
|  | #define STATIC_MOTION_THRESH 95 | 
|  | static int rc_pick_q_and_bounds_two_pass(const AV1_COMP *cpi, int width, | 
|  | int height, int *bottom_index, | 
|  | int *top_index) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | const GF_GROUP *gf_group = &cpi->twopass.gf_group; | 
|  | const int cq_level = get_active_cq_level(rc, oxcf); | 
|  | int active_best_quality; | 
|  | int active_worst_quality = cpi->twopass.active_worst_quality; | 
|  | int q; | 
|  | int *inter_minq; | 
|  | ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq); | 
|  |  | 
|  | if (frame_is_intra_only(cm)) { | 
|  | // Handle the special case for key frames forced when we have reached | 
|  | // the maximum key frame interval. Here force the Q to a range | 
|  | // based on the ambient Q to reduce the risk of popping. | 
|  | if (rc->this_key_frame_forced) { | 
|  | double last_boosted_q; | 
|  | int delta_qindex; | 
|  | int qindex; | 
|  |  | 
|  | if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) { | 
|  | qindex = AOMMIN(rc->last_kf_qindex, rc->last_boosted_qindex); | 
|  | active_best_quality = qindex; | 
|  | last_boosted_q = av1_convert_qindex_to_q(qindex, cm->bit_depth); | 
|  | delta_qindex = av1_compute_qdelta(rc, last_boosted_q, | 
|  | last_boosted_q * 1.25, cm->bit_depth); | 
|  | active_worst_quality = | 
|  | AOMMIN(qindex + delta_qindex, active_worst_quality); | 
|  | } else { | 
|  | qindex = rc->last_boosted_qindex; | 
|  | last_boosted_q = av1_convert_qindex_to_q(qindex, cm->bit_depth); | 
|  | delta_qindex = av1_compute_qdelta(rc, last_boosted_q, | 
|  | last_boosted_q * 0.75, cm->bit_depth); | 
|  | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); | 
|  | } | 
|  | } else { | 
|  | // Not forced keyframe. | 
|  | double q_adj_factor = 1.0; | 
|  | double q_val; | 
|  |  | 
|  | // Baseline value derived from cpi->active_worst_quality and kf boost. | 
|  | active_best_quality = | 
|  | get_kf_active_quality(rc, active_worst_quality, cm->bit_depth); | 
|  |  | 
|  | // Allow somewhat lower kf minq with small image formats. | 
|  | if ((width * height) <= (352 * 288)) { | 
|  | q_adj_factor -= 0.25; | 
|  | } | 
|  |  | 
|  | // Make a further adjustment based on the kf zero motion measure. | 
|  | q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct); | 
|  |  | 
|  | // Convert the adjustment factor to a qindex delta | 
|  | // on active_best_quality. | 
|  | q_val = av1_convert_qindex_to_q(active_best_quality, cm->bit_depth); | 
|  | active_best_quality += | 
|  | av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth); | 
|  | } | 
|  | } else if (!rc->is_src_frame_alt_ref && | 
|  | (cpi->refresh_golden_frame || cpi->refresh_alt2_ref_frame || | 
|  | cpi->refresh_alt_ref_frame)) { | 
|  | // Use the lower of active_worst_quality and recent | 
|  | // average Q as basis for GF/ARF best Q limit unless last frame was | 
|  | // a key frame. | 
|  | if (rc->frames_since_key > 1 && | 
|  | rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { | 
|  | q = rc->avg_frame_qindex[INTER_FRAME]; | 
|  | } else { | 
|  | q = active_worst_quality; | 
|  | } | 
|  | // For constrained quality dont allow Q less than the cq level | 
|  | if (oxcf->rc_mode == AOM_CQ) { | 
|  | if (q < cq_level) q = cq_level; | 
|  |  | 
|  | active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); | 
|  |  | 
|  | // Constrained quality use slightly lower active best. | 
|  | active_best_quality = active_best_quality * 15 / 16; | 
|  |  | 
|  | } else if (oxcf->rc_mode == AOM_Q) { | 
|  | if (!cpi->refresh_alt_ref_frame && !cpi->refresh_alt2_ref_frame) { | 
|  | active_best_quality = cq_level; | 
|  | } else { | 
|  | active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); | 
|  |  | 
|  | // Modify best quality for second level arfs. For mode AOM_Q this | 
|  | // becomes the baseline frame q. | 
|  | if (gf_group->rf_level[gf_group->index] == GF_ARF_LOW) | 
|  | active_best_quality = (active_best_quality + cq_level + 1) / 2; | 
|  | } | 
|  | } else { | 
|  | active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); | 
|  | } | 
|  | } else { | 
|  | if (oxcf->rc_mode == AOM_Q) { | 
|  | active_best_quality = cq_level; | 
|  | } else { | 
|  | active_best_quality = inter_minq[active_worst_quality]; | 
|  |  | 
|  | // For the constrained quality mode we don't want | 
|  | // q to fall below the cq level. | 
|  | if ((oxcf->rc_mode == AOM_CQ) && (active_best_quality < cq_level)) { | 
|  | active_best_quality = cq_level; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Extension to max or min Q if undershoot or overshoot is outside | 
|  | // the permitted range. | 
|  | if ((cpi->oxcf.rc_mode != AOM_Q) && | 
|  | (cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD)) { | 
|  | if (frame_is_intra_only(cm) || | 
|  | (!rc->is_src_frame_alt_ref && | 
|  | (cpi->refresh_golden_frame || cpi->refresh_alt2_ref_frame || | 
|  | cpi->refresh_alt_ref_frame))) { | 
|  | active_best_quality -= | 
|  | (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast); | 
|  | active_worst_quality += (cpi->twopass.extend_maxq / 2); | 
|  | } else { | 
|  | active_best_quality -= | 
|  | (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2; | 
|  | active_worst_quality += cpi->twopass.extend_maxq; | 
|  | } | 
|  | } | 
|  |  | 
|  | aom_clear_system_state(); | 
|  | // Static forced key frames Q restrictions dealt with elsewhere. | 
|  | if (!(frame_is_intra_only(cm)) || !rc->this_key_frame_forced || | 
|  | (cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) { | 
|  | int qdelta = av1_frame_type_qdelta(cpi, gf_group->rf_level[gf_group->index], | 
|  | active_worst_quality); | 
|  | active_worst_quality = | 
|  | AOMMAX(active_worst_quality + qdelta, active_best_quality); | 
|  | } | 
|  |  | 
|  | // Modify active_best_quality for downscaled normal frames. | 
|  | if (!av1_frame_unscaled(cm) && !frame_is_kf_gf_arf(cpi)) { | 
|  | int qdelta = av1_compute_qdelta_by_rate( | 
|  | rc, cm->frame_type, active_best_quality, 2.0, cm->bit_depth); | 
|  | active_best_quality = | 
|  | AOMMAX(active_best_quality + qdelta, rc->best_quality); | 
|  | } | 
|  |  | 
|  | active_best_quality = | 
|  | clamp(active_best_quality, rc->best_quality, rc->worst_quality); | 
|  | active_worst_quality = | 
|  | clamp(active_worst_quality, active_best_quality, rc->worst_quality); | 
|  |  | 
|  | if (oxcf->rc_mode == AOM_Q) { | 
|  | q = active_best_quality; | 
|  | // Special case code to try and match quality with forced key frames. | 
|  | } else if (frame_is_intra_only(cm) && rc->this_key_frame_forced) { | 
|  | // If static since last kf use better of last boosted and last kf q. | 
|  | if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) { | 
|  | q = AOMMIN(rc->last_kf_qindex, rc->last_boosted_qindex); | 
|  | } else { | 
|  | q = rc->last_boosted_qindex; | 
|  | } | 
|  | } else { | 
|  | q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, | 
|  | active_worst_quality, width, height); | 
|  | if (q > active_worst_quality) { | 
|  | // Special case when we are targeting the max allowed rate. | 
|  | if (rc->this_frame_target >= rc->max_frame_bandwidth) | 
|  | active_worst_quality = q; | 
|  | else | 
|  | q = active_worst_quality; | 
|  | } | 
|  | } | 
|  | clamp(q, active_best_quality, active_worst_quality); | 
|  |  | 
|  | *top_index = active_worst_quality; | 
|  | *bottom_index = active_best_quality; | 
|  |  | 
|  | assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); | 
|  | assert(*bottom_index <= rc->worst_quality && | 
|  | *bottom_index >= rc->best_quality); | 
|  | assert(q <= rc->worst_quality && q >= rc->best_quality); | 
|  | return q; | 
|  | } | 
|  |  | 
|  | int av1_rc_pick_q_and_bounds(const AV1_COMP *cpi, int width, int height, | 
|  | int *bottom_index, int *top_index) { | 
|  | int q; | 
|  | if (cpi->oxcf.pass == 0) { | 
|  | if (cpi->oxcf.rc_mode == AOM_CBR) | 
|  | q = rc_pick_q_and_bounds_one_pass_cbr(cpi, width, height, bottom_index, | 
|  | top_index); | 
|  | else | 
|  | q = rc_pick_q_and_bounds_one_pass_vbr(cpi, width, height, bottom_index, | 
|  | top_index); | 
|  | } else { | 
|  | q = rc_pick_q_and_bounds_two_pass(cpi, width, height, bottom_index, | 
|  | top_index); | 
|  | } | 
|  |  | 
|  | return q; | 
|  | } | 
|  |  | 
|  | void av1_rc_compute_frame_size_bounds(const AV1_COMP *cpi, int frame_target, | 
|  | int *frame_under_shoot_limit, | 
|  | int *frame_over_shoot_limit) { | 
|  | if (cpi->oxcf.rc_mode == AOM_Q) { | 
|  | *frame_under_shoot_limit = 0; | 
|  | *frame_over_shoot_limit = INT_MAX; | 
|  | } else { | 
|  | // For very small rate targets where the fractional adjustment | 
|  | // may be tiny make sure there is at least a minimum range. | 
|  | const int tolerance = (cpi->sf.recode_tolerance * frame_target) / 100; | 
|  | *frame_under_shoot_limit = AOMMAX(frame_target - tolerance - 200, 0); | 
|  | *frame_over_shoot_limit = | 
|  | AOMMIN(frame_target + tolerance + 200, cpi->rc.max_frame_bandwidth); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rc_set_frame_target(AV1_COMP *cpi, int target, int width, | 
|  | int height) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  |  | 
|  | rc->this_frame_target = target; | 
|  |  | 
|  | // Modify frame size target when down-scaled. | 
|  | if (!av1_frame_unscaled(cm)) | 
|  | rc->this_frame_target = | 
|  | (int)(rc->this_frame_target * resize_rate_factor(cpi, width, height)); | 
|  |  | 
|  | // Target rate per SB64 (including partial SB64s. | 
|  | rc->sb64_target_rate = | 
|  | (int)((int64_t)rc->this_frame_target * 64 * 64) / (width * height); | 
|  | } | 
|  |  | 
|  | static void update_alt_ref_frame_stats(AV1_COMP *cpi) { | 
|  | // this frame refreshes means next frames don't unless specified by user | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | rc->frames_since_golden = 0; | 
|  |  | 
|  | // Mark the alt ref as done (setting to 0 means no further alt refs pending). | 
|  | rc->source_alt_ref_pending = 0; | 
|  |  | 
|  | // Set the alternate reference frame active flag | 
|  | rc->source_alt_ref_active = 1; | 
|  | } | 
|  |  | 
|  | static void update_golden_frame_stats(AV1_COMP *cpi) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  |  | 
|  | // Update the Golden frame usage counts. | 
|  | // NOTE(weitinglin): If we use show_existing_frame for an OVERLAY frame, | 
|  | //                   only the virtual indices for the reference frame will be | 
|  | //                   updated and cpi->refresh_golden_frame will still be zero. | 
|  | if (cpi->refresh_golden_frame || rc->is_src_frame_alt_ref) { | 
|  | // We will not use internal overlay frames to replace the golden frame | 
|  | if (!rc->is_src_frame_ext_arf) | 
|  | // this frame refreshes means next frames don't unless specified by user | 
|  | rc->frames_since_golden = 0; | 
|  |  | 
|  | // If we are not using alt ref in the up and coming group clear the arf | 
|  | // active flag. In multi arf group case, if the index is not 0 then | 
|  | // we are overlaying a mid group arf so should not reset the flag. | 
|  | if (cpi->oxcf.pass == 2) { | 
|  | if (!rc->source_alt_ref_pending && (cpi->twopass.gf_group.index == 0)) | 
|  | rc->source_alt_ref_active = 0; | 
|  | } else if (!rc->source_alt_ref_pending) { | 
|  | rc->source_alt_ref_active = 0; | 
|  | } | 
|  |  | 
|  | // Decrement count down till next gf | 
|  | if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--; | 
|  |  | 
|  | } else if (!cpi->refresh_alt_ref_frame && !cpi->refresh_alt2_ref_frame) { | 
|  | // Decrement count down till next gf | 
|  | if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--; | 
|  |  | 
|  | rc->frames_since_golden++; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_rc_postencode_update(AV1_COMP *cpi, uint64_t bytes_used) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | const int qindex = cm->base_qindex; | 
|  |  | 
|  | if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) { | 
|  | av1_cyclic_refresh_postencode(cpi); | 
|  | } | 
|  |  | 
|  | // Update rate control heuristics | 
|  | rc->projected_frame_size = (int)(bytes_used << 3); | 
|  |  | 
|  | // Post encode loop adjustment of Q prediction. | 
|  | av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height); | 
|  |  | 
|  | // Keep a record of last Q and ambient average Q. | 
|  | if (cm->frame_type == KEY_FRAME) { | 
|  | rc->last_q[KEY_FRAME] = qindex; | 
|  | rc->avg_frame_qindex[KEY_FRAME] = | 
|  | ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2); | 
|  | } else { | 
|  | if (!rc->is_src_frame_alt_ref && | 
|  | !(cpi->refresh_golden_frame || cpi->refresh_alt2_ref_frame || | 
|  | cpi->refresh_alt_ref_frame)) { | 
|  | rc->last_q[INTER_FRAME] = qindex; | 
|  | rc->avg_frame_qindex[INTER_FRAME] = | 
|  | ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2); | 
|  | rc->ni_frames++; | 
|  | rc->tot_q += av1_convert_qindex_to_q(qindex, cm->bit_depth); | 
|  | rc->avg_q = rc->tot_q / rc->ni_frames; | 
|  | // Calculate the average Q for normal inter frames (not key or GFU | 
|  | // frames). | 
|  | rc->ni_tot_qi += qindex; | 
|  | rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Keep record of last boosted (KF/GF/ARF) Q value. | 
|  | // If the current frame is coded at a lower Q then we also update it. | 
|  | // If all mbs in this group are skipped only update if the Q value is | 
|  | // better than that already stored. | 
|  | // This is used to help set quality in forced key frames to reduce popping | 
|  | if ((qindex < rc->last_boosted_qindex) || (cm->frame_type == KEY_FRAME) || | 
|  | (!rc->constrained_gf_group && | 
|  | (cpi->refresh_alt_ref_frame || cpi->refresh_alt2_ref_frame || | 
|  | (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) { | 
|  | rc->last_boosted_qindex = qindex; | 
|  | } | 
|  | if (cm->frame_type == KEY_FRAME) rc->last_kf_qindex = qindex; | 
|  |  | 
|  | update_buffer_level(cpi, rc->projected_frame_size); | 
|  |  | 
|  | // Rolling monitors of whether we are over or underspending used to help | 
|  | // regulate min and Max Q in two pass. | 
|  | if (!av1_frame_unscaled(cm)) | 
|  | rc->this_frame_target = | 
|  | (int)(rc->this_frame_target / | 
|  | resize_rate_factor(cpi, cm->width, cm->height)); | 
|  | if (cm->frame_type != KEY_FRAME) { | 
|  | rc->rolling_target_bits = ROUND_POWER_OF_TWO( | 
|  | rc->rolling_target_bits * 3 + rc->this_frame_target, 2); | 
|  | rc->rolling_actual_bits = ROUND_POWER_OF_TWO( | 
|  | rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2); | 
|  | rc->long_rolling_target_bits = ROUND_POWER_OF_TWO( | 
|  | rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5); | 
|  | rc->long_rolling_actual_bits = ROUND_POWER_OF_TWO( | 
|  | rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5); | 
|  | } | 
|  |  | 
|  | // Actual bits spent | 
|  | rc->total_actual_bits += rc->projected_frame_size; | 
|  | // TODO(zoeliu): To investigate whether we should treat BWDREF_FRAME | 
|  | //               differently here for rc->avg_frame_bandwidth. | 
|  | rc->total_target_bits += | 
|  | (cm->show_frame || rc->is_bwd_ref_frame) ? rc->avg_frame_bandwidth : 0; | 
|  |  | 
|  | rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits; | 
|  |  | 
|  | if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame && | 
|  | (cm->frame_type != KEY_FRAME)) | 
|  | // Update the alternate reference frame stats as appropriate. | 
|  | update_alt_ref_frame_stats(cpi); | 
|  | else | 
|  | // Update the Golden frame stats as appropriate. | 
|  | update_golden_frame_stats(cpi); | 
|  |  | 
|  | if (cm->frame_type == KEY_FRAME) rc->frames_since_key = 0; | 
|  |  | 
|  | // TODO(zoeliu): To investigate whether we should treat BWDREF_FRAME | 
|  | //               differently here for rc->avg_frame_bandwidth. | 
|  | if (cm->show_frame || rc->is_bwd_ref_frame) { | 
|  | rc->frames_since_key++; | 
|  | rc->frames_to_key--; | 
|  | } | 
|  | // if (cm->current_video_frame == 1 && cm->show_frame) | 
|  | /* | 
|  | rc->this_frame_target = | 
|  | (int)(rc->this_frame_target / resize_rate_factor(cpi, cm->width, | 
|  | cm->height)); | 
|  | */ | 
|  | } | 
|  |  | 
|  | void av1_rc_postencode_update_drop_frame(AV1_COMP *cpi) { | 
|  | // Update buffer level with zero size, update frame counters, and return. | 
|  | update_buffer_level(cpi, 0); | 
|  | cpi->rc.frames_since_key++; | 
|  | cpi->rc.frames_to_key--; | 
|  | cpi->rc.rc_2_frame = 0; | 
|  | cpi->rc.rc_1_frame = 0; | 
|  | } | 
|  |  | 
|  | // Use this macro to turn on/off use of alt-refs in one-pass mode. | 
|  | #define USE_ALTREF_FOR_ONE_PASS 1 | 
|  |  | 
|  | static int calc_pframe_target_size_one_pass_vbr(const AV1_COMP *const cpi) { | 
|  | static const int af_ratio = 10; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | int target; | 
|  | #if USE_ALTREF_FOR_ONE_PASS | 
|  | target = | 
|  | (!rc->is_src_frame_alt_ref && | 
|  | (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) | 
|  | ? (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio) / | 
|  | (rc->baseline_gf_interval + af_ratio - 1) | 
|  | : (rc->avg_frame_bandwidth * rc->baseline_gf_interval) / | 
|  | (rc->baseline_gf_interval + af_ratio - 1); | 
|  | #else | 
|  | target = rc->avg_frame_bandwidth; | 
|  | #endif | 
|  | return av1_rc_clamp_pframe_target_size(cpi, target); | 
|  | } | 
|  |  | 
|  | static int calc_iframe_target_size_one_pass_vbr(const AV1_COMP *const cpi) { | 
|  | static const int kf_ratio = 25; | 
|  | const RATE_CONTROL *rc = &cpi->rc; | 
|  | const int target = rc->avg_frame_bandwidth * kf_ratio; | 
|  | return av1_rc_clamp_iframe_target_size(cpi, target); | 
|  | } | 
|  |  | 
|  | void av1_rc_get_one_pass_vbr_params(AV1_COMP *cpi) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | int target; | 
|  | // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic. | 
|  | if (!cpi->refresh_alt_ref_frame && | 
|  | (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY) || | 
|  | rc->frames_to_key == 0 || (cpi->oxcf.auto_key && 0))) { | 
|  | cm->frame_type = KEY_FRAME; | 
|  | rc->this_key_frame_forced = | 
|  | cm->current_video_frame != 0 && rc->frames_to_key == 0; | 
|  | rc->frames_to_key = cpi->oxcf.key_freq; | 
|  | rc->kf_boost = DEFAULT_KF_BOOST; | 
|  | rc->source_alt_ref_active = 0; | 
|  | } else { | 
|  | cm->frame_type = INTER_FRAME; | 
|  | } | 
|  | if (rc->frames_till_gf_update_due == 0) { | 
|  | rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2; | 
|  | rc->frames_till_gf_update_due = rc->baseline_gf_interval; | 
|  | // NOTE: frames_till_gf_update_due must be <= frames_to_key. | 
|  | if (rc->frames_till_gf_update_due > rc->frames_to_key) { | 
|  | rc->frames_till_gf_update_due = rc->frames_to_key; | 
|  | rc->constrained_gf_group = 1; | 
|  | } else { | 
|  | rc->constrained_gf_group = 0; | 
|  | } | 
|  | cpi->refresh_golden_frame = 1; | 
|  | rc->source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS; | 
|  | rc->gfu_boost = DEFAULT_GF_BOOST; | 
|  | } | 
|  | if (cm->frame_type == KEY_FRAME) | 
|  | target = calc_iframe_target_size_one_pass_vbr(cpi); | 
|  | else | 
|  | target = calc_pframe_target_size_one_pass_vbr(cpi); | 
|  | rc_set_frame_target(cpi, target, cm->width, cm->height); | 
|  | } | 
|  |  | 
|  | static int calc_pframe_target_size_one_pass_cbr(const AV1_COMP *cpi) { | 
|  | const AV1EncoderConfig *oxcf = &cpi->oxcf; | 
|  | const RATE_CONTROL *rc = &cpi->rc; | 
|  | const int64_t diff = rc->optimal_buffer_level - rc->buffer_level; | 
|  | const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100; | 
|  | int min_frame_target = | 
|  | AOMMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS); | 
|  | int target; | 
|  |  | 
|  | if (oxcf->gf_cbr_boost_pct) { | 
|  | const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100; | 
|  | target = cpi->refresh_golden_frame | 
|  | ? (rc->avg_frame_bandwidth * rc->baseline_gf_interval * | 
|  | af_ratio_pct) / | 
|  | (rc->baseline_gf_interval * 100 + af_ratio_pct - 100) | 
|  | : (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) / | 
|  | (rc->baseline_gf_interval * 100 + af_ratio_pct - 100); | 
|  | } else { | 
|  | target = rc->avg_frame_bandwidth; | 
|  | } | 
|  |  | 
|  | if (diff > 0) { | 
|  | // Lower the target bandwidth for this frame. | 
|  | const int pct_low = (int)AOMMIN(diff / one_pct_bits, oxcf->under_shoot_pct); | 
|  | target -= (target * pct_low) / 200; | 
|  | } else if (diff < 0) { | 
|  | // Increase the target bandwidth for this frame. | 
|  | const int pct_high = | 
|  | (int)AOMMIN(-diff / one_pct_bits, oxcf->over_shoot_pct); | 
|  | target += (target * pct_high) / 200; | 
|  | } | 
|  | if (oxcf->rc_max_inter_bitrate_pct) { | 
|  | const int max_rate = | 
|  | rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100; | 
|  | target = AOMMIN(target, max_rate); | 
|  | } | 
|  | return AOMMAX(min_frame_target, target); | 
|  | } | 
|  |  | 
|  | static int calc_iframe_target_size_one_pass_cbr(const AV1_COMP *cpi) { | 
|  | const RATE_CONTROL *rc = &cpi->rc; | 
|  | int target; | 
|  | if (cpi->common.current_video_frame == 0) { | 
|  | target = ((rc->starting_buffer_level / 2) > INT_MAX) | 
|  | ? INT_MAX | 
|  | : (int)(rc->starting_buffer_level / 2); | 
|  | } else { | 
|  | int kf_boost = 32; | 
|  | double framerate = cpi->framerate; | 
|  |  | 
|  | kf_boost = AOMMAX(kf_boost, (int)(2 * framerate - 16)); | 
|  | if (rc->frames_since_key < framerate / 2) { | 
|  | kf_boost = (int)(kf_boost * rc->frames_since_key / (framerate / 2)); | 
|  | } | 
|  | target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4; | 
|  | } | 
|  | return av1_rc_clamp_iframe_target_size(cpi, target); | 
|  | } | 
|  |  | 
|  | void av1_rc_get_one_pass_cbr_params(AV1_COMP *cpi) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | int target; | 
|  | // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic. | 
|  | if ((cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY) || | 
|  | rc->frames_to_key == 0 || (cpi->oxcf.auto_key && 0))) { | 
|  | cm->frame_type = KEY_FRAME; | 
|  | rc->this_key_frame_forced = | 
|  | cm->current_video_frame != 0 && rc->frames_to_key == 0; | 
|  | rc->frames_to_key = cpi->oxcf.key_freq; | 
|  | rc->kf_boost = DEFAULT_KF_BOOST; | 
|  | rc->source_alt_ref_active = 0; | 
|  | } else { | 
|  | cm->frame_type = INTER_FRAME; | 
|  | } | 
|  | if (rc->frames_till_gf_update_due == 0) { | 
|  | if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) | 
|  | av1_cyclic_refresh_set_golden_update(cpi); | 
|  | else | 
|  | rc->baseline_gf_interval = | 
|  | (rc->min_gf_interval + rc->max_gf_interval) / 2; | 
|  | rc->frames_till_gf_update_due = rc->baseline_gf_interval; | 
|  | // NOTE: frames_till_gf_update_due must be <= frames_to_key. | 
|  | if (rc->frames_till_gf_update_due > rc->frames_to_key) | 
|  | rc->frames_till_gf_update_due = rc->frames_to_key; | 
|  | cpi->refresh_golden_frame = 1; | 
|  | rc->gfu_boost = DEFAULT_GF_BOOST; | 
|  | } | 
|  |  | 
|  | // Any update/change of global cyclic refresh parameters (amount/delta-qp) | 
|  | // should be done here, before the frame qp is selected. | 
|  | if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) | 
|  | av1_cyclic_refresh_update_parameters(cpi); | 
|  |  | 
|  | if (cm->frame_type == KEY_FRAME) | 
|  | target = calc_iframe_target_size_one_pass_cbr(cpi); | 
|  | else | 
|  | target = calc_pframe_target_size_one_pass_cbr(cpi); | 
|  |  | 
|  | rc_set_frame_target(cpi, target, cm->width, cm->height); | 
|  | // TODO(afergs): Decide whether to scale up, down, or not at all | 
|  | } | 
|  |  | 
|  | int av1_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | int start_index = rc->worst_quality; | 
|  | int target_index = rc->worst_quality; | 
|  | int i; | 
|  |  | 
|  | // Convert the average q value to an index. | 
|  | for (i = rc->best_quality; i < rc->worst_quality; ++i) { | 
|  | start_index = i; | 
|  | if (av1_convert_qindex_to_q(i, bit_depth) >= qstart) break; | 
|  | } | 
|  |  | 
|  | // Convert the q target to an index | 
|  | for (i = rc->best_quality; i < rc->worst_quality; ++i) { | 
|  | target_index = i; | 
|  | if (av1_convert_qindex_to_q(i, bit_depth) >= qtarget) break; | 
|  | } | 
|  |  | 
|  | return target_index - start_index; | 
|  | } | 
|  |  | 
|  | int av1_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type, | 
|  | int qindex, double rate_target_ratio, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | int target_index = rc->worst_quality; | 
|  | int i; | 
|  |  | 
|  | // Look up the current projected bits per block for the base index | 
|  | const int base_bits_per_mb = | 
|  | av1_rc_bits_per_mb(frame_type, qindex, 1.0, bit_depth); | 
|  |  | 
|  | // Find the target bits per mb based on the base value and given ratio. | 
|  | const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb); | 
|  |  | 
|  | // Convert the q target to an index | 
|  | for (i = rc->best_quality; i < rc->worst_quality; ++i) { | 
|  | if (av1_rc_bits_per_mb(frame_type, i, 1.0, bit_depth) <= | 
|  | target_bits_per_mb) { | 
|  | target_index = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return target_index - qindex; | 
|  | } | 
|  |  | 
|  | void av1_rc_set_gf_interval_range(const AV1_COMP *const cpi, | 
|  | RATE_CONTROL *const rc) { | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  |  | 
|  | // Special case code for 1 pass fixed Q mode tests | 
|  | if ((oxcf->pass == 0) && (oxcf->rc_mode == AOM_Q)) { | 
|  | rc->max_gf_interval = FIXED_GF_INTERVAL; | 
|  | rc->min_gf_interval = FIXED_GF_INTERVAL; | 
|  | rc->static_scene_max_gf_interval = FIXED_GF_INTERVAL; | 
|  | } else { | 
|  | // Set Maximum gf/arf interval | 
|  | rc->max_gf_interval = oxcf->max_gf_interval; | 
|  | rc->min_gf_interval = oxcf->min_gf_interval; | 
|  | if (rc->min_gf_interval == 0) | 
|  | rc->min_gf_interval = av1_rc_get_default_min_gf_interval( | 
|  | oxcf->width, oxcf->height, cpi->framerate); | 
|  | if (rc->max_gf_interval == 0) | 
|  | rc->max_gf_interval = av1_rc_get_default_max_gf_interval( | 
|  | cpi->framerate, rc->min_gf_interval); | 
|  |  | 
|  | // Extended interval for genuinely static scenes | 
|  | rc->static_scene_max_gf_interval = MAX_LAG_BUFFERS * 2; | 
|  |  | 
|  | if (is_altref_enabled(cpi)) { | 
|  | if (rc->static_scene_max_gf_interval > oxcf->lag_in_frames - 1) | 
|  | rc->static_scene_max_gf_interval = oxcf->lag_in_frames - 1; | 
|  | } | 
|  |  | 
|  | if (rc->max_gf_interval > rc->static_scene_max_gf_interval) | 
|  | rc->max_gf_interval = rc->static_scene_max_gf_interval; | 
|  |  | 
|  | // Clamp min to max | 
|  | rc->min_gf_interval = AOMMIN(rc->min_gf_interval, rc->max_gf_interval); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_rc_update_framerate(AV1_COMP *cpi, int width, int height) { | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | int vbr_max_bits; | 
|  | const int MBs = av1_get_MBs(width, height); | 
|  |  | 
|  | rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / cpi->framerate); | 
|  | rc->min_frame_bandwidth = | 
|  | (int)(rc->avg_frame_bandwidth * oxcf->two_pass_vbrmin_section / 100); | 
|  |  | 
|  | rc->min_frame_bandwidth = | 
|  | AOMMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS); | 
|  |  | 
|  | // A maximum bitrate for a frame is defined. | 
|  | // The baseline for this aligns with HW implementations that | 
|  | // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits | 
|  | // per 16x16 MB (averaged over a frame). However this limit is extended if | 
|  | // a very high rate is given on the command line or the the rate cannnot | 
|  | // be acheived because of a user specificed max q (e.g. when the user | 
|  | // specifies lossless encode. | 
|  | vbr_max_bits = | 
|  | (int)(((int64_t)rc->avg_frame_bandwidth * oxcf->two_pass_vbrmax_section) / | 
|  | 100); | 
|  | rc->max_frame_bandwidth = | 
|  | AOMMAX(AOMMAX((MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits); | 
|  |  | 
|  | av1_rc_set_gf_interval_range(cpi, rc); | 
|  | } | 
|  |  | 
|  | #define VBR_PCT_ADJUSTMENT_LIMIT 50 | 
|  | // For VBR...adjustment to the frame target based on error from previous frames | 
|  | static void vbr_rate_correction(AV1_COMP *cpi, int *this_frame_target) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | int64_t vbr_bits_off_target = rc->vbr_bits_off_target; | 
|  | int max_delta; | 
|  | double position_factor = 1.0; | 
|  |  | 
|  | // How far through the clip are we. | 
|  | // This number is used to damp the per frame rate correction. | 
|  | // Range 0 - 1.0 | 
|  | if (cpi->twopass.total_stats.count != 0.) { | 
|  | position_factor = sqrt((double)cpi->common.current_video_frame / | 
|  | cpi->twopass.total_stats.count); | 
|  | } | 
|  | max_delta = (int)(position_factor * | 
|  | ((*this_frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100)); | 
|  |  | 
|  | // vbr_bits_off_target > 0 means we have extra bits to spend | 
|  | if (vbr_bits_off_target > 0) { | 
|  | *this_frame_target += (vbr_bits_off_target > max_delta) | 
|  | ? max_delta | 
|  | : (int)vbr_bits_off_target; | 
|  | } else { | 
|  | *this_frame_target -= (vbr_bits_off_target < -max_delta) | 
|  | ? max_delta | 
|  | : (int)-vbr_bits_off_target; | 
|  | } | 
|  |  | 
|  | // Fast redistribution of bits arising from massive local undershoot. | 
|  | // Dont do it for kf,arf,gf or overlay frames. | 
|  | if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref && | 
|  | rc->vbr_bits_off_target_fast) { | 
|  | int one_frame_bits = AOMMAX(rc->avg_frame_bandwidth, *this_frame_target); | 
|  | int fast_extra_bits; | 
|  | fast_extra_bits = (int)AOMMIN(rc->vbr_bits_off_target_fast, one_frame_bits); | 
|  | fast_extra_bits = (int)AOMMIN( | 
|  | fast_extra_bits, | 
|  | AOMMAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8)); | 
|  | *this_frame_target += (int)fast_extra_bits; | 
|  | rc->vbr_bits_off_target_fast -= fast_extra_bits; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_set_target_rate(AV1_COMP *cpi, int width, int height) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | int target_rate = rc->base_frame_target; | 
|  |  | 
|  | // Correction to rate target based on prior over or under shoot. | 
|  | if (cpi->oxcf.rc_mode == AOM_VBR || cpi->oxcf.rc_mode == AOM_CQ) | 
|  | vbr_rate_correction(cpi, &target_rate); | 
|  | rc_set_frame_target(cpi, target_rate, width, height); | 
|  | } |