|  | /* | 
|  | * This code implements the MD5 message-digest algorithm. | 
|  | * The algorithm is due to Ron Rivest.  This code was | 
|  | * written by Colin Plumb in 1993, no copyright is claimed. | 
|  | * This code is in the public domain; do with it what you wish. | 
|  | * | 
|  | * Equivalent code is available from RSA Data Security, Inc. | 
|  | * This code has been tested against that, and is equivalent, | 
|  | * except that you don't need to include two pages of legalese | 
|  | * with every copy. | 
|  | * | 
|  | * To compute the message digest of a chunk of bytes, declare an | 
|  | * MD5Context structure, pass it to MD5Init, call MD5Update as | 
|  | * needed on buffers full of bytes, and then call MD5Final, which | 
|  | * will fill a supplied 16-byte array with the digest. | 
|  | * | 
|  | * Changed so as no longer to depend on Colin Plumb's `usual.h' header | 
|  | * definitions | 
|  | *  - Ian Jackson <ian@chiark.greenend.org.uk>. | 
|  | * Still in the public domain. | 
|  | */ | 
|  |  | 
|  | #include <string.h> /* for memcpy() */ | 
|  |  | 
|  | #include "md5_utils.h" | 
|  |  | 
|  | static void byteSwap(UWORD32 *buf, unsigned words) { | 
|  | md5byte *p; | 
|  |  | 
|  | /* Only swap bytes for big endian machines */ | 
|  | int i = 1; | 
|  |  | 
|  | if (*(char *)&i == 1) return; | 
|  |  | 
|  | p = (md5byte *)buf; | 
|  |  | 
|  | do { | 
|  | *buf++ = (UWORD32)((unsigned)p[3] << 8 | p[2]) << 16 | | 
|  | ((unsigned)p[1] << 8 | p[0]); | 
|  | p += 4; | 
|  | } while (--words); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious | 
|  | * initialization constants. | 
|  | */ | 
|  | void MD5Init(struct MD5Context *ctx) { | 
|  | ctx->buf[0] = 0x67452301; | 
|  | ctx->buf[1] = 0xefcdab89; | 
|  | ctx->buf[2] = 0x98badcfe; | 
|  | ctx->buf[3] = 0x10325476; | 
|  |  | 
|  | ctx->bytes[0] = 0; | 
|  | ctx->bytes[1] = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update context to reflect the concatenation of another buffer full | 
|  | * of bytes. | 
|  | */ | 
|  | void MD5Update(struct MD5Context *ctx, md5byte const *buf, unsigned len) { | 
|  | UWORD32 t; | 
|  |  | 
|  | /* Update byte count */ | 
|  |  | 
|  | t = ctx->bytes[0]; | 
|  |  | 
|  | if ((ctx->bytes[0] = t + len) < t) | 
|  | ctx->bytes[1]++; /* Carry from low to high */ | 
|  |  | 
|  | t = 64 - (t & 0x3f); /* Space available in ctx->in (at least 1) */ | 
|  |  | 
|  | if (t > len) { | 
|  | memcpy((md5byte *)ctx->in + 64 - t, buf, len); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* First chunk is an odd size */ | 
|  | memcpy((md5byte *)ctx->in + 64 - t, buf, t); | 
|  | byteSwap(ctx->in, 16); | 
|  | MD5Transform(ctx->buf, ctx->in); | 
|  | buf += t; | 
|  | len -= t; | 
|  |  | 
|  | /* Process data in 64-byte chunks */ | 
|  | while (len >= 64) { | 
|  | memcpy(ctx->in, buf, 64); | 
|  | byteSwap(ctx->in, 16); | 
|  | MD5Transform(ctx->buf, ctx->in); | 
|  | buf += 64; | 
|  | len -= 64; | 
|  | } | 
|  |  | 
|  | /* Handle any remaining bytes of data. */ | 
|  | memcpy(ctx->in, buf, len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Final wrapup - pad to 64-byte boundary with the bit pattern | 
|  | * 1 0* (64-bit count of bits processed, MSB-first) | 
|  | */ | 
|  | void MD5Final(md5byte digest[16], struct MD5Context *ctx) { | 
|  | int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */ | 
|  | md5byte *p = (md5byte *)ctx->in + count; | 
|  |  | 
|  | /* Set the first char of padding to 0x80.  There is always room. */ | 
|  | *p++ = 0x80; | 
|  |  | 
|  | /* Bytes of padding needed to make 56 bytes (-8..55) */ | 
|  | count = 56 - 1 - count; | 
|  |  | 
|  | if (count < 0) { /* Padding forces an extra block */ | 
|  | memset(p, 0, count + 8); | 
|  | byteSwap(ctx->in, 16); | 
|  | MD5Transform(ctx->buf, ctx->in); | 
|  | p = (md5byte *)ctx->in; | 
|  | count = 56; | 
|  | } | 
|  |  | 
|  | memset(p, 0, count); | 
|  | byteSwap(ctx->in, 14); | 
|  |  | 
|  | /* Append length in bits and transform */ | 
|  | ctx->in[14] = ctx->bytes[0] << 3; | 
|  | ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29; | 
|  | MD5Transform(ctx->buf, ctx->in); | 
|  |  | 
|  | byteSwap(ctx->buf, 4); | 
|  | memcpy(digest, ctx->buf, 16); | 
|  | memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ | 
|  | } | 
|  |  | 
|  | #ifndef ASM_MD5 | 
|  |  | 
|  | /* The four core functions - F1 is optimized somewhat */ | 
|  |  | 
|  | /* #define F1(x, y, z) (x & y | ~x & z) */ | 
|  | #define F1(x, y, z) (z ^ (x & (y ^ z))) | 
|  | #define F2(x, y, z) F1(z, x, y) | 
|  | #define F3(x, y, z) (x ^ y ^ z) | 
|  | #define F4(x, y, z) (y ^ (x | ~z)) | 
|  |  | 
|  | /* This is the central step in the MD5 algorithm. */ | 
|  | #define MD5STEP(f, w, x, y, z, in, s) \ | 
|  | (w += f(x, y, z) + in, w = (w << s | w >> (32 - s)) + x) | 
|  |  | 
|  | #if defined(__clang__) && defined(__has_attribute) | 
|  | #if __has_attribute(no_sanitize) | 
|  | #define AOM_NO_UNSIGNED_OVERFLOW_CHECK \ | 
|  | __attribute__((no_sanitize("unsigned-integer-overflow"))) | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #ifndef AOM_NO_UNSIGNED_OVERFLOW_CHECK | 
|  | #define AOM_NO_UNSIGNED_OVERFLOW_CHECK | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * The core of the MD5 algorithm, this alters an existing MD5 hash to | 
|  | * reflect the addition of 16 longwords of new data.  MD5Update blocks | 
|  | * the data and converts bytes into longwords for this routine. | 
|  | */ | 
|  | AOM_NO_UNSIGNED_OVERFLOW_CHECK void MD5Transform(UWORD32 buf[4], | 
|  | UWORD32 const in[16]) { | 
|  | register UWORD32 a, b, c, d; | 
|  |  | 
|  | a = buf[0]; | 
|  | b = buf[1]; | 
|  | c = buf[2]; | 
|  | d = buf[3]; | 
|  |  | 
|  | MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); | 
|  | MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); | 
|  | MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); | 
|  | MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); | 
|  | MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); | 
|  | MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); | 
|  | MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); | 
|  | MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); | 
|  | MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); | 
|  | MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); | 
|  | MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); | 
|  | MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); | 
|  | MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); | 
|  | MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); | 
|  | MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); | 
|  | MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); | 
|  |  | 
|  | MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); | 
|  | MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); | 
|  | MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); | 
|  | MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); | 
|  | MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); | 
|  | MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); | 
|  | MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); | 
|  | MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); | 
|  | MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); | 
|  | MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); | 
|  | MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); | 
|  | MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); | 
|  | MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); | 
|  | MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); | 
|  | MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); | 
|  | MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); | 
|  |  | 
|  | MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); | 
|  | MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); | 
|  | MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); | 
|  | MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); | 
|  | MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); | 
|  | MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); | 
|  | MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); | 
|  | MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); | 
|  | MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); | 
|  | MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); | 
|  | MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); | 
|  | MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); | 
|  | MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); | 
|  | MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); | 
|  | MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); | 
|  | MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); | 
|  |  | 
|  | MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); | 
|  | MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); | 
|  | MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); | 
|  | MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); | 
|  | MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); | 
|  | MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); | 
|  | MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); | 
|  | MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); | 
|  | MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); | 
|  | MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); | 
|  | MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); | 
|  | MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); | 
|  | MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); | 
|  | MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); | 
|  | MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); | 
|  | MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); | 
|  |  | 
|  | buf[0] += a; | 
|  | buf[1] += b; | 
|  | buf[2] += c; | 
|  | buf[3] += d; | 
|  | } | 
|  |  | 
|  | #undef AOM_NO_UNSIGNED_OVERFLOW_CHECK | 
|  |  | 
|  | #endif |