blob: 5dadcb653777a293de08de7176db0343972fc829 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "./av1_rtcd.h"
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
#include "aom_dsp/quantize.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "av1/common/idct.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/scan.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/tokenize.h"
#if CONFIG_PVQ
#include "av1/encoder/encint.h"
#include "av1/common/partition.h"
#include "av1/encoder/pvq_encoder.h"
#endif
struct optimize_ctx {
ENTROPY_CONTEXT ta[MAX_MB_PLANE][16];
ENTROPY_CONTEXT tl[MAX_MB_PLANE][16];
};
void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int bw = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int bh = 4 * num_4x4_blocks_high_lookup[plane_bsize];
#if CONFIG_AOM_HIGHBITDEPTH
if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
aom_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf,
p->src.stride, pd->dst.buf, pd->dst.stride,
x->e_mbd.bd);
return;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
}
#define RDTRUNC(RM, DM, R, D) \
(((1 << (AV1_PROB_COST_SHIFT - 1)) + (R) * (RM)) & \
((1 << AV1_PROB_COST_SHIFT) - 1))
typedef struct av1_token_state {
int rate;
int error;
int next;
int16_t token;
short qc;
} av1_token_state;
#if !CONFIG_PVQ
// TODO(jimbankoski): experiment to find optimal RD numbers.
static const int plane_rd_mult[PLANE_TYPES] = { 4, 2 };
#define UPDATE_RD_COST() \
{ \
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0); \
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1); \
if (rd_cost0 == rd_cost1) { \
rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0); \
rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1); \
} \
}
// This function is a place holder for now but may ultimately need
// to scan previous tokens to work out the correct context.
static int trellis_get_coeff_context(const int16_t *scan, const int16_t *nb,
int idx, int token, uint8_t *token_cache) {
int bak = token_cache[scan[idx]], pt;
token_cache[scan[idx]] = av1_pt_energy_class[token];
pt = get_coef_context(nb, token_cache, idx + 1);
token_cache[scan[idx]] = bak;
return pt;
}
static int optimize_b(const AV1_COMMON *const cm, MACROBLOCK *mb, int plane,
int block, TX_SIZE tx_size, int ctx) {
MACROBLOCKD *const xd = &mb->e_mbd;
struct macroblock_plane *const p = &mb->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
const int ref = is_inter_block(&xd->mi[0]->mbmi);
av1_token_state tokens[1025][2];
unsigned best_index[1025][2];
uint8_t token_cache[1024];
const tran_low_t *const coeff = BLOCK_OFFSET(mb->plane[plane].coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const int eob = p->eobs[block];
const PLANE_TYPE type = pd->plane_type;
const int default_eob = 1 << (tx_size_1d_log2[tx_size] * 2);
const int mul = 1 + (tx_size == TX_32X32);
#if CONFIG_AOM_QM
int seg_id = xd->mi[0]->mbmi.segment_id;
int is_intra = !is_inter_block(&xd->mi[0]->mbmi);
const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][is_intra][tx_size];
#endif
const int16_t *dequant_ptr = pd->dequant;
const uint8_t *const band_translate = get_band_translate(tx_size);
TX_TYPE tx_type = get_tx_type(type, xd, block);
const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type);
const int16_t *const scan = scan_order->scan;
const int16_t *const nb = scan_order->neighbors;
int next = eob, sz = 0;
int64_t rdmult = mb->rdmult * plane_rd_mult[type], rddiv = mb->rddiv;
int64_t rd_cost0, rd_cost1;
int rate0, rate1, error0, error1;
int16_t t0, t1;
EXTRABIT e0;
int best, band, pt, i, final_eob;
#if CONFIG_AOM_HIGHBITDEPTH
const int *cat6_high_cost = av1_get_high_cost_table(xd->bd);
#else
const int *cat6_high_cost = av1_get_high_cost_table(8);
#endif
assert((!type && !plane) || (type && plane));
assert(eob <= default_eob);
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
if (!ref) rdmult = (rdmult * 9) >> 4;
/* Initialize the sentinel node of the trellis. */
tokens[eob][0].rate = 0;
tokens[eob][0].error = 0;
tokens[eob][0].next = default_eob;
tokens[eob][0].token = EOB_TOKEN;
tokens[eob][0].qc = 0;
tokens[eob][1] = tokens[eob][0];
for (i = 0; i < eob; i++)
token_cache[scan[i]] = av1_pt_energy_class[av1_get_token(qcoeff[scan[i]])];
for (i = eob; i-- > 0;) {
int base_bits, d2, dx;
const int rc = scan[i];
#if CONFIG_AOM_QM
int iwt = iqmatrix[rc];
#endif
int x = qcoeff[rc];
/* Only add a trellis state for non-zero coefficients. */
if (x) {
int shortcut = 0;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
/* Evaluate the first possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
av1_get_token_extra(x, &t0, &e0);
/* Consider both possible successor states. */
if (next < default_eob) {
band = band_translate[i + 1];
pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache);
rate0 += mb->token_costs[tx_size][type][ref][band][0][pt]
[tokens[next][0].token];
rate1 += mb->token_costs[tx_size][type][ref][band][0][pt]
[tokens[next][1].token];
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = av1_get_cost(t0, e0, cat6_high_cost);
dx = mul * (dqcoeff[rc] - coeff[rc]);
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx >>= xd->bd - 8;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
d2 = dx * dx;
tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
tokens[i][0].error = d2 + (best ? error1 : error0);
tokens[i][0].next = next;
tokens[i][0].token = t0;
tokens[i][0].qc = x;
best_index[i][0] = best;
/* Evaluate the second possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
#if CONFIG_AOM_QM
if ((abs(x) * dequant_ptr[rc != 0] * iwt >
((abs(coeff[rc]) * mul) << AOM_QM_BITS)) &&
(abs(x) * dequant_ptr[rc != 0] * iwt <
((abs(coeff[rc]) * mul + dequant_ptr[rc != 0]) << AOM_QM_BITS)))
#else
if ((abs(x) * dequant_ptr[rc != 0] > abs(coeff[rc]) * mul) &&
(abs(x) * dequant_ptr[rc != 0] <
abs(coeff[rc]) * mul + dequant_ptr[rc != 0]))
#endif
shortcut = 1;
else
shortcut = 0;
if (shortcut) {
sz = -(x < 0);
x -= 2 * sz + 1;
}
/* Consider both possible successor states. */
if (!x) {
/* If we reduced this coefficient to zero, check to see if
* we need to move the EOB back here.
*/
t0 = tokens[next][0].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
t1 = tokens[next][1].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
e0 = 0;
} else {
av1_get_token_extra(x, &t0, &e0);
t1 = t0;
}
if (next < default_eob) {
band = band_translate[i + 1];
if (t0 != EOB_TOKEN) {
pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache);
rate0 += mb->token_costs[tx_size][type][ref][band][!x][pt]
[tokens[next][0].token];
}
if (t1 != EOB_TOKEN) {
pt = trellis_get_coeff_context(scan, nb, i, t1, token_cache);
rate1 += mb->token_costs[tx_size][type][ref][band][!x][pt]
[tokens[next][1].token];
}
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = av1_get_cost(t0, e0, cat6_high_cost);
if (shortcut) {
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx -= ((dequant_ptr[rc != 0] >> (xd->bd - 8)) + sz) ^ sz;
} else {
dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
}
#else
dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
#endif // CONFIG_AOM_HIGHBITDEPTH
d2 = dx * dx;
}
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
tokens[i][1].error = d2 + (best ? error1 : error0);
tokens[i][1].next = next;
tokens[i][1].token = best ? t1 : t0;
tokens[i][1].qc = x;
best_index[i][1] = best;
/* Finally, make this the new head of the trellis. */
next = i;
} else {
/* There's no choice to make for a zero coefficient, so we don't
* add a new trellis node, but we do need to update the costs.
*/
band = band_translate[i + 1];
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
/* Update the cost of each path if we're past the EOB token. */
if (t0 != EOB_TOKEN) {
tokens[next][0].rate +=
mb->token_costs[tx_size][type][ref][band][1][0][t0];
tokens[next][0].token = ZERO_TOKEN;
}
if (t1 != EOB_TOKEN) {
tokens[next][1].rate +=
mb->token_costs[tx_size][type][ref][band][1][0][t1];
tokens[next][1].token = ZERO_TOKEN;
}
best_index[i][0] = best_index[i][1] = 0;
/* Don't update next, because we didn't add a new node. */
}
}
/* Now pick the best path through the whole trellis. */
band = band_translate[i + 1];
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
rate0 += mb->token_costs[tx_size][type][ref][band][0][ctx][t0];
rate1 += mb->token_costs[tx_size][type][ref][band][0][ctx][t1];
UPDATE_RD_COST();
best = rd_cost1 < rd_cost0;
final_eob = -1;
memset(qcoeff, 0, sizeof(*qcoeff) * default_eob);
memset(dqcoeff, 0, sizeof(*dqcoeff) * default_eob);
for (i = next; i < eob; i = next) {
const int x = tokens[i][best].qc;
const int rc = scan[i];
#if CONFIG_AOM_QM
const int iwt = iqmatrix[rc];
const int dequant =
(dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
#endif
if (x) {
final_eob = i;
}
qcoeff[rc] = x;
#if CONFIG_AOM_QM
dqcoeff[rc] = (x * dequant) / mul;
#else
dqcoeff[rc] = (x * dequant_ptr[rc != 0]) / mul;
#endif
next = tokens[i][best].next;
best = best_index[i][best];
}
final_eob++;
mb->plane[plane].eobs[block] = final_eob;
return final_eob;
}
#endif
// TODO(sarahparker) refactor fwd quant functions to use fwd_txfm fns in
// hybrid_fwd_txfm.c
void av1_xform_quant_fp(const AV1_COMMON *const cm, MACROBLOCK *x, int plane,
int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
#if !CONFIG_PVQ
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
#else
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
#endif
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block);
const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type);
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
int seg_id = xd->mi[0]->mbmi.segment_id;
#if CONFIG_AOM_QM
int is_intra = !is_inter_block(&xd->mi[0]->mbmi);
const qm_val_t *qmatrix = pd->seg_qmatrix[seg_id][is_intra][tx_size];
const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][is_intra][tx_size];
#endif
#if !CONFIG_PVQ
const int16_t *src_diff;
(void)cm;
/*
FWD_TXFM_PARAM fwd_txfm_param;
fwd_txfm_param.tx_type = tx_type;
fwd_txfm_param.tx_size = tx_size;
fwd_txfm_param.fwd_txfm_opt = FWD_TXFM_OPT_NORMAL;
fwd_txfm_param.rd_transform = x->use_lp32x32fdct;
fwd_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id];
*/
src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
#else
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
tran_low_t *ref_coeff = BLOCK_OFFSET(pd->pvq_ref_coeff, block);
uint8_t *src, *dst;
int16_t *src_int16, *pred;
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
int tx_blk_size;
int i, j;
int skip = 1;
PVQ_INFO *pvq_info = NULL;
(void)scan_order;
(void)qcoeff;
if (x->pvq_coded) {
assert(block < MAX_PVQ_BLOCKS_IN_SB);
pvq_info = &x->pvq[block][plane];
}
dst = &pd->dst.buf[4 * (blk_row * dst_stride + blk_col)];
src = &p->src.buf[4 * (blk_row * src_stride + blk_col)];
src_int16 = &p->src_int16[4 * (blk_row * diff_stride + blk_col)];
pred = &pd->pred[4 * (blk_row * diff_stride + blk_col)];
// transform block size in pixels
tx_blk_size = tx_size_1d[tx_size];
// copy uint8 orig and predicted block to int16 buffer
// in order to use existing VP10 transform functions
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++) {
src_int16[diff_stride * j + i] = src[src_stride * j + i];
pred[diff_stride * j + i] = dst[dst_stride * j + i];
}
#endif
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
switch (tx_size) {
case TX_32X32:
highbd_fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
av1_highbd_quantize_fp_32x32(
coeff, 1024, x->skip_block, p->zbin, p->round_fp, p->quant_fp,
p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
break;
case TX_16X16:
aom_highbd_fdct16x16(src_diff, coeff, diff_stride);
av1_highbd_quantize_fp(coeff, 256, x->skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
break;
case TX_8X8:
aom_highbd_fdct8x8(src_diff, coeff, diff_stride);
av1_highbd_quantize_fp(coeff, 64, x->skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
break;
case TX_4X4:
if (xd->lossless[seg_id]) {
av1_highbd_fwht4x4(src_diff, coeff, diff_stride);
} else {
aom_highbd_fdct4x4(src_diff, coeff, diff_stride);
}
av1_highbd_quantize_fp(coeff, 16, x->skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
break;
default: assert(0);
}
return;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
#if !CONFIG_PVQ
switch (tx_size) {
case TX_32X32:
fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride);
av1_quantize_fp_32x32(coeff, 1024, x->skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
break;
case TX_16X16:
aom_fdct16x16(src_diff, coeff, diff_stride);
av1_quantize_fp(coeff, 256, x->skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff, dqcoeff, pd->dequant,
eob, scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
break;
case TX_8X8:
av1_fdct8x8_quant(src_diff, diff_stride, coeff, 64, x->skip_block,
p->zbin, p->round_fp, p->quant_fp, p->quant_shift,
qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
break;
case TX_4X4:
if (xd->lossless[seg_id]) {
av1_fwht4x4(src_diff, coeff, diff_stride);
} else {
aom_fdct4x4(src_diff, coeff, diff_stride);
}
av1_quantize_fp(coeff, 16, x->skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff, dqcoeff, pd->dequant,
eob, scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
break;
default: assert(0); break;
}
#else // #if !CONFIG_PVQ
switch (tx_size) {
case TX_32X32:
// NOTE: Using x->use_lp32x32fdct == 1 will makes enc and dec mismatched,
// because decoder always uses x->use_lp32x32fdct == 0,
// forward transform of predicted image.
fdct32x32(0, pred, ref_coeff, diff_stride);
// forward transform of original image.
fdct32x32(0, src_int16, coeff, diff_stride);
break;
case TX_16X16:
aom_fdct16x16(pred, ref_coeff, diff_stride);
aom_fdct16x16(src_int16, coeff, diff_stride);
break;
case TX_8X8:
aom_fdct8x8(pred, ref_coeff, diff_stride);
aom_fdct8x8(src_int16, coeff, diff_stride);
break;
case TX_4X4:
if (xd->lossless[seg_id]) {
av1_fwht4x4(pred, ref_coeff, diff_stride);
av1_fwht4x4(src_int16, coeff, diff_stride);
} else {
aom_fdct4x4(pred, ref_coeff, diff_stride);
aom_fdct4x4(src_int16, coeff, diff_stride);
}
break;
default: assert(0); break;
}
// PVQ for inter mode block
if (!x->skip_block)
skip = av1_pvq_encode_helper(&x->daala_enc,
coeff, // target original vector
ref_coeff, // reference vector
dqcoeff, // de-quantized vector
eob, // End of Block marker
pd->dequant, // aom's quantizers
plane, // image plane
tx_size, // block size in log_2 - 2
tx_type,
&x->rate, // rate measured
x->pvq_speed,
pvq_info); // PVQ info for a block
x->pvq_skip[plane] = skip;
if (!skip) mbmi->skip = 0;
#endif // #if !CONFIG_PVQ
}
void av1_xform_quant(const AV1_COMMON *const cm, MACROBLOCK *x, int plane,
int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
#if !CONFIG_PVQ
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
#else
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
#endif
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block);
const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type);
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
int seg_id = xd->mi[0]->mbmi.segment_id;
FWD_TXFM_PARAM fwd_txfm_param;
#if CONFIG_AOM_QM
int is_intra = !is_inter_block(&xd->mi[0]->mbmi);
const qm_val_t *qmatrix = pd->seg_qmatrix[seg_id][is_intra][tx_size];
const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][is_intra][tx_size];
#endif
#if !CONFIG_PVQ
const int16_t *src_diff;
src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
#else
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
tran_low_t *ref_coeff = BLOCK_OFFSET(pd->pvq_ref_coeff, block);
uint8_t *src, *dst;
int16_t *src_int16, *pred;
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
int tx_blk_size;
int i, j;
int skip = 1;
PVQ_INFO *pvq_info = NULL;
(void)scan_order;
(void)qcoeff;
if (x->pvq_coded) {
assert(block < MAX_PVQ_BLOCKS_IN_SB);
pvq_info = &x->pvq[block][plane];
}
dst = &pd->dst.buf[4 * (blk_row * dst_stride + blk_col)];
src = &p->src.buf[4 * (blk_row * src_stride + blk_col)];
src_int16 = &p->src_int16[4 * (blk_row * diff_stride + blk_col)];
pred = &pd->pred[4 * (blk_row * diff_stride + blk_col)];
// transform block size in pixels
tx_blk_size = tx_size_1d[tx_size];
// copy uint8 orig and predicted block to int16 buffer
// in order to use existing VP10 transform functions
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++) {
src_int16[diff_stride * j + i] = src[src_stride * j + i];
pred[diff_stride * j + i] = dst[dst_stride * j + i];
}
#endif
fwd_txfm_param.tx_type = tx_type;
fwd_txfm_param.tx_size = tx_size;
fwd_txfm_param.fwd_txfm_opt = FWD_TXFM_OPT_NORMAL;
fwd_txfm_param.rd_transform = x->use_lp32x32fdct;
fwd_txfm_param.lossless = xd->lossless[seg_id];
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
switch (tx_size) {
case TX_32X32:
aom_highbd_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin,
p->round, p->quant, p->quant_shift, qcoeff,
dqcoeff, pd->dequant, eob, scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
break;
case TX_16X16:
aom_highbd_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
break;
case TX_8X8:
aom_highbd_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
break;
case TX_4X4:
aom_highbd_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
break;
default: assert(0);
}
return;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
#if !CONFIG_PVQ
fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
switch (tx_size) {
case TX_32X32:
aom_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
break;
case TX_16X16:
aom_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round, p->quant,
p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob,
scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
break;
case TX_8X8:
aom_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant,
p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob,
scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
break;
case TX_4X4:
aom_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant,
p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob,
scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
break;
default: assert(0); break;
}
#else // #if !CONFIG_PVQ
fwd_txfm_param.rd_transform = 0;
fwd_txfm(src_int16, coeff, diff_stride, &fwd_txfm_param);
fwd_txfm(pred, ref_coeff, diff_stride, &fwd_txfm_param);
// PVQ for inter mode block
if (!x->skip_block)
skip = av1_pvq_encode_helper(&x->daala_enc,
coeff, // target original vector
ref_coeff, // reference vector
dqcoeff, // de-quantized vector
eob, // End of Block marker
pd->dequant, // aom's quantizers
plane, // image plane
tx_size, // block size in log_2 - 2
tx_type,
&x->rate, // rate measured
x->pvq_speed,
pvq_info); // PVQ info for a block
x->pvq_skip[plane] = skip;
if (!skip) mbmi->skip = 0;
#endif // #if !CONFIG_PVQ
}
static void encode_block(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) {
struct encode_b_args *const args = arg;
const AV1_COMMON *const cm = args->cm;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx *const ctx = args->ctx;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint8_t *dst;
ENTROPY_CONTEXT *a, *l;
TX_TYPE tx_type = get_tx_type(pd->plane_type, xd, block);
#if CONFIG_PVQ
int tx_blk_size;
int i, j;
#endif
dst = &pd->dst.buf[4 * blk_row * pd->dst.stride + 4 * blk_col];
a = &ctx->ta[plane][blk_col];
l = &ctx->tl[plane][blk_row];
if (x->quant_fp) {
av1_xform_quant_fp(cm, x, plane, block, blk_row, blk_col, plane_bsize,
tx_size);
} else {
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize,
tx_size);
}
#if !CONFIG_PVQ
if (x->optimize) {
const int combined_ctx = combine_entropy_contexts(*a, *l);
*a = *l = optimize_b(cm, x, plane, block, tx_size, combined_ctx) > 0;
} else {
*a = *l = p->eobs[block] > 0;
}
if (p->eobs[block]) *(args->skip) = 0;
if (p->eobs[block] == 0) return;
#else
*a = *l = !x->pvq_skip[plane];
if (!x->pvq_skip[plane]) *(args->skip) = 0;
if (x->pvq_skip[plane]) return;
// transform block size in pixels
tx_blk_size = tx_size_1d[tx_size];
// Since av1 does not have separate function which does inverse transform
// but av1_inv_txfm_add_*x*() also does addition of predicted image to
// inverse transformed image,
// pass blank dummy image to av1_inv_txfm_add_*x*(), i.e. set dst as zeros
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++) dst[j * pd->dst.stride + i] = 0;
#endif
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
switch (tx_size) {
case TX_32X32:
av1_highbd_inv_txfm_add_32x32(dqcoeff, dst, pd->dst.stride,
p->eobs[block], xd->bd, tx_type);
break;
case TX_16X16:
av1_highbd_inv_txfm_add_16x16(dqcoeff, dst, pd->dst.stride,
p->eobs[block], xd->bd, tx_type);
break;
case TX_8X8:
av1_highbd_inv_txfm_add_8x8(dqcoeff, dst, pd->dst.stride,
p->eobs[block], xd->bd, tx_type);
break;
case TX_4X4:
// this is like av1_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
av1_highbd_inv_txfm_add_4x4(dqcoeff, dst, pd->dst.stride,
p->eobs[block], xd->bd, tx_type,
xd->lossless[xd->mi[0]->mbmi.segment_id]);
break;
default: assert(0 && "Invalid transform size"); break;
}
return;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
switch (tx_size) {
case TX_32X32:
av1_inv_txfm_add_32x32(dqcoeff, dst, pd->dst.stride, p->eobs[block],
tx_type);
break;
case TX_16X16:
av1_inv_txfm_add_16x16(dqcoeff, dst, pd->dst.stride, p->eobs[block],
tx_type);
break;
case TX_8X8:
av1_inv_txfm_add_8x8(dqcoeff, dst, pd->dst.stride, p->eobs[block],
tx_type);
break;
case TX_4X4:
// this is like av1_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
av1_inv_txfm_add_4x4(dqcoeff, dst, pd->dst.stride, p->eobs[block],
tx_type, xd->lossless[xd->mi[0]->mbmi.segment_id]);
break;
default: assert(0 && "Invalid transform size"); break;
}
}
typedef struct encode_block_pass1_args {
AV1_COMMON *cm;
MACROBLOCK *x;
} encode_block_pass1_args;
static void encode_block_pass1(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
encode_block_pass1_args *args = (encode_block_pass1_args *)arg;
AV1_COMMON *cm = args->cm;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint8_t *dst;
dst = &pd->dst.buf[4 * blk_row * pd->dst.stride + 4 * blk_col];
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size);
#if !CONFIG_PVQ
if (p->eobs[block] > 0) {
#else
if (!x->pvq_skip[plane]) {
#endif
#if CONFIG_PVQ
{
int tx_blk_size;
int i, j;
// transform block size in pixels
tx_blk_size = tx_size_1d[tx_size];
// Since av1 does not have separate function which does inverse transform
// but av1_inv_txfm_add_*x*() also does addition of predicted image to
// inverse transformed image,
// pass blank dummy image to av1_inv_txfm_add_*x*(), i.e. set dst as zeros
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++) dst[j * pd->dst.stride + i] = 0;
}
#endif
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
if (xd->lossless[0]) {
av1_highbd_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block],
xd->bd);
} else {
av1_highbd_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block],
xd->bd);
}
return;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
if (xd->lossless[0]) {
av1_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
} else {
av1_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
}
}
}
void av1_encode_sby_pass1(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) {
encode_block_pass1_args args = { cm, x };
av1_subtract_plane(x, bsize, 0);
av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
encode_block_pass1, &args);
}
void av1_encode_sb(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx ctx;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct encode_b_args arg = { cm, x, &ctx, &mbmi->skip };
int plane;
mbmi->skip = 1;
if (x->skip) return;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
#if !CONFIG_PVQ
av1_subtract_plane(x, bsize, plane);
#endif
if (x->optimize) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size;
av1_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane],
ctx.tl[plane]);
}
av1_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block,
&arg);
}
}
void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct encode_b_args *const args = arg;
MACROBLOCK *const x = args->x;
AV1_COMMON *cm = args->cm;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block);
const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type);
PREDICTION_MODE mode;
const int bwl = b_width_log2_lookup[plane_bsize];
const int bhl = b_height_log2_lookup[plane_bsize];
const int diff_stride = 4 * (1 << bwl);
uint8_t *src, *dst;
uint16_t *eob = &p->eobs[block];
int seg_id = xd->mi[0]->mbmi.segment_id;
#if CONFIG_AOM_QM
int is_intra = !is_inter_block(&xd->mi[0]->mbmi);
const qm_val_t *qmatrix = pd->seg_qmatrix[seg_id][is_intra][tx_size];
const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][is_intra][tx_size];
#endif
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
FWD_TXFM_PARAM fwd_txfm_param;
int16_t *src_diff;
int tx1d_size = tx_size_1d[tx_size];
#if CONFIG_PVQ
tran_low_t *ref_coeff = BLOCK_OFFSET(pd->pvq_ref_coeff, block);
int16_t *src_int16;
int tx_blk_size;
int i, j;
int16_t *pred = &pd->pred[4 * (blk_row * diff_stride + blk_col)];
int skip = 1;
PVQ_INFO *pvq_info = NULL;
(void)scan_order;
(void)qcoeff;
if (x->pvq_coded) {
assert(block < MAX_PVQ_BLOCKS_IN_SB);
pvq_info = &x->pvq[block][plane];
}
src_int16 = &p->src_int16[4 * (blk_row * diff_stride + blk_col)];
#endif
src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
fwd_txfm_param.tx_type = tx_type;
fwd_txfm_param.tx_size = tx_size;
fwd_txfm_param.fwd_txfm_opt = FWD_TXFM_OPT_NORMAL;
fwd_txfm_param.rd_transform = x->use_lp32x32fdct;
fwd_txfm_param.lossless = xd->lossless[seg_id];
dst = &pd->dst.buf[4 * (blk_row * dst_stride + blk_col)];
src = &p->src.buf[4 * (blk_row * src_stride + blk_col)];
mode = plane == 0 ? get_y_mode(xd->mi[0], block) : mbmi->uv_mode;
av1_predict_intra_block(xd, bwl, bhl, tx_size, mode, dst, dst_stride, dst,
dst_stride, blk_col, blk_row, plane);
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
aom_highbd_subtract_block(tx1d_size, tx1d_size, src_diff, diff_stride, src,
src_stride, dst, dst_stride, xd->bd);
highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
switch (tx_size) {
case TX_32X32:
aom_highbd_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin,
p->round, p->quant, p->quant_shift, qcoeff,
dqcoeff, pd->dequant, eob, scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
if (*eob)
av1_highbd_inv_txfm_add_32x32(dqcoeff, dst, dst_stride, *eob, xd->bd,
tx_type);
break;
case TX_16X16:
aom_highbd_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
if (*eob)
av1_highbd_inv_txfm_add_16x16(dqcoeff, dst, dst_stride, *eob, xd->bd,
tx_type);
break;
case TX_8X8:
aom_highbd_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
if (*eob)
av1_highbd_inv_txfm_add_8x8(dqcoeff, dst, dst_stride, *eob, xd->bd,
tx_type);
break;
case TX_4X4:
aom_highbd_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
if (*eob)
// this is like av1_short_idct4x4 but has a special case around
// eob<=1 which is significant (not just an optimization) for the
// lossless case.
av1_highbd_inv_txfm_add_4x4(dqcoeff, dst, dst_stride, *eob, xd->bd,
tx_type, xd->lossless[seg_id]);
break;
default: assert(0); return;
}
if (*eob) *(args->skip) = 0;
return;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
aom_subtract_block(tx1d_size, tx1d_size, src_diff, diff_stride, src,
src_stride, dst, dst_stride);
#if !CONFIG_PVQ
fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
switch (tx_size) {
case TX_32X32:
aom_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
if (*eob) av1_inv_txfm_add_32x32(dqcoeff, dst, dst_stride, *eob, tx_type);
break;
case TX_16X16:
aom_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round, p->quant,
p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob,
scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
if (*eob) av1_inv_txfm_add_16x16(dqcoeff, dst, dst_stride, *eob, tx_type);
break;
case TX_8X8:
aom_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant,
p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob,
scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
if (*eob) av1_inv_txfm_add_8x8(dqcoeff, dst, dst_stride, *eob, tx_type);
break;
case TX_4X4:
aom_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant,
p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob,
scan_order->scan,
#if !CONFIG_AOM_QM
scan_order->iscan);
#else
scan_order->iscan, qmatrix, iqmatrix);
#endif
if (*eob) {
// this is like av1_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
av1_inv_txfm_add_4x4(dqcoeff, dst, dst_stride, *eob, tx_type,
xd->lossless[seg_id]);
}
break;
default: assert(0); break;
}
#else // #if !CONFIG_PVQ
// transform block size in pixels
tx_blk_size = tx_size_1d[tx_size];
// copy uint8 orig and predicted block to int16 buffer
// in order to use existing VP10 transform functions
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++) {
src_int16[diff_stride * j + i] = src[src_stride * j + i];
pred[diff_stride * j + i] = dst[dst_stride * j + i];
}
fwd_txfm_param.rd_transform = 0;
fwd_txfm(src_int16, coeff, diff_stride, &fwd_txfm_param);
fwd_txfm(pred, ref_coeff, diff_stride, &fwd_txfm_param);
// PVQ for intra mode block
if (!x->skip_block)
skip = av1_pvq_encode_helper(&x->daala_enc,
coeff, // target original vector
ref_coeff, // reference vector
dqcoeff, // de-quantized vector
eob, // End of Block marker
pd->dequant, // aom's quantizers
plane, // image plane
tx_size, // block size in log_2 - 2
tx_type,
&x->rate, // rate measured
x->pvq_speed,
pvq_info); // PVQ info for a block
x->pvq_skip[plane] = skip;
if (!skip) mbmi->skip = 0;
// Since av1 does not have separate function which does inverse transform
// but av1_inv_txfm_add_*x*() also does addition of predicted image to
// inverse transformed image,
// pass blank dummy image to av1_inv_txfm_add_*x*(), i.e. set dst as zeros
if (!skip) {
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++) dst[j * dst_stride + i] = 0;
switch (tx_size) {
case TX_32X32:
av1_inv_txfm_add_32x32(dqcoeff, dst, dst_stride, *eob, tx_type);
break;
case TX_16X16:
av1_inv_txfm_add_16x16(dqcoeff, dst, dst_stride, *eob, tx_type);
break;
case TX_8X8:
av1_inv_txfm_add_8x8(dqcoeff, dst, dst_stride, *eob, tx_type);
break;
case TX_4X4:
// this is like av1_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
av1_inv_txfm_add_4x4(dqcoeff, dst, dst_stride, *eob, tx_type,
xd->lossless[seg_id]);
break;
default: assert(0); break;
}
}
#endif // #if !CONFIG_PVQ
#if !CONFIG_PVQ
if (*eob) *(args->skip) = 0;
#else
// Note : *(args->skip) == mbmi->skip
#endif
}
void av1_encode_intra_block_plane(AV1_COMMON *cm, MACROBLOCK *x,
BLOCK_SIZE bsize, int plane) {
const MACROBLOCKD *const xd = &x->e_mbd;
struct encode_b_args arg = { cm, x, NULL, &xd->mi[0]->mbmi.skip };
av1_foreach_transformed_block_in_plane(xd, bsize, plane,
av1_encode_block_intra, &arg);
}
#if CONFIG_PVQ
int av1_pvq_encode_helper(daala_enc_ctx *daala_enc, tran_low_t *const coeff,
tran_low_t *ref_coeff, tran_low_t *const dqcoeff,
uint16_t *eob, const int16_t *quant, int plane,
int tx_size, TX_TYPE tx_type, int *rate, int speed,
PVQ_INFO *pvq_info) {
const int tx_blk_size = tx_size_1d[tx_size];
int skip;
// TODO(yushin): Enable this later, when pvq_qm_q4 is available in AOM.
// int pvq_dc_quant = OD_MAXI(1,
// quant * daala_enc->state.pvq_qm_q4[plane][od_qm_get_index(tx_size, 0)] >>
// 4);
int quant_shift = tx_size == TX_32X32 ? 1 : 0;
// DC quantizer for PVQ
int pvq_dc_quant = OD_MAXI(1, quant[0] >> quant_shift);
int tell;
int has_dc_skip = 1;
int i;
int off = od_qm_offset(tx_size, plane ? 1 : 0);
#if PVQ_CHROMA_RD
double save_pvq_lambda;
#endif
DECLARE_ALIGNED(16, int16_t, coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, int16_t, ref_coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, int16_t, dqcoeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, int32_t, in_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, int32_t, ref_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, int32_t, out_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
*eob = 0;
tell = od_ec_enc_tell_frac(&daala_enc->ec);
// Change coefficient ordering for pvq encoding.
od_raster_to_coding_order(coeff_pvq, tx_blk_size, tx_type, coeff,
tx_blk_size);
od_raster_to_coding_order(ref_coeff_pvq, tx_blk_size, tx_type, ref_coeff,
tx_blk_size);
// copy int16 inputs to int32
for (i = 0; i < tx_blk_size * tx_blk_size; i++) {
ref_int32[i] = ref_coeff_pvq[i];
in_int32[i] = coeff_pvq[i];
}
#if PVQ_CHROMA_RD
if (plane != 0) {
save_pvq_lambda = daala_enc->pvq_norm_lambda;
daala_enc->pvq_norm_lambda *= 0.8;
}
#endif
if (abs(in_int32[0] - ref_int32[0]) < pvq_dc_quant * 141 / 256) { /* 0.55 */
out_int32[0] = 0;
} else {
out_int32[0] = OD_DIV_R0(in_int32[0] - ref_int32[0], pvq_dc_quant);
}
skip = od_pvq_encode(
daala_enc, ref_int32, in_int32, out_int32,
(int)quant[0] >> quant_shift, // scale/quantizer
(int)quant[1] >> quant_shift, // scale/quantizer
// TODO(yushin): Instead of 0,
// use daala_enc->use_activity_masking for activity masking.
plane, tx_size, OD_PVQ_BETA[0][plane][tx_size],
OD_ROBUST_STREAM,
0, // is_keyframe,
0, 0, 0, // q_scaling, bx, by,
daala_enc->state.qm + off, daala_enc->state.qm_inv + off,
speed, // speed
pvq_info);
if (skip && pvq_info) assert(pvq_info->ac_dc_coded == 0);
if (!skip && pvq_info) assert(pvq_info->ac_dc_coded > 0);
// Encode residue of DC coeff, if required.
if (!has_dc_skip || out_int32[0]) {
generic_encode(&daala_enc->ec, &daala_enc->state.adapt.model_dc[plane],
abs(out_int32[0]) - has_dc_skip, -1,
&daala_enc->state.adapt.ex_dc[plane][tx_size][0], 2);
}
if (out_int32[0]) {
od_ec_enc_bits(&daala_enc->ec, out_int32[0] < 0, 1);
skip = 0;
}
// need to save quantized residue of DC coeff
// so that final pvq bitstream writing can know whether DC is coded.
if (pvq_info) pvq_info->dq_dc_residue = out_int32[0];
out_int32[0] = out_int32[0] * pvq_dc_quant;
out_int32[0] += ref_int32[0];
// copy int32 result back to int16
for (i = 0; i < tx_blk_size * tx_blk_size; i++) dqcoeff_pvq[i] = out_int32[i];
// Back to original coefficient order
od_coding_order_to_raster(dqcoeff, tx_blk_size, tx_type, dqcoeff_pvq,
tx_blk_size);
*eob = tx_blk_size * tx_blk_size;
*rate = (od_ec_enc_tell_frac(&daala_enc->ec) - tell)
<< (AV1_PROB_COST_SHIFT - OD_BITRES);
assert(*rate >= 0);
#if PVQ_CHROMA_RD
if (plane != 0) daala_enc->pvq_norm_lambda = save_pvq_lambda;
#endif
return skip;
}
void av1_store_pvq_enc_info(PVQ_INFO *pvq_info, int *qg, int *theta,
int *max_theta, int *k, od_coeff *y, int nb_bands,
const int *off, int *size, int skip_rest,
int skip_dir,
int bs) { // block size in log_2 -2
int i;
const int tx_blk_size = tx_size_1d[bs];
for (i = 0; i < nb_bands; i++) {
pvq_info->qg[i] = qg[i];
pvq_info->theta[i] = theta[i];
pvq_info->max_theta[i] = max_theta[i];
pvq_info->k[i] = k[i];
pvq_info->off[i] = off[i];
pvq_info->size[i] = size[i];
}
memcpy(pvq_info->y, y, tx_blk_size * tx_blk_size * sizeof(od_coeff));
pvq_info->nb_bands = nb_bands;
pvq_info->skip_rest = skip_rest;
pvq_info->skip_dir = skip_dir;
pvq_info->bs = bs;
}
#endif