|  | /* | 
|  | *  Copyright 2011 The LibYuv Project Authors. All rights reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS. All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "libyuv/row.h" | 
|  |  | 
|  | #include <string.h>  // For memcpy and memset. | 
|  |  | 
|  | #include "libyuv/basic_types.h" | 
|  |  | 
|  | #ifdef __cplusplus | 
|  | namespace libyuv { | 
|  | extern "C" { | 
|  | #endif | 
|  |  | 
|  | // llvm x86 is poor at ternary operator, so use branchless min/max. | 
|  |  | 
|  | #define USE_BRANCHLESS 1 | 
|  | #if USE_BRANCHLESS | 
|  | static __inline int32 clamp0(int32 v) { | 
|  | return ((-(v) >> 31) & (v)); | 
|  | } | 
|  |  | 
|  | static __inline int32 clamp255(int32 v) { | 
|  | return (((255 - (v)) >> 31) | (v)) & 255; | 
|  | } | 
|  |  | 
|  | static __inline uint32 Clamp(int32 val) { | 
|  | int v = clamp0(val); | 
|  | return (uint32)(clamp255(v)); | 
|  | } | 
|  |  | 
|  | static __inline uint32 Abs(int32 v) { | 
|  | int m = v >> 31; | 
|  | return (v + m) ^ m; | 
|  | } | 
|  | #else  // USE_BRANCHLESS | 
|  | static __inline int32 clamp0(int32 v) { | 
|  | return (v < 0) ? 0 : v; | 
|  | } | 
|  |  | 
|  | static __inline int32 clamp255(int32 v) { | 
|  | return (v > 255) ? 255 : v; | 
|  | } | 
|  |  | 
|  | static __inline uint32 Clamp(int32 val) { | 
|  | int v = clamp0(val); | 
|  | return (uint32)(clamp255(v)); | 
|  | } | 
|  |  | 
|  | static __inline uint32 Abs(int32 v) { | 
|  | return (v < 0) ? -v : v; | 
|  | } | 
|  | #endif  // USE_BRANCHLESS | 
|  |  | 
|  | #ifdef LIBYUV_LITTLE_ENDIAN | 
|  | #define WRITEWORD(p, v) *(uint32*)(p) = v | 
|  | #else | 
|  | static inline void WRITEWORD(uint8* p, uint32 v) { | 
|  | p[0] = (uint8)(v & 255); | 
|  | p[1] = (uint8)((v >> 8) & 255); | 
|  | p[2] = (uint8)((v >> 16) & 255); | 
|  | p[3] = (uint8)((v >> 24) & 255); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void RGB24ToARGBRow_C(const uint8* src_rgb24, uint8* dst_argb, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width; ++x) { | 
|  | uint8 b = src_rgb24[0]; | 
|  | uint8 g = src_rgb24[1]; | 
|  | uint8 r = src_rgb24[2]; | 
|  | dst_argb[0] = b; | 
|  | dst_argb[1] = g; | 
|  | dst_argb[2] = r; | 
|  | dst_argb[3] = 255u; | 
|  | dst_argb += 4; | 
|  | src_rgb24 += 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | void RAWToARGBRow_C(const uint8* src_raw, uint8* dst_argb, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width; ++x) { | 
|  | uint8 r = src_raw[0]; | 
|  | uint8 g = src_raw[1]; | 
|  | uint8 b = src_raw[2]; | 
|  | dst_argb[0] = b; | 
|  | dst_argb[1] = g; | 
|  | dst_argb[2] = r; | 
|  | dst_argb[3] = 255u; | 
|  | dst_argb += 4; | 
|  | src_raw += 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | void RGB565ToARGBRow_C(const uint8* src_rgb565, uint8* dst_argb, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width; ++x) { | 
|  | uint8 b = src_rgb565[0] & 0x1f; | 
|  | uint8 g = (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3); | 
|  | uint8 r = src_rgb565[1] >> 3; | 
|  | dst_argb[0] = (b << 3) | (b >> 2); | 
|  | dst_argb[1] = (g << 2) | (g >> 4); | 
|  | dst_argb[2] = (r << 3) | (r >> 2); | 
|  | dst_argb[3] = 255u; | 
|  | dst_argb += 4; | 
|  | src_rgb565 += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARGB1555ToARGBRow_C(const uint8* src_argb1555, uint8* dst_argb, | 
|  | int width) { | 
|  | int x; | 
|  | for (x = 0; x < width; ++x) { | 
|  | uint8 b = src_argb1555[0] & 0x1f; | 
|  | uint8 g = (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3); | 
|  | uint8 r = (src_argb1555[1] & 0x7c) >> 2; | 
|  | uint8 a = src_argb1555[1] >> 7; | 
|  | dst_argb[0] = (b << 3) | (b >> 2); | 
|  | dst_argb[1] = (g << 3) | (g >> 2); | 
|  | dst_argb[2] = (r << 3) | (r >> 2); | 
|  | dst_argb[3] = -a; | 
|  | dst_argb += 4; | 
|  | src_argb1555 += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARGB4444ToARGBRow_C(const uint8* src_argb4444, uint8* dst_argb, | 
|  | int width) { | 
|  | int x; | 
|  | for (x = 0; x < width; ++x) { | 
|  | uint8 b = src_argb4444[0] & 0x0f; | 
|  | uint8 g = src_argb4444[0] >> 4; | 
|  | uint8 r = src_argb4444[1] & 0x0f; | 
|  | uint8 a = src_argb4444[1] >> 4; | 
|  | dst_argb[0] = (b << 4) | b; | 
|  | dst_argb[1] = (g << 4) | g; | 
|  | dst_argb[2] = (r << 4) | r; | 
|  | dst_argb[3] = (a << 4) | a; | 
|  | dst_argb += 4; | 
|  | src_argb4444 += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARGBToRGB24Row_C(const uint8* src_argb, uint8* dst_rgb, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width; ++x) { | 
|  | uint8 b = src_argb[0]; | 
|  | uint8 g = src_argb[1]; | 
|  | uint8 r = src_argb[2]; | 
|  | dst_rgb[0] = b; | 
|  | dst_rgb[1] = g; | 
|  | dst_rgb[2] = r; | 
|  | dst_rgb += 3; | 
|  | src_argb += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARGBToRAWRow_C(const uint8* src_argb, uint8* dst_rgb, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width; ++x) { | 
|  | uint8 b = src_argb[0]; | 
|  | uint8 g = src_argb[1]; | 
|  | uint8 r = src_argb[2]; | 
|  | dst_rgb[0] = r; | 
|  | dst_rgb[1] = g; | 
|  | dst_rgb[2] = b; | 
|  | dst_rgb += 3; | 
|  | src_argb += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARGBToRGB565Row_C(const uint8* src_argb, uint8* dst_rgb, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | uint8 b0 = src_argb[0] >> 3; | 
|  | uint8 g0 = src_argb[1] >> 2; | 
|  | uint8 r0 = src_argb[2] >> 3; | 
|  | uint8 b1 = src_argb[4] >> 3; | 
|  | uint8 g1 = src_argb[5] >> 2; | 
|  | uint8 r1 = src_argb[6] >> 3; | 
|  | WRITEWORD(dst_rgb, b0 | (g0 << 5) | (r0 << 11) | | 
|  | (b1 << 16) | (g1 << 21) | (r1 << 27)); | 
|  | dst_rgb += 4; | 
|  | src_argb += 8; | 
|  | } | 
|  | if (width & 1) { | 
|  | uint8 b0 = src_argb[0] >> 3; | 
|  | uint8 g0 = src_argb[1] >> 2; | 
|  | uint8 r0 = src_argb[2] >> 3; | 
|  | *(uint16*)(dst_rgb) = b0 | (g0 << 5) | (r0 << 11); | 
|  | } | 
|  | } | 
|  |  | 
|  | // dither4 is a row of 4 values from 4x4 dither matrix. | 
|  | // The 4x4 matrix contains values to increase RGB.  When converting to | 
|  | // fewer bits (565) this provides an ordered dither. | 
|  | // The order in the 4x4 matrix in first byte is upper left. | 
|  | // The 4 values are passed as an int, then referenced as an array, so | 
|  | // endian will not affect order of the original matrix.  But the dither4 | 
|  | // will containing the first pixel in the lower byte for little endian | 
|  | // or the upper byte for big endian. | 
|  | void ARGBToRGB565DitherRow_C(const uint8* src_argb, uint8* dst_rgb, | 
|  | const uint32 dither4, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | int dither0 = ((const unsigned char*)(&dither4))[x & 3]; | 
|  | int dither1 = ((const unsigned char*)(&dither4))[(x + 1) & 3]; | 
|  | uint8 b0 = clamp255(src_argb[0] + dither0) >> 3; | 
|  | uint8 g0 = clamp255(src_argb[1] + dither0) >> 2; | 
|  | uint8 r0 = clamp255(src_argb[2] + dither0) >> 3; | 
|  | uint8 b1 = clamp255(src_argb[4] + dither1) >> 3; | 
|  | uint8 g1 = clamp255(src_argb[5] + dither1) >> 2; | 
|  | uint8 r1 = clamp255(src_argb[6] + dither1) >> 3; | 
|  | WRITEWORD(dst_rgb, b0 | (g0 << 5) | (r0 << 11) | | 
|  | (b1 << 16) | (g1 << 21) | (r1 << 27)); | 
|  | dst_rgb += 4; | 
|  | src_argb += 8; | 
|  | } | 
|  | if (width & 1) { | 
|  | int dither0 = ((const unsigned char*)(&dither4))[(width - 1) & 3]; | 
|  | uint8 b0 = clamp255(src_argb[0] + dither0) >> 3; | 
|  | uint8 g0 = clamp255(src_argb[1] + dither0) >> 2; | 
|  | uint8 r0 = clamp255(src_argb[2] + dither0) >> 3; | 
|  | *(uint16*)(dst_rgb) = b0 | (g0 << 5) | (r0 << 11); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARGBToARGB1555Row_C(const uint8* src_argb, uint8* dst_rgb, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | uint8 b0 = src_argb[0] >> 3; | 
|  | uint8 g0 = src_argb[1] >> 3; | 
|  | uint8 r0 = src_argb[2] >> 3; | 
|  | uint8 a0 = src_argb[3] >> 7; | 
|  | uint8 b1 = src_argb[4] >> 3; | 
|  | uint8 g1 = src_argb[5] >> 3; | 
|  | uint8 r1 = src_argb[6] >> 3; | 
|  | uint8 a1 = src_argb[7] >> 7; | 
|  | *(uint32*)(dst_rgb) = | 
|  | b0 | (g0 << 5) | (r0 << 10) | (a0 << 15) | | 
|  | (b1 << 16) | (g1 << 21) | (r1 << 26) | (a1 << 31); | 
|  | dst_rgb += 4; | 
|  | src_argb += 8; | 
|  | } | 
|  | if (width & 1) { | 
|  | uint8 b0 = src_argb[0] >> 3; | 
|  | uint8 g0 = src_argb[1] >> 3; | 
|  | uint8 r0 = src_argb[2] >> 3; | 
|  | uint8 a0 = src_argb[3] >> 7; | 
|  | *(uint16*)(dst_rgb) = | 
|  | b0 | (g0 << 5) | (r0 << 10) | (a0 << 15); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARGBToARGB4444Row_C(const uint8* src_argb, uint8* dst_rgb, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | uint8 b0 = src_argb[0] >> 4; | 
|  | uint8 g0 = src_argb[1] >> 4; | 
|  | uint8 r0 = src_argb[2] >> 4; | 
|  | uint8 a0 = src_argb[3] >> 4; | 
|  | uint8 b1 = src_argb[4] >> 4; | 
|  | uint8 g1 = src_argb[5] >> 4; | 
|  | uint8 r1 = src_argb[6] >> 4; | 
|  | uint8 a1 = src_argb[7] >> 4; | 
|  | *(uint32*)(dst_rgb) = | 
|  | b0 | (g0 << 4) | (r0 << 8) | (a0 << 12) | | 
|  | (b1 << 16) | (g1 << 20) | (r1 << 24) | (a1 << 28); | 
|  | dst_rgb += 4; | 
|  | src_argb += 8; | 
|  | } | 
|  | if (width & 1) { | 
|  | uint8 b0 = src_argb[0] >> 4; | 
|  | uint8 g0 = src_argb[1] >> 4; | 
|  | uint8 r0 = src_argb[2] >> 4; | 
|  | uint8 a0 = src_argb[3] >> 4; | 
|  | *(uint16*)(dst_rgb) = | 
|  | b0 | (g0 << 4) | (r0 << 8) | (a0 << 12); | 
|  | } | 
|  | } | 
|  |  | 
|  | static __inline int RGBToY(uint8 r, uint8 g, uint8 b) { | 
|  | return (66 * r + 129 * g +  25 * b + 0x1080) >> 8; | 
|  | } | 
|  |  | 
|  | static __inline int RGBToU(uint8 r, uint8 g, uint8 b) { | 
|  | return (112 * b - 74 * g - 38 * r + 0x8080) >> 8; | 
|  | } | 
|  | static __inline int RGBToV(uint8 r, uint8 g, uint8 b) { | 
|  | return (112 * r - 94 * g - 18 * b + 0x8080) >> 8; | 
|  | } | 
|  |  | 
|  | #define MAKEROWY(NAME, R, G, B, BPP) \ | 
|  | void NAME ## ToYRow_C(const uint8* src_argb0, uint8* dst_y, int width) {       \ | 
|  | int x;                                                                       \ | 
|  | for (x = 0; x < width; ++x) {                                                \ | 
|  | dst_y[0] = RGBToY(src_argb0[R], src_argb0[G], src_argb0[B]);               \ | 
|  | src_argb0 += BPP;                                                          \ | 
|  | dst_y += 1;                                                                \ | 
|  | }                                                                            \ | 
|  | }                                                                              \ | 
|  | void NAME ## ToUVRow_C(const uint8* src_rgb0, int src_stride_rgb,              \ | 
|  | uint8* dst_u, uint8* dst_v, int width) {                \ | 
|  | const uint8* src_rgb1 = src_rgb0 + src_stride_rgb;                           \ | 
|  | int x;                                                                       \ | 
|  | for (x = 0; x < width - 1; x += 2) {                                         \ | 
|  | uint8 ab = (src_rgb0[B] + src_rgb0[B + BPP] +                              \ | 
|  | src_rgb1[B] + src_rgb1[B + BPP]) >> 2;                          \ | 
|  | uint8 ag = (src_rgb0[G] + src_rgb0[G + BPP] +                              \ | 
|  | src_rgb1[G] + src_rgb1[G + BPP]) >> 2;                          \ | 
|  | uint8 ar = (src_rgb0[R] + src_rgb0[R + BPP] +                              \ | 
|  | src_rgb1[R] + src_rgb1[R + BPP]) >> 2;                          \ | 
|  | dst_u[0] = RGBToU(ar, ag, ab);                                             \ | 
|  | dst_v[0] = RGBToV(ar, ag, ab);                                             \ | 
|  | src_rgb0 += BPP * 2;                                                       \ | 
|  | src_rgb1 += BPP * 2;                                                       \ | 
|  | dst_u += 1;                                                                \ | 
|  | dst_v += 1;                                                                \ | 
|  | }                                                                            \ | 
|  | if (width & 1) {                                                             \ | 
|  | uint8 ab = (src_rgb0[B] + src_rgb1[B]) >> 1;                               \ | 
|  | uint8 ag = (src_rgb0[G] + src_rgb1[G]) >> 1;                               \ | 
|  | uint8 ar = (src_rgb0[R] + src_rgb1[R]) >> 1;                               \ | 
|  | dst_u[0] = RGBToU(ar, ag, ab);                                             \ | 
|  | dst_v[0] = RGBToV(ar, ag, ab);                                             \ | 
|  | }                                                                            \ | 
|  | } | 
|  |  | 
|  | MAKEROWY(ARGB, 2, 1, 0, 4) | 
|  | MAKEROWY(BGRA, 1, 2, 3, 4) | 
|  | MAKEROWY(ABGR, 0, 1, 2, 4) | 
|  | MAKEROWY(RGBA, 3, 2, 1, 4) | 
|  | MAKEROWY(RGB24, 2, 1, 0, 3) | 
|  | MAKEROWY(RAW, 0, 1, 2, 3) | 
|  | #undef MAKEROWY | 
|  |  | 
|  | // JPeg uses a variation on BT.601-1 full range | 
|  | // y =  0.29900 * r + 0.58700 * g + 0.11400 * b | 
|  | // u = -0.16874 * r - 0.33126 * g + 0.50000 * b  + center | 
|  | // v =  0.50000 * r - 0.41869 * g - 0.08131 * b  + center | 
|  | // BT.601 Mpeg range uses: | 
|  | // b 0.1016 * 255 = 25.908 = 25 | 
|  | // g 0.5078 * 255 = 129.489 = 129 | 
|  | // r 0.2578 * 255 = 65.739 = 66 | 
|  | // JPeg 8 bit Y (not used): | 
|  | // b 0.11400 * 256 = 29.184 = 29 | 
|  | // g 0.58700 * 256 = 150.272 = 150 | 
|  | // r 0.29900 * 256 = 76.544 = 77 | 
|  | // JPeg 7 bit Y: | 
|  | // b 0.11400 * 128 = 14.592 = 15 | 
|  | // g 0.58700 * 128 = 75.136 = 75 | 
|  | // r 0.29900 * 128 = 38.272 = 38 | 
|  | // JPeg 8 bit U: | 
|  | // b  0.50000 * 255 = 127.5 = 127 | 
|  | // g -0.33126 * 255 = -84.4713 = -84 | 
|  | // r -0.16874 * 255 = -43.0287 = -43 | 
|  | // JPeg 8 bit V: | 
|  | // b -0.08131 * 255 = -20.73405 = -20 | 
|  | // g -0.41869 * 255 = -106.76595 = -107 | 
|  | // r  0.50000 * 255 = 127.5 = 127 | 
|  |  | 
|  | static __inline int RGBToYJ(uint8 r, uint8 g, uint8 b) { | 
|  | return (38 * r + 75 * g +  15 * b + 64) >> 7; | 
|  | } | 
|  |  | 
|  | static __inline int RGBToUJ(uint8 r, uint8 g, uint8 b) { | 
|  | return (127 * b - 84 * g - 43 * r + 0x8080) >> 8; | 
|  | } | 
|  | static __inline int RGBToVJ(uint8 r, uint8 g, uint8 b) { | 
|  | return (127 * r - 107 * g - 20 * b + 0x8080) >> 8; | 
|  | } | 
|  |  | 
|  | #define AVGB(a, b) (((a) + (b) + 1) >> 1) | 
|  |  | 
|  | #define MAKEROWYJ(NAME, R, G, B, BPP) \ | 
|  | void NAME ## ToYJRow_C(const uint8* src_argb0, uint8* dst_y, int width) {      \ | 
|  | int x;                                                                       \ | 
|  | for (x = 0; x < width; ++x) {                                                \ | 
|  | dst_y[0] = RGBToYJ(src_argb0[R], src_argb0[G], src_argb0[B]);              \ | 
|  | src_argb0 += BPP;                                                          \ | 
|  | dst_y += 1;                                                                \ | 
|  | }                                                                            \ | 
|  | }                                                                              \ | 
|  | void NAME ## ToUVJRow_C(const uint8* src_rgb0, int src_stride_rgb,             \ | 
|  | uint8* dst_u, uint8* dst_v, int width) {               \ | 
|  | const uint8* src_rgb1 = src_rgb0 + src_stride_rgb;                           \ | 
|  | int x;                                                                       \ | 
|  | for (x = 0; x < width - 1; x += 2) {                                         \ | 
|  | uint8 ab = AVGB(AVGB(src_rgb0[B], src_rgb1[B]),                            \ | 
|  | AVGB(src_rgb0[B + BPP], src_rgb1[B + BPP]));               \ | 
|  | uint8 ag = AVGB(AVGB(src_rgb0[G], src_rgb1[G]),                            \ | 
|  | AVGB(src_rgb0[G + BPP], src_rgb1[G + BPP]));               \ | 
|  | uint8 ar = AVGB(AVGB(src_rgb0[R], src_rgb1[R]),                            \ | 
|  | AVGB(src_rgb0[R + BPP], src_rgb1[R + BPP]));               \ | 
|  | dst_u[0] = RGBToUJ(ar, ag, ab);                                            \ | 
|  | dst_v[0] = RGBToVJ(ar, ag, ab);                                            \ | 
|  | src_rgb0 += BPP * 2;                                                       \ | 
|  | src_rgb1 += BPP * 2;                                                       \ | 
|  | dst_u += 1;                                                                \ | 
|  | dst_v += 1;                                                                \ | 
|  | }                                                                            \ | 
|  | if (width & 1) {                                                             \ | 
|  | uint8 ab = AVGB(src_rgb0[B], src_rgb1[B]);                                 \ | 
|  | uint8 ag = AVGB(src_rgb0[G], src_rgb1[G]);                                 \ | 
|  | uint8 ar = AVGB(src_rgb0[R], src_rgb1[R]);                                 \ | 
|  | dst_u[0] = RGBToUJ(ar, ag, ab);                                            \ | 
|  | dst_v[0] = RGBToVJ(ar, ag, ab);                                            \ | 
|  | }                                                                            \ | 
|  | } | 
|  |  | 
|  | MAKEROWYJ(ARGB, 2, 1, 0, 4) | 
|  | #undef MAKEROWYJ | 
|  |  | 
|  | void ARGBToUVJ422Row_C(const uint8* src_argb, | 
|  | uint8* dst_u, uint8* dst_v, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | uint8 ab = (src_argb[0] + src_argb[4]) >> 1; | 
|  | uint8 ag = (src_argb[1] + src_argb[5]) >> 1; | 
|  | uint8 ar = (src_argb[2] + src_argb[6]) >> 1; | 
|  | dst_u[0] = RGBToUJ(ar, ag, ab); | 
|  | dst_v[0] = RGBToVJ(ar, ag, ab); | 
|  | src_argb += 8; | 
|  | dst_u += 1; | 
|  | dst_v += 1; | 
|  | } | 
|  | if (width & 1) { | 
|  | uint8 ab = src_argb[0]; | 
|  | uint8 ag = src_argb[1]; | 
|  | uint8 ar = src_argb[2]; | 
|  | dst_u[0] = RGBToUJ(ar, ag, ab); | 
|  | dst_v[0] = RGBToVJ(ar, ag, ab); | 
|  | } | 
|  | } | 
|  |  | 
|  | void RGB565ToYRow_C(const uint8* src_rgb565, uint8* dst_y, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width; ++x) { | 
|  | uint8 b = src_rgb565[0] & 0x1f; | 
|  | uint8 g = (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3); | 
|  | uint8 r = src_rgb565[1] >> 3; | 
|  | b = (b << 3) | (b >> 2); | 
|  | g = (g << 2) | (g >> 4); | 
|  | r = (r << 3) | (r >> 2); | 
|  | dst_y[0] = RGBToY(r, g, b); | 
|  | src_rgb565 += 2; | 
|  | dst_y += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARGB1555ToYRow_C(const uint8* src_argb1555, uint8* dst_y, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width; ++x) { | 
|  | uint8 b = src_argb1555[0] & 0x1f; | 
|  | uint8 g = (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3); | 
|  | uint8 r = (src_argb1555[1] & 0x7c) >> 2; | 
|  | b = (b << 3) | (b >> 2); | 
|  | g = (g << 3) | (g >> 2); | 
|  | r = (r << 3) | (r >> 2); | 
|  | dst_y[0] = RGBToY(r, g, b); | 
|  | src_argb1555 += 2; | 
|  | dst_y += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARGB4444ToYRow_C(const uint8* src_argb4444, uint8* dst_y, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width; ++x) { | 
|  | uint8 b = src_argb4444[0] & 0x0f; | 
|  | uint8 g = src_argb4444[0] >> 4; | 
|  | uint8 r = src_argb4444[1] & 0x0f; | 
|  | b = (b << 4) | b; | 
|  | g = (g << 4) | g; | 
|  | r = (r << 4) | r; | 
|  | dst_y[0] = RGBToY(r, g, b); | 
|  | src_argb4444 += 2; | 
|  | dst_y += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | void RGB565ToUVRow_C(const uint8* src_rgb565, int src_stride_rgb565, | 
|  | uint8* dst_u, uint8* dst_v, int width) { | 
|  | const uint8* next_rgb565 = src_rgb565 + src_stride_rgb565; | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | uint8 b0 = src_rgb565[0] & 0x1f; | 
|  | uint8 g0 = (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3); | 
|  | uint8 r0 = src_rgb565[1] >> 3; | 
|  | uint8 b1 = src_rgb565[2] & 0x1f; | 
|  | uint8 g1 = (src_rgb565[2] >> 5) | ((src_rgb565[3] & 0x07) << 3); | 
|  | uint8 r1 = src_rgb565[3] >> 3; | 
|  | uint8 b2 = next_rgb565[0] & 0x1f; | 
|  | uint8 g2 = (next_rgb565[0] >> 5) | ((next_rgb565[1] & 0x07) << 3); | 
|  | uint8 r2 = next_rgb565[1] >> 3; | 
|  | uint8 b3 = next_rgb565[2] & 0x1f; | 
|  | uint8 g3 = (next_rgb565[2] >> 5) | ((next_rgb565[3] & 0x07) << 3); | 
|  | uint8 r3 = next_rgb565[3] >> 3; | 
|  | uint8 b = (b0 + b1 + b2 + b3);  // 565 * 4 = 787. | 
|  | uint8 g = (g0 + g1 + g2 + g3); | 
|  | uint8 r = (r0 + r1 + r2 + r3); | 
|  | b = (b << 1) | (b >> 6);  // 787 -> 888. | 
|  | r = (r << 1) | (r >> 6); | 
|  | dst_u[0] = RGBToU(r, g, b); | 
|  | dst_v[0] = RGBToV(r, g, b); | 
|  | src_rgb565 += 4; | 
|  | next_rgb565 += 4; | 
|  | dst_u += 1; | 
|  | dst_v += 1; | 
|  | } | 
|  | if (width & 1) { | 
|  | uint8 b0 = src_rgb565[0] & 0x1f; | 
|  | uint8 g0 = (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3); | 
|  | uint8 r0 = src_rgb565[1] >> 3; | 
|  | uint8 b2 = next_rgb565[0] & 0x1f; | 
|  | uint8 g2 = (next_rgb565[0] >> 5) | ((next_rgb565[1] & 0x07) << 3); | 
|  | uint8 r2 = next_rgb565[1] >> 3; | 
|  | uint8 b = (b0 + b2);  // 565 * 2 = 676. | 
|  | uint8 g = (g0 + g2); | 
|  | uint8 r = (r0 + r2); | 
|  | b = (b << 2) | (b >> 4);  // 676 -> 888 | 
|  | g = (g << 1) | (g >> 6); | 
|  | r = (r << 2) | (r >> 4); | 
|  | dst_u[0] = RGBToU(r, g, b); | 
|  | dst_v[0] = RGBToV(r, g, b); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARGB1555ToUVRow_C(const uint8* src_argb1555, int src_stride_argb1555, | 
|  | uint8* dst_u, uint8* dst_v, int width) { | 
|  | const uint8* next_argb1555 = src_argb1555 + src_stride_argb1555; | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | uint8 b0 = src_argb1555[0] & 0x1f; | 
|  | uint8 g0 = (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3); | 
|  | uint8 r0 = (src_argb1555[1] & 0x7c) >> 2; | 
|  | uint8 b1 = src_argb1555[2] & 0x1f; | 
|  | uint8 g1 = (src_argb1555[2] >> 5) | ((src_argb1555[3] & 0x03) << 3); | 
|  | uint8 r1 = (src_argb1555[3] & 0x7c) >> 2; | 
|  | uint8 b2 = next_argb1555[0] & 0x1f; | 
|  | uint8 g2 = (next_argb1555[0] >> 5) | ((next_argb1555[1] & 0x03) << 3); | 
|  | uint8 r2 = (next_argb1555[1] & 0x7c) >> 2; | 
|  | uint8 b3 = next_argb1555[2] & 0x1f; | 
|  | uint8 g3 = (next_argb1555[2] >> 5) | ((next_argb1555[3] & 0x03) << 3); | 
|  | uint8 r3 = (next_argb1555[3] & 0x7c) >> 2; | 
|  | uint8 b = (b0 + b1 + b2 + b3);  // 555 * 4 = 777. | 
|  | uint8 g = (g0 + g1 + g2 + g3); | 
|  | uint8 r = (r0 + r1 + r2 + r3); | 
|  | b = (b << 1) | (b >> 6);  // 777 -> 888. | 
|  | g = (g << 1) | (g >> 6); | 
|  | r = (r << 1) | (r >> 6); | 
|  | dst_u[0] = RGBToU(r, g, b); | 
|  | dst_v[0] = RGBToV(r, g, b); | 
|  | src_argb1555 += 4; | 
|  | next_argb1555 += 4; | 
|  | dst_u += 1; | 
|  | dst_v += 1; | 
|  | } | 
|  | if (width & 1) { | 
|  | uint8 b0 = src_argb1555[0] & 0x1f; | 
|  | uint8 g0 = (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3); | 
|  | uint8 r0 = (src_argb1555[1] & 0x7c) >> 2; | 
|  | uint8 b2 = next_argb1555[0] & 0x1f; | 
|  | uint8 g2 = (next_argb1555[0] >> 5) | ((next_argb1555[1] & 0x03) << 3); | 
|  | uint8 r2 = next_argb1555[1] >> 3; | 
|  | uint8 b = (b0 + b2);  // 555 * 2 = 666. | 
|  | uint8 g = (g0 + g2); | 
|  | uint8 r = (r0 + r2); | 
|  | b = (b << 2) | (b >> 4);  // 666 -> 888. | 
|  | g = (g << 2) | (g >> 4); | 
|  | r = (r << 2) | (r >> 4); | 
|  | dst_u[0] = RGBToU(r, g, b); | 
|  | dst_v[0] = RGBToV(r, g, b); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARGB4444ToUVRow_C(const uint8* src_argb4444, int src_stride_argb4444, | 
|  | uint8* dst_u, uint8* dst_v, int width) { | 
|  | const uint8* next_argb4444 = src_argb4444 + src_stride_argb4444; | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | uint8 b0 = src_argb4444[0] & 0x0f; | 
|  | uint8 g0 = src_argb4444[0] >> 4; | 
|  | uint8 r0 = src_argb4444[1] & 0x0f; | 
|  | uint8 b1 = src_argb4444[2] & 0x0f; | 
|  | uint8 g1 = src_argb4444[2] >> 4; | 
|  | uint8 r1 = src_argb4444[3] & 0x0f; | 
|  | uint8 b2 = next_argb4444[0] & 0x0f; | 
|  | uint8 g2 = next_argb4444[0] >> 4; | 
|  | uint8 r2 = next_argb4444[1] & 0x0f; | 
|  | uint8 b3 = next_argb4444[2] & 0x0f; | 
|  | uint8 g3 = next_argb4444[2] >> 4; | 
|  | uint8 r3 = next_argb4444[3] & 0x0f; | 
|  | uint8 b = (b0 + b1 + b2 + b3);  // 444 * 4 = 666. | 
|  | uint8 g = (g0 + g1 + g2 + g3); | 
|  | uint8 r = (r0 + r1 + r2 + r3); | 
|  | b = (b << 2) | (b >> 4);  // 666 -> 888. | 
|  | g = (g << 2) | (g >> 4); | 
|  | r = (r << 2) | (r >> 4); | 
|  | dst_u[0] = RGBToU(r, g, b); | 
|  | dst_v[0] = RGBToV(r, g, b); | 
|  | src_argb4444 += 4; | 
|  | next_argb4444 += 4; | 
|  | dst_u += 1; | 
|  | dst_v += 1; | 
|  | } | 
|  | if (width & 1) { | 
|  | uint8 b0 = src_argb4444[0] & 0x0f; | 
|  | uint8 g0 = src_argb4444[0] >> 4; | 
|  | uint8 r0 = src_argb4444[1] & 0x0f; | 
|  | uint8 b2 = next_argb4444[0] & 0x0f; | 
|  | uint8 g2 = next_argb4444[0] >> 4; | 
|  | uint8 r2 = next_argb4444[1] & 0x0f; | 
|  | uint8 b = (b0 + b2);  // 444 * 2 = 555. | 
|  | uint8 g = (g0 + g2); | 
|  | uint8 r = (r0 + r2); | 
|  | b = (b << 3) | (b >> 2);  // 555 -> 888. | 
|  | g = (g << 3) | (g >> 2); | 
|  | r = (r << 3) | (r >> 2); | 
|  | dst_u[0] = RGBToU(r, g, b); | 
|  | dst_v[0] = RGBToV(r, g, b); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARGBToUV444Row_C(const uint8* src_argb, | 
|  | uint8* dst_u, uint8* dst_v, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width; ++x) { | 
|  | uint8 ab = src_argb[0]; | 
|  | uint8 ag = src_argb[1]; | 
|  | uint8 ar = src_argb[2]; | 
|  | dst_u[0] = RGBToU(ar, ag, ab); | 
|  | dst_v[0] = RGBToV(ar, ag, ab); | 
|  | src_argb += 4; | 
|  | dst_u += 1; | 
|  | dst_v += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARGBToUV422Row_C(const uint8* src_argb, | 
|  | uint8* dst_u, uint8* dst_v, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | uint8 ab = (src_argb[0] + src_argb[4]) >> 1; | 
|  | uint8 ag = (src_argb[1] + src_argb[5]) >> 1; | 
|  | uint8 ar = (src_argb[2] + src_argb[6]) >> 1; | 
|  | dst_u[0] = RGBToU(ar, ag, ab); | 
|  | dst_v[0] = RGBToV(ar, ag, ab); | 
|  | src_argb += 8; | 
|  | dst_u += 1; | 
|  | dst_v += 1; | 
|  | } | 
|  | if (width & 1) { | 
|  | uint8 ab = src_argb[0]; | 
|  | uint8 ag = src_argb[1]; | 
|  | uint8 ar = src_argb[2]; | 
|  | dst_u[0] = RGBToU(ar, ag, ab); | 
|  | dst_v[0] = RGBToV(ar, ag, ab); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARGBToUV411Row_C(const uint8* src_argb, | 
|  | uint8* dst_u, uint8* dst_v, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 3; x += 4) { | 
|  | uint8 ab = (src_argb[0] + src_argb[4] + src_argb[8] + src_argb[12]) >> 2; | 
|  | uint8 ag = (src_argb[1] + src_argb[5] + src_argb[9] + src_argb[13]) >> 2; | 
|  | uint8 ar = (src_argb[2] + src_argb[6] + src_argb[10] + src_argb[14]) >> 2; | 
|  | dst_u[0] = RGBToU(ar, ag, ab); | 
|  | dst_v[0] = RGBToV(ar, ag, ab); | 
|  | src_argb += 16; | 
|  | dst_u += 1; | 
|  | dst_v += 1; | 
|  | } | 
|  | if ((width & 3) == 3) { | 
|  | uint8 ab = (src_argb[0] + src_argb[4] + src_argb[8]) / 3; | 
|  | uint8 ag = (src_argb[1] + src_argb[5] + src_argb[9]) / 3; | 
|  | uint8 ar = (src_argb[2] + src_argb[6] + src_argb[10]) / 3; | 
|  | dst_u[0] = RGBToU(ar, ag, ab); | 
|  | dst_v[0] = RGBToV(ar, ag, ab); | 
|  | } else if ((width & 3) == 2) { | 
|  | uint8 ab = (src_argb[0] + src_argb[4]) >> 1; | 
|  | uint8 ag = (src_argb[1] + src_argb[5]) >> 1; | 
|  | uint8 ar = (src_argb[2] + src_argb[6]) >> 1; | 
|  | dst_u[0] = RGBToU(ar, ag, ab); | 
|  | dst_v[0] = RGBToV(ar, ag, ab); | 
|  | } else if ((width & 3) == 1) { | 
|  | uint8 ab = src_argb[0]; | 
|  | uint8 ag = src_argb[1]; | 
|  | uint8 ar = src_argb[2]; | 
|  | dst_u[0] = RGBToU(ar, ag, ab); | 
|  | dst_v[0] = RGBToV(ar, ag, ab); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARGBGrayRow_C(const uint8* src_argb, uint8* dst_argb, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width; ++x) { | 
|  | uint8 y = RGBToYJ(src_argb[2], src_argb[1], src_argb[0]); | 
|  | dst_argb[2] = dst_argb[1] = dst_argb[0] = y; | 
|  | dst_argb[3] = src_argb[3]; | 
|  | dst_argb += 4; | 
|  | src_argb += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Convert a row of image to Sepia tone. | 
|  | void ARGBSepiaRow_C(uint8* dst_argb, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width; ++x) { | 
|  | int b = dst_argb[0]; | 
|  | int g = dst_argb[1]; | 
|  | int r = dst_argb[2]; | 
|  | int sb = (b * 17 + g * 68 + r * 35) >> 7; | 
|  | int sg = (b * 22 + g * 88 + r * 45) >> 7; | 
|  | int sr = (b * 24 + g * 98 + r * 50) >> 7; | 
|  | // b does not over flow. a is preserved from original. | 
|  | dst_argb[0] = sb; | 
|  | dst_argb[1] = clamp255(sg); | 
|  | dst_argb[2] = clamp255(sr); | 
|  | dst_argb += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Apply color matrix to a row of image. Matrix is signed. | 
|  | // TODO(fbarchard): Consider adding rounding (+32). | 
|  | void ARGBColorMatrixRow_C(const uint8* src_argb, uint8* dst_argb, | 
|  | const int8* matrix_argb, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width; ++x) { | 
|  | int b = src_argb[0]; | 
|  | int g = src_argb[1]; | 
|  | int r = src_argb[2]; | 
|  | int a = src_argb[3]; | 
|  | int sb = (b * matrix_argb[0] + g * matrix_argb[1] + | 
|  | r * matrix_argb[2] + a * matrix_argb[3]) >> 6; | 
|  | int sg = (b * matrix_argb[4] + g * matrix_argb[5] + | 
|  | r * matrix_argb[6] + a * matrix_argb[7]) >> 6; | 
|  | int sr = (b * matrix_argb[8] + g * matrix_argb[9] + | 
|  | r * matrix_argb[10] + a * matrix_argb[11]) >> 6; | 
|  | int sa = (b * matrix_argb[12] + g * matrix_argb[13] + | 
|  | r * matrix_argb[14] + a * matrix_argb[15]) >> 6; | 
|  | dst_argb[0] = Clamp(sb); | 
|  | dst_argb[1] = Clamp(sg); | 
|  | dst_argb[2] = Clamp(sr); | 
|  | dst_argb[3] = Clamp(sa); | 
|  | src_argb += 4; | 
|  | dst_argb += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Apply color table to a row of image. | 
|  | void ARGBColorTableRow_C(uint8* dst_argb, const uint8* table_argb, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width; ++x) { | 
|  | int b = dst_argb[0]; | 
|  | int g = dst_argb[1]; | 
|  | int r = dst_argb[2]; | 
|  | int a = dst_argb[3]; | 
|  | dst_argb[0] = table_argb[b * 4 + 0]; | 
|  | dst_argb[1] = table_argb[g * 4 + 1]; | 
|  | dst_argb[2] = table_argb[r * 4 + 2]; | 
|  | dst_argb[3] = table_argb[a * 4 + 3]; | 
|  | dst_argb += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Apply color table to a row of image. | 
|  | void RGBColorTableRow_C(uint8* dst_argb, const uint8* table_argb, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width; ++x) { | 
|  | int b = dst_argb[0]; | 
|  | int g = dst_argb[1]; | 
|  | int r = dst_argb[2]; | 
|  | dst_argb[0] = table_argb[b * 4 + 0]; | 
|  | dst_argb[1] = table_argb[g * 4 + 1]; | 
|  | dst_argb[2] = table_argb[r * 4 + 2]; | 
|  | dst_argb += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARGBQuantizeRow_C(uint8* dst_argb, int scale, int interval_size, | 
|  | int interval_offset, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width; ++x) { | 
|  | int b = dst_argb[0]; | 
|  | int g = dst_argb[1]; | 
|  | int r = dst_argb[2]; | 
|  | dst_argb[0] = (b * scale >> 16) * interval_size + interval_offset; | 
|  | dst_argb[1] = (g * scale >> 16) * interval_size + interval_offset; | 
|  | dst_argb[2] = (r * scale >> 16) * interval_size + interval_offset; | 
|  | dst_argb += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define REPEAT8(v) (v) | ((v) << 8) | 
|  | #define SHADE(f, v) v * f >> 24 | 
|  |  | 
|  | void ARGBShadeRow_C(const uint8* src_argb, uint8* dst_argb, int width, | 
|  | uint32 value) { | 
|  | const uint32 b_scale = REPEAT8(value & 0xff); | 
|  | const uint32 g_scale = REPEAT8((value >> 8) & 0xff); | 
|  | const uint32 r_scale = REPEAT8((value >> 16) & 0xff); | 
|  | const uint32 a_scale = REPEAT8(value >> 24); | 
|  |  | 
|  | int i; | 
|  | for (i = 0; i < width; ++i) { | 
|  | const uint32 b = REPEAT8(src_argb[0]); | 
|  | const uint32 g = REPEAT8(src_argb[1]); | 
|  | const uint32 r = REPEAT8(src_argb[2]); | 
|  | const uint32 a = REPEAT8(src_argb[3]); | 
|  | dst_argb[0] = SHADE(b, b_scale); | 
|  | dst_argb[1] = SHADE(g, g_scale); | 
|  | dst_argb[2] = SHADE(r, r_scale); | 
|  | dst_argb[3] = SHADE(a, a_scale); | 
|  | src_argb += 4; | 
|  | dst_argb += 4; | 
|  | } | 
|  | } | 
|  | #undef REPEAT8 | 
|  | #undef SHADE | 
|  |  | 
|  | #define REPEAT8(v) (v) | ((v) << 8) | 
|  | #define SHADE(f, v) v * f >> 16 | 
|  |  | 
|  | void ARGBMultiplyRow_C(const uint8* src_argb0, const uint8* src_argb1, | 
|  | uint8* dst_argb, int width) { | 
|  | int i; | 
|  | for (i = 0; i < width; ++i) { | 
|  | const uint32 b = REPEAT8(src_argb0[0]); | 
|  | const uint32 g = REPEAT8(src_argb0[1]); | 
|  | const uint32 r = REPEAT8(src_argb0[2]); | 
|  | const uint32 a = REPEAT8(src_argb0[3]); | 
|  | const uint32 b_scale = src_argb1[0]; | 
|  | const uint32 g_scale = src_argb1[1]; | 
|  | const uint32 r_scale = src_argb1[2]; | 
|  | const uint32 a_scale = src_argb1[3]; | 
|  | dst_argb[0] = SHADE(b, b_scale); | 
|  | dst_argb[1] = SHADE(g, g_scale); | 
|  | dst_argb[2] = SHADE(r, r_scale); | 
|  | dst_argb[3] = SHADE(a, a_scale); | 
|  | src_argb0 += 4; | 
|  | src_argb1 += 4; | 
|  | dst_argb += 4; | 
|  | } | 
|  | } | 
|  | #undef REPEAT8 | 
|  | #undef SHADE | 
|  |  | 
|  | #define SHADE(f, v) clamp255(v + f) | 
|  |  | 
|  | void ARGBAddRow_C(const uint8* src_argb0, const uint8* src_argb1, | 
|  | uint8* dst_argb, int width) { | 
|  | int i; | 
|  | for (i = 0; i < width; ++i) { | 
|  | const int b = src_argb0[0]; | 
|  | const int g = src_argb0[1]; | 
|  | const int r = src_argb0[2]; | 
|  | const int a = src_argb0[3]; | 
|  | const int b_add = src_argb1[0]; | 
|  | const int g_add = src_argb1[1]; | 
|  | const int r_add = src_argb1[2]; | 
|  | const int a_add = src_argb1[3]; | 
|  | dst_argb[0] = SHADE(b, b_add); | 
|  | dst_argb[1] = SHADE(g, g_add); | 
|  | dst_argb[2] = SHADE(r, r_add); | 
|  | dst_argb[3] = SHADE(a, a_add); | 
|  | src_argb0 += 4; | 
|  | src_argb1 += 4; | 
|  | dst_argb += 4; | 
|  | } | 
|  | } | 
|  | #undef SHADE | 
|  |  | 
|  | #define SHADE(f, v) clamp0(f - v) | 
|  |  | 
|  | void ARGBSubtractRow_C(const uint8* src_argb0, const uint8* src_argb1, | 
|  | uint8* dst_argb, int width) { | 
|  | int i; | 
|  | for (i = 0; i < width; ++i) { | 
|  | const int b = src_argb0[0]; | 
|  | const int g = src_argb0[1]; | 
|  | const int r = src_argb0[2]; | 
|  | const int a = src_argb0[3]; | 
|  | const int b_sub = src_argb1[0]; | 
|  | const int g_sub = src_argb1[1]; | 
|  | const int r_sub = src_argb1[2]; | 
|  | const int a_sub = src_argb1[3]; | 
|  | dst_argb[0] = SHADE(b, b_sub); | 
|  | dst_argb[1] = SHADE(g, g_sub); | 
|  | dst_argb[2] = SHADE(r, r_sub); | 
|  | dst_argb[3] = SHADE(a, a_sub); | 
|  | src_argb0 += 4; | 
|  | src_argb1 += 4; | 
|  | dst_argb += 4; | 
|  | } | 
|  | } | 
|  | #undef SHADE | 
|  |  | 
|  | // Sobel functions which mimics SSSE3. | 
|  | void SobelXRow_C(const uint8* src_y0, const uint8* src_y1, const uint8* src_y2, | 
|  | uint8* dst_sobelx, int width) { | 
|  | int i; | 
|  | for (i = 0; i < width; ++i) { | 
|  | int a = src_y0[i]; | 
|  | int b = src_y1[i]; | 
|  | int c = src_y2[i]; | 
|  | int a_sub = src_y0[i + 2]; | 
|  | int b_sub = src_y1[i + 2]; | 
|  | int c_sub = src_y2[i + 2]; | 
|  | int a_diff = a - a_sub; | 
|  | int b_diff = b - b_sub; | 
|  | int c_diff = c - c_sub; | 
|  | int sobel = Abs(a_diff + b_diff * 2 + c_diff); | 
|  | dst_sobelx[i] = (uint8)(clamp255(sobel)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SobelYRow_C(const uint8* src_y0, const uint8* src_y1, | 
|  | uint8* dst_sobely, int width) { | 
|  | int i; | 
|  | for (i = 0; i < width; ++i) { | 
|  | int a = src_y0[i + 0]; | 
|  | int b = src_y0[i + 1]; | 
|  | int c = src_y0[i + 2]; | 
|  | int a_sub = src_y1[i + 0]; | 
|  | int b_sub = src_y1[i + 1]; | 
|  | int c_sub = src_y1[i + 2]; | 
|  | int a_diff = a - a_sub; | 
|  | int b_diff = b - b_sub; | 
|  | int c_diff = c - c_sub; | 
|  | int sobel = Abs(a_diff + b_diff * 2 + c_diff); | 
|  | dst_sobely[i] = (uint8)(clamp255(sobel)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SobelRow_C(const uint8* src_sobelx, const uint8* src_sobely, | 
|  | uint8* dst_argb, int width) { | 
|  | int i; | 
|  | for (i = 0; i < width; ++i) { | 
|  | int r = src_sobelx[i]; | 
|  | int b = src_sobely[i]; | 
|  | int s = clamp255(r + b); | 
|  | dst_argb[0] = (uint8)(s); | 
|  | dst_argb[1] = (uint8)(s); | 
|  | dst_argb[2] = (uint8)(s); | 
|  | dst_argb[3] = (uint8)(255u); | 
|  | dst_argb += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | void SobelToPlaneRow_C(const uint8* src_sobelx, const uint8* src_sobely, | 
|  | uint8* dst_y, int width) { | 
|  | int i; | 
|  | for (i = 0; i < width; ++i) { | 
|  | int r = src_sobelx[i]; | 
|  | int b = src_sobely[i]; | 
|  | int s = clamp255(r + b); | 
|  | dst_y[i] = (uint8)(s); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SobelXYRow_C(const uint8* src_sobelx, const uint8* src_sobely, | 
|  | uint8* dst_argb, int width) { | 
|  | int i; | 
|  | for (i = 0; i < width; ++i) { | 
|  | int r = src_sobelx[i]; | 
|  | int b = src_sobely[i]; | 
|  | int g = clamp255(r + b); | 
|  | dst_argb[0] = (uint8)(b); | 
|  | dst_argb[1] = (uint8)(g); | 
|  | dst_argb[2] = (uint8)(r); | 
|  | dst_argb[3] = (uint8)(255u); | 
|  | dst_argb += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | void J400ToARGBRow_C(const uint8* src_y, uint8* dst_argb, int width) { | 
|  | // Copy a Y to RGB. | 
|  | int x; | 
|  | for (x = 0; x < width; ++x) { | 
|  | uint8 y = src_y[0]; | 
|  | dst_argb[2] = dst_argb[1] = dst_argb[0] = y; | 
|  | dst_argb[3] = 255u; | 
|  | dst_argb += 4; | 
|  | ++src_y; | 
|  | } | 
|  | } | 
|  |  | 
|  | // BT.601 YUV to RGB reference | 
|  | //  R = (Y - 16) * 1.164              - V * -1.596 | 
|  | //  G = (Y - 16) * 1.164 - U *  0.391 - V *  0.813 | 
|  | //  B = (Y - 16) * 1.164 - U * -2.018 | 
|  |  | 
|  | // Y contribution to R,G,B.  Scale and bias. | 
|  | // TODO(fbarchard): Consider moving constants into a common header. | 
|  | #define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */ | 
|  | #define YGB -1160 /* 1.164 * 64 * -16 + 64 / 2 */ | 
|  |  | 
|  | // U and V contributions to R,G,B. | 
|  | #define UB -128 /* max(-128, round(-2.018 * 64)) */ | 
|  | #define UG 25 /* round(0.391 * 64) */ | 
|  | #define VG 52 /* round(0.813 * 64) */ | 
|  | #define VR -102 /* round(-1.596 * 64) */ | 
|  |  | 
|  | // Bias values to subtract 16 from Y and 128 from U and V. | 
|  | #define BB (UB * 128 + YGB) | 
|  | #define BG (UG * 128 + VG * 128 + YGB) | 
|  | #define BR (VR * 128 + YGB) | 
|  |  | 
|  | // C reference code that mimics the YUV assembly. | 
|  | static __inline void YuvPixel(uint8 y, uint8 u, uint8 v, | 
|  | uint8* b, uint8* g, uint8* r) { | 
|  | uint32 y1 = (uint32)(y * 0x0101 * YG) >> 16; | 
|  | *b = Clamp((int32)(-(u * UB) + y1 + BB) >> 6); | 
|  | *g = Clamp((int32)(-(v * VG + u * UG) + y1 + BG) >> 6); | 
|  | *r = Clamp((int32)(-(v * VR)+ y1 + BR) >> 6); | 
|  | } | 
|  |  | 
|  | // C reference code that mimics the YUV assembly. | 
|  | static __inline void YPixel(uint8 y, uint8* b, uint8* g, uint8* r) { | 
|  | uint32 y1 = (uint32)(y * 0x0101 * YG) >> 16; | 
|  | *b = Clamp((int32)(y1 + YGB) >> 6); | 
|  | *g = Clamp((int32)(y1 + YGB) >> 6); | 
|  | *r = Clamp((int32)(y1 + YGB) >> 6); | 
|  | } | 
|  |  | 
|  | #undef YG | 
|  | #undef YGB | 
|  | #undef UB | 
|  | #undef UG | 
|  | #undef VG | 
|  | #undef VR | 
|  | #undef BB | 
|  | #undef BG | 
|  | #undef BR | 
|  |  | 
|  | // JPEG YUV to RGB reference | 
|  | // *  R = Y                - V * -1.40200 | 
|  | // *  G = Y - U *  0.34414 - V *  0.71414 | 
|  | // *  B = Y - U * -1.77200 | 
|  |  | 
|  | // Y contribution to R,G,B.  Scale and bias. | 
|  | // TODO(fbarchard): Consider moving constants into a common header. | 
|  | #define YGJ 16320 /* round(1.000 * 64 * 256 * 256 / 257) */ | 
|  | #define YGBJ 32  /* 64 / 2 */ | 
|  |  | 
|  | // U and V contributions to R,G,B. | 
|  | #define UBJ -113 /* round(-1.77200 * 64) */ | 
|  | #define UGJ 22 /* round(0.34414 * 64) */ | 
|  | #define VGJ 46 /* round(0.71414  * 64) */ | 
|  | #define VRJ -90 /* round(-1.40200 * 64) */ | 
|  |  | 
|  | // Bias values to subtract 16 from Y and 128 from U and V. | 
|  | #define BBJ (UBJ * 128 + YGBJ) | 
|  | #define BGJ (UGJ * 128 + VGJ * 128 + YGBJ) | 
|  | #define BRJ (VRJ * 128 + YGBJ) | 
|  |  | 
|  | // C reference code that mimics the YUV assembly. | 
|  | static __inline void YuvJPixel(uint8 y, uint8 u, uint8 v, | 
|  | uint8* b, uint8* g, uint8* r) { | 
|  | uint32 y1 = (uint32)(y * 0x0101 * YGJ) >> 16; | 
|  | *b = Clamp((int32)(-(u * UBJ) + y1 + BBJ) >> 6); | 
|  | *g = Clamp((int32)(-(v * VGJ + u * UGJ) + y1 + BGJ) >> 6); | 
|  | *r = Clamp((int32)(-(v * VRJ) + y1 + BRJ) >> 6); | 
|  | } | 
|  |  | 
|  | #undef YGJ | 
|  | #undef YGBJ | 
|  | #undef UBJ | 
|  | #undef UGJ | 
|  | #undef VGJ | 
|  | #undef VRJ | 
|  | #undef BBJ | 
|  | #undef BGJ | 
|  | #undef BRJ | 
|  |  | 
|  | #if !defined(LIBYUV_DISABLE_NEON) && \ | 
|  | (defined(__ARM_NEON__) || defined(__aarch64__) || defined(LIBYUV_NEON)) | 
|  | // C mimic assembly. | 
|  | // TODO(fbarchard): Remove subsampling from Neon. | 
|  | void I444ToARGBRow_C(const uint8* src_y, | 
|  | const uint8* src_u, | 
|  | const uint8* src_v, | 
|  | uint8* rgb_buf, | 
|  | int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | uint8 u = (src_u[0] + src_u[1] + 1) >> 1; | 
|  | uint8 v = (src_v[0] + src_v[1] + 1) >> 1; | 
|  | YuvPixel(src_y[0], u, v, rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); | 
|  | rgb_buf[3] = 255; | 
|  | YuvPixel(src_y[1], u, v, rgb_buf + 4, rgb_buf + 5, rgb_buf + 6); | 
|  | rgb_buf[7] = 255; | 
|  | src_y += 2; | 
|  | src_u += 2; | 
|  | src_v += 2; | 
|  | rgb_buf += 8;  // Advance 2 pixels. | 
|  | } | 
|  | if (width & 1) { | 
|  | YuvPixel(src_y[0], src_u[0], src_v[0], | 
|  | rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); | 
|  | } | 
|  | } | 
|  | #else | 
|  | void I444ToARGBRow_C(const uint8* src_y, | 
|  | const uint8* src_u, | 
|  | const uint8* src_v, | 
|  | uint8* rgb_buf, | 
|  | int width) { | 
|  | int x; | 
|  | for (x = 0; x < width; ++x) { | 
|  | YuvPixel(src_y[0], src_u[0], src_v[0], | 
|  | rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); | 
|  | rgb_buf[3] = 255; | 
|  | src_y += 1; | 
|  | src_u += 1; | 
|  | src_v += 1; | 
|  | rgb_buf += 4;  // Advance 1 pixel. | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Also used for 420 | 
|  | void I422ToARGBRow_C(const uint8* src_y, | 
|  | const uint8* src_u, | 
|  | const uint8* src_v, | 
|  | uint8* rgb_buf, | 
|  | int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | YuvPixel(src_y[0], src_u[0], src_v[0], | 
|  | rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); | 
|  | rgb_buf[3] = 255; | 
|  | YuvPixel(src_y[1], src_u[0], src_v[0], | 
|  | rgb_buf + 4, rgb_buf + 5, rgb_buf + 6); | 
|  | rgb_buf[7] = 255; | 
|  | src_y += 2; | 
|  | src_u += 1; | 
|  | src_v += 1; | 
|  | rgb_buf += 8;  // Advance 2 pixels. | 
|  | } | 
|  | if (width & 1) { | 
|  | YuvPixel(src_y[0], src_u[0], src_v[0], | 
|  | rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); | 
|  | rgb_buf[3] = 255; | 
|  | } | 
|  | } | 
|  |  | 
|  | void J422ToARGBRow_C(const uint8* src_y, | 
|  | const uint8* src_u, | 
|  | const uint8* src_v, | 
|  | uint8* rgb_buf, | 
|  | int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | YuvJPixel(src_y[0], src_u[0], src_v[0], | 
|  | rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); | 
|  | rgb_buf[3] = 255; | 
|  | YuvJPixel(src_y[1], src_u[0], src_v[0], | 
|  | rgb_buf + 4, rgb_buf + 5, rgb_buf + 6); | 
|  | rgb_buf[7] = 255; | 
|  | src_y += 2; | 
|  | src_u += 1; | 
|  | src_v += 1; | 
|  | rgb_buf += 8;  // Advance 2 pixels. | 
|  | } | 
|  | if (width & 1) { | 
|  | YuvJPixel(src_y[0], src_u[0], src_v[0], | 
|  | rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); | 
|  | rgb_buf[3] = 255; | 
|  | } | 
|  | } | 
|  |  | 
|  | void I422ToRGB24Row_C(const uint8* src_y, | 
|  | const uint8* src_u, | 
|  | const uint8* src_v, | 
|  | uint8* rgb_buf, | 
|  | int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | YuvPixel(src_y[0], src_u[0], src_v[0], | 
|  | rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); | 
|  | YuvPixel(src_y[1], src_u[0], src_v[0], | 
|  | rgb_buf + 3, rgb_buf + 4, rgb_buf + 5); | 
|  | src_y += 2; | 
|  | src_u += 1; | 
|  | src_v += 1; | 
|  | rgb_buf += 6;  // Advance 2 pixels. | 
|  | } | 
|  | if (width & 1) { | 
|  | YuvPixel(src_y[0], src_u[0], src_v[0], | 
|  | rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | void I422ToRAWRow_C(const uint8* src_y, | 
|  | const uint8* src_u, | 
|  | const uint8* src_v, | 
|  | uint8* rgb_buf, | 
|  | int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | YuvPixel(src_y[0], src_u[0], src_v[0], | 
|  | rgb_buf + 2, rgb_buf + 1, rgb_buf + 0); | 
|  | YuvPixel(src_y[1], src_u[0], src_v[0], | 
|  | rgb_buf + 5, rgb_buf + 4, rgb_buf + 3); | 
|  | src_y += 2; | 
|  | src_u += 1; | 
|  | src_v += 1; | 
|  | rgb_buf += 6;  // Advance 2 pixels. | 
|  | } | 
|  | if (width & 1) { | 
|  | YuvPixel(src_y[0], src_u[0], src_v[0], | 
|  | rgb_buf + 2, rgb_buf + 1, rgb_buf + 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void I422ToARGB4444Row_C(const uint8* src_y, | 
|  | const uint8* src_u, | 
|  | const uint8* src_v, | 
|  | uint8* dst_argb4444, | 
|  | int width) { | 
|  | uint8 b0; | 
|  | uint8 g0; | 
|  | uint8 r0; | 
|  | uint8 b1; | 
|  | uint8 g1; | 
|  | uint8 r1; | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0); | 
|  | YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1); | 
|  | b0 = b0 >> 4; | 
|  | g0 = g0 >> 4; | 
|  | r0 = r0 >> 4; | 
|  | b1 = b1 >> 4; | 
|  | g1 = g1 >> 4; | 
|  | r1 = r1 >> 4; | 
|  | *(uint32*)(dst_argb4444) = b0 | (g0 << 4) | (r0 << 8) | | 
|  | (b1 << 16) | (g1 << 20) | (r1 << 24) | 0xf000f000; | 
|  | src_y += 2; | 
|  | src_u += 1; | 
|  | src_v += 1; | 
|  | dst_argb4444 += 4;  // Advance 2 pixels. | 
|  | } | 
|  | if (width & 1) { | 
|  | YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0); | 
|  | b0 = b0 >> 4; | 
|  | g0 = g0 >> 4; | 
|  | r0 = r0 >> 4; | 
|  | *(uint16*)(dst_argb4444) = b0 | (g0 << 4) | (r0 << 8) | | 
|  | 0xf000; | 
|  | } | 
|  | } | 
|  |  | 
|  | void I422ToARGB1555Row_C(const uint8* src_y, | 
|  | const uint8* src_u, | 
|  | const uint8* src_v, | 
|  | uint8* dst_argb1555, | 
|  | int width) { | 
|  | uint8 b0; | 
|  | uint8 g0; | 
|  | uint8 r0; | 
|  | uint8 b1; | 
|  | uint8 g1; | 
|  | uint8 r1; | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0); | 
|  | YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1); | 
|  | b0 = b0 >> 3; | 
|  | g0 = g0 >> 3; | 
|  | r0 = r0 >> 3; | 
|  | b1 = b1 >> 3; | 
|  | g1 = g1 >> 3; | 
|  | r1 = r1 >> 3; | 
|  | *(uint32*)(dst_argb1555) = b0 | (g0 << 5) | (r0 << 10) | | 
|  | (b1 << 16) | (g1 << 21) | (r1 << 26) | 0x80008000; | 
|  | src_y += 2; | 
|  | src_u += 1; | 
|  | src_v += 1; | 
|  | dst_argb1555 += 4;  // Advance 2 pixels. | 
|  | } | 
|  | if (width & 1) { | 
|  | YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0); | 
|  | b0 = b0 >> 3; | 
|  | g0 = g0 >> 3; | 
|  | r0 = r0 >> 3; | 
|  | *(uint16*)(dst_argb1555) = b0 | (g0 << 5) | (r0 << 10) | | 
|  | 0x8000; | 
|  | } | 
|  | } | 
|  |  | 
|  | void I422ToRGB565Row_C(const uint8* src_y, | 
|  | const uint8* src_u, | 
|  | const uint8* src_v, | 
|  | uint8* dst_rgb565, | 
|  | int width) { | 
|  | uint8 b0; | 
|  | uint8 g0; | 
|  | uint8 r0; | 
|  | uint8 b1; | 
|  | uint8 g1; | 
|  | uint8 r1; | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0); | 
|  | YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1); | 
|  | b0 = b0 >> 3; | 
|  | g0 = g0 >> 2; | 
|  | r0 = r0 >> 3; | 
|  | b1 = b1 >> 3; | 
|  | g1 = g1 >> 2; | 
|  | r1 = r1 >> 3; | 
|  | *(uint32*)(dst_rgb565) = b0 | (g0 << 5) | (r0 << 11) | | 
|  | (b1 << 16) | (g1 << 21) | (r1 << 27); | 
|  | src_y += 2; | 
|  | src_u += 1; | 
|  | src_v += 1; | 
|  | dst_rgb565 += 4;  // Advance 2 pixels. | 
|  | } | 
|  | if (width & 1) { | 
|  | YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0); | 
|  | b0 = b0 >> 3; | 
|  | g0 = g0 >> 2; | 
|  | r0 = r0 >> 3; | 
|  | *(uint16*)(dst_rgb565) = b0 | (g0 << 5) | (r0 << 11); | 
|  | } | 
|  | } | 
|  |  | 
|  | void I411ToARGBRow_C(const uint8* src_y, | 
|  | const uint8* src_u, | 
|  | const uint8* src_v, | 
|  | uint8* rgb_buf, | 
|  | int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 3; x += 4) { | 
|  | YuvPixel(src_y[0], src_u[0], src_v[0], | 
|  | rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); | 
|  | rgb_buf[3] = 255; | 
|  | YuvPixel(src_y[1], src_u[0], src_v[0], | 
|  | rgb_buf + 4, rgb_buf + 5, rgb_buf + 6); | 
|  | rgb_buf[7] = 255; | 
|  | YuvPixel(src_y[2], src_u[0], src_v[0], | 
|  | rgb_buf + 8, rgb_buf + 9, rgb_buf + 10); | 
|  | rgb_buf[11] = 255; | 
|  | YuvPixel(src_y[3], src_u[0], src_v[0], | 
|  | rgb_buf + 12, rgb_buf + 13, rgb_buf + 14); | 
|  | rgb_buf[15] = 255; | 
|  | src_y += 4; | 
|  | src_u += 1; | 
|  | src_v += 1; | 
|  | rgb_buf += 16;  // Advance 4 pixels. | 
|  | } | 
|  | if (width & 2) { | 
|  | YuvPixel(src_y[0], src_u[0], src_v[0], | 
|  | rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); | 
|  | rgb_buf[3] = 255; | 
|  | YuvPixel(src_y[1], src_u[0], src_v[0], | 
|  | rgb_buf + 4, rgb_buf + 5, rgb_buf + 6); | 
|  | rgb_buf[7] = 255; | 
|  | src_y += 2; | 
|  | rgb_buf += 8;  // Advance 2 pixels. | 
|  | } | 
|  | if (width & 1) { | 
|  | YuvPixel(src_y[0], src_u[0], src_v[0], | 
|  | rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); | 
|  | rgb_buf[3] = 255; | 
|  | } | 
|  | } | 
|  |  | 
|  | void NV12ToARGBRow_C(const uint8* src_y, | 
|  | const uint8* src_uv, | 
|  | uint8* rgb_buf, | 
|  | int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | YuvPixel(src_y[0], src_uv[0], src_uv[1], | 
|  | rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); | 
|  | rgb_buf[3] = 255; | 
|  | YuvPixel(src_y[1], src_uv[0], src_uv[1], | 
|  | rgb_buf + 4, rgb_buf + 5, rgb_buf + 6); | 
|  | rgb_buf[7] = 255; | 
|  | src_y += 2; | 
|  | src_uv += 2; | 
|  | rgb_buf += 8;  // Advance 2 pixels. | 
|  | } | 
|  | if (width & 1) { | 
|  | YuvPixel(src_y[0], src_uv[0], src_uv[1], | 
|  | rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); | 
|  | rgb_buf[3] = 255; | 
|  | } | 
|  | } | 
|  |  | 
|  | void NV21ToARGBRow_C(const uint8* src_y, | 
|  | const uint8* src_vu, | 
|  | uint8* rgb_buf, | 
|  | int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | YuvPixel(src_y[0], src_vu[1], src_vu[0], | 
|  | rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); | 
|  | rgb_buf[3] = 255; | 
|  |  | 
|  | YuvPixel(src_y[1], src_vu[1], src_vu[0], | 
|  | rgb_buf + 4, rgb_buf + 5, rgb_buf + 6); | 
|  | rgb_buf[7] = 255; | 
|  |  | 
|  | src_y += 2; | 
|  | src_vu += 2; | 
|  | rgb_buf += 8;  // Advance 2 pixels. | 
|  | } | 
|  | if (width & 1) { | 
|  | YuvPixel(src_y[0], src_vu[1], src_vu[0], | 
|  | rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); | 
|  | rgb_buf[3] = 255; | 
|  | } | 
|  | } | 
|  |  | 
|  | void NV12ToRGB565Row_C(const uint8* src_y, | 
|  | const uint8* src_uv, | 
|  | uint8* dst_rgb565, | 
|  | int width) { | 
|  | uint8 b0; | 
|  | uint8 g0; | 
|  | uint8 r0; | 
|  | uint8 b1; | 
|  | uint8 g1; | 
|  | uint8 r1; | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | YuvPixel(src_y[0], src_uv[0], src_uv[1], &b0, &g0, &r0); | 
|  | YuvPixel(src_y[1], src_uv[0], src_uv[1], &b1, &g1, &r1); | 
|  | b0 = b0 >> 3; | 
|  | g0 = g0 >> 2; | 
|  | r0 = r0 >> 3; | 
|  | b1 = b1 >> 3; | 
|  | g1 = g1 >> 2; | 
|  | r1 = r1 >> 3; | 
|  | *(uint32*)(dst_rgb565) = b0 | (g0 << 5) | (r0 << 11) | | 
|  | (b1 << 16) | (g1 << 21) | (r1 << 27); | 
|  | src_y += 2; | 
|  | src_uv += 2; | 
|  | dst_rgb565 += 4;  // Advance 2 pixels. | 
|  | } | 
|  | if (width & 1) { | 
|  | YuvPixel(src_y[0], src_uv[0], src_uv[1], &b0, &g0, &r0); | 
|  | b0 = b0 >> 3; | 
|  | g0 = g0 >> 2; | 
|  | r0 = r0 >> 3; | 
|  | *(uint16*)(dst_rgb565) = b0 | (g0 << 5) | (r0 << 11); | 
|  | } | 
|  | } | 
|  |  | 
|  | void NV21ToRGB565Row_C(const uint8* src_y, | 
|  | const uint8* vsrc_u, | 
|  | uint8* dst_rgb565, | 
|  | int width) { | 
|  | uint8 b0; | 
|  | uint8 g0; | 
|  | uint8 r0; | 
|  | uint8 b1; | 
|  | uint8 g1; | 
|  | uint8 r1; | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | YuvPixel(src_y[0], vsrc_u[1], vsrc_u[0], &b0, &g0, &r0); | 
|  | YuvPixel(src_y[1], vsrc_u[1], vsrc_u[0], &b1, &g1, &r1); | 
|  | b0 = b0 >> 3; | 
|  | g0 = g0 >> 2; | 
|  | r0 = r0 >> 3; | 
|  | b1 = b1 >> 3; | 
|  | g1 = g1 >> 2; | 
|  | r1 = r1 >> 3; | 
|  | *(uint32*)(dst_rgb565) = b0 | (g0 << 5) | (r0 << 11) | | 
|  | (b1 << 16) | (g1 << 21) | (r1 << 27); | 
|  | src_y += 2; | 
|  | vsrc_u += 2; | 
|  | dst_rgb565 += 4;  // Advance 2 pixels. | 
|  | } | 
|  | if (width & 1) { | 
|  | YuvPixel(src_y[0], vsrc_u[1], vsrc_u[0], &b0, &g0, &r0); | 
|  | b0 = b0 >> 3; | 
|  | g0 = g0 >> 2; | 
|  | r0 = r0 >> 3; | 
|  | *(uint16*)(dst_rgb565) = b0 | (g0 << 5) | (r0 << 11); | 
|  | } | 
|  | } | 
|  |  | 
|  | void YUY2ToARGBRow_C(const uint8* src_yuy2, | 
|  | uint8* rgb_buf, | 
|  | int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | YuvPixel(src_yuy2[0], src_yuy2[1], src_yuy2[3], | 
|  | rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); | 
|  | rgb_buf[3] = 255; | 
|  | YuvPixel(src_yuy2[2], src_yuy2[1], src_yuy2[3], | 
|  | rgb_buf + 4, rgb_buf + 5, rgb_buf + 6); | 
|  | rgb_buf[7] = 255; | 
|  | src_yuy2 += 4; | 
|  | rgb_buf += 8;  // Advance 2 pixels. | 
|  | } | 
|  | if (width & 1) { | 
|  | YuvPixel(src_yuy2[0], src_yuy2[1], src_yuy2[3], | 
|  | rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); | 
|  | rgb_buf[3] = 255; | 
|  | } | 
|  | } | 
|  |  | 
|  | void UYVYToARGBRow_C(const uint8* src_uyvy, | 
|  | uint8* rgb_buf, | 
|  | int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | YuvPixel(src_uyvy[1], src_uyvy[0], src_uyvy[2], | 
|  | rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); | 
|  | rgb_buf[3] = 255; | 
|  | YuvPixel(src_uyvy[3], src_uyvy[0], src_uyvy[2], | 
|  | rgb_buf + 4, rgb_buf + 5, rgb_buf + 6); | 
|  | rgb_buf[7] = 255; | 
|  | src_uyvy += 4; | 
|  | rgb_buf += 8;  // Advance 2 pixels. | 
|  | } | 
|  | if (width & 1) { | 
|  | YuvPixel(src_uyvy[1], src_uyvy[0], src_uyvy[2], | 
|  | rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); | 
|  | rgb_buf[3] = 255; | 
|  | } | 
|  | } | 
|  |  | 
|  | void I422ToBGRARow_C(const uint8* src_y, | 
|  | const uint8* src_u, | 
|  | const uint8* src_v, | 
|  | uint8* rgb_buf, | 
|  | int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | YuvPixel(src_y[0], src_u[0], src_v[0], | 
|  | rgb_buf + 3, rgb_buf + 2, rgb_buf + 1); | 
|  | rgb_buf[0] = 255; | 
|  | YuvPixel(src_y[1], src_u[0], src_v[0], | 
|  | rgb_buf + 7, rgb_buf + 6, rgb_buf + 5); | 
|  | rgb_buf[4] = 255; | 
|  | src_y += 2; | 
|  | src_u += 1; | 
|  | src_v += 1; | 
|  | rgb_buf += 8;  // Advance 2 pixels. | 
|  | } | 
|  | if (width & 1) { | 
|  | YuvPixel(src_y[0], src_u[0], src_v[0], | 
|  | rgb_buf + 3, rgb_buf + 2, rgb_buf + 1); | 
|  | rgb_buf[0] = 255; | 
|  | } | 
|  | } | 
|  |  | 
|  | void I422ToABGRRow_C(const uint8* src_y, | 
|  | const uint8* src_u, | 
|  | const uint8* src_v, | 
|  | uint8* rgb_buf, | 
|  | int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | YuvPixel(src_y[0], src_u[0], src_v[0], | 
|  | rgb_buf + 2, rgb_buf + 1, rgb_buf + 0); | 
|  | rgb_buf[3] = 255; | 
|  | YuvPixel(src_y[1], src_u[0], src_v[0], | 
|  | rgb_buf + 6, rgb_buf + 5, rgb_buf + 4); | 
|  | rgb_buf[7] = 255; | 
|  | src_y += 2; | 
|  | src_u += 1; | 
|  | src_v += 1; | 
|  | rgb_buf += 8;  // Advance 2 pixels. | 
|  | } | 
|  | if (width & 1) { | 
|  | YuvPixel(src_y[0], src_u[0], src_v[0], | 
|  | rgb_buf + 2, rgb_buf + 1, rgb_buf + 0); | 
|  | rgb_buf[3] = 255; | 
|  | } | 
|  | } | 
|  |  | 
|  | void I422ToRGBARow_C(const uint8* src_y, | 
|  | const uint8* src_u, | 
|  | const uint8* src_v, | 
|  | uint8* rgb_buf, | 
|  | int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | YuvPixel(src_y[0], src_u[0], src_v[0], | 
|  | rgb_buf + 1, rgb_buf + 2, rgb_buf + 3); | 
|  | rgb_buf[0] = 255; | 
|  | YuvPixel(src_y[1], src_u[0], src_v[0], | 
|  | rgb_buf + 5, rgb_buf + 6, rgb_buf + 7); | 
|  | rgb_buf[4] = 255; | 
|  | src_y += 2; | 
|  | src_u += 1; | 
|  | src_v += 1; | 
|  | rgb_buf += 8;  // Advance 2 pixels. | 
|  | } | 
|  | if (width & 1) { | 
|  | YuvPixel(src_y[0], src_u[0], src_v[0], | 
|  | rgb_buf + 1, rgb_buf + 2, rgb_buf + 3); | 
|  | rgb_buf[0] = 255; | 
|  | } | 
|  | } | 
|  |  | 
|  | void I400ToARGBRow_C(const uint8* src_y, uint8* rgb_buf, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | YPixel(src_y[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); | 
|  | rgb_buf[3] = 255; | 
|  | YPixel(src_y[1], rgb_buf + 4, rgb_buf + 5, rgb_buf + 6); | 
|  | rgb_buf[7] = 255; | 
|  | src_y += 2; | 
|  | rgb_buf += 8;  // Advance 2 pixels. | 
|  | } | 
|  | if (width & 1) { | 
|  | YPixel(src_y[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); | 
|  | rgb_buf[3] = 255; | 
|  | } | 
|  | } | 
|  |  | 
|  | void MirrorRow_C(const uint8* src, uint8* dst, int width) { | 
|  | int x; | 
|  | src += width - 1; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | dst[x] = src[0]; | 
|  | dst[x + 1] = src[-1]; | 
|  | src -= 2; | 
|  | } | 
|  | if (width & 1) { | 
|  | dst[width - 1] = src[0]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void MirrorUVRow_C(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int width) { | 
|  | int x; | 
|  | src_uv += (width - 1) << 1; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | dst_u[x] = src_uv[0]; | 
|  | dst_u[x + 1] = src_uv[-2]; | 
|  | dst_v[x] = src_uv[1]; | 
|  | dst_v[x + 1] = src_uv[-2 + 1]; | 
|  | src_uv -= 4; | 
|  | } | 
|  | if (width & 1) { | 
|  | dst_u[width - 1] = src_uv[0]; | 
|  | dst_v[width - 1] = src_uv[1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARGBMirrorRow_C(const uint8* src, uint8* dst, int width) { | 
|  | int x; | 
|  | const uint32* src32 = (const uint32*)(src); | 
|  | uint32* dst32 = (uint32*)(dst); | 
|  | src32 += width - 1; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | dst32[x] = src32[0]; | 
|  | dst32[x + 1] = src32[-1]; | 
|  | src32 -= 2; | 
|  | } | 
|  | if (width & 1) { | 
|  | dst32[width - 1] = src32[0]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void SplitUVRow_C(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | dst_u[x] = src_uv[0]; | 
|  | dst_u[x + 1] = src_uv[2]; | 
|  | dst_v[x] = src_uv[1]; | 
|  | dst_v[x + 1] = src_uv[3]; | 
|  | src_uv += 4; | 
|  | } | 
|  | if (width & 1) { | 
|  | dst_u[width - 1] = src_uv[0]; | 
|  | dst_v[width - 1] = src_uv[1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void MergeUVRow_C(const uint8* src_u, const uint8* src_v, uint8* dst_uv, | 
|  | int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | dst_uv[0] = src_u[x]; | 
|  | dst_uv[1] = src_v[x]; | 
|  | dst_uv[2] = src_u[x + 1]; | 
|  | dst_uv[3] = src_v[x + 1]; | 
|  | dst_uv += 4; | 
|  | } | 
|  | if (width & 1) { | 
|  | dst_uv[0] = src_u[width - 1]; | 
|  | dst_uv[1] = src_v[width - 1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void CopyRow_C(const uint8* src, uint8* dst, int count) { | 
|  | memcpy(dst, src, count); | 
|  | } | 
|  |  | 
|  | void CopyRow_16_C(const uint16* src, uint16* dst, int count) { | 
|  | memcpy(dst, src, count * 2); | 
|  | } | 
|  |  | 
|  | void SetRow_C(uint8* dst, uint8 v8, int width) { | 
|  | memset(dst, v8, width); | 
|  | } | 
|  |  | 
|  | void ARGBSetRow_C(uint8* dst_argb, uint32 v32, int width) { | 
|  | uint32* d = (uint32*)(dst_argb); | 
|  | int x; | 
|  | for (x = 0; x < width; ++x) { | 
|  | d[x] = v32; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Filter 2 rows of YUY2 UV's (422) into U and V (420). | 
|  | void YUY2ToUVRow_C(const uint8* src_yuy2, int src_stride_yuy2, | 
|  | uint8* dst_u, uint8* dst_v, int width) { | 
|  | // Output a row of UV values, filtering 2 rows of YUY2. | 
|  | int x; | 
|  | for (x = 0; x < width; x += 2) { | 
|  | dst_u[0] = (src_yuy2[1] + src_yuy2[src_stride_yuy2 + 1] + 1) >> 1; | 
|  | dst_v[0] = (src_yuy2[3] + src_yuy2[src_stride_yuy2 + 3] + 1) >> 1; | 
|  | src_yuy2 += 4; | 
|  | dst_u += 1; | 
|  | dst_v += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Copy row of YUY2 UV's (422) into U and V (422). | 
|  | void YUY2ToUV422Row_C(const uint8* src_yuy2, | 
|  | uint8* dst_u, uint8* dst_v, int width) { | 
|  | // Output a row of UV values. | 
|  | int x; | 
|  | for (x = 0; x < width; x += 2) { | 
|  | dst_u[0] = src_yuy2[1]; | 
|  | dst_v[0] = src_yuy2[3]; | 
|  | src_yuy2 += 4; | 
|  | dst_u += 1; | 
|  | dst_v += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Copy row of YUY2 Y's (422) into Y (420/422). | 
|  | void YUY2ToYRow_C(const uint8* src_yuy2, uint8* dst_y, int width) { | 
|  | // Output a row of Y values. | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | dst_y[x] = src_yuy2[0]; | 
|  | dst_y[x + 1] = src_yuy2[2]; | 
|  | src_yuy2 += 4; | 
|  | } | 
|  | if (width & 1) { | 
|  | dst_y[width - 1] = src_yuy2[0]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Filter 2 rows of UYVY UV's (422) into U and V (420). | 
|  | void UYVYToUVRow_C(const uint8* src_uyvy, int src_stride_uyvy, | 
|  | uint8* dst_u, uint8* dst_v, int width) { | 
|  | // Output a row of UV values. | 
|  | int x; | 
|  | for (x = 0; x < width; x += 2) { | 
|  | dst_u[0] = (src_uyvy[0] + src_uyvy[src_stride_uyvy + 0] + 1) >> 1; | 
|  | dst_v[0] = (src_uyvy[2] + src_uyvy[src_stride_uyvy + 2] + 1) >> 1; | 
|  | src_uyvy += 4; | 
|  | dst_u += 1; | 
|  | dst_v += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Copy row of UYVY UV's (422) into U and V (422). | 
|  | void UYVYToUV422Row_C(const uint8* src_uyvy, | 
|  | uint8* dst_u, uint8* dst_v, int width) { | 
|  | // Output a row of UV values. | 
|  | int x; | 
|  | for (x = 0; x < width; x += 2) { | 
|  | dst_u[0] = src_uyvy[0]; | 
|  | dst_v[0] = src_uyvy[2]; | 
|  | src_uyvy += 4; | 
|  | dst_u += 1; | 
|  | dst_v += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Copy row of UYVY Y's (422) into Y (420/422). | 
|  | void UYVYToYRow_C(const uint8* src_uyvy, uint8* dst_y, int width) { | 
|  | // Output a row of Y values. | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | dst_y[x] = src_uyvy[1]; | 
|  | dst_y[x + 1] = src_uyvy[3]; | 
|  | src_uyvy += 4; | 
|  | } | 
|  | if (width & 1) { | 
|  | dst_y[width - 1] = src_uyvy[1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define BLEND(f, b, a) (((256 - a) * b) >> 8) + f | 
|  |  | 
|  | // Blend src_argb0 over src_argb1 and store to dst_argb. | 
|  | // dst_argb may be src_argb0 or src_argb1. | 
|  | // This code mimics the SSSE3 version for better testability. | 
|  | void ARGBBlendRow_C(const uint8* src_argb0, const uint8* src_argb1, | 
|  | uint8* dst_argb, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | uint32 fb = src_argb0[0]; | 
|  | uint32 fg = src_argb0[1]; | 
|  | uint32 fr = src_argb0[2]; | 
|  | uint32 a = src_argb0[3]; | 
|  | uint32 bb = src_argb1[0]; | 
|  | uint32 bg = src_argb1[1]; | 
|  | uint32 br = src_argb1[2]; | 
|  | dst_argb[0] = BLEND(fb, bb, a); | 
|  | dst_argb[1] = BLEND(fg, bg, a); | 
|  | dst_argb[2] = BLEND(fr, br, a); | 
|  | dst_argb[3] = 255u; | 
|  |  | 
|  | fb = src_argb0[4 + 0]; | 
|  | fg = src_argb0[4 + 1]; | 
|  | fr = src_argb0[4 + 2]; | 
|  | a = src_argb0[4 + 3]; | 
|  | bb = src_argb1[4 + 0]; | 
|  | bg = src_argb1[4 + 1]; | 
|  | br = src_argb1[4 + 2]; | 
|  | dst_argb[4 + 0] = BLEND(fb, bb, a); | 
|  | dst_argb[4 + 1] = BLEND(fg, bg, a); | 
|  | dst_argb[4 + 2] = BLEND(fr, br, a); | 
|  | dst_argb[4 + 3] = 255u; | 
|  | src_argb0 += 8; | 
|  | src_argb1 += 8; | 
|  | dst_argb += 8; | 
|  | } | 
|  |  | 
|  | if (width & 1) { | 
|  | uint32 fb = src_argb0[0]; | 
|  | uint32 fg = src_argb0[1]; | 
|  | uint32 fr = src_argb0[2]; | 
|  | uint32 a = src_argb0[3]; | 
|  | uint32 bb = src_argb1[0]; | 
|  | uint32 bg = src_argb1[1]; | 
|  | uint32 br = src_argb1[2]; | 
|  | dst_argb[0] = BLEND(fb, bb, a); | 
|  | dst_argb[1] = BLEND(fg, bg, a); | 
|  | dst_argb[2] = BLEND(fr, br, a); | 
|  | dst_argb[3] = 255u; | 
|  | } | 
|  | } | 
|  | #undef BLEND | 
|  | #define ATTENUATE(f, a) (a | (a << 8)) * (f | (f << 8)) >> 24 | 
|  |  | 
|  | // Multiply source RGB by alpha and store to destination. | 
|  | // This code mimics the SSSE3 version for better testability. | 
|  | void ARGBAttenuateRow_C(const uint8* src_argb, uint8* dst_argb, int width) { | 
|  | int i; | 
|  | for (i = 0; i < width - 1; i += 2) { | 
|  | uint32 b = src_argb[0]; | 
|  | uint32 g = src_argb[1]; | 
|  | uint32 r = src_argb[2]; | 
|  | uint32 a = src_argb[3]; | 
|  | dst_argb[0] = ATTENUATE(b, a); | 
|  | dst_argb[1] = ATTENUATE(g, a); | 
|  | dst_argb[2] = ATTENUATE(r, a); | 
|  | dst_argb[3] = a; | 
|  | b = src_argb[4]; | 
|  | g = src_argb[5]; | 
|  | r = src_argb[6]; | 
|  | a = src_argb[7]; | 
|  | dst_argb[4] = ATTENUATE(b, a); | 
|  | dst_argb[5] = ATTENUATE(g, a); | 
|  | dst_argb[6] = ATTENUATE(r, a); | 
|  | dst_argb[7] = a; | 
|  | src_argb += 8; | 
|  | dst_argb += 8; | 
|  | } | 
|  |  | 
|  | if (width & 1) { | 
|  | const uint32 b = src_argb[0]; | 
|  | const uint32 g = src_argb[1]; | 
|  | const uint32 r = src_argb[2]; | 
|  | const uint32 a = src_argb[3]; | 
|  | dst_argb[0] = ATTENUATE(b, a); | 
|  | dst_argb[1] = ATTENUATE(g, a); | 
|  | dst_argb[2] = ATTENUATE(r, a); | 
|  | dst_argb[3] = a; | 
|  | } | 
|  | } | 
|  | #undef ATTENUATE | 
|  |  | 
|  | // Divide source RGB by alpha and store to destination. | 
|  | // b = (b * 255 + (a / 2)) / a; | 
|  | // g = (g * 255 + (a / 2)) / a; | 
|  | // r = (r * 255 + (a / 2)) / a; | 
|  | // Reciprocal method is off by 1 on some values. ie 125 | 
|  | // 8.8 fixed point inverse table with 1.0 in upper short and 1 / a in lower. | 
|  | #define T(a) 0x01000000 + (0x10000 / a) | 
|  | const uint32 fixed_invtbl8[256] = { | 
|  | 0x01000000, 0x0100ffff, T(0x02), T(0x03), T(0x04), T(0x05), T(0x06), T(0x07), | 
|  | T(0x08), T(0x09), T(0x0a), T(0x0b), T(0x0c), T(0x0d), T(0x0e), T(0x0f), | 
|  | T(0x10), T(0x11), T(0x12), T(0x13), T(0x14), T(0x15), T(0x16), T(0x17), | 
|  | T(0x18), T(0x19), T(0x1a), T(0x1b), T(0x1c), T(0x1d), T(0x1e), T(0x1f), | 
|  | T(0x20), T(0x21), T(0x22), T(0x23), T(0x24), T(0x25), T(0x26), T(0x27), | 
|  | T(0x28), T(0x29), T(0x2a), T(0x2b), T(0x2c), T(0x2d), T(0x2e), T(0x2f), | 
|  | T(0x30), T(0x31), T(0x32), T(0x33), T(0x34), T(0x35), T(0x36), T(0x37), | 
|  | T(0x38), T(0x39), T(0x3a), T(0x3b), T(0x3c), T(0x3d), T(0x3e), T(0x3f), | 
|  | T(0x40), T(0x41), T(0x42), T(0x43), T(0x44), T(0x45), T(0x46), T(0x47), | 
|  | T(0x48), T(0x49), T(0x4a), T(0x4b), T(0x4c), T(0x4d), T(0x4e), T(0x4f), | 
|  | T(0x50), T(0x51), T(0x52), T(0x53), T(0x54), T(0x55), T(0x56), T(0x57), | 
|  | T(0x58), T(0x59), T(0x5a), T(0x5b), T(0x5c), T(0x5d), T(0x5e), T(0x5f), | 
|  | T(0x60), T(0x61), T(0x62), T(0x63), T(0x64), T(0x65), T(0x66), T(0x67), | 
|  | T(0x68), T(0x69), T(0x6a), T(0x6b), T(0x6c), T(0x6d), T(0x6e), T(0x6f), | 
|  | T(0x70), T(0x71), T(0x72), T(0x73), T(0x74), T(0x75), T(0x76), T(0x77), | 
|  | T(0x78), T(0x79), T(0x7a), T(0x7b), T(0x7c), T(0x7d), T(0x7e), T(0x7f), | 
|  | T(0x80), T(0x81), T(0x82), T(0x83), T(0x84), T(0x85), T(0x86), T(0x87), | 
|  | T(0x88), T(0x89), T(0x8a), T(0x8b), T(0x8c), T(0x8d), T(0x8e), T(0x8f), | 
|  | T(0x90), T(0x91), T(0x92), T(0x93), T(0x94), T(0x95), T(0x96), T(0x97), | 
|  | T(0x98), T(0x99), T(0x9a), T(0x9b), T(0x9c), T(0x9d), T(0x9e), T(0x9f), | 
|  | T(0xa0), T(0xa1), T(0xa2), T(0xa3), T(0xa4), T(0xa5), T(0xa6), T(0xa7), | 
|  | T(0xa8), T(0xa9), T(0xaa), T(0xab), T(0xac), T(0xad), T(0xae), T(0xaf), | 
|  | T(0xb0), T(0xb1), T(0xb2), T(0xb3), T(0xb4), T(0xb5), T(0xb6), T(0xb7), | 
|  | T(0xb8), T(0xb9), T(0xba), T(0xbb), T(0xbc), T(0xbd), T(0xbe), T(0xbf), | 
|  | T(0xc0), T(0xc1), T(0xc2), T(0xc3), T(0xc4), T(0xc5), T(0xc6), T(0xc7), | 
|  | T(0xc8), T(0xc9), T(0xca), T(0xcb), T(0xcc), T(0xcd), T(0xce), T(0xcf), | 
|  | T(0xd0), T(0xd1), T(0xd2), T(0xd3), T(0xd4), T(0xd5), T(0xd6), T(0xd7), | 
|  | T(0xd8), T(0xd9), T(0xda), T(0xdb), T(0xdc), T(0xdd), T(0xde), T(0xdf), | 
|  | T(0xe0), T(0xe1), T(0xe2), T(0xe3), T(0xe4), T(0xe5), T(0xe6), T(0xe7), | 
|  | T(0xe8), T(0xe9), T(0xea), T(0xeb), T(0xec), T(0xed), T(0xee), T(0xef), | 
|  | T(0xf0), T(0xf1), T(0xf2), T(0xf3), T(0xf4), T(0xf5), T(0xf6), T(0xf7), | 
|  | T(0xf8), T(0xf9), T(0xfa), T(0xfb), T(0xfc), T(0xfd), T(0xfe), 0x01000100 }; | 
|  | #undef T | 
|  |  | 
|  | void ARGBUnattenuateRow_C(const uint8* src_argb, uint8* dst_argb, int width) { | 
|  | int i; | 
|  | for (i = 0; i < width; ++i) { | 
|  | uint32 b = src_argb[0]; | 
|  | uint32 g = src_argb[1]; | 
|  | uint32 r = src_argb[2]; | 
|  | const uint32 a = src_argb[3]; | 
|  | const uint32 ia = fixed_invtbl8[a] & 0xffff;  // 8.8 fixed point | 
|  | b = (b * ia) >> 8; | 
|  | g = (g * ia) >> 8; | 
|  | r = (r * ia) >> 8; | 
|  | // Clamping should not be necessary but is free in assembly. | 
|  | dst_argb[0] = clamp255(b); | 
|  | dst_argb[1] = clamp255(g); | 
|  | dst_argb[2] = clamp255(r); | 
|  | dst_argb[3] = a; | 
|  | src_argb += 4; | 
|  | dst_argb += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ComputeCumulativeSumRow_C(const uint8* row, int32* cumsum, | 
|  | const int32* previous_cumsum, int width) { | 
|  | int32 row_sum[4] = {0, 0, 0, 0}; | 
|  | int x; | 
|  | for (x = 0; x < width; ++x) { | 
|  | row_sum[0] += row[x * 4 + 0]; | 
|  | row_sum[1] += row[x * 4 + 1]; | 
|  | row_sum[2] += row[x * 4 + 2]; | 
|  | row_sum[3] += row[x * 4 + 3]; | 
|  | cumsum[x * 4 + 0] = row_sum[0]  + previous_cumsum[x * 4 + 0]; | 
|  | cumsum[x * 4 + 1] = row_sum[1]  + previous_cumsum[x * 4 + 1]; | 
|  | cumsum[x * 4 + 2] = row_sum[2]  + previous_cumsum[x * 4 + 2]; | 
|  | cumsum[x * 4 + 3] = row_sum[3]  + previous_cumsum[x * 4 + 3]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void CumulativeSumToAverageRow_C(const int32* tl, const int32* bl, | 
|  | int w, int area, uint8* dst, int count) { | 
|  | float ooa = 1.0f / area; | 
|  | int i; | 
|  | for (i = 0; i < count; ++i) { | 
|  | dst[0] = (uint8)((bl[w + 0] + tl[0] - bl[0] - tl[w + 0]) * ooa); | 
|  | dst[1] = (uint8)((bl[w + 1] + tl[1] - bl[1] - tl[w + 1]) * ooa); | 
|  | dst[2] = (uint8)((bl[w + 2] + tl[2] - bl[2] - tl[w + 2]) * ooa); | 
|  | dst[3] = (uint8)((bl[w + 3] + tl[3] - bl[3] - tl[w + 3]) * ooa); | 
|  | dst += 4; | 
|  | tl += 4; | 
|  | bl += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Copy pixels from rotated source to destination row with a slope. | 
|  | LIBYUV_API | 
|  | void ARGBAffineRow_C(const uint8* src_argb, int src_argb_stride, | 
|  | uint8* dst_argb, const float* uv_dudv, int width) { | 
|  | int i; | 
|  | // Render a row of pixels from source into a buffer. | 
|  | float uv[2]; | 
|  | uv[0] = uv_dudv[0]; | 
|  | uv[1] = uv_dudv[1]; | 
|  | for (i = 0; i < width; ++i) { | 
|  | int x = (int)(uv[0]); | 
|  | int y = (int)(uv[1]); | 
|  | *(uint32*)(dst_argb) = | 
|  | *(const uint32*)(src_argb + y * src_argb_stride + | 
|  | x * 4); | 
|  | dst_argb += 4; | 
|  | uv[0] += uv_dudv[2]; | 
|  | uv[1] += uv_dudv[3]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Blend 2 rows into 1. | 
|  | static void HalfRow_C(const uint8* src_uv, int src_uv_stride, | 
|  | uint8* dst_uv, int pix) { | 
|  | int x; | 
|  | for (x = 0; x < pix; ++x) { | 
|  | dst_uv[x] = (src_uv[x] + src_uv[src_uv_stride + x] + 1) >> 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void HalfRow_16_C(const uint16* src_uv, int src_uv_stride, | 
|  | uint16* dst_uv, int pix) { | 
|  | int x; | 
|  | for (x = 0; x < pix; ++x) { | 
|  | dst_uv[x] = (src_uv[x] + src_uv[src_uv_stride + x] + 1) >> 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // C version 2x2 -> 2x1. | 
|  | void InterpolateRow_C(uint8* dst_ptr, const uint8* src_ptr, | 
|  | ptrdiff_t src_stride, | 
|  | int width, int source_y_fraction) { | 
|  | int y1_fraction = source_y_fraction; | 
|  | int y0_fraction = 256 - y1_fraction; | 
|  | const uint8* src_ptr1 = src_ptr + src_stride; | 
|  | int x; | 
|  | if (source_y_fraction == 0) { | 
|  | memcpy(dst_ptr, src_ptr, width); | 
|  | return; | 
|  | } | 
|  | if (source_y_fraction == 128) { | 
|  | HalfRow_C(src_ptr, (int)(src_stride), dst_ptr, width); | 
|  | return; | 
|  | } | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | dst_ptr[0] = (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction) >> 8; | 
|  | dst_ptr[1] = (src_ptr[1] * y0_fraction + src_ptr1[1] * y1_fraction) >> 8; | 
|  | src_ptr += 2; | 
|  | src_ptr1 += 2; | 
|  | dst_ptr += 2; | 
|  | } | 
|  | if (width & 1) { | 
|  | dst_ptr[0] = (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction) >> 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InterpolateRow_16_C(uint16* dst_ptr, const uint16* src_ptr, | 
|  | ptrdiff_t src_stride, | 
|  | int width, int source_y_fraction) { | 
|  | int y1_fraction = source_y_fraction; | 
|  | int y0_fraction = 256 - y1_fraction; | 
|  | const uint16* src_ptr1 = src_ptr + src_stride; | 
|  | int x; | 
|  | if (source_y_fraction == 0) { | 
|  | memcpy(dst_ptr, src_ptr, width * 2); | 
|  | return; | 
|  | } | 
|  | if (source_y_fraction == 128) { | 
|  | HalfRow_16_C(src_ptr, (int)(src_stride), dst_ptr, width); | 
|  | return; | 
|  | } | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | dst_ptr[0] = (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction) >> 8; | 
|  | dst_ptr[1] = (src_ptr[1] * y0_fraction + src_ptr1[1] * y1_fraction) >> 8; | 
|  | src_ptr += 2; | 
|  | src_ptr1 += 2; | 
|  | dst_ptr += 2; | 
|  | } | 
|  | if (width & 1) { | 
|  | dst_ptr[0] = (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction) >> 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Use first 4 shuffler values to reorder ARGB channels. | 
|  | void ARGBShuffleRow_C(const uint8* src_argb, uint8* dst_argb, | 
|  | const uint8* shuffler, int pix) { | 
|  | int index0 = shuffler[0]; | 
|  | int index1 = shuffler[1]; | 
|  | int index2 = shuffler[2]; | 
|  | int index3 = shuffler[3]; | 
|  | // Shuffle a row of ARGB. | 
|  | int x; | 
|  | for (x = 0; x < pix; ++x) { | 
|  | // To support in-place conversion. | 
|  | uint8 b = src_argb[index0]; | 
|  | uint8 g = src_argb[index1]; | 
|  | uint8 r = src_argb[index2]; | 
|  | uint8 a = src_argb[index3]; | 
|  | dst_argb[0] = b; | 
|  | dst_argb[1] = g; | 
|  | dst_argb[2] = r; | 
|  | dst_argb[3] = a; | 
|  | src_argb += 4; | 
|  | dst_argb += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | void I422ToYUY2Row_C(const uint8* src_y, | 
|  | const uint8* src_u, | 
|  | const uint8* src_v, | 
|  | uint8* dst_frame, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | dst_frame[0] = src_y[0]; | 
|  | dst_frame[1] = src_u[0]; | 
|  | dst_frame[2] = src_y[1]; | 
|  | dst_frame[3] = src_v[0]; | 
|  | dst_frame += 4; | 
|  | src_y += 2; | 
|  | src_u += 1; | 
|  | src_v += 1; | 
|  | } | 
|  | if (width & 1) { | 
|  | dst_frame[0] = src_y[0]; | 
|  | dst_frame[1] = src_u[0]; | 
|  | dst_frame[2] = 0; | 
|  | dst_frame[3] = src_v[0]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void I422ToUYVYRow_C(const uint8* src_y, | 
|  | const uint8* src_u, | 
|  | const uint8* src_v, | 
|  | uint8* dst_frame, int width) { | 
|  | int x; | 
|  | for (x = 0; x < width - 1; x += 2) { | 
|  | dst_frame[0] = src_u[0]; | 
|  | dst_frame[1] = src_y[0]; | 
|  | dst_frame[2] = src_v[0]; | 
|  | dst_frame[3] = src_y[1]; | 
|  | dst_frame += 4; | 
|  | src_y += 2; | 
|  | src_u += 1; | 
|  | src_v += 1; | 
|  | } | 
|  | if (width & 1) { | 
|  | dst_frame[0] = src_u[0]; | 
|  | dst_frame[1] = src_y[0]; | 
|  | dst_frame[2] = src_v[0]; | 
|  | dst_frame[3] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Maximum temporary width for wrappers to process at a time, in pixels. | 
|  | #define MAXTWIDTH 2048 | 
|  |  | 
|  | #if !(defined(_MSC_VER) && !defined(__clang__)) && \ | 
|  | defined(HAS_I422TORGB565ROW_SSSE3) | 
|  | // row_win.cc has asm version, but GCC uses 2 step wrapper. | 
|  | void I422ToRGB565Row_SSSE3(const uint8* src_y, | 
|  | const uint8* src_u, | 
|  | const uint8* src_v, | 
|  | uint8* dst_rgb565, | 
|  | int width) { | 
|  | SIMD_ALIGNED(uint8 row[MAXTWIDTH * 4]); | 
|  | while (width > 0) { | 
|  | int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; | 
|  | I422ToARGBRow_SSSE3(src_y, src_u, src_v, row, twidth); | 
|  | ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth); | 
|  | src_y += twidth; | 
|  | src_u += twidth / 2; | 
|  | src_v += twidth / 2; | 
|  | dst_rgb565 += twidth * 2; | 
|  | width -= twidth; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(HAS_I422TOARGB1555ROW_SSSE3) | 
|  | void I422ToARGB1555Row_SSSE3(const uint8* src_y, | 
|  | const uint8* src_u, | 
|  | const uint8* src_v, | 
|  | uint8* dst_argb1555, | 
|  | int width) { | 
|  | // Row buffer for intermediate ARGB pixels. | 
|  | SIMD_ALIGNED(uint8 row[MAXTWIDTH * 4]); | 
|  | while (width > 0) { | 
|  | int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; | 
|  | I422ToARGBRow_SSSE3(src_y, src_u, src_v, row, twidth); | 
|  | ARGBToARGB1555Row_SSE2(row, dst_argb1555, twidth); | 
|  | src_y += twidth; | 
|  | src_u += twidth / 2; | 
|  | src_v += twidth / 2; | 
|  | dst_argb1555 += twidth * 2; | 
|  | width -= twidth; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(HAS_I422TOARGB4444ROW_SSSE3) | 
|  | void I422ToARGB4444Row_SSSE3(const uint8* src_y, | 
|  | const uint8* src_u, | 
|  | const uint8* src_v, | 
|  | uint8* dst_argb4444, | 
|  | int width) { | 
|  | // Row buffer for intermediate ARGB pixels. | 
|  | SIMD_ALIGNED(uint8 row[MAXTWIDTH * 4]); | 
|  | while (width > 0) { | 
|  | int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; | 
|  | I422ToARGBRow_SSSE3(src_y, src_u, src_v, row, twidth); | 
|  | ARGBToARGB4444Row_SSE2(row, dst_argb4444, twidth); | 
|  | src_y += twidth; | 
|  | src_u += twidth / 2; | 
|  | src_v += twidth / 2; | 
|  | dst_argb4444 += twidth * 2; | 
|  | width -= twidth; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(HAS_NV12TORGB565ROW_SSSE3) | 
|  | void NV12ToRGB565Row_SSSE3(const uint8* src_y, const uint8* src_uv, | 
|  | uint8* dst_rgb565, int width) { | 
|  | // Row buffer for intermediate ARGB pixels. | 
|  | SIMD_ALIGNED(uint8 row[MAXTWIDTH * 4]); | 
|  | while (width > 0) { | 
|  | int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; | 
|  | NV12ToARGBRow_SSSE3(src_y, src_uv, row, twidth); | 
|  | ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth); | 
|  | src_y += twidth; | 
|  | src_uv += twidth; | 
|  | dst_rgb565 += twidth * 2; | 
|  | width -= twidth; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(HAS_NV21TORGB565ROW_SSSE3) | 
|  | void NV21ToRGB565Row_SSSE3(const uint8* src_y, const uint8* src_vu, | 
|  | uint8* dst_rgb565, int width) { | 
|  | // Row buffer for intermediate ARGB pixels. | 
|  | SIMD_ALIGNED(uint8 row[MAXTWIDTH * 4]); | 
|  | while (width > 0) { | 
|  | int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; | 
|  | NV21ToARGBRow_SSSE3(src_y, src_vu, row, twidth); | 
|  | ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth); | 
|  | src_y += twidth; | 
|  | src_vu += twidth; | 
|  | dst_rgb565 += twidth * 2; | 
|  | width -= twidth; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(HAS_YUY2TOARGBROW_SSSE3) | 
|  | void YUY2ToARGBRow_SSSE3(const uint8* src_yuy2, uint8* dst_argb, int width) { | 
|  | // Row buffers for intermediate YUV pixels. | 
|  | SIMD_ALIGNED(uint8 row_y[MAXTWIDTH]); | 
|  | SIMD_ALIGNED(uint8 row_u[MAXTWIDTH / 2]); | 
|  | SIMD_ALIGNED(uint8 row_v[MAXTWIDTH / 2]); | 
|  | while (width > 0) { | 
|  | int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; | 
|  | YUY2ToUV422Row_SSE2(src_yuy2, row_u, row_v, twidth); | 
|  | YUY2ToYRow_SSE2(src_yuy2, row_y, twidth); | 
|  | I422ToARGBRow_SSSE3(row_y, row_u, row_v, dst_argb, twidth); | 
|  | src_yuy2 += twidth * 2; | 
|  | dst_argb += twidth * 4; | 
|  | width -= twidth; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(HAS_UYVYTOARGBROW_SSSE3) | 
|  | void UYVYToARGBRow_SSSE3(const uint8* src_uyvy, uint8* dst_argb, int width) { | 
|  | // Row buffers for intermediate YUV pixels. | 
|  | SIMD_ALIGNED(uint8 row_y[MAXTWIDTH]); | 
|  | SIMD_ALIGNED(uint8 row_u[MAXTWIDTH / 2]); | 
|  | SIMD_ALIGNED(uint8 row_v[MAXTWIDTH / 2]); | 
|  | while (width > 0) { | 
|  | int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; | 
|  | UYVYToUV422Row_SSE2(src_uyvy, row_u, row_v, twidth); | 
|  | UYVYToYRow_SSE2(src_uyvy, row_y, twidth); | 
|  | I422ToARGBRow_SSSE3(row_y, row_u, row_v, dst_argb, twidth); | 
|  | src_uyvy += twidth * 2; | 
|  | dst_argb += twidth * 4; | 
|  | width -= twidth; | 
|  | } | 
|  | } | 
|  | #endif  // !defined(LIBYUV_DISABLE_X86) | 
|  |  | 
|  | #if defined(HAS_I422TORGB565ROW_AVX2) | 
|  | void I422ToRGB565Row_AVX2(const uint8* src_y, | 
|  | const uint8* src_u, | 
|  | const uint8* src_v, | 
|  | uint8* dst_rgb565, | 
|  | int width) { | 
|  | SIMD_ALIGNED32(uint8 row[MAXTWIDTH * 4]); | 
|  | while (width > 0) { | 
|  | int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; | 
|  | I422ToARGBRow_AVX2(src_y, src_u, src_v, row, twidth); | 
|  | ARGBToRGB565Row_AVX2(row, dst_rgb565, twidth); | 
|  | src_y += twidth; | 
|  | src_u += twidth / 2; | 
|  | src_v += twidth / 2; | 
|  | dst_rgb565 += twidth * 2; | 
|  | width -= twidth; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(HAS_I422TOARGB1555ROW_AVX2) | 
|  | void I422ToARGB1555Row_AVX2(const uint8* src_y, | 
|  | const uint8* src_u, | 
|  | const uint8* src_v, | 
|  | uint8* dst_argb1555, | 
|  | int width) { | 
|  | // Row buffer for intermediate ARGB pixels. | 
|  | SIMD_ALIGNED32(uint8 row[MAXTWIDTH * 4]); | 
|  | while (width > 0) { | 
|  | int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; | 
|  | I422ToARGBRow_AVX2(src_y, src_u, src_v, row, twidth); | 
|  | ARGBToARGB1555Row_AVX2(row, dst_argb1555, twidth); | 
|  | src_y += twidth; | 
|  | src_u += twidth / 2; | 
|  | src_v += twidth / 2; | 
|  | dst_argb1555 += twidth * 2; | 
|  | width -= twidth; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(HAS_I422TOARGB4444ROW_AVX2) | 
|  | void I422ToARGB4444Row_AVX2(const uint8* src_y, | 
|  | const uint8* src_u, | 
|  | const uint8* src_v, | 
|  | uint8* dst_argb4444, | 
|  | int width) { | 
|  | // Row buffer for intermediate ARGB pixels. | 
|  | SIMD_ALIGNED32(uint8 row[MAXTWIDTH * 4]); | 
|  | while (width > 0) { | 
|  | int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; | 
|  | I422ToARGBRow_AVX2(src_y, src_u, src_v, row, twidth); | 
|  | ARGBToARGB4444Row_AVX2(row, dst_argb4444, twidth); | 
|  | src_y += twidth; | 
|  | src_u += twidth / 2; | 
|  | src_v += twidth / 2; | 
|  | dst_argb4444 += twidth * 2; | 
|  | width -= twidth; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(HAS_I422TORGB24ROW_AVX2) | 
|  | void I422ToRGB24Row_AVX2(const uint8* src_y, | 
|  | const uint8* src_u, | 
|  | const uint8* src_v, | 
|  | uint8* dst_rgb24, | 
|  | int width) { | 
|  | // Row buffer for intermediate ARGB pixels. | 
|  | SIMD_ALIGNED32(uint8 row[MAXTWIDTH * 4]); | 
|  | while (width > 0) { | 
|  | int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; | 
|  | I422ToARGBRow_AVX2(src_y, src_u, src_v, row, twidth); | 
|  | // TODO(fbarchard): ARGBToRGB24Row_AVX2 | 
|  | ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth); | 
|  | src_y += twidth; | 
|  | src_u += twidth / 2; | 
|  | src_v += twidth / 2; | 
|  | dst_rgb24 += twidth * 3; | 
|  | width -= twidth; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(HAS_I422TORAWROW_AVX2) | 
|  | void I422ToRAWRow_AVX2(const uint8* src_y, | 
|  | const uint8* src_u, | 
|  | const uint8* src_v, | 
|  | uint8* dst_raw, | 
|  | int width) { | 
|  | // Row buffer for intermediate ARGB pixels. | 
|  | SIMD_ALIGNED32(uint8 row[MAXTWIDTH * 4]); | 
|  | while (width > 0) { | 
|  | int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; | 
|  | I422ToARGBRow_AVX2(src_y, src_u, src_v, row, twidth); | 
|  | // TODO(fbarchard): ARGBToRAWRow_AVX2 | 
|  | ARGBToRAWRow_SSSE3(row, dst_raw, twidth); | 
|  | src_y += twidth; | 
|  | src_u += twidth / 2; | 
|  | src_v += twidth / 2; | 
|  | dst_raw += twidth * 3; | 
|  | width -= twidth; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(HAS_NV12TORGB565ROW_AVX2) | 
|  | void NV12ToRGB565Row_AVX2(const uint8* src_y, const uint8* src_uv, | 
|  | uint8* dst_rgb565, int width) { | 
|  | // Row buffer for intermediate ARGB pixels. | 
|  | SIMD_ALIGNED32(uint8 row[MAXTWIDTH * 4]); | 
|  | while (width > 0) { | 
|  | int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; | 
|  | NV12ToARGBRow_AVX2(src_y, src_uv, row, twidth); | 
|  | ARGBToRGB565Row_AVX2(row, dst_rgb565, twidth); | 
|  | src_y += twidth; | 
|  | src_uv += twidth; | 
|  | dst_rgb565 += twidth * 2; | 
|  | width -= twidth; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(HAS_NV21TORGB565ROW_AVX2) | 
|  | void NV21ToRGB565Row_AVX2(const uint8* src_y, const uint8* src_vu, | 
|  | uint8* dst_rgb565, int width) { | 
|  | // Row buffer for intermediate ARGB pixels. | 
|  | SIMD_ALIGNED32(uint8 row[MAXTWIDTH * 4]); | 
|  | while (width > 0) { | 
|  | int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; | 
|  | NV21ToARGBRow_AVX2(src_y, src_vu, row, twidth); | 
|  | ARGBToRGB565Row_AVX2(row, dst_rgb565, twidth); | 
|  | src_y += twidth; | 
|  | src_vu += twidth; | 
|  | dst_rgb565 += twidth * 2; | 
|  | width -= twidth; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(HAS_YUY2TOARGBROW_AVX2) | 
|  | void YUY2ToARGBRow_AVX2(const uint8* src_yuy2, uint8* dst_argb, int width) { | 
|  | // Row buffers for intermediate YUV pixels. | 
|  | SIMD_ALIGNED32(uint8 row_y[MAXTWIDTH]); | 
|  | SIMD_ALIGNED32(uint8 row_u[MAXTWIDTH / 2]); | 
|  | SIMD_ALIGNED32(uint8 row_v[MAXTWIDTH / 2]); | 
|  | while (width > 0) { | 
|  | int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; | 
|  | YUY2ToUV422Row_AVX2(src_yuy2, row_u, row_v, twidth); | 
|  | YUY2ToYRow_AVX2(src_yuy2, row_y, twidth); | 
|  | I422ToARGBRow_AVX2(row_y, row_u, row_v, dst_argb, twidth); | 
|  | src_yuy2 += twidth * 2; | 
|  | dst_argb += twidth * 4; | 
|  | width -= twidth; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(HAS_UYVYTOARGBROW_AVX2) | 
|  | void UYVYToARGBRow_AVX2(const uint8* src_uyvy, uint8* dst_argb, int width) { | 
|  | // Row buffers for intermediate YUV pixels. | 
|  | SIMD_ALIGNED32(uint8 row_y[MAXTWIDTH]); | 
|  | SIMD_ALIGNED32(uint8 row_u[MAXTWIDTH / 2]); | 
|  | SIMD_ALIGNED32(uint8 row_v[MAXTWIDTH / 2]); | 
|  | while (width > 0) { | 
|  | int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; | 
|  | UYVYToUV422Row_AVX2(src_uyvy, row_u, row_v, twidth); | 
|  | UYVYToYRow_AVX2(src_uyvy, row_y, twidth); | 
|  | I422ToARGBRow_AVX2(row_y, row_u, row_v, dst_argb, twidth); | 
|  | src_uyvy += twidth * 2; | 
|  | dst_argb += twidth * 4; | 
|  | width -= twidth; | 
|  | } | 
|  | } | 
|  | #endif  // !defined(LIBYUV_DISABLE_X86) | 
|  |  | 
|  | void ARGBPolynomialRow_C(const uint8* src_argb, | 
|  | uint8* dst_argb, const float* poly, | 
|  | int width) { | 
|  | int i; | 
|  | for (i = 0; i < width; ++i) { | 
|  | float b = (float)(src_argb[0]); | 
|  | float g = (float)(src_argb[1]); | 
|  | float r = (float)(src_argb[2]); | 
|  | float a = (float)(src_argb[3]); | 
|  | float b2 = b * b; | 
|  | float g2 = g * g; | 
|  | float r2 = r * r; | 
|  | float a2 = a * a; | 
|  | float db = poly[0] + poly[4] * b; | 
|  | float dg = poly[1] + poly[5] * g; | 
|  | float dr = poly[2] + poly[6] * r; | 
|  | float da = poly[3] + poly[7] * a; | 
|  | float b3 = b2 * b; | 
|  | float g3 = g2 * g; | 
|  | float r3 = r2 * r; | 
|  | float a3 = a2 * a; | 
|  | db += poly[8] * b2; | 
|  | dg += poly[9] * g2; | 
|  | dr += poly[10] * r2; | 
|  | da += poly[11] * a2; | 
|  | db += poly[12] * b3; | 
|  | dg += poly[13] * g3; | 
|  | dr += poly[14] * r3; | 
|  | da += poly[15] * a3; | 
|  |  | 
|  | dst_argb[0] = Clamp((int32)(db)); | 
|  | dst_argb[1] = Clamp((int32)(dg)); | 
|  | dst_argb[2] = Clamp((int32)(dr)); | 
|  | dst_argb[3] = Clamp((int32)(da)); | 
|  | src_argb += 4; | 
|  | dst_argb += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARGBLumaColorTableRow_C(const uint8* src_argb, uint8* dst_argb, int width, | 
|  | const uint8* luma, uint32 lumacoeff) { | 
|  | uint32 bc = lumacoeff & 0xff; | 
|  | uint32 gc = (lumacoeff >> 8) & 0xff; | 
|  | uint32 rc = (lumacoeff >> 16) & 0xff; | 
|  |  | 
|  | int i; | 
|  | for (i = 0; i < width - 1; i += 2) { | 
|  | // Luminance in rows, color values in columns. | 
|  | const uint8* luma0 = ((src_argb[0] * bc + src_argb[1] * gc + | 
|  | src_argb[2] * rc) & 0x7F00u) + luma; | 
|  | const uint8* luma1; | 
|  | dst_argb[0] = luma0[src_argb[0]]; | 
|  | dst_argb[1] = luma0[src_argb[1]]; | 
|  | dst_argb[2] = luma0[src_argb[2]]; | 
|  | dst_argb[3] = src_argb[3]; | 
|  | luma1 = ((src_argb[4] * bc + src_argb[5] * gc + | 
|  | src_argb[6] * rc) & 0x7F00u) + luma; | 
|  | dst_argb[4] = luma1[src_argb[4]]; | 
|  | dst_argb[5] = luma1[src_argb[5]]; | 
|  | dst_argb[6] = luma1[src_argb[6]]; | 
|  | dst_argb[7] = src_argb[7]; | 
|  | src_argb += 8; | 
|  | dst_argb += 8; | 
|  | } | 
|  | if (width & 1) { | 
|  | // Luminance in rows, color values in columns. | 
|  | const uint8* luma0 = ((src_argb[0] * bc + src_argb[1] * gc + | 
|  | src_argb[2] * rc) & 0x7F00u) + luma; | 
|  | dst_argb[0] = luma0[src_argb[0]]; | 
|  | dst_argb[1] = luma0[src_argb[1]]; | 
|  | dst_argb[2] = luma0[src_argb[2]]; | 
|  | dst_argb[3] = src_argb[3]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARGBCopyAlphaRow_C(const uint8* src, uint8* dst, int width) { | 
|  | int i; | 
|  | for (i = 0; i < width - 1; i += 2) { | 
|  | dst[3] = src[3]; | 
|  | dst[7] = src[7]; | 
|  | dst += 8; | 
|  | src += 8; | 
|  | } | 
|  | if (width & 1) { | 
|  | dst[3] = src[3]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARGBCopyYToAlphaRow_C(const uint8* src, uint8* dst, int width) { | 
|  | int i; | 
|  | for (i = 0; i < width - 1; i += 2) { | 
|  | dst[3] = src[0]; | 
|  | dst[7] = src[1]; | 
|  | dst += 8; | 
|  | src += 2; | 
|  | } | 
|  | if (width & 1) { | 
|  | dst[3] = src[0]; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef __cplusplus | 
|  | }  // extern "C" | 
|  | }  // namespace libyuv | 
|  | #endif |