blob: 3d0a27c9a166a15f0a477328552b57b13a5a7eb9 [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#ifndef AOM_AV1_ENCODER_ENCODEMB_H_
#define AOM_AV1_ENCODER_ENCODEMB_H_
#include "config/aom_config.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/txb_common.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/block.h"
#include "av1/encoder/tokenize.h"
#ifdef __cplusplus
extern "C" {
#endif
enum {
AV1_XFORM_QUANT_FP = 0,
AV1_XFORM_QUANT_B = 1,
AV1_XFORM_QUANT_DC = 2,
AV1_XFORM_QUANT_SKIP_QUANT,
AV1_XFORM_QUANT_TYPES,
} UENUM1BYTE(AV1_XFORM_QUANT);
// TODO(any): Merge OPT_TYPe and TRELLLIS_OPT_TYPE
// Available optimization types to optimize the quantized coefficients.
enum {
NONE_OPT = 0, // No optimization.
TRELLIS_OPT = 1, // Trellis optimization. See `av1_optimize_b()`.
DROPOUT_OPT = 2, // Dropout optimization. See `av1_dropout_qcoeff()`.
TRELLIS_DROPOUT_OPT = 3 // Perform dropout after trellis optimization.
} UENUM1BYTE(OPT_TYPE);
enum {
NO_TRELLIS_OPT, // No trellis optimization
FULL_TRELLIS_OPT, // Trellis optimization in all stages
FINAL_PASS_TRELLIS_OPT, // Trellis optimization in only the final encode pass
NO_ESTIMATE_YRD_TRELLIS_OPT // Disable trellis in estimate_yrd_for_sb
} UENUM1BYTE(TRELLIS_OPT_TYPE);
struct optimize_ctx {
ENTROPY_CONTEXT ta[MAX_MB_PLANE][MAX_MIB_SIZE];
ENTROPY_CONTEXT tl[MAX_MB_PLANE][MAX_MIB_SIZE];
};
struct encode_b_args {
const struct AV1_COMP *cpi;
MACROBLOCK *x;
struct optimize_ctx *ctx;
int8_t *skip;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
RUN_TYPE dry_run;
TRELLIS_OPT_TYPE enable_optimize_b;
};
void av1_encode_sb(const struct AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
RUN_TYPE dry_run, int plane_start, int plane_end);
void av1_foreach_transformed_block_in_plane(
const MACROBLOCKD *const xd, BLOCK_SIZE plane_bsize, int plane,
foreach_transformed_block_visitor visit, void *arg);
void av1_encode_sby_pass1(struct AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize);
void av1_setup_xform(const AV1_COMMON *cm, MACROBLOCK *x, int plane,
TX_SIZE tx_size, TX_TYPE tx_type,
#if CONFIG_CROSS_CHROMA_TX
CctxType cctx_Type,
#endif // CONFIG_CROSS_CHROMA_TX
TxfmParam *txfm_param);
void av1_setup_quant(TX_SIZE tx_size, int use_optimize_b, int xform_quant_idx,
int use_quant_b_adapt, QUANT_PARAM *qparam);
void av1_update_trellisq(int use_optimize_b, int xform_quant_idx,
int use_quant_b_adapt, QUANT_PARAM *qparam);
void av1_setup_qmatrix(const CommonQuantParams *quant_params,
const MACROBLOCKD *xd, int plane, TX_SIZE tx_size,
TX_TYPE tx_type, QUANT_PARAM *qparam);
void av1_xform_dc_only(MACROBLOCK *x, int plane, int block,
TxfmParam *txfm_param, int64_t per_px_mean);
void av1_xform_quant(const AV1_COMMON *cm, MACROBLOCK *x, int plane, int block,
int blk_row, int blk_col, BLOCK_SIZE plane_bsize,
TxfmParam *txfm_param, QUANT_PARAM *qparam);
void av1_xform(MACROBLOCK *x, int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TxfmParam *txfm_param, const int reuse);
#if CONFIG_CROSS_CHROMA_TX
void forward_cross_chroma_transform(MACROBLOCK *x, int block, TX_SIZE tx_size,
CctxType cctx_type);
#endif // CONFIG_CROSS_CHROMA_TX
void av1_quant(MACROBLOCK *x, int plane, int block, TxfmParam *txfm_param,
QUANT_PARAM *qparam);
int av1_optimize_b(const struct AV1_COMP *cpi, MACROBLOCK *mb, int plane,
int block, TX_SIZE tx_size, TX_TYPE tx_type,
#if CONFIG_CROSS_CHROMA_TX
CctxType cctx_type,
#endif // CONFIG_CROSS_CHROMA_TX
const TXB_CTX *const txb_ctx, int *rate_cost);
#if CONFIG_PAR_HIDING
// This function tunes the coefficients when trellis quantization is off.
void parity_hiding_trellis_off(const struct AV1_COMP *cpi, MACROBLOCK *mb,
const int plane_type, int block, TX_SIZE tx_size,
TX_TYPE tx_type);
#endif // CONFIG_PAR_HIDING
// This function can be used as (i) a further optimization to reduce the
// redundancy of quantized coefficients (a.k.a., `qcoeff`) after trellis
// optimization, or (ii) an alternative to trellis optimization in high-speed
// compression mode (e.g., real-time mode under speed-6) due to its LOW time
// complexity. The rational behind is to drop out the may-be redundant quantized
// coefficient which is among a bunch of zeros. NOTE: This algorithm is not as
// accurate as trellis optimization since the hyper-parameters are hard-coded
// instead of dynamic search. More adaptive logic may improve the performance.
// This function should be applied to all or partical block cells.
// Inputs:
// mb: Pointer to the MACROBLOCK to perform dropout on.
// plane: Index of the plane to which the target block belongs.
// block: Index of the target block.
// tx_size: Transform size of the target block.
// tx_type: Transform type of the target block. This field is particularly
// used to find out the scan order of the block.
// qindex: Quantization index used for target block. In general, all blocks
// in a same plane share the same quantization index. This field is
// particularly used to determine how many zeros should be used to
// drop out a coefficient.
// Returns:
// Nothing will be returned, but `qcoeff`, `dqcoeff`, `eob`, as well as
// `txb_entropy_ctx`, which `mb` points to, may be modified by this function.
void av1_dropout_qcoeff(MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size,
TX_TYPE tx_type, int qindex);
void av1_subtract_block(const MACROBLOCKD *xd, int rows, int cols,
int16_t *diff, ptrdiff_t diff_stride,
const uint16_t *src, ptrdiff_t src_stride,
const uint16_t *pred, ptrdiff_t pred_stride);
void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize,
int blk_col, int blk_row, TX_SIZE tx_size);
void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE plane_bsize, int plane);
static INLINE void av1_set_txb_context(MACROBLOCK *x, int plane, int block,
TX_SIZE tx_size, ENTROPY_CONTEXT *a,
ENTROPY_CONTEXT *l) {
const uint8_t ctx = x->plane[plane].txb_entropy_ctx[block];
memset(a, ctx, tx_size_wide_unit[tx_size] * sizeof(*a));
memset(l, ctx, tx_size_high_unit[tx_size] * sizeof(*l));
}
void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg);
void av1_encode_intra_block_plane(const struct AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int plane, RUN_TYPE dry_run,
TRELLIS_OPT_TYPE enable_optimize_b);
#if CONFIG_CROSS_CHROMA_TX
void av1_encode_intra_block_joint_uv(const struct AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, RUN_TYPE dry_run,
TRELLIS_OPT_TYPE enable_optimize_b);
#endif // CONFIG_CROSS_CHROMA_TX
static INLINE int is_trellis_used(TRELLIS_OPT_TYPE optimize_b,
RUN_TYPE dry_run) {
if (optimize_b == NO_TRELLIS_OPT) return false;
if (optimize_b == FINAL_PASS_TRELLIS_OPT && dry_run != OUTPUT_ENABLED)
return false;
return true;
}
// Scaling terms (precision of 12 bits) to perform tx-size specific
// normalization that is used in DCT_DCT forward transform.
// For transform blocks of 1:2 and 2:1 - sqrt(2) normalization is used
// For transform blocks of 1:4 and 4:1 - factor of 2 is used
// For transform blocks TX_8x8 and below - an additional factor of 2 is used
// For transform blocks max(width,height)=64 - currently not supported
static const uint16_t dc_coeff_scale[TX_SIZES_ALL] = {
1024, 2048, 4096, 4096, 0, 1448, 1448, 2896, 2896, 2896,
2896, 0, 0, 2048, 2048, 4096, 4096, 0, 0
};
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AOM_AV1_ENCODER_ENCODEMB_H_