| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| * |
| * Based on code from the OggTheora software codec source code, |
| * Copyright (C) 2002-2010 The Xiph.Org Foundation and contributors. |
| */ |
| #include <stdlib.h> |
| #include <string.h> |
| #include "y4minput.h" |
| |
| static int y4m_parse_tags(y4m_input *_y4m, char *_tags) { |
| int got_w; |
| int got_h; |
| int got_fps; |
| int got_interlace; |
| int got_par; |
| int got_chroma; |
| char *p; |
| char *q; |
| got_w = got_h = got_fps = got_interlace = got_par = got_chroma = 0; |
| for (p = _tags;; p = q) { |
| /*Skip any leading spaces.*/ |
| while (*p == ' ')p++; |
| /*If that's all we have, stop.*/ |
| if (p[0] == '\0')break; |
| /*Find the end of this tag.*/ |
| for (q = p + 1; *q != '\0' && *q != ' '; q++); |
| /*Process the tag.*/ |
| switch (p[0]) { |
| case 'W': { |
| if (sscanf(p + 1, "%d", &_y4m->pic_w) != 1)return -1; |
| got_w = 1; |
| } |
| break; |
| case 'H': { |
| if (sscanf(p + 1, "%d", &_y4m->pic_h) != 1)return -1; |
| got_h = 1; |
| } |
| break; |
| case 'F': { |
| if (sscanf(p + 1, "%d:%d", &_y4m->fps_n, &_y4m->fps_d) != 2) { |
| return -1; |
| } |
| got_fps = 1; |
| } |
| break; |
| case 'I': { |
| _y4m->interlace = p[1]; |
| got_interlace = 1; |
| } |
| break; |
| case 'A': { |
| if (sscanf(p + 1, "%d:%d", &_y4m->par_n, &_y4m->par_d) != 2) { |
| return -1; |
| } |
| got_par = 1; |
| } |
| break; |
| case 'C': { |
| if (q - p > 16)return -1; |
| memcpy(_y4m->chroma_type, p + 1, q - p - 1); |
| _y4m->chroma_type[q - p - 1] = '\0'; |
| got_chroma = 1; |
| } |
| break; |
| /*Ignore unknown tags.*/ |
| } |
| } |
| if (!got_w || !got_h || !got_fps)return -1; |
| if (!got_interlace)_y4m->interlace = '?'; |
| if (!got_par)_y4m->par_n = _y4m->par_d = 0; |
| /*Chroma-type is not specified in older files, e.g., those generated by |
| mplayer.*/ |
| if (!got_chroma)strcpy(_y4m->chroma_type, "420"); |
| return 0; |
| } |
| |
| |
| |
| /*All anti-aliasing filters in the following conversion functions are based on |
| one of two window functions: |
| The 6-tap Lanczos window (for down-sampling and shifts): |
| sinc(\pi*t)*sinc(\pi*t/3), |t|<3 (sinc(t)==sin(t)/t) |
| 0, |t|>=3 |
| The 4-tap Mitchell window (for up-sampling): |
| 7|t|^3-12|t|^2+16/3, |t|<1 |
| -(7/3)|x|^3+12|x|^2-20|x|+32/3, |t|<2 |
| 0, |t|>=2 |
| The number of taps is intentionally kept small to reduce computational |
| overhead and limit ringing. |
| |
| The taps from these filters are scaled so that their sum is 1, and the result |
| is scaled by 128 and rounded to integers to create a filter whose |
| intermediate values fit inside 16 bits. |
| Coefficients are rounded in such a way as to ensure their sum is still 128, |
| which is usually equivalent to normal rounding. |
| |
| Conversions which require both horizontal and vertical filtering could |
| have these steps pipelined, for less memory consumption and better cache |
| performance, but we do them separately for simplicity.*/ |
| |
| #define OC_MINI(_a,_b) ((_a)>(_b)?(_b):(_a)) |
| #define OC_MAXI(_a,_b) ((_a)<(_b)?(_b):(_a)) |
| #define OC_CLAMPI(_a,_b,_c) (OC_MAXI(_a,OC_MINI(_b,_c))) |
| |
| /*420jpeg chroma samples are sited like: |
| Y-------Y-------Y-------Y------- |
| | | | | |
| | BR | | BR | |
| | | | | |
| Y-------Y-------Y-------Y------- |
| | | | | |
| | | | | |
| | | | | |
| Y-------Y-------Y-------Y------- |
| | | | | |
| | BR | | BR | |
| | | | | |
| Y-------Y-------Y-------Y------- |
| | | | | |
| | | | | |
| | | | | |
| |
| 420mpeg2 chroma samples are sited like: |
| Y-------Y-------Y-------Y------- |
| | | | | |
| BR | BR | |
| | | | | |
| Y-------Y-------Y-------Y------- |
| | | | | |
| | | | | |
| | | | | |
| Y-------Y-------Y-------Y------- |
| | | | | |
| BR | BR | |
| | | | | |
| Y-------Y-------Y-------Y------- |
| | | | | |
| | | | | |
| | | | | |
| |
| We use a resampling filter to shift the site locations one quarter pixel (at |
| the chroma plane's resolution) to the right. |
| The 4:2:2 modes look exactly the same, except there are twice as many chroma |
| lines, and they are vertically co-sited with the luma samples in both the |
| mpeg2 and jpeg cases (thus requiring no vertical resampling).*/ |
| static void y4m_42xmpeg2_42xjpeg_helper(unsigned char *_dst, |
| const unsigned char *_src, int _c_w, int _c_h) { |
| int y; |
| int x; |
| for (y = 0; y < _c_h; y++) { |
| /*Filter: [4 -17 114 35 -9 1]/128, derived from a 6-tap Lanczos |
| window.*/ |
| for (x = 0; x < OC_MINI(_c_w, 2); x++) { |
| _dst[x] = (unsigned char)OC_CLAMPI(0, (4 * _src[0] - 17 * _src[OC_MAXI(x - 1, 0)] + |
| 114 * _src[x] + 35 * _src[OC_MINI(x + 1, _c_w - 1)] - 9 * _src[OC_MINI(x + 2, _c_w - 1)] + |
| _src[OC_MINI(x + 3, _c_w - 1)] + 64) >> 7, 255); |
| } |
| for (; x < _c_w - 3; x++) { |
| _dst[x] = (unsigned char)OC_CLAMPI(0, (4 * _src[x - 2] - 17 * _src[x - 1] + |
| 114 * _src[x] + 35 * _src[x + 1] - 9 * _src[x + 2] + _src[x + 3] + 64) >> 7, 255); |
| } |
| for (; x < _c_w; x++) { |
| _dst[x] = (unsigned char)OC_CLAMPI(0, (4 * _src[x - 2] - 17 * _src[x - 1] + |
| 114 * _src[x] + 35 * _src[OC_MINI(x + 1, _c_w - 1)] - 9 * _src[OC_MINI(x + 2, _c_w - 1)] + |
| _src[_c_w - 1] + 64) >> 7, 255); |
| } |
| _dst += _c_w; |
| _src += _c_w; |
| } |
| } |
| |
| /*Handles both 422 and 420mpeg2 to 422jpeg and 420jpeg, respectively.*/ |
| static void y4m_convert_42xmpeg2_42xjpeg(y4m_input *_y4m, unsigned char *_dst, |
| unsigned char *_aux) { |
| int c_w; |
| int c_h; |
| int c_sz; |
| int pli; |
| /*Skip past the luma data.*/ |
| _dst += _y4m->pic_w * _y4m->pic_h; |
| /*Compute the size of each chroma plane.*/ |
| c_w = (_y4m->pic_w + _y4m->dst_c_dec_h - 1) / _y4m->dst_c_dec_h; |
| c_h = (_y4m->pic_h + _y4m->dst_c_dec_v - 1) / _y4m->dst_c_dec_v; |
| c_sz = c_w * c_h; |
| for (pli = 1; pli < 3; pli++) { |
| y4m_42xmpeg2_42xjpeg_helper(_dst, _aux, c_w, c_h); |
| _dst += c_sz; |
| _aux += c_sz; |
| } |
| } |
| |
| /*This format is only used for interlaced content, but is included for |
| completeness. |
| |
| 420jpeg chroma samples are sited like: |
| Y-------Y-------Y-------Y------- |
| | | | | |
| | BR | | BR | |
| | | | | |
| Y-------Y-------Y-------Y------- |
| | | | | |
| | | | | |
| | | | | |
| Y-------Y-------Y-------Y------- |
| | | | | |
| | BR | | BR | |
| | | | | |
| Y-------Y-------Y-------Y------- |
| | | | | |
| | | | | |
| | | | | |
| |
| 420paldv chroma samples are sited like: |
| YR------Y-------YR------Y------- |
| | | | | |
| | | | | |
| | | | | |
| YB------Y-------YB------Y------- |
| | | | | |
| | | | | |
| | | | | |
| YR------Y-------YR------Y------- |
| | | | | |
| | | | | |
| | | | | |
| YB------Y-------YB------Y------- |
| | | | | |
| | | | | |
| | | | | |
| |
| We use a resampling filter to shift the site locations one quarter pixel (at |
| the chroma plane's resolution) to the right. |
| Then we use another filter to move the C_r location down one quarter pixel, |
| and the C_b location up one quarter pixel.*/ |
| static void y4m_convert_42xpaldv_42xjpeg(y4m_input *_y4m, unsigned char *_dst, |
| unsigned char *_aux) { |
| unsigned char *tmp; |
| int c_w; |
| int c_h; |
| int c_sz; |
| int pli; |
| int y; |
| int x; |
| /*Skip past the luma data.*/ |
| _dst += _y4m->pic_w * _y4m->pic_h; |
| /*Compute the size of each chroma plane.*/ |
| c_w = (_y4m->pic_w + 1) / 2; |
| c_h = (_y4m->pic_h + _y4m->dst_c_dec_h - 1) / _y4m->dst_c_dec_h; |
| c_sz = c_w * c_h; |
| tmp = _aux + 2 * c_sz; |
| for (pli = 1; pli < 3; pli++) { |
| /*First do the horizontal re-sampling. |
| This is the same as the mpeg2 case, except that after the horizontal |
| case, we need to apply a second vertical filter.*/ |
| y4m_42xmpeg2_42xjpeg_helper(tmp, _aux, c_w, c_h); |
| _aux += c_sz; |
| switch (pli) { |
| case 1: { |
| /*Slide C_b up a quarter-pel. |
| This is the same filter used above, but in the other order.*/ |
| for (x = 0; x < c_w; x++) { |
| for (y = 0; y < OC_MINI(c_h, 3); y++) { |
| _dst[y * c_w] = (unsigned char)OC_CLAMPI(0, (tmp[0] |
| - 9 * tmp[OC_MAXI(y - 2, 0) * c_w] + 35 * tmp[OC_MAXI(y - 1, 0) * c_w] |
| + 114 * tmp[y * c_w] - 17 * tmp[OC_MINI(y + 1, c_h - 1) * c_w] |
| + 4 * tmp[OC_MINI(y + 2, c_h - 1) * c_w] + 64) >> 7, 255); |
| } |
| for (; y < c_h - 2; y++) { |
| _dst[y * c_w] = (unsigned char)OC_CLAMPI(0, (tmp[(y - 3) * c_w] |
| - 9 * tmp[(y - 2) * c_w] + 35 * tmp[(y - 1) * c_w] + 114 * tmp[y * c_w] |
| - 17 * tmp[(y + 1) * c_w] + 4 * tmp[(y + 2) * c_w] + 64) >> 7, 255); |
| } |
| for (; y < c_h; y++) { |
| _dst[y * c_w] = (unsigned char)OC_CLAMPI(0, (tmp[(y - 3) * c_w] |
| - 9 * tmp[(y - 2) * c_w] + 35 * tmp[(y - 1) * c_w] + 114 * tmp[y * c_w] |
| - 17 * tmp[OC_MINI(y + 1, c_h - 1) * c_w] + 4 * tmp[(c_h - 1) * c_w] + 64) >> 7, 255); |
| } |
| _dst++; |
| tmp++; |
| } |
| _dst += c_sz - c_w; |
| tmp -= c_w; |
| } |
| break; |
| case 2: { |
| /*Slide C_r down a quarter-pel. |
| This is the same as the horizontal filter.*/ |
| for (x = 0; x < c_w; x++) { |
| for (y = 0; y < OC_MINI(c_h, 2); y++) { |
| _dst[y * c_w] = (unsigned char)OC_CLAMPI(0, (4 * tmp[0] |
| - 17 * tmp[OC_MAXI(y - 1, 0) * c_w] + 114 * tmp[y * c_w] |
| + 35 * tmp[OC_MINI(y + 1, c_h - 1) * c_w] - 9 * tmp[OC_MINI(y + 2, c_h - 1) * c_w] |
| + tmp[OC_MINI(y + 3, c_h - 1) * c_w] + 64) >> 7, 255); |
| } |
| for (; y < c_h - 3; y++) { |
| _dst[y * c_w] = (unsigned char)OC_CLAMPI(0, (4 * tmp[(y - 2) * c_w] |
| - 17 * tmp[(y - 1) * c_w] + 114 * tmp[y * c_w] + 35 * tmp[(y + 1) * c_w] |
| - 9 * tmp[(y + 2) * c_w] + tmp[(y + 3) * c_w] + 64) >> 7, 255); |
| } |
| for (; y < c_h; y++) { |
| _dst[y * c_w] = (unsigned char)OC_CLAMPI(0, (4 * tmp[(y - 2) * c_w] |
| - 17 * tmp[(y - 1) * c_w] + 114 * tmp[y * c_w] + 35 * tmp[OC_MINI(y + 1, c_h - 1) * c_w] |
| - 9 * tmp[OC_MINI(y + 2, c_h - 1) * c_w] + tmp[(c_h - 1) * c_w] + 64) >> 7, 255); |
| } |
| _dst++; |
| tmp++; |
| } |
| } |
| break; |
| } |
| /*For actual interlaced material, this would have to be done separately on |
| each field, and the shift amounts would be different. |
| C_r moves down 1/8, C_b up 3/8 in the top field, and C_r moves down 3/8, |
| C_b up 1/8 in the bottom field. |
| The corresponding filters would be: |
| Down 1/8 (reverse order for up): [3 -11 125 15 -4 0]/128 |
| Down 3/8 (reverse order for up): [4 -19 98 56 -13 2]/128*/ |
| } |
| } |
| |
| /*Perform vertical filtering to reduce a single plane from 4:2:2 to 4:2:0. |
| This is used as a helper by several converation routines.*/ |
| static void y4m_422jpeg_420jpeg_helper(unsigned char *_dst, |
| const unsigned char *_src, int _c_w, int _c_h) { |
| int y; |
| int x; |
| /*Filter: [3 -17 78 78 -17 3]/128, derived from a 6-tap Lanczos window.*/ |
| for (x = 0; x < _c_w; x++) { |
| for (y = 0; y < OC_MINI(_c_h, 2); y += 2) { |
| _dst[(y >> 1)*_c_w] = OC_CLAMPI(0, (64 * _src[0] |
| + 78 * _src[OC_MINI(1, _c_h - 1) * _c_w] |
| - 17 * _src[OC_MINI(2, _c_h - 1) * _c_w] |
| + 3 * _src[OC_MINI(3, _c_h - 1) * _c_w] + 64) >> 7, 255); |
| } |
| for (; y < _c_h - 3; y += 2) { |
| _dst[(y >> 1)*_c_w] = OC_CLAMPI(0, (3 * (_src[(y - 2) * _c_w] + _src[(y + 3) * _c_w]) |
| - 17 * (_src[(y - 1) * _c_w] + _src[(y + 2) * _c_w]) |
| + 78 * (_src[y * _c_w] + _src[(y + 1) * _c_w]) + 64) >> 7, 255); |
| } |
| for (; y < _c_h; y += 2) { |
| _dst[(y >> 1)*_c_w] = OC_CLAMPI(0, (3 * (_src[(y - 2) * _c_w] |
| + _src[(_c_h - 1) * _c_w]) - 17 * (_src[(y - 1) * _c_w] |
| + _src[OC_MINI(y + 2, _c_h - 1) * _c_w]) |
| + 78 * (_src[y * _c_w] + _src[OC_MINI(y + 1, _c_h - 1) * _c_w]) + 64) >> 7, 255); |
| } |
| _src++; |
| _dst++; |
| } |
| } |
| |
| /*420jpeg chroma samples are sited like: |
| Y-------Y-------Y-------Y------- |
| | | | | |
| | BR | | BR | |
| | | | | |
| Y-------Y-------Y-------Y------- |
| | | | | |
| | | | | |
| | | | | |
| Y-------Y-------Y-------Y------- |
| | | | | |
| | BR | | BR | |
| | | | | |
| Y-------Y-------Y-------Y------- |
| | | | | |
| | | | | |
| | | | | |
| |
| 422jpeg chroma samples are sited like: |
| Y---BR--Y-------Y---BR--Y------- |
| | | | | |
| | | | | |
| | | | | |
| Y---BR--Y-------Y---BR--Y------- |
| | | | | |
| | | | | |
| | | | | |
| Y---BR--Y-------Y---BR--Y------- |
| | | | | |
| | | | | |
| | | | | |
| Y---BR--Y-------Y---BR--Y------- |
| | | | | |
| | | | | |
| | | | | |
| |
| We use a resampling filter to decimate the chroma planes by two in the |
| vertical direction.*/ |
| static void y4m_convert_422jpeg_420jpeg(y4m_input *_y4m, unsigned char *_dst, |
| unsigned char *_aux) { |
| int c_w; |
| int c_h; |
| int c_sz; |
| int dst_c_w; |
| int dst_c_h; |
| int dst_c_sz; |
| int pli; |
| /*Skip past the luma data.*/ |
| _dst += _y4m->pic_w * _y4m->pic_h; |
| /*Compute the size of each chroma plane.*/ |
| c_w = (_y4m->pic_w + _y4m->src_c_dec_h - 1) / _y4m->src_c_dec_h; |
| c_h = _y4m->pic_h; |
| dst_c_w = (_y4m->pic_w + _y4m->dst_c_dec_h - 1) / _y4m->dst_c_dec_h; |
| dst_c_h = (_y4m->pic_h + _y4m->dst_c_dec_v - 1) / _y4m->dst_c_dec_v; |
| c_sz = c_w * c_h; |
| dst_c_sz = dst_c_w * dst_c_h; |
| for (pli = 1; pli < 3; pli++) { |
| y4m_422jpeg_420jpeg_helper(_dst, _aux, c_w, c_h); |
| _aux += c_sz; |
| _dst += dst_c_sz; |
| } |
| } |
| |
| /*420jpeg chroma samples are sited like: |
| Y-------Y-------Y-------Y------- |
| | | | | |
| | BR | | BR | |
| | | | | |
| Y-------Y-------Y-------Y------- |
| | | | | |
| | | | | |
| | | | | |
| Y-------Y-------Y-------Y------- |
| | | | | |
| | BR | | BR | |
| | | | | |
| Y-------Y-------Y-------Y------- |
| | | | | |
| | | | | |
| | | | | |
| |
| 422 chroma samples are sited like: |
| YBR-----Y-------YBR-----Y------- |
| | | | | |
| | | | | |
| | | | | |
| YBR-----Y-------YBR-----Y------- |
| | | | | |
| | | | | |
| | | | | |
| YBR-----Y-------YBR-----Y------- |
| | | | | |
| | | | | |
| | | | | |
| YBR-----Y-------YBR-----Y------- |
| | | | | |
| | | | | |
| | | | | |
| |
| We use a resampling filter to shift the original site locations one quarter |
| pixel (at the original chroma resolution) to the right. |
| Then we use a second resampling filter to decimate the chroma planes by two |
| in the vertical direction.*/ |
| static void y4m_convert_422_420jpeg(y4m_input *_y4m, unsigned char *_dst, |
| unsigned char *_aux) { |
| unsigned char *tmp; |
| int c_w; |
| int c_h; |
| int c_sz; |
| int dst_c_h; |
| int dst_c_sz; |
| int pli; |
| /*Skip past the luma data.*/ |
| _dst += _y4m->pic_w * _y4m->pic_h; |
| /*Compute the size of each chroma plane.*/ |
| c_w = (_y4m->pic_w + _y4m->src_c_dec_h - 1) / _y4m->src_c_dec_h; |
| c_h = _y4m->pic_h; |
| dst_c_h = (_y4m->pic_h + _y4m->dst_c_dec_v - 1) / _y4m->dst_c_dec_v; |
| c_sz = c_w * c_h; |
| dst_c_sz = c_w * dst_c_h; |
| tmp = _aux + 2 * c_sz; |
| for (pli = 1; pli < 3; pli++) { |
| /*In reality, the horizontal and vertical steps could be pipelined, for |
| less memory consumption and better cache performance, but we do them |
| separately for simplicity.*/ |
| /*First do horizontal filtering (convert to 422jpeg)*/ |
| y4m_42xmpeg2_42xjpeg_helper(tmp, _aux, c_w, c_h); |
| /*Now do the vertical filtering.*/ |
| y4m_422jpeg_420jpeg_helper(_dst, tmp, c_w, c_h); |
| _aux += c_sz; |
| _dst += dst_c_sz; |
| } |
| } |
| |
| /*420jpeg chroma samples are sited like: |
| Y-------Y-------Y-------Y------- |
| | | | | |
| | BR | | BR | |
| | | | | |
| Y-------Y-------Y-------Y------- |
| | | | | |
| | | | | |
| | | | | |
| Y-------Y-------Y-------Y------- |
| | | | | |
| | BR | | BR | |
| | | | | |
| Y-------Y-------Y-------Y------- |
| | | | | |
| | | | | |
| | | | | |
| |
| 411 chroma samples are sited like: |
| YBR-----Y-------Y-------Y------- |
| | | | | |
| | | | | |
| | | | | |
| YBR-----Y-------Y-------Y------- |
| | | | | |
| | | | | |
| | | | | |
| YBR-----Y-------Y-------Y------- |
| | | | | |
| | | | | |
| | | | | |
| YBR-----Y-------Y-------Y------- |
| | | | | |
| | | | | |
| | | | | |
| |
| We use a filter to resample at site locations one eighth pixel (at the source |
| chroma plane's horizontal resolution) and five eighths of a pixel to the |
| right. |
| Then we use another filter to decimate the planes by 2 in the vertical |
| direction.*/ |
| static void y4m_convert_411_420jpeg(y4m_input *_y4m, unsigned char *_dst, |
| unsigned char *_aux) { |
| unsigned char *tmp; |
| int c_w; |
| int c_h; |
| int c_sz; |
| int dst_c_w; |
| int dst_c_h; |
| int dst_c_sz; |
| int tmp_sz; |
| int pli; |
| int y; |
| int x; |
| /*Skip past the luma data.*/ |
| _dst += _y4m->pic_w * _y4m->pic_h; |
| /*Compute the size of each chroma plane.*/ |
| c_w = (_y4m->pic_w + _y4m->src_c_dec_h - 1) / _y4m->src_c_dec_h; |
| c_h = _y4m->pic_h; |
| dst_c_w = (_y4m->pic_w + _y4m->dst_c_dec_h - 1) / _y4m->dst_c_dec_h; |
| dst_c_h = (_y4m->pic_h + _y4m->dst_c_dec_v - 1) / _y4m->dst_c_dec_v; |
| c_sz = c_w * c_h; |
| dst_c_sz = dst_c_w * dst_c_h; |
| tmp_sz = dst_c_w * c_h; |
| tmp = _aux + 2 * c_sz; |
| for (pli = 1; pli < 3; pli++) { |
| /*In reality, the horizontal and vertical steps could be pipelined, for |
| less memory consumption and better cache performance, but we do them |
| separately for simplicity.*/ |
| /*First do horizontal filtering (convert to 422jpeg)*/ |
| for (y = 0; y < c_h; y++) { |
| /*Filters: [1 110 18 -1]/128 and [-3 50 86 -5]/128, both derived from a |
| 4-tap Mitchell window.*/ |
| for (x = 0; x < OC_MINI(c_w, 1); x++) { |
| tmp[x << 1] = (unsigned char)OC_CLAMPI(0, (111 * _aux[0] |
| + 18 * _aux[OC_MINI(1, c_w - 1)] - _aux[OC_MINI(2, c_w - 1)] + 64) >> 7, 255); |
| tmp[x << 1 | 1] = (unsigned char)OC_CLAMPI(0, (47 * _aux[0] |
| + 86 * _aux[OC_MINI(1, c_w - 1)] - 5 * _aux[OC_MINI(2, c_w - 1)] + 64) >> 7, 255); |
| } |
| for (; x < c_w - 2; x++) { |
| tmp[x << 1] = (unsigned char)OC_CLAMPI(0, (_aux[x - 1] + 110 * _aux[x] |
| + 18 * _aux[x + 1] - _aux[x + 2] + 64) >> 7, 255); |
| tmp[x << 1 | 1] = (unsigned char)OC_CLAMPI(0, (-3 * _aux[x - 1] + 50 * _aux[x] |
| + 86 * _aux[x + 1] - 5 * _aux[x + 2] + 64) >> 7, 255); |
| } |
| for (; x < c_w; x++) { |
| tmp[x << 1] = (unsigned char)OC_CLAMPI(0, (_aux[x - 1] + 110 * _aux[x] |
| + 18 * _aux[OC_MINI(x + 1, c_w - 1)] - _aux[c_w - 1] + 64) >> 7, 255); |
| if ((x << 1 | 1) < dst_c_w) { |
| tmp[x << 1 | 1] = (unsigned char)OC_CLAMPI(0, (-3 * _aux[x - 1] + 50 * _aux[x] |
| + 86 * _aux[OC_MINI(x + 1, c_w - 1)] - 5 * _aux[c_w - 1] + 64) >> 7, 255); |
| } |
| } |
| tmp += dst_c_w; |
| _aux += c_w; |
| } |
| tmp -= tmp_sz; |
| /*Now do the vertical filtering.*/ |
| y4m_422jpeg_420jpeg_helper(_dst, tmp, dst_c_w, c_h); |
| _dst += dst_c_sz; |
| } |
| } |
| |
| /*Convert 444 to 420jpeg.*/ |
| static void y4m_convert_444_420jpeg(y4m_input *_y4m, unsigned char *_dst, |
| unsigned char *_aux) { |
| unsigned char *tmp; |
| int c_w; |
| int c_h; |
| int c_sz; |
| int dst_c_w; |
| int dst_c_h; |
| int dst_c_sz; |
| int tmp_sz; |
| int pli; |
| int y; |
| int x; |
| /*Skip past the luma data.*/ |
| _dst += _y4m->pic_w * _y4m->pic_h; |
| /*Compute the size of each chroma plane.*/ |
| c_w = (_y4m->pic_w + _y4m->src_c_dec_h - 1) / _y4m->src_c_dec_h; |
| c_h = _y4m->pic_h; |
| dst_c_w = (_y4m->pic_w + _y4m->dst_c_dec_h - 1) / _y4m->dst_c_dec_h; |
| dst_c_h = (_y4m->pic_h + _y4m->dst_c_dec_v - 1) / _y4m->dst_c_dec_v; |
| c_sz = c_w * c_h; |
| dst_c_sz = dst_c_w * dst_c_h; |
| tmp_sz = dst_c_w * c_h; |
| tmp = _aux + 2 * c_sz; |
| for (pli = 1; pli < 3; pli++) { |
| /*Filter: [3 -17 78 78 -17 3]/128, derived from a 6-tap Lanczos window.*/ |
| for (y = 0; y < c_h; y++) { |
| for (x = 0; x < OC_MINI(c_w, 2); x += 2) { |
| tmp[x >> 1] = OC_CLAMPI(0, (64 * _aux[0] + 78 * _aux[OC_MINI(1, c_w - 1)] |
| - 17 * _aux[OC_MINI(2, c_w - 1)] |
| + 3 * _aux[OC_MINI(3, c_w - 1)] + 64) >> 7, 255); |
| } |
| for (; x < c_w - 3; x += 2) { |
| tmp[x >> 1] = OC_CLAMPI(0, (3 * (_aux[x - 2] + _aux[x + 3]) |
| - 17 * (_aux[x - 1] + _aux[x + 2]) + 78 * (_aux[x] + _aux[x + 1]) + 64) >> 7, 255); |
| } |
| for (; x < c_w; x += 2) { |
| tmp[x >> 1] = OC_CLAMPI(0, (3 * (_aux[x - 2] + _aux[c_w - 1]) - |
| 17 * (_aux[x - 1] + _aux[OC_MINI(x + 2, c_w - 1)]) + |
| 78 * (_aux[x] + _aux[OC_MINI(x + 1, c_w - 1)]) + 64) >> 7, 255); |
| } |
| tmp += dst_c_w; |
| _aux += c_w; |
| } |
| tmp -= tmp_sz; |
| /*Now do the vertical filtering.*/ |
| y4m_422jpeg_420jpeg_helper(_dst, tmp, dst_c_w, c_h); |
| _dst += dst_c_sz; |
| } |
| } |
| |
| /*The image is padded with empty chroma components at 4:2:0.*/ |
| static void y4m_convert_mono_420jpeg(y4m_input *_y4m, unsigned char *_dst, |
| unsigned char *_aux) { |
| int c_sz; |
| _dst += _y4m->pic_w * _y4m->pic_h; |
| c_sz = ((_y4m->pic_w + _y4m->dst_c_dec_h - 1) / _y4m->dst_c_dec_h) * |
| ((_y4m->pic_h + _y4m->dst_c_dec_v - 1) / _y4m->dst_c_dec_v); |
| memset(_dst, 128, c_sz * 2); |
| } |
| |
| /*No conversion function needed.*/ |
| static void y4m_convert_null(y4m_input *_y4m, unsigned char *_dst, |
| unsigned char *_aux) { |
| } |
| |
| int y4m_input_open(y4m_input *_y4m, FILE *_fin, char *_skip, int _nskip) { |
| char buffer[80]; |
| int ret; |
| int i; |
| /*Read until newline, or 80 cols, whichever happens first.*/ |
| for (i = 0; i < 79; i++) { |
| if (_nskip > 0) { |
| buffer[i] = *_skip++; |
| _nskip--; |
| } else { |
| ret = fread(buffer + i, 1, 1, _fin); |
| if (ret < 1)return -1; |
| } |
| if (buffer[i] == '\n')break; |
| } |
| /*We skipped too much header data.*/ |
| if (_nskip > 0)return -1; |
| if (i == 79) { |
| fprintf(stderr, "Error parsing header; not a YUV2MPEG2 file?\n"); |
| return -1; |
| } |
| buffer[i] = '\0'; |
| if (memcmp(buffer, "YUV4MPEG", 8)) { |
| fprintf(stderr, "Incomplete magic for YUV4MPEG file.\n"); |
| return -1; |
| } |
| if (buffer[8] != '2') { |
| fprintf(stderr, "Incorrect YUV input file version; YUV4MPEG2 required.\n"); |
| } |
| ret = y4m_parse_tags(_y4m, buffer + 5); |
| if (ret < 0) { |
| fprintf(stderr, "Error parsing YUV4MPEG2 header.\n"); |
| return ret; |
| } |
| if (_y4m->interlace == '?') { |
| fprintf(stderr, "Warning: Input video interlacing format unknown; " |
| "assuming progressive scan.\n"); |
| } else if (_y4m->interlace != 'p') { |
| fprintf(stderr, "Input video is interlaced; " |
| "Only progressive scan handled.\n"); |
| return -1; |
| } |
| if (strcmp(_y4m->chroma_type, "420") == 0 || |
| strcmp(_y4m->chroma_type, "420jpeg") == 0) { |
| _y4m->src_c_dec_h = _y4m->dst_c_dec_h = _y4m->src_c_dec_v = _y4m->dst_c_dec_v = 2; |
| _y4m->dst_buf_read_sz = _y4m->pic_w * _y4m->pic_h |
| + 2 * ((_y4m->pic_w + 1) / 2) * ((_y4m->pic_h + 1) / 2); |
| /*Natively supported: no conversion required.*/ |
| _y4m->aux_buf_sz = _y4m->aux_buf_read_sz = 0; |
| _y4m->convert = y4m_convert_null; |
| } else if (strcmp(_y4m->chroma_type, "420mpeg2") == 0) { |
| _y4m->src_c_dec_h = _y4m->dst_c_dec_h = _y4m->src_c_dec_v = _y4m->dst_c_dec_v = 2; |
| _y4m->dst_buf_read_sz = _y4m->pic_w * _y4m->pic_h; |
| /*Chroma filter required: read into the aux buf first.*/ |
| _y4m->aux_buf_sz = _y4m->aux_buf_read_sz = |
| 2 * ((_y4m->pic_w + 1) / 2) * ((_y4m->pic_h + 1) / 2); |
| _y4m->convert = y4m_convert_42xmpeg2_42xjpeg; |
| } else if (strcmp(_y4m->chroma_type, "420paldv") == 0) { |
| _y4m->src_c_dec_h = _y4m->dst_c_dec_h = _y4m->src_c_dec_v = _y4m->dst_c_dec_v = 2; |
| _y4m->dst_buf_read_sz = _y4m->pic_w * _y4m->pic_h; |
| /*Chroma filter required: read into the aux buf first. |
| We need to make two filter passes, so we need some extra space in the |
| aux buffer.*/ |
| _y4m->aux_buf_sz = 3 * ((_y4m->pic_w + 1) / 2) * ((_y4m->pic_h + 1) / 2); |
| _y4m->aux_buf_read_sz = 2 * ((_y4m->pic_w + 1) / 2) * ((_y4m->pic_h + 1) / 2); |
| _y4m->convert = y4m_convert_42xpaldv_42xjpeg; |
| } else if (strcmp(_y4m->chroma_type, "422jpeg") == 0) { |
| _y4m->src_c_dec_h = _y4m->dst_c_dec_h = 2; |
| _y4m->src_c_dec_v = 1; |
| _y4m->dst_c_dec_v = 2; |
| _y4m->dst_buf_read_sz = _y4m->pic_w * _y4m->pic_h; |
| /*Chroma filter required: read into the aux buf first.*/ |
| _y4m->aux_buf_sz = _y4m->aux_buf_read_sz = 2 * ((_y4m->pic_w + 1) / 2) * _y4m->pic_h; |
| _y4m->convert = y4m_convert_422jpeg_420jpeg; |
| } else if (strcmp(_y4m->chroma_type, "422") == 0) { |
| _y4m->src_c_dec_h = _y4m->dst_c_dec_h = 2; |
| _y4m->src_c_dec_v = 1; |
| _y4m->dst_c_dec_v = 2; |
| _y4m->dst_buf_read_sz = _y4m->pic_w * _y4m->pic_h; |
| /*Chroma filter required: read into the aux buf first. |
| We need to make two filter passes, so we need some extra space in the |
| aux buffer.*/ |
| _y4m->aux_buf_read_sz = 2 * ((_y4m->pic_w + 1) / 2) * _y4m->pic_h; |
| _y4m->aux_buf_sz = _y4m->aux_buf_read_sz + ((_y4m->pic_w + 1) / 2) * _y4m->pic_h; |
| _y4m->convert = y4m_convert_422_420jpeg; |
| } else if (strcmp(_y4m->chroma_type, "411") == 0) { |
| _y4m->src_c_dec_h = 4; |
| _y4m->dst_c_dec_h = 2; |
| _y4m->src_c_dec_v = 1; |
| _y4m->dst_c_dec_v = 2; |
| _y4m->dst_buf_read_sz = _y4m->pic_w * _y4m->pic_h; |
| /*Chroma filter required: read into the aux buf first. |
| We need to make two filter passes, so we need some extra space in the |
| aux buffer.*/ |
| _y4m->aux_buf_read_sz = 2 * ((_y4m->pic_w + 3) / 4) * _y4m->pic_h; |
| _y4m->aux_buf_sz = _y4m->aux_buf_read_sz + ((_y4m->pic_w + 1) / 2) * _y4m->pic_h; |
| _y4m->convert = y4m_convert_411_420jpeg; |
| } else if (strcmp(_y4m->chroma_type, "444") == 0) { |
| _y4m->src_c_dec_h = 1; |
| _y4m->dst_c_dec_h = 2; |
| _y4m->src_c_dec_v = 1; |
| _y4m->dst_c_dec_v = 2; |
| _y4m->dst_buf_read_sz = _y4m->pic_w * _y4m->pic_h; |
| /*Chroma filter required: read into the aux buf first. |
| We need to make two filter passes, so we need some extra space in the |
| aux buffer.*/ |
| _y4m->aux_buf_read_sz = 2 * _y4m->pic_w * _y4m->pic_h; |
| _y4m->aux_buf_sz = _y4m->aux_buf_read_sz + ((_y4m->pic_w + 1) / 2) * _y4m->pic_h; |
| _y4m->convert = y4m_convert_444_420jpeg; |
| } else if (strcmp(_y4m->chroma_type, "444alpha") == 0) { |
| _y4m->src_c_dec_h = 1; |
| _y4m->dst_c_dec_h = 2; |
| _y4m->src_c_dec_v = 1; |
| _y4m->dst_c_dec_v = 2; |
| _y4m->dst_buf_read_sz = _y4m->pic_w * _y4m->pic_h; |
| /*Chroma filter required: read into the aux buf first. |
| We need to make two filter passes, so we need some extra space in the |
| aux buffer. |
| The extra plane also gets read into the aux buf. |
| It will be discarded.*/ |
| _y4m->aux_buf_sz = _y4m->aux_buf_read_sz = 3 * _y4m->pic_w * _y4m->pic_h; |
| _y4m->convert = y4m_convert_444_420jpeg; |
| } else if (strcmp(_y4m->chroma_type, "mono") == 0) { |
| _y4m->src_c_dec_h = _y4m->src_c_dec_v = 0; |
| _y4m->dst_c_dec_h = _y4m->dst_c_dec_v = 2; |
| _y4m->dst_buf_read_sz = _y4m->pic_w * _y4m->pic_h; |
| /*No extra space required, but we need to clear the chroma planes.*/ |
| _y4m->aux_buf_sz = _y4m->aux_buf_read_sz = 0; |
| _y4m->convert = y4m_convert_mono_420jpeg; |
| } else { |
| fprintf(stderr, "Unknown chroma sampling type: %s\n", _y4m->chroma_type); |
| return -1; |
| } |
| /*The size of the final frame buffers is always computed from the |
| destination chroma decimation type.*/ |
| _y4m->dst_buf_sz = _y4m->pic_w * _y4m->pic_h |
| + 2 * ((_y4m->pic_w + _y4m->dst_c_dec_h - 1) / _y4m->dst_c_dec_h) * |
| ((_y4m->pic_h + _y4m->dst_c_dec_v - 1) / _y4m->dst_c_dec_v); |
| _y4m->dst_buf = (unsigned char *)malloc(_y4m->dst_buf_sz); |
| _y4m->aux_buf = (unsigned char *)malloc(_y4m->aux_buf_sz); |
| return 0; |
| } |
| |
| void y4m_input_close(y4m_input *_y4m) { |
| free(_y4m->dst_buf); |
| free(_y4m->aux_buf); |
| } |
| |
| int y4m_input_fetch_frame(y4m_input *_y4m, FILE *_fin, vpx_image_t *_img) { |
| char frame[6]; |
| int pic_sz; |
| int c_w; |
| int c_h; |
| int c_sz; |
| int ret; |
| /*Read and skip the frame header.*/ |
| ret = fread(frame, 1, 6, _fin); |
| if (ret < 6)return 0; |
| if (memcmp(frame, "FRAME", 5)) { |
| fprintf(stderr, "Loss of framing in Y4M input data\n"); |
| return -1; |
| } |
| if (frame[5] != '\n') { |
| char c; |
| int j; |
| for (j = 0; j < 79 && fread(&c, 1, 1, _fin) && c != '\n'; j++); |
| if (j == 79) { |
| fprintf(stderr, "Error parsing Y4M frame header\n"); |
| return -1; |
| } |
| } |
| /*Read the frame data that needs no conversion.*/ |
| if (fread(_y4m->dst_buf, 1, _y4m->dst_buf_read_sz, _fin) != _y4m->dst_buf_read_sz) { |
| fprintf(stderr, "Error reading Y4M frame data.\n"); |
| return -1; |
| } |
| /*Read the frame data that does need conversion.*/ |
| if (fread(_y4m->aux_buf, 1, _y4m->aux_buf_read_sz, _fin) != _y4m->aux_buf_read_sz) { |
| fprintf(stderr, "Error reading Y4M frame data.\n"); |
| return -1; |
| } |
| /*Now convert the just read frame.*/ |
| (*_y4m->convert)(_y4m, _y4m->dst_buf, _y4m->aux_buf); |
| /*Fill in the frame buffer pointers. |
| We don't use vpx_img_wrap() because it forces padding for odd picture |
| sizes, which would require a separate fread call for every row.*/ |
| memset(_img, 0, sizeof(*_img)); |
| /*Y4M has the planes in Y'CbCr order, which libvpx calls Y, U, and V.*/ |
| _img->fmt = IMG_FMT_I420; |
| _img->w = _img->d_w = _y4m->pic_w; |
| _img->h = _img->d_h = _y4m->pic_h; |
| /*This is hard-coded to 4:2:0 for now, as that's all VP8 supports.*/ |
| _img->x_chroma_shift = 1; |
| _img->y_chroma_shift = 1; |
| _img->bps = 12; |
| /*Set up the buffer pointers.*/ |
| pic_sz = _y4m->pic_w * _y4m->pic_h; |
| c_w = (_y4m->pic_w + _y4m->dst_c_dec_h - 1) / _y4m->dst_c_dec_h; |
| c_h = (_y4m->pic_h + _y4m->dst_c_dec_v - 1) / _y4m->dst_c_dec_v; |
| c_sz = c_w * c_h; |
| _img->stride[PLANE_Y] = _y4m->pic_w; |
| _img->stride[PLANE_U] = _img->stride[PLANE_V] = c_w; |
| _img->planes[PLANE_Y] = _y4m->dst_buf; |
| _img->planes[PLANE_U] = _y4m->dst_buf + pic_sz; |
| _img->planes[PLANE_V] = _y4m->dst_buf + pic_sz + c_sz; |
| return 1; |
| } |