| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "./aom_config.h" |
| #include "./aom_dsp_rtcd.h" |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| #include "aom_dsp/aom_dsp_common.h" |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/aom_once.h" |
| |
| #include "av1/common/reconintra.h" |
| #include "av1/common/onyxc_int.h" |
| |
| enum { |
| NEED_LEFT = 1 << 1, |
| NEED_ABOVE = 1 << 2, |
| NEED_ABOVERIGHT = 1 << 3, |
| NEED_ABOVELEFT = 1 << 4, |
| NEED_BOTTOMLEFT = 1 << 5, |
| }; |
| |
| static const uint8_t extend_modes[INTRA_MODES] = { |
| NEED_ABOVE | NEED_LEFT, // DC |
| NEED_ABOVE, // V |
| NEED_LEFT, // H |
| NEED_ABOVE | NEED_ABOVERIGHT, // D45 |
| NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D135 |
| NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D117 |
| NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D153 |
| NEED_LEFT | NEED_BOTTOMLEFT, // D207 |
| NEED_ABOVE | NEED_ABOVERIGHT, // D63 |
| NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // TM |
| }; |
| |
| static const uint8_t orders_64x64[1] = { 0 }; |
| static const uint8_t orders_64x32[2] = { 0, 1 }; |
| static const uint8_t orders_32x64[2] = { 0, 1 }; |
| static const uint8_t orders_32x32[4] = { |
| 0, 1, 2, 3, |
| }; |
| static const uint8_t orders_32x16[8] = { |
| 0, 2, 1, 3, 4, 6, 5, 7, |
| }; |
| static const uint8_t orders_16x32[8] = { |
| 0, 1, 2, 3, 4, 5, 6, 7, |
| }; |
| static const uint8_t orders_16x16[16] = { |
| 0, 1, 4, 5, 2, 3, 6, 7, 8, 9, 12, 13, 10, 11, 14, 15, |
| }; |
| static const uint8_t orders_16x8[32] = { |
| 0, 2, 8, 10, 1, 3, 9, 11, 4, 6, 12, 14, 5, 7, 13, 15, |
| 16, 18, 24, 26, 17, 19, 25, 27, 20, 22, 28, 30, 21, 23, 29, 31, |
| }; |
| static const uint8_t orders_8x16[32] = { |
| 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15, |
| 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31, |
| }; |
| static const uint8_t orders_8x8[64] = { |
| 0, 1, 4, 5, 16, 17, 20, 21, 2, 3, 6, 7, 18, 19, 22, 23, |
| 8, 9, 12, 13, 24, 25, 28, 29, 10, 11, 14, 15, 26, 27, 30, 31, |
| 32, 33, 36, 37, 48, 49, 52, 53, 34, 35, 38, 39, 50, 51, 54, 55, |
| 40, 41, 44, 45, 56, 57, 60, 61, 42, 43, 46, 47, 58, 59, 62, 63, |
| }; |
| static const uint8_t *const orders[BLOCK_SIZES] = { |
| orders_8x8, orders_8x8, orders_8x8, orders_8x8, orders_8x16, |
| orders_16x8, orders_16x16, orders_16x32, orders_32x16, orders_32x32, |
| orders_32x64, orders_64x32, orders_64x64, |
| }; |
| |
| static int av1_has_right(BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int right_available, TX_SIZE txsz, int y, int x, |
| int ss_x) { |
| if (!right_available) return 0; |
| |
| // TODO(bshacklett, huisu): Currently the RD loop traverses 4X8 blocks in |
| // inverted N order while in the bitstream the subblocks are stored in Z |
| // order. This discrepancy makes this function incorrect when considering 4X8 |
| // blocks in the RD loop, so we disable the extended right edge for these |
| // blocks. The correct solution is to change the bitstream to store these |
| // blocks in inverted N order, and then update this function appropriately. |
| if (bsize == BLOCK_4X8 && y == 1) return 0; |
| |
| if (y == 0) { |
| const int wl = mi_width_log2_lookup[bsize]; |
| const int hl = mi_height_log2_lookup[bsize]; |
| const int w = 1 << (wl + 1 - ss_x); |
| const int step = tx_size_1d_in_unit[txsz]; |
| const uint8_t *order = orders[bsize]; |
| int my_order, tr_order; |
| |
| if (x + step < w) return 1; |
| |
| mi_row = (mi_row & 7) >> hl; |
| mi_col = (mi_col & 7) >> wl; |
| |
| if (mi_row == 0) return 1; |
| |
| if (((mi_col + 1) << wl) >= 8) return 0; |
| |
| my_order = order[((mi_row + 0) << (3 - wl)) + mi_col + 0]; |
| tr_order = order[((mi_row - 1) << (3 - wl)) + mi_col + 1]; |
| |
| return my_order > tr_order; |
| } else { |
| const int wl = mi_width_log2_lookup[bsize]; |
| const int w = 1 << (wl + 1 - ss_x); |
| const int step = tx_size_1d_in_unit[txsz]; |
| |
| return x + step < w; |
| } |
| } |
| |
| static int av1_has_bottom(BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int bottom_available, TX_SIZE txsz, int y, int x, |
| int ss_y) { |
| if (!bottom_available || x != 0) { |
| return 0; |
| } else { |
| const int wl = mi_width_log2_lookup[bsize]; |
| const int hl = mi_height_log2_lookup[bsize]; |
| const int h = 1 << (hl + 1 - ss_y); |
| const int step = tx_size_1d_in_unit[txsz]; |
| const uint8_t *order = orders[bsize]; |
| int my_order, bl_order; |
| |
| mi_row = (mi_row & 7) >> hl; |
| mi_col = (mi_col & 7) >> wl; |
| |
| if (mi_col == 0) |
| return bottom_available && |
| (mi_row << (hl + !ss_y)) + y + step < (8 << !ss_y); |
| |
| if (((mi_row + 1) << hl) >= 8) return 0; |
| |
| if (y + step < h) return 1; |
| |
| my_order = order[((mi_row + 0) << (3 - wl)) + mi_col + 0]; |
| bl_order = order[((mi_row + 1) << (3 - wl)) + mi_col - 1]; |
| |
| return bl_order < my_order && bottom_available; |
| } |
| } |
| |
| typedef void (*intra_pred_fn)(uint8_t *dst, ptrdiff_t stride, |
| const uint8_t *above, const uint8_t *left); |
| |
| static intra_pred_fn pred[INTRA_MODES][TX_SIZES]; |
| static intra_pred_fn dc_pred[2][2][TX_SIZES]; |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| typedef void (*intra_high_pred_fn)(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *above, const uint16_t *left, |
| int bd); |
| static intra_high_pred_fn pred_high[INTRA_MODES][4]; |
| static intra_high_pred_fn dc_pred_high[2][2][4]; |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| static void av1_init_intra_predictors_internal(void) { |
| #define INIT_NO_4X4(p, type) \ |
| p[TX_8X8] = aom_##type##_predictor_8x8; \ |
| p[TX_16X16] = aom_##type##_predictor_16x16; \ |
| p[TX_32X32] = aom_##type##_predictor_32x32 |
| |
| #define INIT_ALL_SIZES(p, type) \ |
| p[TX_4X4] = aom_##type##_predictor_4x4; \ |
| INIT_NO_4X4(p, type) |
| |
| INIT_ALL_SIZES(pred[V_PRED], v); |
| INIT_ALL_SIZES(pred[H_PRED], h); |
| INIT_ALL_SIZES(pred[D207_PRED], d207e); |
| INIT_ALL_SIZES(pred[D45_PRED], d45e); |
| INIT_ALL_SIZES(pred[D63_PRED], d63e); |
| INIT_ALL_SIZES(pred[D117_PRED], d117); |
| INIT_ALL_SIZES(pred[D135_PRED], d135); |
| INIT_ALL_SIZES(pred[D153_PRED], d153); |
| INIT_ALL_SIZES(pred[TM_PRED], tm); |
| |
| INIT_ALL_SIZES(dc_pred[0][0], dc_128); |
| INIT_ALL_SIZES(dc_pred[0][1], dc_top); |
| INIT_ALL_SIZES(dc_pred[1][0], dc_left); |
| INIT_ALL_SIZES(dc_pred[1][1], dc); |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| INIT_ALL_SIZES(pred_high[V_PRED], highbd_v); |
| INIT_ALL_SIZES(pred_high[H_PRED], highbd_h); |
| INIT_ALL_SIZES(pred_high[D207_PRED], highbd_d207e); |
| INIT_ALL_SIZES(pred_high[D45_PRED], highbd_d45e); |
| INIT_ALL_SIZES(pred_high[D63_PRED], highbd_d63e); |
| INIT_ALL_SIZES(pred_high[D117_PRED], highbd_d117); |
| INIT_ALL_SIZES(pred_high[D135_PRED], highbd_d135); |
| INIT_ALL_SIZES(pred_high[D153_PRED], highbd_d153); |
| INIT_ALL_SIZES(pred_high[TM_PRED], highbd_tm); |
| |
| INIT_ALL_SIZES(dc_pred_high[0][0], highbd_dc_128); |
| INIT_ALL_SIZES(dc_pred_high[0][1], highbd_dc_top); |
| INIT_ALL_SIZES(dc_pred_high[1][0], highbd_dc_left); |
| INIT_ALL_SIZES(dc_pred_high[1][1], highbd_dc); |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| #undef intra_pred_allsizes |
| } |
| |
| #if CONFIG_EXT_INTRA |
| const int16_t dr_intra_derivative[90] = { |
| 1, 14666, 7330, 4884, 3660, 2926, 2435, 2084, 1821, 1616, 1451, 1317, 1204, |
| 1108, 1026, 955, 892, 837, 787, 743, 703, 666, 633, 603, 574, 548, |
| 524, 502, 481, 461, 443, 426, 409, 394, 379, 365, 352, 339, 327, |
| 316, 305, 294, 284, 274, 265, 256, 247, 238, 230, 222, 214, 207, |
| 200, 192, 185, 179, 172, 166, 159, 153, 147, 141, 136, 130, 124, |
| 119, 113, 108, 103, 98, 93, 88, 83, 78, 73, 68, 63, 59, |
| 54, 49, 45, 40, 35, 31, 26, 22, 17, 13, 8, 4, |
| }; |
| |
| // Directional prediction, zone 1: 0 < angle < 90 |
| static void dr_prediction_z1(uint8_t *dst, ptrdiff_t stride, int bs, |
| const uint8_t *const above, |
| const uint8_t *const left, int dx, int dy) { |
| int r, c, x, base, shift, val; |
| |
| (void)left; |
| (void)dy; |
| assert(dy == 1); |
| assert(dx < 0); |
| |
| x = -dx; |
| for (r = 0; r < bs; ++r, dst += stride, x -= dx) { |
| base = x >> 8; |
| shift = x & 0xFF; |
| |
| if (base >= 2 * bs - 1) { |
| int i; |
| for (i = r; i < bs; ++i) { |
| memset(dst, above[2 * bs - 1], bs * sizeof(dst[0])); |
| dst += stride; |
| } |
| return; |
| } |
| |
| for (c = 0; c < bs; ++c, ++base) { |
| if (base < 2 * bs - 1) { |
| val = above[base] * (256 - shift) + above[base + 1] * shift; |
| val = ROUND_POWER_OF_TWO(val, 8); |
| dst[c] = clip_pixel(val); |
| } else { |
| dst[c] = above[2 * bs - 1]; |
| } |
| } |
| } |
| } |
| |
| // Directional prediction, zone 2: 90 < angle < 180 |
| static void dr_prediction_z2(uint8_t *dst, ptrdiff_t stride, int bs, |
| const uint8_t *const above, |
| const uint8_t *const left, int dx, int dy) { |
| int r, c, x, y, shift1, shift2, val, base1, base2; |
| |
| assert(dx > 0); |
| assert(dy > 0); |
| |
| x = -dx; |
| for (r = 0; r < bs; ++r, x -= dx, dst += stride) { |
| base1 = x >> 8; |
| y = (r << 8) - dy; |
| for (c = 0; c < bs; ++c, ++base1, y -= dy) { |
| if (base1 >= -1) { |
| shift1 = x & 0xFF; |
| val = above[base1] * (256 - shift1) + above[base1 + 1] * shift1; |
| val = ROUND_POWER_OF_TWO(val, 8); |
| } else { |
| base2 = y >> 8; |
| if (base2 >= 0) { |
| shift2 = y & 0xFF; |
| val = left[base2] * (256 - shift2) + left[base2 + 1] * shift2; |
| val = ROUND_POWER_OF_TWO(val, 8); |
| } else { |
| val = left[0]; |
| } |
| } |
| dst[c] = clip_pixel(val); |
| } |
| } |
| } |
| |
| // Directional prediction, zone 3: 180 < angle < 270 |
| static void dr_prediction_z3(uint8_t *dst, ptrdiff_t stride, int bs, |
| const uint8_t *const above, |
| const uint8_t *const left, int dx, int dy) { |
| int r, c, y, base, shift, val; |
| |
| (void)above; |
| (void)dx; |
| assert(dx == 1); |
| assert(dy < 0); |
| |
| y = -dy; |
| for (c = 0; c < bs; ++c, y -= dy) { |
| base = y >> 8; |
| shift = y & 0xFF; |
| |
| for (r = 0; r < bs; ++r, ++base) { |
| if (base < 2 * bs - 1) { |
| val = left[base] * (256 - shift) + left[base + 1] * shift; |
| val = ROUND_POWER_OF_TWO(val, 8); |
| dst[r * stride + c] = clip_pixel(val); |
| } else { |
| for (; r < bs; ++r) dst[r * stride + c] = left[2 * bs - 1]; |
| break; |
| } |
| } |
| } |
| } |
| |
| // Get the shift (up-scaled by 256) in X w.r.t a unit change in Y. |
| // If angle > 0 && angle < 90, dx = -((int)(256 / t)); |
| // If angle > 90 && angle < 180, dx = (int)(256 / t); |
| // If angle > 180 && angle < 270, dx = 1; |
| static inline int get_dx(int angle) { |
| if (angle > 0 && angle < 90) { |
| return -dr_intra_derivative[angle]; |
| } else if (angle > 90 && angle < 180) { |
| return dr_intra_derivative[180 - angle]; |
| } else { |
| // In this case, we are not really going to use dx. We may return any value. |
| return 1; |
| } |
| } |
| |
| // Get the shift (up-scaled by 256) in Y w.r.t a unit change in X. |
| // If angle > 0 && angle < 90, dy = 1; |
| // If angle > 90 && angle < 180, dy = (int)(256 * t); |
| // If angle > 180 && angle < 270, dy = -((int)(256 * t)); |
| static inline int get_dy(int angle) { |
| if (angle > 90 && angle < 180) { |
| return dr_intra_derivative[angle - 90]; |
| } else if (angle > 180 && angle < 270) { |
| return -dr_intra_derivative[270 - angle]; |
| } else { |
| // In this case, we are not really going to use dy. We may return any value. |
| return 1; |
| } |
| } |
| |
| static void dr_predictor(uint8_t *dst, ptrdiff_t stride, TX_SIZE tx_size, |
| const uint8_t *const above, const uint8_t *const left, |
| int angle) { |
| const int dx = get_dx(angle); |
| const int dy = get_dy(angle); |
| const int bs = tx_size_1d[tx_size]; |
| |
| assert(angle > 0 && angle < 270); |
| switch (angle) { |
| case 90: pred[V_PRED][tx_size](dst, stride, above, left); return; |
| case 180: pred[H_PRED][tx_size](dst, stride, above, left); return; |
| case 45: pred[D45_PRED][tx_size](dst, stride, above, left); return; |
| case 135: pred[D135_PRED][tx_size](dst, stride, above, left); return; |
| case 117: pred[D117_PRED][tx_size](dst, stride, above, left); return; |
| case 153: pred[D153_PRED][tx_size](dst, stride, above, left); return; |
| case 207: pred[D207_PRED][tx_size](dst, stride, above, left); return; |
| case 63: pred[D63_PRED][tx_size](dst, stride, above, left); return; |
| default: break; |
| } |
| |
| if (angle > 0 && angle < 90) { |
| dr_prediction_z1(dst, stride, bs, above, left, dx, dy); |
| } else if (angle > 90 && angle < 180) { |
| dr_prediction_z2(dst, stride, bs, above, left, dx, dy); |
| } else if (angle > 180 && angle < 270) { |
| dr_prediction_z3(dst, stride, bs, above, left, dx, dy); |
| } else { |
| assert(0); |
| } |
| } |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| // Directional prediction, zone 1: 0 < angle < 90 |
| static void dr_prediction_z1_high(uint16_t *dst, ptrdiff_t stride, int bs, |
| const uint16_t *const above, |
| const uint16_t *const left, int dx, int dy, |
| int bd) { |
| int r, c, x, base, shift, val; |
| |
| (void)left; |
| (void)dy; |
| assert(dy == 1); |
| assert(dx < 0); |
| |
| x = -dx; |
| for (r = 0; r < bs; ++r, dst += stride, x -= dx) { |
| base = x >> 8; |
| shift = x & 0xFF; |
| |
| if (base >= 2 * bs - 1) { |
| int i; |
| for (i = r; i < bs; ++i) { |
| memset(dst, above[2 * bs - 1], bs * sizeof(dst[0])); |
| dst += stride; |
| } |
| return; |
| } |
| |
| for (c = 0; c < bs; ++c, ++base) { |
| if (base < 2 * bs - 1) { |
| val = above[base] * (256 - shift) + above[base + 1] * shift; |
| val = ROUND_POWER_OF_TWO(val, 8); |
| dst[c] = clip_pixel_highbd(val, bd); |
| } else { |
| dst[c] = above[2 * bs - 1]; |
| } |
| } |
| } |
| } |
| |
| // Directional prediction, zone 2: 90 < angle < 180 |
| static void dr_prediction_z2_high(uint16_t *dst, ptrdiff_t stride, int bs, |
| const uint16_t *const above, |
| const uint16_t *const left, int dx, int dy, |
| int bd) { |
| int r, c, x, y, shift1, shift2, val, base1, base2; |
| |
| assert(dx > 0); |
| assert(dy > 0); |
| |
| x = -dx; |
| for (r = 0; r < bs; ++r, x -= dx, dst += stride) { |
| base1 = x >> 8; |
| y = (r << 8) - dy; |
| for (c = 0; c < bs; ++c, ++base1, y -= dy) { |
| if (base1 >= -1) { |
| shift1 = x & 0xFF; |
| val = above[base1] * (256 - shift1) + above[base1 + 1] * shift1; |
| val = ROUND_POWER_OF_TWO(val, 8); |
| } else { |
| base2 = y >> 8; |
| if (base2 >= 0) { |
| shift2 = y & 0xFF; |
| val = left[base2] * (256 - shift2) + left[base2 + 1] * shift2; |
| val = ROUND_POWER_OF_TWO(val, 8); |
| } else { |
| val = left[0]; |
| } |
| } |
| dst[c] = clip_pixel_highbd(val, bd); |
| } |
| } |
| } |
| |
| // Directional prediction, zone 3: 180 < angle < 270 |
| static void dr_prediction_z3_high(uint16_t *dst, ptrdiff_t stride, int bs, |
| const uint16_t *const above, |
| const uint16_t *const left, int dx, int dy, |
| int bd) { |
| int r, c, y, base, shift, val; |
| |
| (void)above; |
| (void)dx; |
| assert(dx == 1); |
| assert(dy < 0); |
| |
| y = -dy; |
| for (c = 0; c < bs; ++c, y -= dy) { |
| base = y >> 8; |
| shift = y & 0xFF; |
| |
| for (r = 0; r < bs; ++r, ++base) { |
| if (base < 2 * bs - 1) { |
| val = left[base] * (256 - shift) + left[base + 1] * shift; |
| val = ROUND_POWER_OF_TWO(val, 8); |
| dst[r * stride + c] = clip_pixel_highbd(val, bd); |
| } else { |
| for (; r < bs; ++r) dst[r * stride + c] = left[2 * bs - 1]; |
| break; |
| } |
| } |
| } |
| } |
| |
| static void dr_predictor_high(uint16_t *dst, ptrdiff_t stride, TX_SIZE tx_size, |
| const uint16_t *above, const uint16_t *left, |
| int angle, int bd) { |
| const int dx = get_dx(angle); |
| const int dy = get_dy(angle); |
| const int bs = tx_size_1d[tx_size]; |
| |
| assert(angle > 0 && angle < 270); |
| switch (angle) { |
| case 90: pred_high[V_PRED][tx_size](dst, stride, above, left, bd); return; |
| case 180: pred_high[H_PRED][tx_size](dst, stride, above, left, bd); return; |
| case 45: pred_high[D45_PRED][tx_size](dst, stride, above, left, bd); return; |
| case 135: |
| pred_high[D135_PRED][tx_size](dst, stride, above, left, bd); |
| return; |
| case 117: |
| pred_high[D117_PRED][tx_size](dst, stride, above, left, bd); |
| return; |
| case 153: |
| pred_high[D153_PRED][tx_size](dst, stride, above, left, bd); |
| return; |
| case 207: |
| pred_high[D207_PRED][tx_size](dst, stride, above, left, bd); |
| return; |
| case 63: pred_high[D63_PRED][tx_size](dst, stride, above, left, bd); return; |
| default: break; |
| } |
| |
| if (angle > 0 && angle < 90) { |
| dr_prediction_z1_high(dst, stride, bs, above, left, dx, dy, bd); |
| } else if (angle > 90 && angle < 180) { |
| dr_prediction_z2_high(dst, stride, bs, above, left, dx, dy, bd); |
| } else if (angle > 180 && angle < 270) { |
| dr_prediction_z3_high(dst, stride, bs, above, left, dx, dy, bd); |
| } else { |
| assert(0); |
| } |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| #endif // CONFIG_EXT_INTRA |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| static void build_intra_predictors_high(const MACROBLOCKD *xd, |
| const uint8_t *ref8, int ref_stride, |
| uint8_t *dst8, int dst_stride, |
| PREDICTION_MODE mode, TX_SIZE tx_size, |
| int n_top_px, int n_topright_px, |
| int n_left_px, int n_bottomleft_px, |
| int x, int y, int plane, int bd) { |
| int i; |
| uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); |
| uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); |
| DECLARE_ALIGNED(16, uint16_t, left_col[32]); |
| DECLARE_ALIGNED(16, uint16_t, above_data[64 + 16]); |
| uint16_t *above_row = above_data + 16; |
| const uint16_t *const_above_row = above_row; |
| const int bs = tx_size_1d[tx_size]; |
| const uint16_t *above_ref = ref - ref_stride; |
| const int base = 128 << (bd - 8); |
| #if CONFIG_EXT_INTRA |
| int need_left = extend_modes[mode] & NEED_LEFT; |
| int need_above = extend_modes[mode] & NEED_ABOVE; |
| const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| int p_angle = 0; |
| const TX_SIZE max_tx_size = max_txsize_lookup[mbmi->sb_type]; |
| const int angle_step = |
| plane ? ANGLE_STEP_UV : av1_angle_step_y[max_tx_size][mbmi->mode]; |
| const int use_directional_mode = |
| is_directional_mode(mode) && mbmi->sb_type >= BLOCK_8X8; |
| #else |
| const int need_left = extend_modes[mode] & NEED_LEFT; |
| const int need_above = extend_modes[mode] & NEED_ABOVE; |
| #endif // CONFIG_EXT_INTRA |
| // 127 127 127 .. 127 127 127 127 127 127 |
| // 129 A B .. Y Z |
| // 129 C D .. W X |
| // 129 E F .. U V |
| // 129 G H .. S T T T T T |
| |
| (void)x; |
| (void)y; |
| (void)plane; |
| |
| #if CONFIG_EXT_INTRA |
| if (use_directional_mode) { |
| p_angle = mode_to_angle_map[mode] + |
| mbmi->intra_angle_delta[plane != 0] * angle_step; |
| if (p_angle <= 90) |
| need_above = 1, need_left = 0; |
| else if (p_angle < 180) |
| need_above = 1, need_left = 1; |
| else |
| need_above = 0, need_left = 1; |
| } |
| #endif // CONFIG_EXT_INTRA |
| |
| // NEED_LEFT |
| if (need_left) { |
| #if CONFIG_EXT_INTRA |
| const int need_bottom = use_directional_mode |
| ? (p_angle > 180) |
| : (!!(extend_modes[mode] & NEED_BOTTOMLEFT)); |
| #else |
| const int need_bottom = !!(extend_modes[mode] & NEED_BOTTOMLEFT); |
| #endif // CONFIG_EXT_INTRA |
| i = 0; |
| if (n_left_px > 0) { |
| for (; i < n_left_px; i++) left_col[i] = ref[i * ref_stride - 1]; |
| if (need_bottom && n_bottomleft_px > 0) { |
| assert(i == bs); |
| for (; i < bs + n_bottomleft_px; i++) |
| left_col[i] = ref[i * ref_stride - 1]; |
| } |
| if (i < (bs << need_bottom)) |
| aom_memset16(&left_col[i], left_col[i - 1], (bs << need_bottom) - i); |
| } else { |
| aom_memset16(left_col, base + 1, bs << need_bottom); |
| } |
| } |
| |
| // NEED_ABOVE |
| if (need_above) { |
| #if CONFIG_EXT_INTRA |
| const int need_right = use_directional_mode |
| ? (p_angle < 90) |
| : (!!(extend_modes[mode] & NEED_ABOVERIGHT)); |
| #else |
| const int need_right = !!(extend_modes[mode] & NEED_ABOVERIGHT); |
| #endif // CONFIG_EXT_INTRA |
| if (n_top_px > 0) { |
| memcpy(above_row, above_ref, n_top_px * sizeof(above_ref[0])); |
| i = n_top_px; |
| if (need_right && n_topright_px > 0) { |
| assert(n_top_px == bs); |
| memcpy(above_row + bs, above_ref + bs, |
| n_topright_px * sizeof(above_ref[0])); |
| i += n_topright_px; |
| } |
| if (i < (bs << need_right)) |
| aom_memset16(&above_row[i], above_row[i - 1], (bs << need_right) - i); |
| } else { |
| aom_memset16(above_row, base - 1, bs << need_right); |
| } |
| } |
| |
| #if CONFIG_EXT_INTRA |
| above_row[-1] = |
| n_top_px > 0 ? (n_left_px > 0 ? above_ref[-1] : base + 1) : base - 1; |
| #else |
| if (extend_modes[mode] & NEED_ABOVELEFT) { |
| above_row[-1] = |
| n_top_px > 0 ? (n_left_px > 0 ? above_ref[-1] : base + 1) : base - 1; |
| } |
| #endif // CONFIG_EXT_INTRA |
| |
| #if CONFIG_EXT_INTRA |
| if (use_directional_mode) { |
| dr_predictor_high(dst, dst_stride, tx_size, const_above_row, left_col, |
| p_angle, bd); |
| return; |
| } |
| #endif // CONFIG_EXT_INTRA |
| |
| // predict |
| if (mode == DC_PRED) { |
| dc_pred_high[n_left_px > 0][n_top_px > 0][tx_size]( |
| dst, dst_stride, const_above_row, left_col, xd->bd); |
| } else { |
| pred_high[mode][tx_size](dst, dst_stride, const_above_row, left_col, |
| xd->bd); |
| } |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| static void build_intra_predictors(const MACROBLOCKD *xd, const uint8_t *ref, |
| int ref_stride, uint8_t *dst, int dst_stride, |
| PREDICTION_MODE mode, TX_SIZE tx_size, |
| int n_top_px, int n_topright_px, |
| int n_left_px, int n_bottomleft_px, int x, |
| int y, int plane) { |
| int i; |
| DECLARE_ALIGNED(16, uint8_t, left_col[64]); |
| const uint8_t *above_ref = ref - ref_stride; |
| DECLARE_ALIGNED(16, uint8_t, above_data[64 + 16]); |
| uint8_t *above_row = above_data + 16; |
| const uint8_t *const_above_row = above_row; |
| const int bs = tx_size_1d[tx_size]; |
| int need_left = extend_modes[mode] & NEED_LEFT; |
| int need_above = extend_modes[mode] & NEED_ABOVE; |
| #if CONFIG_EXT_INTRA |
| const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| int p_angle = 0; |
| const TX_SIZE max_tx_size = max_txsize_lookup[mbmi->sb_type]; |
| const int angle_step = |
| plane ? ANGLE_STEP_UV : av1_angle_step_y[max_tx_size][mbmi->mode]; |
| const int use_directional_mode = |
| is_directional_mode(mode) && mbmi->sb_type >= BLOCK_8X8; |
| #endif // CONFIG_EXT_INTRA |
| |
| // 127 127 127 .. 127 127 127 127 127 127 |
| // 129 A B .. Y Z |
| // 129 C D .. W X |
| // 129 E F .. U V |
| // 129 G H .. S T T T T T |
| // .. |
| |
| (void)xd; |
| (void)x; |
| (void)y; |
| (void)plane; |
| assert(n_top_px >= 0); |
| assert(n_topright_px >= 0); |
| assert(n_left_px >= 0); |
| assert(n_bottomleft_px >= 0); |
| |
| #if CONFIG_EXT_INTRA |
| if (use_directional_mode) { |
| p_angle = mode_to_angle_map[mode] + |
| mbmi->intra_angle_delta[plane != 0] * angle_step; |
| if (p_angle <= 90) |
| need_above = 1, need_left = 0; |
| else if (p_angle < 180) |
| need_above = 1, need_left = 1; |
| else |
| need_above = 0, need_left = 1; |
| } |
| #endif // CONFIG_EXT_INTRA |
| |
| // NEED_LEFT |
| if (need_left) { |
| #if CONFIG_EXT_INTRA |
| const int need_bottom = use_directional_mode |
| ? (p_angle > 180) |
| : (!!(extend_modes[mode] & NEED_BOTTOMLEFT)); |
| #else |
| const int need_bottom = !!(extend_modes[mode] & NEED_BOTTOMLEFT); |
| #endif // CONFIG_EXT_INTRA |
| i = 0; |
| if (n_left_px > 0) { |
| for (; i < n_left_px; i++) left_col[i] = ref[i * ref_stride - 1]; |
| if (need_bottom && n_bottomleft_px > 0) { |
| assert(i == bs); |
| for (; i < bs + n_bottomleft_px; i++) |
| left_col[i] = ref[i * ref_stride - 1]; |
| } |
| if (i < (bs << need_bottom)) |
| memset(&left_col[i], left_col[i - 1], (bs << need_bottom) - i); |
| } else { |
| memset(left_col, 129, bs << need_bottom); |
| } |
| } |
| |
| // NEED_ABOVE |
| if (need_above) { |
| #if CONFIG_EXT_INTRA |
| const int need_right = use_directional_mode |
| ? (p_angle < 90) |
| : (!!(extend_modes[mode] & NEED_ABOVERIGHT)); |
| #else |
| const int need_right = !!(extend_modes[mode] & NEED_ABOVERIGHT); |
| #endif // CONFIG_EXT_INTRA |
| if (n_top_px > 0) { |
| memcpy(above_row, above_ref, n_top_px); |
| i = n_top_px; |
| if (need_right && n_topright_px > 0) { |
| assert(n_top_px == bs); |
| memcpy(above_row + bs, above_ref + bs, n_topright_px); |
| i += n_topright_px; |
| } |
| if (i < (bs << need_right)) |
| memset(&above_row[i], above_row[i - 1], (bs << need_right) - i); |
| } else { |
| memset(above_row, 127, bs << need_right); |
| } |
| } |
| |
| #if CONFIG_EXT_INTRA |
| above_row[-1] = n_top_px > 0 ? (n_left_px > 0 ? above_ref[-1] : 129) : 127; |
| #else |
| if (extend_modes[mode] & NEED_ABOVELEFT) { |
| above_row[-1] = n_top_px > 0 ? (n_left_px > 0 ? above_ref[-1] : 129) : 127; |
| } |
| #endif // CONFIG_EXT_INTRA |
| |
| #if CONFIG_EXT_INTRA |
| if (use_directional_mode) { |
| dr_predictor(dst, dst_stride, tx_size, const_above_row, left_col, p_angle); |
| return; |
| } |
| #endif // CONFIG_EXT_INTRA |
| |
| // predict |
| if (mode == DC_PRED) { |
| dc_pred[n_left_px > 0][n_top_px > 0][tx_size](dst, dst_stride, |
| const_above_row, left_col); |
| } else { |
| pred[mode][tx_size](dst, dst_stride, const_above_row, left_col); |
| } |
| } |
| |
| void av1_predict_intra_block(const MACROBLOCKD *xd, int bwl_in, int bhl_in, |
| TX_SIZE tx_size, PREDICTION_MODE mode, |
| const uint8_t *ref, int ref_stride, uint8_t *dst, |
| int dst_stride, int aoff, int loff, int plane) { |
| const int have_top = loff || xd->up_available; |
| const int have_left = aoff || xd->left_available; |
| const int x = aoff * 4; |
| const int y = loff * 4; |
| const int bw = AOMMAX(2, 1 << bwl_in); |
| const int bh = AOMMAX(2, 1 << bhl_in); |
| const int mi_row = -xd->mb_to_top_edge >> 6; |
| const int mi_col = -xd->mb_to_left_edge >> 6; |
| const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int right_available = |
| mi_col + (bw >> !pd->subsampling_x) < xd->tile.mi_col_end; |
| const int have_right = av1_has_right(bsize, mi_row, mi_col, right_available, |
| tx_size, loff, aoff, pd->subsampling_x); |
| const int have_bottom = |
| av1_has_bottom(bsize, mi_row, mi_col, xd->mb_to_bottom_edge > 0, tx_size, |
| loff, aoff, pd->subsampling_y); |
| const int wpx = 4 * bw; |
| const int hpx = 4 * bh; |
| const int txpx = tx_size_1d[tx_size]; |
| int xr = (xd->mb_to_right_edge >> (3 + pd->subsampling_x)) + (wpx - x - txpx); |
| int yd = |
| (xd->mb_to_bottom_edge >> (3 + pd->subsampling_y)) + (hpx - y - txpx); |
| |
| #if CONFIG_PALETTE |
| if (xd->mi[0]->mbmi.palette_mode_info.palette_size[plane != 0] > 0) { |
| const int bs = tx_size_1d[tx_size]; |
| const int stride = 4 * (1 << bwl_in); |
| int r, c; |
| uint8_t *map = NULL; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| uint16_t *palette = xd->mi[0]->mbmi.palette_mode_info.palette_colors + |
| plane * PALETTE_MAX_SIZE; |
| #else |
| uint8_t *palette = xd->mi[0]->mbmi.palette_mode_info.palette_colors + |
| plane * PALETTE_MAX_SIZE; |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| map = xd->plane[plane != 0].color_index_map; |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); |
| for (r = 0; r < bs; ++r) |
| for (c = 0; c < bs; ++c) |
| dst16[r * dst_stride + c] = palette[map[(r + y) * stride + c + x]]; |
| } else { |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| for (r = 0; r < bs; ++r) |
| for (c = 0; c < bs; ++c) |
| dst[r * dst_stride + c] = palette[map[(r + y) * stride + c + x]]; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| return; |
| } |
| #endif // CONFIG_PALETTE |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| build_intra_predictors_high(xd, ref, ref_stride, dst, dst_stride, mode, |
| tx_size, have_top ? AOMMIN(txpx, xr + txpx) : 0, |
| have_top && have_right ? AOMMIN(txpx, xr) : 0, |
| have_left ? AOMMIN(txpx, yd + txpx) : 0, |
| have_bottom && have_left ? AOMMIN(txpx, yd) : 0, |
| x, y, plane, xd->bd); |
| return; |
| } |
| #endif |
| build_intra_predictors(xd, ref, ref_stride, dst, dst_stride, mode, tx_size, |
| have_top ? AOMMIN(txpx, xr + txpx) : 0, |
| have_top && have_right ? AOMMIN(txpx, xr) : 0, |
| have_left ? AOMMIN(txpx, yd + txpx) : 0, |
| have_bottom && have_left ? AOMMIN(txpx, yd) : 0, x, y, |
| plane); |
| } |
| |
| void av1_init_intra_predictors(void) { |
| once(av1_init_intra_predictors_internal); |
| } |