| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "./aom_config.h" |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_mem/aom_mem.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/thread_common.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/loopfilter.h" |
| |
| #if CONFIG_MULTITHREAD |
| static INLINE void mutex_lock(pthread_mutex_t *const mutex) { |
| const int kMaxTryLocks = 4000; |
| int locked = 0; |
| int i; |
| |
| for (i = 0; i < kMaxTryLocks; ++i) { |
| if (!pthread_mutex_trylock(mutex)) { |
| locked = 1; |
| break; |
| } |
| } |
| |
| if (!locked) pthread_mutex_lock(mutex); |
| } |
| #endif // CONFIG_MULTITHREAD |
| |
| static INLINE void sync_read(AV1LfSync *const lf_sync, int r, int c) { |
| #if CONFIG_MULTITHREAD |
| const int nsync = lf_sync->sync_range; |
| |
| if (r && !(c & (nsync - 1))) { |
| pthread_mutex_t *const mutex = &lf_sync->mutex_[r - 1]; |
| mutex_lock(mutex); |
| |
| while (c > lf_sync->cur_sb_col[r - 1] - nsync) { |
| pthread_cond_wait(&lf_sync->cond_[r - 1], mutex); |
| } |
| pthread_mutex_unlock(mutex); |
| } |
| #else |
| (void)lf_sync; |
| (void)r; |
| (void)c; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| static INLINE void sync_write(AV1LfSync *const lf_sync, int r, int c, |
| const int sb_cols) { |
| #if CONFIG_MULTITHREAD |
| const int nsync = lf_sync->sync_range; |
| int cur; |
| // Only signal when there are enough filtered SB for next row to run. |
| int sig = 1; |
| |
| if (c < sb_cols - 1) { |
| cur = c; |
| if (c % nsync) sig = 0; |
| } else { |
| cur = sb_cols + nsync; |
| } |
| |
| if (sig) { |
| mutex_lock(&lf_sync->mutex_[r]); |
| |
| lf_sync->cur_sb_col[r] = cur; |
| |
| pthread_cond_signal(&lf_sync->cond_[r]); |
| pthread_mutex_unlock(&lf_sync->mutex_[r]); |
| } |
| #else |
| (void)lf_sync; |
| (void)r; |
| (void)c; |
| (void)sb_cols; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| static INLINE enum lf_path get_loop_filter_path( |
| int y_only, struct macroblockd_plane planes[MAX_MB_PLANE]) { |
| if (y_only) |
| return LF_PATH_444; |
| else if (planes[1].subsampling_y == 1 && planes[1].subsampling_x == 1) |
| return LF_PATH_420; |
| else if (planes[1].subsampling_y == 0 && planes[1].subsampling_x == 0) |
| return LF_PATH_444; |
| else |
| return LF_PATH_SLOW; |
| } |
| |
| static INLINE void loop_filter_block_plane_ver( |
| AV1_COMMON *cm, struct macroblockd_plane planes[MAX_MB_PLANE], int plane, |
| MODE_INFO **mi, int mi_row, int mi_col, enum lf_path path, |
| LOOP_FILTER_MASK *lfm) { |
| if (plane == 0) { |
| av1_filter_block_plane_ss00_ver(cm, &planes[0], mi_row, lfm); |
| } else { |
| switch (path) { |
| case LF_PATH_420: |
| av1_filter_block_plane_ss11_ver(cm, &planes[plane], mi_row, lfm); |
| break; |
| case LF_PATH_444: |
| av1_filter_block_plane_ss00_ver(cm, &planes[plane], mi_row, lfm); |
| break; |
| case LF_PATH_SLOW: |
| av1_filter_block_plane_non420_ver(cm, &planes[plane], mi, mi_row, |
| mi_col); |
| break; |
| } |
| } |
| } |
| |
| static INLINE void loop_filter_block_plane_hor( |
| AV1_COMMON *cm, struct macroblockd_plane planes[MAX_MB_PLANE], int plane, |
| MODE_INFO **mi, int mi_row, int mi_col, enum lf_path path, |
| LOOP_FILTER_MASK *lfm) { |
| if (plane == 0) { |
| av1_filter_block_plane_ss00_hor(cm, &planes[0], mi_row, lfm); |
| } else { |
| switch (path) { |
| case LF_PATH_420: |
| av1_filter_block_plane_ss11_hor(cm, &planes[plane], mi_row, lfm); |
| break; |
| case LF_PATH_444: |
| av1_filter_block_plane_ss00_hor(cm, &planes[plane], mi_row, lfm); |
| break; |
| case LF_PATH_SLOW: |
| av1_filter_block_plane_non420_hor(cm, &planes[plane], mi, mi_row, |
| mi_col); |
| break; |
| } |
| } |
| } |
| |
| // Row-based multi-threaded loopfilter hook |
| #if CONFIG_PARALLEL_DEBLOCKING |
| static int loop_filter_ver_row_worker(AV1LfSync *const lf_sync, |
| LFWorkerData *const lf_data) { |
| const int num_planes = lf_data->y_only ? 1 : MAX_MB_PLANE; |
| int mi_row, mi_col; |
| enum lf_path path = get_loop_filter_path(lf_data->y_only, lf_data->planes); |
| |
| for (mi_row = lf_data->start; mi_row < lf_data->stop; |
| mi_row += lf_sync->num_workers * MAX_MIB_SIZE) { |
| MODE_INFO **const mi = |
| lf_data->cm->mi_grid_visible + mi_row * lf_data->cm->mi_stride; |
| |
| for (mi_col = 0; mi_col < lf_data->cm->mi_cols; mi_col += MAX_MIB_SIZE) { |
| LOOP_FILTER_MASK lfm; |
| int plane; |
| |
| av1_setup_dst_planes(lf_data->planes, lf_data->frame_buffer, mi_row, |
| mi_col); |
| av1_setup_mask(lf_data->cm, mi_row, mi_col, mi + mi_col, |
| lf_data->cm->mi_stride, &lfm); |
| |
| for (plane = 0; plane < num_planes; ++plane) |
| loop_filter_block_plane_ver(lf_data->cm, lf_data->planes, plane, |
| mi + mi_col, mi_row, mi_col, path, &lfm); |
| } |
| } |
| return 1; |
| } |
| |
| static int loop_filter_hor_row_worker(AV1LfSync *const lf_sync, |
| LFWorkerData *const lf_data) { |
| const int num_planes = lf_data->y_only ? 1 : MAX_MB_PLANE; |
| const int sb_cols = |
| mi_cols_aligned_to_sb(lf_data->cm->mi_cols) >> MAX_MIB_SIZE_LOG2; |
| int mi_row, mi_col; |
| enum lf_path path = get_loop_filter_path(lf_data->y_only, lf_data->planes); |
| |
| for (mi_row = lf_data->start; mi_row < lf_data->stop; |
| mi_row += lf_sync->num_workers * MAX_MIB_SIZE) { |
| MODE_INFO **const mi = |
| lf_data->cm->mi_grid_visible + mi_row * lf_data->cm->mi_stride; |
| |
| for (mi_col = 0; mi_col < lf_data->cm->mi_cols; mi_col += MAX_MIB_SIZE) { |
| const int r = mi_row >> MAX_MIB_SIZE_LOG2; |
| const int c = mi_col >> MAX_MIB_SIZE_LOG2; |
| LOOP_FILTER_MASK lfm; |
| int plane; |
| |
| // TODO(wenhao.zhang@intel.com): For better parallelization, reorder |
| // the outer loop to column-based and remove the synchronizations here. |
| sync_read(lf_sync, r, c); |
| |
| av1_setup_dst_planes(lf_data->planes, lf_data->frame_buffer, mi_row, |
| mi_col); |
| av1_setup_mask(lf_data->cm, mi_row, mi_col, mi + mi_col, |
| lf_data->cm->mi_stride, &lfm); |
| |
| for (plane = 0; plane < num_planes; ++plane) |
| loop_filter_block_plane_hor(lf_data->cm, lf_data->planes, plane, |
| mi + mi_col, mi_row, mi_col, path, &lfm); |
| sync_write(lf_sync, r, c, sb_cols); |
| } |
| } |
| return 1; |
| } |
| #else // CONFIG_PARALLEL_DEBLOCKING |
| static int loop_filter_row_worker(AV1LfSync *const lf_sync, |
| LFWorkerData *const lf_data) { |
| const int num_planes = lf_data->y_only ? 1 : MAX_MB_PLANE; |
| const int sb_cols = |
| mi_cols_aligned_to_sb(lf_data->cm->mi_cols) >> MAX_MIB_SIZE_LOG2; |
| int mi_row, mi_col; |
| enum lf_path path = get_loop_filter_path(lf_data->y_only, lf_data->planes); |
| |
| for (mi_row = lf_data->start; mi_row < lf_data->stop; |
| mi_row += lf_sync->num_workers * MAX_MIB_SIZE) { |
| MODE_INFO **const mi = |
| lf_data->cm->mi_grid_visible + mi_row * lf_data->cm->mi_stride; |
| |
| for (mi_col = 0; mi_col < lf_data->cm->mi_cols; mi_col += MAX_MIB_SIZE) { |
| const int r = mi_row >> MAX_MIB_SIZE_LOG2; |
| const int c = mi_col >> MAX_MIB_SIZE_LOG2; |
| LOOP_FILTER_MASK lfm; |
| int plane; |
| |
| sync_read(lf_sync, r, c); |
| |
| av1_setup_dst_planes(lf_data->planes, lf_data->frame_buffer, mi_row, |
| mi_col); |
| av1_setup_mask(lf_data->cm, mi_row, mi_col, mi + mi_col, |
| lf_data->cm->mi_stride, &lfm); |
| |
| for (plane = 0; plane < num_planes; ++plane) { |
| loop_filter_block_plane_ver(lf_data->cm, lf_data->planes, plane, |
| mi + mi_col, mi_row, mi_col, path, &lfm); |
| loop_filter_block_plane_hor(lf_data->cm, lf_data->planes, plane, |
| mi + mi_col, mi_row, mi_col, path, &lfm); |
| } |
| |
| sync_write(lf_sync, r, c, sb_cols); |
| } |
| } |
| return 1; |
| } |
| #endif // CONFIG_PARALLEL_DEBLOCKING |
| |
| static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, |
| struct macroblockd_plane planes[MAX_MB_PLANE], |
| int start, int stop, int y_only, |
| AVxWorker *workers, int nworkers, |
| AV1LfSync *lf_sync) { |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| // Number of superblock rows and cols |
| const int sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MAX_MIB_SIZE_LOG2; |
| // Decoder may allocate more threads than number of tiles based on user's |
| // input. |
| const int tile_cols = 1 << cm->log2_tile_cols; |
| const int num_workers = AOMMIN(nworkers, tile_cols); |
| int i; |
| |
| if (!lf_sync->sync_range || sb_rows != lf_sync->rows || |
| num_workers > lf_sync->num_workers) { |
| av1_loop_filter_dealloc(lf_sync); |
| av1_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers); |
| } |
| |
| // Set up loopfilter thread data. |
| // The decoder is capping num_workers because it has been observed that using |
| // more threads on the loopfilter than there are cores will hurt performance |
| // on Android. This is because the system will only schedule the tile decode |
| // workers on cores equal to the number of tile columns. Then if the decoder |
| // tries to use more threads for the loopfilter, it will hurt performance |
| // because of contention. If the multithreading code changes in the future |
| // then the number of workers used by the loopfilter should be revisited. |
| |
| #if CONFIG_PARALLEL_DEBLOCKING |
| // Initialize cur_sb_col to -1 for all SB rows. |
| memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows); |
| |
| // Filter all the vertical edges in the whole frame |
| for (i = 0; i < num_workers; ++i) { |
| AVxWorker *const worker = &workers[i]; |
| LFWorkerData *const lf_data = &lf_sync->lfdata[i]; |
| |
| worker->hook = (AVxWorkerHook)loop_filter_ver_row_worker; |
| worker->data1 = lf_sync; |
| worker->data2 = lf_data; |
| |
| // Loopfilter data |
| av1_loop_filter_data_reset(lf_data, frame, cm, planes); |
| lf_data->start = start + i * MAX_MIB_SIZE; |
| lf_data->stop = stop; |
| lf_data->y_only = y_only; |
| |
| // Start loopfiltering |
| if (i == num_workers - 1) { |
| winterface->execute(worker); |
| } else { |
| winterface->launch(worker); |
| } |
| } |
| |
| // Wait till all rows are finished |
| for (i = 0; i < num_workers; ++i) { |
| winterface->sync(&workers[i]); |
| } |
| |
| memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows); |
| // Filter all the horizontal edges in the whole frame |
| for (i = 0; i < num_workers; ++i) { |
| AVxWorker *const worker = &workers[i]; |
| LFWorkerData *const lf_data = &lf_sync->lfdata[i]; |
| |
| worker->hook = (AVxWorkerHook)loop_filter_hor_row_worker; |
| worker->data1 = lf_sync; |
| worker->data2 = lf_data; |
| |
| // Loopfilter data |
| av1_loop_filter_data_reset(lf_data, frame, cm, planes); |
| lf_data->start = start + i * MAX_MIB_SIZE; |
| lf_data->stop = stop; |
| lf_data->y_only = y_only; |
| |
| // Start loopfiltering |
| if (i == num_workers - 1) { |
| winterface->execute(worker); |
| } else { |
| winterface->launch(worker); |
| } |
| } |
| |
| // Wait till all rows are finished |
| for (i = 0; i < num_workers; ++i) { |
| winterface->sync(&workers[i]); |
| } |
| #else // CONFIG_PARALLEL_DEBLOCKING |
| // Initialize cur_sb_col to -1 for all SB rows. |
| memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows); |
| |
| for (i = 0; i < num_workers; ++i) { |
| AVxWorker *const worker = &workers[i]; |
| LFWorkerData *const lf_data = &lf_sync->lfdata[i]; |
| |
| worker->hook = (AVxWorkerHook)loop_filter_row_worker; |
| worker->data1 = lf_sync; |
| worker->data2 = lf_data; |
| |
| // Loopfilter data |
| av1_loop_filter_data_reset(lf_data, frame, cm, planes); |
| lf_data->start = start + i * MAX_MIB_SIZE; |
| lf_data->stop = stop; |
| lf_data->y_only = y_only; |
| |
| // Start loopfiltering |
| if (i == num_workers - 1) { |
| winterface->execute(worker); |
| } else { |
| winterface->launch(worker); |
| } |
| } |
| |
| // Wait till all rows are finished |
| for (i = 0; i < num_workers; ++i) { |
| winterface->sync(&workers[i]); |
| } |
| #endif // CONFIG_PARALLEL_DEBLOCKING |
| } |
| |
| void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, |
| struct macroblockd_plane planes[MAX_MB_PLANE], |
| int frame_filter_level, int y_only, |
| int partial_frame, AVxWorker *workers, |
| int num_workers, AV1LfSync *lf_sync) { |
| int start_mi_row, end_mi_row, mi_rows_to_filter; |
| |
| if (!frame_filter_level) return; |
| |
| start_mi_row = 0; |
| mi_rows_to_filter = cm->mi_rows; |
| if (partial_frame && cm->mi_rows > 8) { |
| start_mi_row = cm->mi_rows >> 1; |
| start_mi_row &= 0xfffffff8; |
| mi_rows_to_filter = AOMMAX(cm->mi_rows / 8, 8); |
| } |
| end_mi_row = start_mi_row + mi_rows_to_filter; |
| av1_loop_filter_frame_init(cm, frame_filter_level); |
| |
| loop_filter_rows_mt(frame, cm, planes, start_mi_row, end_mi_row, y_only, |
| workers, num_workers, lf_sync); |
| } |
| |
| // Set up nsync by width. |
| static INLINE int get_sync_range(int width) { |
| // nsync numbers are picked by testing. For example, for 4k |
| // video, using 4 gives best performance. |
| if (width < 640) |
| return 1; |
| else if (width <= 1280) |
| return 2; |
| else if (width <= 4096) |
| return 4; |
| else |
| return 8; |
| } |
| |
| // Allocate memory for lf row synchronization |
| void av1_loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows, |
| int width, int num_workers) { |
| lf_sync->rows = rows; |
| #if CONFIG_MULTITHREAD |
| { |
| int i; |
| |
| CHECK_MEM_ERROR(cm, lf_sync->mutex_, |
| aom_malloc(sizeof(*lf_sync->mutex_) * rows)); |
| if (lf_sync->mutex_) { |
| for (i = 0; i < rows; ++i) { |
| pthread_mutex_init(&lf_sync->mutex_[i], NULL); |
| } |
| } |
| |
| CHECK_MEM_ERROR(cm, lf_sync->cond_, |
| aom_malloc(sizeof(*lf_sync->cond_) * rows)); |
| if (lf_sync->cond_) { |
| for (i = 0; i < rows; ++i) { |
| pthread_cond_init(&lf_sync->cond_[i], NULL); |
| } |
| } |
| } |
| #endif // CONFIG_MULTITHREAD |
| |
| CHECK_MEM_ERROR(cm, lf_sync->lfdata, |
| aom_malloc(num_workers * sizeof(*lf_sync->lfdata))); |
| lf_sync->num_workers = num_workers; |
| |
| CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col, |
| aom_malloc(sizeof(*lf_sync->cur_sb_col) * rows)); |
| |
| // Set up nsync. |
| lf_sync->sync_range = get_sync_range(width); |
| } |
| |
| // Deallocate lf synchronization related mutex and data |
| void av1_loop_filter_dealloc(AV1LfSync *lf_sync) { |
| if (lf_sync != NULL) { |
| #if CONFIG_MULTITHREAD |
| int i; |
| |
| if (lf_sync->mutex_ != NULL) { |
| for (i = 0; i < lf_sync->rows; ++i) { |
| pthread_mutex_destroy(&lf_sync->mutex_[i]); |
| } |
| aom_free(lf_sync->mutex_); |
| } |
| if (lf_sync->cond_ != NULL) { |
| for (i = 0; i < lf_sync->rows; ++i) { |
| pthread_cond_destroy(&lf_sync->cond_[i]); |
| } |
| aom_free(lf_sync->cond_); |
| } |
| #endif // CONFIG_MULTITHREAD |
| aom_free(lf_sync->lfdata); |
| aom_free(lf_sync->cur_sb_col); |
| // clear the structure as the source of this call may be a resize in which |
| // case this call will be followed by an _alloc() which may fail. |
| av1_zero(*lf_sync); |
| } |
| } |
| |
| // Accumulate frame counts. |
| void av1_accumulate_frame_counts(AV1_COMMON *cm, FRAME_COUNTS *counts, |
| int is_dec) { |
| int i, j, k, l, m; |
| |
| for (i = 0; i < BLOCK_SIZE_GROUPS; i++) |
| for (j = 0; j < INTRA_MODES; j++) |
| cm->counts.y_mode[i][j] += counts->y_mode[i][j]; |
| |
| for (i = 0; i < INTRA_MODES; i++) |
| for (j = 0; j < INTRA_MODES; j++) |
| cm->counts.uv_mode[i][j] += counts->uv_mode[i][j]; |
| |
| for (i = 0; i < PARTITION_CONTEXTS; i++) |
| for (j = 0; j < PARTITION_TYPES; j++) |
| cm->counts.partition[i][j] += counts->partition[i][j]; |
| |
| if (is_dec) { |
| int n; |
| for (i = 0; i < TX_SIZES; i++) |
| for (j = 0; j < PLANE_TYPES; j++) |
| for (k = 0; k < REF_TYPES; k++) |
| for (l = 0; l < COEF_BANDS; l++) |
| for (m = 0; m < COEFF_CONTEXTS; m++) { |
| cm->counts.eob_branch[i][j][k][l][m] += |
| counts->eob_branch[i][j][k][l][m]; |
| for (n = 0; n < UNCONSTRAINED_NODES + 1; n++) |
| cm->counts.coef[i][j][k][l][m][n] += |
| counts->coef[i][j][k][l][m][n]; |
| } |
| } else { |
| for (i = 0; i < TX_SIZES; i++) |
| for (j = 0; j < PLANE_TYPES; j++) |
| for (k = 0; k < REF_TYPES; k++) |
| for (l = 0; l < COEF_BANDS; l++) |
| for (m = 0; m < COEFF_CONTEXTS; m++) |
| cm->counts.eob_branch[i][j][k][l][m] += |
| counts->eob_branch[i][j][k][l][m]; |
| // In the encoder, cm->counts.coef is only updated at frame |
| // level, so not need to accumulate it here. |
| // for (n = 0; n < UNCONSTRAINED_NODES + 1; n++) |
| // cm->counts.coef[i][j][k][l][m][n] += |
| // counts->coef[i][j][k][l][m][n]; |
| } |
| |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) |
| for (j = 0; j < SWITCHABLE_FILTERS; j++) |
| cm->counts.switchable_interp[i][j] += counts->switchable_interp[i][j]; |
| |
| #if CONFIG_REF_MV |
| for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i) |
| for (j = 0; j < 2; ++j) |
| cm->counts.newmv_mode[i][j] += counts->newmv_mode[i][j]; |
| |
| for (i = 0; i < ZEROMV_MODE_CONTEXTS; ++i) |
| for (j = 0; j < 2; ++j) |
| cm->counts.zeromv_mode[i][j] += counts->zeromv_mode[i][j]; |
| |
| for (i = 0; i < REFMV_MODE_CONTEXTS; ++i) |
| for (j = 0; j < 2; ++j) |
| cm->counts.refmv_mode[i][j] += counts->refmv_mode[i][j]; |
| |
| for (i = 0; i < DRL_MODE_CONTEXTS; ++i) |
| for (j = 0; j < 2; ++j) cm->counts.drl_mode[i][j] += counts->drl_mode[i][j]; |
| #endif |
| |
| for (i = 0; i < INTER_MODE_CONTEXTS; i++) |
| for (j = 0; j < INTER_MODES; j++) |
| cm->counts.inter_mode[i][j] += counts->inter_mode[i][j]; |
| |
| #if CONFIG_MOTION_VAR |
| for (i = 0; i < BLOCK_SIZES; ++i) |
| for (j = 0; j < MOTION_MODES; ++j) |
| cm->counts.motion_mode[i][j] += counts->motion_mode[i][j]; |
| #endif // CONFIG_MOTION_VAR |
| |
| for (i = 0; i < INTRA_INTER_CONTEXTS; i++) |
| for (j = 0; j < 2; j++) |
| cm->counts.intra_inter[i][j] += counts->intra_inter[i][j]; |
| |
| for (i = 0; i < COMP_INTER_CONTEXTS; i++) |
| for (j = 0; j < 2; j++) |
| cm->counts.comp_inter[i][j] += counts->comp_inter[i][j]; |
| |
| for (i = 0; i < REF_CONTEXTS; i++) |
| for (j = 0; j < (SINGLE_REFS - 1); j++) |
| for (k = 0; k < 2; k++) |
| cm->counts.single_ref[i][j][k] += counts->single_ref[i][j][k]; |
| |
| #if CONFIG_EXT_REFS |
| for (i = 0; i < REF_CONTEXTS; i++) |
| for (j = 0; j < (FWD_REFS - 1); j++) |
| for (k = 0; k < 2; k++) |
| cm->counts.comp_fwdref[i][j][k] += counts->comp_fwdref[i][j][k]; |
| for (i = 0; i < REF_CONTEXTS; i++) |
| for (j = 0; j < (BWD_REFS - 1); j++) |
| for (k = 0; k < 2; k++) |
| cm->counts.comp_bwdref[i][j][k] += counts->comp_bwdref[i][j][k]; |
| #else |
| for (i = 0; i < REF_CONTEXTS; i++) |
| for (j = 0; j < 2; j++) cm->counts.comp_ref[i][j] += counts->comp_ref[i][j]; |
| #endif // CONFIG_EXT_REFS |
| |
| for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
| for (j = TX_4X4; j < TX_SIZES; j++) |
| cm->counts.tx.p32x32[i][j] += counts->tx.p32x32[i][j]; |
| |
| for (j = TX_4X4; j < TX_SIZES - 1; j++) |
| cm->counts.tx.p16x16[i][j] += counts->tx.p16x16[i][j]; |
| |
| for (j = TX_4X4; j < TX_SIZES - 2; j++) |
| cm->counts.tx.p8x8[i][j] += counts->tx.p8x8[i][j]; |
| } |
| |
| for (i = TX_4X4; i < TX_SIZES; i++) |
| cm->counts.tx.tx_totals[i] += counts->tx.tx_totals[i]; |
| |
| for (i = 0; i < SKIP_CONTEXTS; i++) |
| for (j = 0; j < 2; j++) cm->counts.skip[i][j] += counts->skip[i][j]; |
| |
| #if CONFIG_REF_MV |
| for (m = 0; m < NMV_CONTEXTS; ++m) { |
| for (i = 0; i < MV_JOINTS; i++) |
| cm->counts.mv[m].joints[i] += counts->mv[m].joints[i]; |
| |
| for (k = 0; k < 2; k++) { |
| nmv_component_counts *comps = &cm->counts.mv[m].comps[k]; |
| nmv_component_counts *comps_t = &counts->mv[m].comps[k]; |
| |
| for (i = 0; i < 2; i++) { |
| comps->sign[i] += comps_t->sign[i]; |
| comps->class0_hp[i] += comps_t->class0_hp[i]; |
| comps->hp[i] += comps_t->hp[i]; |
| } |
| |
| for (i = 0; i < MV_CLASSES; i++) comps->classes[i] += comps_t->classes[i]; |
| |
| for (i = 0; i < CLASS0_SIZE; i++) { |
| comps->class0[i] += comps_t->class0[i]; |
| for (j = 0; j < MV_FP_SIZE; j++) |
| comps->class0_fp[i][j] += comps_t->class0_fp[i][j]; |
| } |
| |
| for (i = 0; i < MV_OFFSET_BITS; i++) |
| for (j = 0; j < 2; j++) comps->bits[i][j] += comps_t->bits[i][j]; |
| |
| for (i = 0; i < MV_FP_SIZE; i++) comps->fp[i] += comps_t->fp[i]; |
| } |
| } |
| #else |
| for (i = 0; i < MV_JOINTS; i++) |
| cm->counts.mv.joints[i] += counts->mv.joints[i]; |
| |
| for (k = 0; k < 2; k++) { |
| nmv_component_counts *comps = &cm->counts.mv.comps[k]; |
| nmv_component_counts *comps_t = &counts->mv.comps[k]; |
| |
| for (i = 0; i < 2; i++) { |
| comps->sign[i] += comps_t->sign[i]; |
| comps->class0_hp[i] += comps_t->class0_hp[i]; |
| comps->hp[i] += comps_t->hp[i]; |
| } |
| |
| for (i = 0; i < MV_CLASSES; i++) comps->classes[i] += comps_t->classes[i]; |
| |
| for (i = 0; i < CLASS0_SIZE; i++) { |
| comps->class0[i] += comps_t->class0[i]; |
| for (j = 0; j < MV_FP_SIZE; j++) |
| comps->class0_fp[i][j] += comps_t->class0_fp[i][j]; |
| } |
| |
| for (i = 0; i < MV_OFFSET_BITS; i++) |
| for (j = 0; j < 2; j++) comps->bits[i][j] += comps_t->bits[i][j]; |
| |
| for (i = 0; i < MV_FP_SIZE; i++) comps->fp[i] += comps_t->fp[i]; |
| } |
| #endif |
| |
| for (i = 0; i < EXT_TX_SIZES; i++) { |
| for (j = 0; j < TX_TYPES; ++j) |
| for (k = 0; k < TX_TYPES; k++) |
| cm->counts.intra_ext_tx[i][j][k] += counts->intra_ext_tx[i][j][k]; |
| } |
| for (i = 0; i < EXT_TX_SIZES; i++) { |
| for (k = 0; k < TX_TYPES; k++) |
| cm->counts.inter_ext_tx[i][k] += counts->inter_ext_tx[i][k]; |
| } |
| |
| for (i = 0; i < PREDICTION_PROBS; i++) |
| for (j = 0; j < 2; j++) cm->counts.seg.pred[i][j] += counts->seg.pred[i][j]; |
| |
| for (i = 0; i < MAX_SEGMENTS; i++) { |
| cm->counts.seg.tree_total[i] += counts->seg.tree_total[i]; |
| cm->counts.seg.tree_mispred[i] += counts->seg.tree_mispred[i]; |
| } |
| |
| #if CONFIG_DELTA_Q |
| for (i = 0; i < DELTA_Q_CONTEXTS; i++) |
| for (j = 0; j < 2; ++j) cm->counts.delta_q[i][j] += counts->delta_q[i][j]; |
| #endif |
| } |