blob: 969f57e91dcea13b1093b13da6df7ef454098f95 [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <assert.h>
#include <limits.h>
#include <stdio.h>
#include "aom/aom_encoder.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/binary_codes_writer.h"
#include "aom_dsp/bitwriter_buffer.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/bitops.h"
#include "aom_ports/mem_ops.h"
#include "aom_ports/system_state.h"
#include "av1/common/blockd.h"
#include "av1/common/enums.h"
#if CONFIG_BITSTREAM_DEBUG
#include "aom_util/debug_util.h"
#endif // CONFIG_BITSTREAM_DEBUG
#include "common/md5_utils.h"
#include "common/rawenc.h"
#include "av1/common/blockd.h"
#include "av1/common/cdef.h"
#if CONFIG_CCSO
#include "av1/common/ccso.h"
#endif
#include "av1/common/cfl.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/seg_common.h"
#include "av1/common/tile_common.h"
#include "av1/encoder/bitstream.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encodetxb.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/palette.h"
#include "av1/encoder/pickrst.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/tokenize.h"
// Silence compiler warning for unused static functions
static void image2yuvconfig_upshift(aom_image_t *hbd_img,
const aom_image_t *img,
YV12_BUFFER_CONFIG *yv12) AOM_UNUSED;
#include "av1/av1_iface_common.h"
#define ENC_MISMATCH_DEBUG 0
static INLINE void write_uniform(aom_writer *w, int n, int v) {
const int l = get_unsigned_bits(n);
const int m = (1 << l) - n;
if (l == 0) return;
if (v < m) {
aom_write_literal(w, v, l - 1);
} else {
aom_write_literal(w, m + ((v - m) >> 1), l - 1);
aom_write_literal(w, (v - m) & 1, 1);
}
}
static AOM_INLINE void loop_restoration_write_sb_coeffs(
const AV1_COMMON *const cm, MACROBLOCKD *xd, const RestorationUnitInfo *rui,
aom_writer *const w, int plane, FRAME_COUNTS *counts);
#if CONFIG_IBC_SR_EXT
static AOM_INLINE void write_intrabc_info(
MACROBLOCKD *xd, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame,
aom_writer *w);
#endif // CONFIG_IBC_SR_EXT
#if !CONFIG_AIMC
static AOM_INLINE void write_intra_y_mode_kf(FRAME_CONTEXT *frame_ctx,
const MB_MODE_INFO *mi,
const MB_MODE_INFO *neighbors0,
const MB_MODE_INFO *neighbors1,
PREDICTION_MODE mode,
aom_writer *w) {
assert(!is_intrabc_block(mi, SHARED_PART));
(void)mi;
aom_write_symbol(w, mode, get_y_mode_cdf(frame_ctx, neighbors0, neighbors1),
INTRA_MODES);
}
#endif // !CONFIG_AIMC
static AOM_INLINE void write_inter_mode(aom_writer *w, PREDICTION_MODE mode,
FRAME_CONTEXT *ec_ctx,
const int16_t mode_ctx
#if CONFIG_WARPMV
,
const AV1_COMMON *const cm,
const MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi,
BLOCK_SIZE bsize
#endif // CONFIG_WARPMV
) {
const int16_t ismode_ctx = inter_single_mode_ctx(mode_ctx);
#if CONFIG_WARPMV
if (is_warpmv_mode_allowed(cm, mbmi, bsize)) {
const int16_t iswarpmvmode_ctx = inter_warpmv_mode_ctx(cm, xd, mbmi);
aom_write_symbol(w, mode == WARPMV,
ec_ctx->inter_warp_mode_cdf[iswarpmvmode_ctx], 2);
if (mode == WARPMV) return;
} else {
assert(mode != WARPMV);
}
#endif // CONFIG_WARPMV
aom_write_symbol(w, mode - SINGLE_INTER_MODE_START,
ec_ctx->inter_single_mode_cdf[ismode_ctx],
INTER_SINGLE_MODES);
}
static void write_drl_idx(int max_drl_bits, const int16_t mode_ctx,
FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi,
const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame,
aom_writer *w) {
#if !CONFIG_SKIP_MODE_ENHANCEMENT
assert(!mbmi->skip_mode);
#endif // !CONFIG_SKIP_MODE_ENHANCEMENT
#if CONFIG_WARPMV
assert(IMPLIES(mbmi->mode == WARPMV, 0));
#endif // CONFIG_WARPMV
// Write the DRL index as a sequence of bits encoding a decision tree:
// 0 -> 0 10 -> 1 110 -> 2 111 -> 3
// Also use the number of reference MVs for a frame type to reduce the
// number of bits written if there are less than 4 valid DRL indices.
#if CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
if (mbmi->skip_mode)
assert(mbmi->ref_mv_idx <
mbmi_ext_frame->skip_mvp_candidate_list.ref_mv_count);
else
#endif // CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
assert(mbmi->ref_mv_idx < mbmi_ext_frame->ref_mv_count);
assert(mbmi->ref_mv_idx < max_drl_bits + 1);
for (int idx = 0; idx < max_drl_bits; ++idx) {
aom_cdf_prob *drl_cdf =
#if CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
mbmi->skip_mode
? ec_ctx->skip_drl_cdf[AOMMIN(idx, 2)]
: av1_get_drl_cdf(ec_ctx, mbmi_ext_frame->weight, mode_ctx, idx);
#else
av1_get_drl_cdf(ec_ctx, mbmi_ext_frame->weight, mode_ctx, idx);
#endif // CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
aom_write_symbol(w, mbmi->ref_mv_idx != idx, drl_cdf, 2);
if (mbmi->ref_mv_idx == idx) break;
}
}
#if CONFIG_WARP_REF_LIST
static void write_warp_ref_idx(FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi,
aom_writer *w) {
assert(mbmi->warp_ref_idx < mbmi->max_num_warp_candidates);
assert(mbmi->max_num_warp_candidates <= MAX_WARP_REF_CANDIDATES);
if (mbmi->max_num_warp_candidates <= 1) {
return;
}
int max_idx_bits = mbmi->max_num_warp_candidates - 1;
for (int bit_idx = 0; bit_idx < max_idx_bits; ++bit_idx) {
aom_cdf_prob *warp_ref_idx_cdf = av1_get_warp_ref_idx_cdf(ec_ctx, bit_idx);
aom_write_symbol(w, mbmi->warp_ref_idx != bit_idx, warp_ref_idx_cdf, 2);
if (mbmi->warp_ref_idx == bit_idx) break;
}
}
#endif // CONFIG_WARP_REF_LIST
#if CONFIG_IMPROVED_JMVD && CONFIG_JOINT_MVD
// Write scale mode flag for joint mvd coding mode
static AOM_INLINE void write_jmvd_scale_mode(MACROBLOCKD *xd, aom_writer *w,
const MB_MODE_INFO *const mbmi) {
if (!is_joint_mvd_coding_mode(mbmi->mode)) return;
#if CONFIG_ADAPTIVE_MVD
const int is_joint_amvd_mode = is_joint_amvd_coding_mode(mbmi->mode);
aom_cdf_prob *jmvd_scale_mode_cdf =
is_joint_amvd_mode ? xd->tile_ctx->jmvd_amvd_scale_mode_cdf
: xd->tile_ctx->jmvd_scale_mode_cdf;
const int jmvd_scale_cnt = is_joint_amvd_mode ? JOINT_AMVD_SCALE_FACTOR_CNT
: JOINT_NEWMV_SCALE_FACTOR_CNT;
aom_write_symbol(w, mbmi->jmvd_scale_mode, jmvd_scale_mode_cdf,
jmvd_scale_cnt);
#else
aom_write_symbol(w, mbmi->jmvd_scale_mode, xd->tile_ctx->jmvd_scale_mode_cdf,
JOINT_NEWMV_SCALE_FACTOR_CNT);
#endif // CONFIG_ADAPTIVE_MVD
}
#endif // CONFIG_IMPROVED_JMVD && CONFIG_JOINT_MVD
static AOM_INLINE void write_inter_compound_mode(MACROBLOCKD *xd, aom_writer *w,
PREDICTION_MODE mode,
#if CONFIG_OPTFLOW_REFINEMENT
const AV1_COMMON *cm,
const MB_MODE_INFO *const mbmi,
#endif // CONFIG_OPTFLOW_REFINEMENT
const int16_t mode_ctx) {
assert(is_inter_compound_mode(mode));
#if CONFIG_OPTFLOW_REFINEMENT
if (cm->features.opfl_refine_type == REFINE_SWITCHABLE &&
is_opfl_refine_allowed(cm, mbmi)) {
const int use_optical_flow = mode >= NEAR_NEARMV_OPTFLOW;
aom_write_symbol(w, use_optical_flow,
xd->tile_ctx->use_optflow_cdf[mode_ctx], 2);
}
int comp_mode_idx = opfl_get_comp_idx(mode);
aom_write_symbol(w, comp_mode_idx,
xd->tile_ctx->inter_compound_mode_cdf[mode_ctx],
INTER_COMPOUND_REF_TYPES);
#else
aom_write_symbol(w, INTER_COMPOUND_OFFSET(mode),
xd->tile_ctx->inter_compound_mode_cdf[mode_ctx],
INTER_COMPOUND_MODES);
#endif // CONFIG_OPTFLOW_REFINEMENT
}
#if CONFIG_NEW_TX_PARTITION
static void write_tx_partition(MACROBLOCKD *xd, const MB_MODE_INFO *mbmi,
TX_SIZE max_tx_size, int blk_row, int blk_col,
aom_writer *w) {
int plane_type = (xd->tree_type == CHROMA_PART);
const int max_blocks_high = max_block_high(xd, mbmi->sb_type[plane_type], 0);
const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type[plane_type], 0);
const int bsize = mbmi->sb_type[plane_type];
const int is_inter = is_inter_block(mbmi, xd->tree_type);
const int txb_size_index =
is_inter ? av1_get_txb_size_index(bsize, blk_row, blk_col) : 0;
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (is_inter || (!is_inter && block_signals_txsize(bsize))) {
const TX_PARTITION_TYPE partition = mbmi->tx_partition_type[txb_size_index];
const int is_rect = is_rect_tx(max_tx_size);
const int allow_horz = allow_tx_horz_split(max_tx_size);
const int allow_vert = allow_tx_vert_split(max_tx_size);
if (allow_horz && allow_vert) {
const int split4_ctx =
is_inter ? txfm_partition_split4_inter_context(
xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, bsize, max_tx_size)
: get_tx_size_context(xd);
aom_cdf_prob *split4_cdf =
is_inter ? ec_ctx->inter_4way_txfm_partition_cdf[is_rect][split4_ctx]
: ec_ctx->intra_4way_txfm_partition_cdf[is_rect][split4_ctx];
const TX_PARTITION_TYPE split4_partition =
get_split4_partition(partition);
aom_write_symbol(w, split4_partition, split4_cdf, 4);
} else if (allow_horz || allow_vert) {
const int has_first_split = partition != TX_PARTITION_NONE;
aom_cdf_prob *split2_cdf = is_inter
? ec_ctx->inter_2way_txfm_partition_cdf
: ec_ctx->intra_2way_txfm_partition_cdf;
aom_write_symbol(w, has_first_split, split2_cdf, 2);
} else {
assert(!allow_horz && !allow_vert);
assert(partition == PARTITION_NONE);
}
}
if (is_inter) {
const TX_SIZE tx_size = mbmi->inter_tx_size[txb_size_index];
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size,
max_tx_size);
}
}
#else
static AOM_INLINE void write_tx_size_vartx(MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi,
TX_SIZE tx_size, int depth,
int blk_row, int blk_col,
aom_writer *w) {
FRAME_CONTEXT *const ec_ctx = xd->tile_ctx;
int plane_type = (xd->tree_type == CHROMA_PART);
const int max_blocks_high = max_block_high(xd, mbmi->sb_type[plane_type], 0);
const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type[plane_type], 0);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
if (depth == MAX_VARTX_DEPTH) {
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
return;
}
const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row,
mbmi->sb_type[plane_type], tx_size);
const int txb_size_index =
av1_get_txb_size_index(mbmi->sb_type[plane_type], blk_row, blk_col);
const int write_txfm_partition =
tx_size == mbmi->inter_tx_size[txb_size_index];
if (write_txfm_partition) {
aom_write_symbol(w, 0, ec_ctx->txfm_partition_cdf[ctx], 2);
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
// TODO(yuec): set correct txfm partition update for qttx
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
aom_write_symbol(w, 1, ec_ctx->txfm_partition_cdf[ctx], 2);
if (sub_txs == TX_4X4) {
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, sub_txs, tx_size);
return;
}
assert(bsw > 0 && bsh > 0);
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh)
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
int offsetr = blk_row + row;
int offsetc = blk_col + col;
write_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, w);
}
}
}
static AOM_INLINE void write_selected_tx_size(const MACROBLOCKD *xd,
aom_writer *w) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (block_signals_txsize(bsize)) {
const TX_SIZE tx_size = mbmi->tx_size;
const int tx_size_ctx = get_tx_size_context(xd);
const int depth = tx_size_to_depth(tx_size, bsize);
const int max_depths = bsize_to_max_depth(bsize);
const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
assert(depth >= 0 && depth <= max_depths);
assert(!is_inter_block(mbmi, xd->tree_type));
assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi)));
aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx],
max_depths + 1);
}
}
#endif // CONFIG_NEW_TX_PARTITION
static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd,
int segment_id, const MB_MODE_INFO *mi, aom_writer *w) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 1;
} else {
const int skip_txfm = mi->skip_txfm[xd->tree_type == CHROMA_PART];
const int ctx = av1_get_skip_txfm_context(xd);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
aom_write_symbol(w, skip_txfm, ec_ctx->skip_txfm_cdfs[ctx], 2);
return skip_txfm;
}
}
static int write_skip_mode(const AV1_COMMON *cm, const MACROBLOCKD *xd,
int segment_id, const MB_MODE_INFO *mi,
aom_writer *w) {
if (!cm->current_frame.skip_mode_info.skip_mode_flag) return 0;
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 0;
}
const int skip_mode = mi->skip_mode;
if (!is_comp_ref_allowed(mi->sb_type[xd->tree_type == CHROMA_PART])) {
assert(!skip_mode);
return 0;
}
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
// These features imply single-reference mode, while skip mode implies
// compound reference. Hence, the two are mutually exclusive.
// In other words, skip_mode is implicitly 0 here.
assert(!skip_mode);
return 0;
}
const int ctx = av1_get_skip_mode_context(xd);
aom_write_symbol(w, skip_mode, xd->tile_ctx->skip_mode_cdfs[ctx], 2);
return skip_mode;
}
static AOM_INLINE void write_is_inter(const AV1_COMMON *cm,
const MACROBLOCKD *xd, int segment_id,
aom_writer *w, const int is_inter
#if CONFIG_CONTEXT_DERIVATION
,
const int skip_txfm
#endif // CONFIG_CONTEXT_DERIVATION
) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
assert(is_inter);
return;
}
const int ctx = av1_get_intra_inter_context(xd);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
#if CONFIG_CONTEXT_DERIVATION
aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[skip_txfm][ctx], 2);
#else
aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2);
#endif // CONFIG_CONTEXT_DERIVATION
}
#if CONFIG_WEDGE_MOD_EXT
static void write_wedge_mode(aom_writer *w, FRAME_CONTEXT *ec_ctx,
const BLOCK_SIZE bsize, const int8_t wedge_index) {
const int wedge_angle = wedge_index_2_angle[wedge_index];
const int wedge_dist = wedge_index_2_dist[wedge_index];
const int wedge_angle_dir = (wedge_angle >= H_WEDGE_ANGLES);
aom_write_symbol(w, wedge_angle_dir, ec_ctx->wedge_angle_dir_cdf[bsize], 2);
if (wedge_angle_dir == 0) {
aom_write_symbol(w, wedge_angle, ec_ctx->wedge_angle_0_cdf[bsize],
H_WEDGE_ANGLES);
} else {
assert(wedge_angle >= H_WEDGE_ANGLES);
aom_write_symbol(w, (wedge_angle - H_WEDGE_ANGLES),
ec_ctx->wedge_angle_1_cdf[bsize], H_WEDGE_ANGLES);
}
if ((wedge_angle >= H_WEDGE_ANGLES) ||
(wedge_angle == WEDGE_90 || wedge_angle == WEDGE_180)) {
assert(wedge_dist != 0);
aom_write_symbol(w, wedge_dist - 1, ec_ctx->wedge_dist_cdf2[bsize],
NUM_WEDGE_DIST - 1);
} else {
aom_write_symbol(w, wedge_dist, ec_ctx->wedge_dist_cdf[bsize],
NUM_WEDGE_DIST);
}
}
#endif // CONFIG_WEDGE_MOD_EXT
#if CONFIG_EXTENDED_WARP_PREDICTION
static void write_warp_delta_param(const MACROBLOCKD *xd, int index, int value,
aom_writer *w) {
assert(2 <= index && index <= 5);
int index_type = (index == 2 || index == 5) ? 0 : 1;
int coded_value = (value / WARP_DELTA_STEP) + WARP_DELTA_CODED_MAX;
assert(0 <= coded_value && coded_value < WARP_DELTA_NUM_SYMBOLS);
aom_write_symbol(w, coded_value,
xd->tile_ctx->warp_delta_param_cdf[index_type],
WARP_DELTA_NUM_SYMBOLS);
}
static void write_warp_delta(const AV1_COMMON *cm, const MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi,
const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame,
aom_writer *w) {
#if CONFIG_WARP_REF_LIST
assert(mbmi->warp_ref_idx < mbmi->max_num_warp_candidates);
#if !CONFIG_WARPMV
write_warp_ref_idx(xd->tile_ctx, mbmi, w);
#endif // !CONFIG_WARPMV
if (!allow_warp_parameter_signaling(mbmi)) {
return;
}
#endif // CONFIG_WARP_REF_LIST
const WarpedMotionParams *params = &mbmi->wm_params[0];
WarpedMotionParams base_params;
av1_get_warp_base_params(cm,
#if !CONFIG_WARP_REF_LIST
xd,
#endif //! CONFIG_WARP_REF_LIST
mbmi,
#if !CONFIG_WARP_REF_LIST
mbmi_ext_frame->ref_mv_stack,
#endif //! CONFIG_WARP_REF_LIST
&base_params, NULL
#if CONFIG_WARP_REF_LIST
,
mbmi_ext_frame->warp_param_stack
#endif // CONFIG_WARP_REF_LIST
);
// The RDO stage should not give us a model which is not warpable.
// Such models can still be signalled, but are effectively useless
// as we'll just fall back to translational motion
assert(!params->invalid);
// TODO(rachelbarker): Allow signaling warp type?
write_warp_delta_param(xd, 2, params->wmmat[2] - base_params.wmmat[2], w);
write_warp_delta_param(xd, 3, params->wmmat[3] - base_params.wmmat[3], w);
}
static AOM_INLINE void write_motion_mode(
const AV1_COMMON *cm, MACROBLOCKD *xd, const MB_MODE_INFO *mbmi,
const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) {
const BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y];
const int allowed_motion_modes =
motion_mode_allowed(cm, xd, mbmi_ext_frame->ref_mv_stack, mbmi);
assert((allowed_motion_modes & (1 << mbmi->motion_mode)) != 0);
assert((cm->features.enabled_motion_modes & (1 << mbmi->motion_mode)) != 0);
MOTION_MODE motion_mode = mbmi->motion_mode;
// Note(rachelbarker): Both of the conditions in brackets here are used in
// various places to mean "is this block interintra?". This assertion is a
// quick check to ensure these conditions can't get out of sync.
assert((mbmi->ref_frame[1] == INTRA_FRAME) == (motion_mode == INTERINTRA));
#if CONFIG_WARPMV
if (mbmi->mode == WARPMV) {
assert(mbmi->motion_mode == WARP_DELTA ||
mbmi->motion_mode == WARPED_CAUSAL);
// Signal if the motion mode is WARP_CAUSAL or WARP_DELTA
if (allowed_motion_modes & (1 << WARPED_CAUSAL)) {
aom_write_symbol(w, motion_mode == WARPED_CAUSAL,
xd->tile_ctx->warped_causal_warpmv_cdf[bsize], 2);
}
return;
}
#endif // CONFIG_WARPMV
if (allowed_motion_modes & (1 << INTERINTRA)) {
const int bsize_group = size_group_lookup[bsize];
aom_write_symbol(w, motion_mode == INTERINTRA,
xd->tile_ctx->interintra_cdf[bsize_group], 2);
if (motion_mode == INTERINTRA) {
aom_write_symbol(w, mbmi->interintra_mode,
xd->tile_ctx->interintra_mode_cdf[bsize_group],
INTERINTRA_MODES);
if (av1_is_wedge_used(bsize)) {
aom_write_symbol(w, mbmi->use_wedge_interintra,
xd->tile_ctx->wedge_interintra_cdf[bsize], 2);
if (mbmi->use_wedge_interintra) {
#if CONFIG_WEDGE_MOD_EXT
write_wedge_mode(w, xd->tile_ctx, bsize,
mbmi->interintra_wedge_index);
#else
aom_write_symbol(w, mbmi->interintra_wedge_index,
xd->tile_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
#endif // CONFIG_WEDGE_MOD_EXT
}
}
return;
}
}
if (allowed_motion_modes & (1 << OBMC_CAUSAL)) {
aom_write_symbol(w, motion_mode == OBMC_CAUSAL,
xd->tile_ctx->obmc_cdf[bsize], 2);
if (motion_mode == OBMC_CAUSAL) {
return;
}
}
if (allowed_motion_modes & (1 << WARP_EXTEND)) {
const int ctx1 = av1_get_warp_extend_ctx1(xd, mbmi);
const int ctx2 = av1_get_warp_extend_ctx2(xd, mbmi);
aom_write_symbol(w, motion_mode == WARP_EXTEND,
xd->tile_ctx->warp_extend_cdf[ctx1][ctx2], 2);
if (motion_mode == WARP_EXTEND) {
return;
}
}
if (allowed_motion_modes & (1 << WARPED_CAUSAL)) {
aom_write_symbol(w, motion_mode == WARPED_CAUSAL,
xd->tile_ctx->warped_causal_cdf[bsize], 2);
if (motion_mode == WARPED_CAUSAL) {
return;
}
}
if (allowed_motion_modes & (1 << WARP_DELTA)) {
aom_write_symbol(w, motion_mode == WARP_DELTA,
xd->tile_ctx->warp_delta_cdf[bsize], 2);
#if !CONFIG_WARPMV
if (motion_mode == WARP_DELTA) {
write_warp_delta(cm, xd, mbmi, mbmi_ext_frame, w);
return;
}
#endif // !CONFIG_WARPMV
}
}
#else
static AOM_INLINE void write_motion_mode(const AV1_COMMON *cm, MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi,
aom_writer *w) {
MOTION_MODE last_motion_mode_allowed = motion_mode_allowed(cm, xd, mbmi);
assert(mbmi->motion_mode <= last_motion_mode_allowed);
switch (last_motion_mode_allowed) {
case SIMPLE_TRANSLATION: break;
case OBMC_CAUSAL:
aom_write_symbol(w, mbmi->motion_mode == OBMC_CAUSAL,
xd->tile_ctx->obmc_cdf[mbmi->sb_type[PLANE_TYPE_Y]], 2);
break;
default:
aom_write_symbol(
w, mbmi->motion_mode,
xd->tile_ctx->motion_mode_cdf[mbmi->sb_type[PLANE_TYPE_Y]],
MOTION_MODES);
}
}
#endif // CONFIG_EXTENDED_WARP_PREDICTION
static AOM_INLINE void write_delta_qindex(const MACROBLOCKD *xd,
int delta_qindex, aom_writer *w) {
int sign = delta_qindex < 0;
int abs = sign ? -delta_qindex : delta_qindex;
int rem_bits, thr;
int smallval = abs < DELTA_Q_SMALL ? 1 : 0;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf,
DELTA_Q_PROBS + 1);
if (!smallval) {
rem_bits = get_msb(abs - 1);
thr = (1 << rem_bits) + 1;
aom_write_literal(w, rem_bits - 1, 3);
aom_write_literal(w, abs - thr, rem_bits);
}
if (abs > 0) {
aom_write_bit(w, sign);
}
}
static AOM_INLINE void write_delta_lflevel(const AV1_COMMON *cm,
const MACROBLOCKD *xd, int lf_id,
int delta_lflevel, aom_writer *w) {
int sign = delta_lflevel < 0;
int abs = sign ? -delta_lflevel : delta_lflevel;
int rem_bits, thr;
int smallval = abs < DELTA_LF_SMALL ? 1 : 0;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (cm->delta_q_info.delta_lf_multi) {
assert(lf_id >= 0 && lf_id < (av1_num_planes(cm) > 1 ? FRAME_LF_COUNT
: FRAME_LF_COUNT - 2));
aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL),
ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1);
} else {
aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf,
DELTA_LF_PROBS + 1);
}
if (!smallval) {
rem_bits = get_msb(abs - 1);
thr = (1 << rem_bits) + 1;
aom_write_literal(w, rem_bits - 1, 3);
aom_write_literal(w, abs - thr, rem_bits);
}
if (abs > 0) {
aom_write_bit(w, sign);
}
}
#if CONFIG_NEW_COLOR_MAP_CODING
static AOM_INLINE void pack_map_tokens(aom_writer *w, const TokenExtra **tp,
int n, int cols, int rows) {
const TokenExtra *p = *tp;
for (int y = 0; y < rows; y++) {
int identity_row_flag = p->identity_row_flag;
aom_write_symbol(w, identity_row_flag, p->identity_row_cdf, 2);
for (int x = 0; x < cols; x++) {
if (y == 0 && x == 0) {
write_uniform(w, n, p->token);
} else if (!identity_row_flag || x == 0) {
aom_write_symbol(w, p->token, p->color_map_cdf, n);
}
if (!identity_row_flag || x == 0) p++;
}
}
*tp = p;
}
#else
static AOM_INLINE void pack_map_tokens(aom_writer *w, const TokenExtra **tp,
int n, int num) {
const TokenExtra *p = *tp;
write_uniform(w, n, p->token); // The first color index.
++p;
--num;
for (int i = 0; i < num; ++i) {
aom_write_symbol(w, p->token, p->color_map_cdf, n);
++p;
}
*tp = p;
}
#endif // CONFIG_NEW_COLOR_MAP_CODING
static AOM_INLINE void av1_write_coeffs_txb_facade(
aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, MACROBLOCKD *xd,
MB_MODE_INFO *mbmi, int plane, int block, int blk_row, int blk_col,
TX_SIZE tx_size) {
// code significance and TXB
const int code_rest =
av1_write_sig_txtype(cm, x, w, blk_row, blk_col, plane, block, tx_size);
const TX_TYPE tx_type =
av1_get_tx_type(xd, get_plane_type(plane), blk_row, blk_col, tx_size,
cm->features.reduced_tx_set_used);
const int is_inter = is_inter_block(mbmi, xd->tree_type);
if (code_rest) {
if ((mbmi->fsc_mode[xd->tree_type == CHROMA_PART] &&
get_primary_tx_type(tx_type) == IDTX && plane == PLANE_TYPE_Y) ||
use_inter_fsc(cm, plane, tx_type, is_inter)) {
av1_write_coeffs_txb_skip(cm, x, w, blk_row, blk_col, plane, block,
tx_size);
} else {
av1_write_coeffs_txb(cm, x, w, blk_row, blk_col, plane, block, tx_size);
}
}
}
static AOM_INLINE void pack_txb_tokens(
aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, const TokenExtra **tp,
const TokenExtra *const tok_end, MACROBLOCKD *xd, MB_MODE_INFO *mbmi,
int plane, BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth, int block,
int blk_row, int blk_col, TX_SIZE tx_size, TOKEN_STATS *token_stats) {
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
const struct macroblockd_plane *const pd = &xd->plane[plane];
#if CONFIG_EXT_RECUR_PARTITIONS
const BLOCK_SIZE bsize_base = get_bsize_base(xd, mbmi, plane);
const TX_SIZE plane_tx_size =
plane ? av1_get_max_uv_txsize(bsize_base, pd->subsampling_x,
pd->subsampling_y)
: mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
blk_col)];
#else
const TX_SIZE plane_tx_size =
plane ? av1_get_max_uv_txsize(mbmi->sb_type[plane > 0], pd->subsampling_x,
pd->subsampling_y)
: mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
blk_col)];
#endif // CONFIG_EXT_RECUR_PARTITIONS
if (tx_size == plane_tx_size || plane) {
av1_write_coeffs_txb_facade(w, cm, x, xd, mbmi, plane, block, blk_row,
blk_col, tx_size);
#if CONFIG_RD_DEBUG
TOKEN_STATS tmp_token_stats;
init_token_stats(&tmp_token_stats);
token_stats->txb_coeff_cost_map[blk_row][blk_col] = tmp_token_stats.cost;
token_stats->cost += tmp_token_stats.cost;
#endif
} else {
#if CONFIG_NEW_TX_PARTITION
(void)tp;
(void)tok_end;
(void)token_stats;
(void)bit_depth;
TX_SIZE sub_txs[MAX_TX_PARTITIONS] = { 0 };
const int index = av1_get_txb_size_index(plane_bsize, blk_row, blk_col);
get_tx_partition_sizes(mbmi->tx_partition_type[index], tx_size, sub_txs);
int cur_partition = 0;
int bsw = 0, bsh = 0;
for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) {
for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw) {
const TX_SIZE sub_tx = sub_txs[cur_partition];
bsw = tx_size_wide_unit[sub_tx];
bsh = tx_size_high_unit[sub_tx];
const int sub_step = bsw * bsh;
const int offsetr = blk_row + r;
const int offsetc = blk_col + c;
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
av1_write_coeffs_txb_facade(w, cm, x, xd, mbmi, plane, block, offsetr,
offsetc, sub_tx);
#if CONFIG_RD_DEBUG
TOKEN_STATS tmp_token_stats;
init_token_stats(&tmp_token_stats);
token_stats->txb_coeff_cost_map[offsetr][offsetc] =
tmp_token_stats.cost;
token_stats->cost += tmp_token_stats.cost;
#endif
block += sub_step;
cur_partition++;
}
}
#else
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
const int step = bsh * bsw;
assert(bsw > 0 && bsh > 0);
for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) {
for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw) {
const int offsetr = blk_row + r;
const int offsetc = blk_col + c;
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
pack_txb_tokens(w, cm, x, tp, tok_end, xd, mbmi, plane, plane_bsize,
bit_depth, block, offsetr, offsetc, sub_txs,
token_stats);
block += step;
}
}
#endif // CONFIG_NEW_TX_PARTITION
}
}
static INLINE void set_spatial_segment_id(
const CommonModeInfoParams *const mi_params, uint8_t *segment_ids,
BLOCK_SIZE bsize, int mi_row, int mi_col, int segment_id) {
const int mi_offset = mi_row * mi_params->mi_cols + mi_col;
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
const int xmis = AOMMIN(mi_params->mi_cols - mi_col, bw);
const int ymis = AOMMIN(mi_params->mi_rows - mi_row, bh);
for (int y = 0; y < ymis; ++y) {
for (int x = 0; x < xmis; ++x) {
segment_ids[mi_offset + y * mi_params->mi_cols + x] = segment_id;
}
}
}
int av1_neg_interleave(int x, int ref, int max) {
assert(x < max);
const int diff = x - ref;
if (!ref) return x;
if (ref >= (max - 1)) return -x + max - 1;
if (2 * ref < max) {
if (abs(diff) <= ref) {
if (diff > 0)
return (diff << 1) - 1;
else
return ((-diff) << 1);
}
return x;
} else {
if (abs(diff) < (max - ref)) {
if (diff > 0)
return (diff << 1) - 1;
else
return ((-diff) << 1);
}
return (max - x) - 1;
}
}
static AOM_INLINE void write_segment_id(AV1_COMP *cpi,
const MB_MODE_INFO *const mbmi,
aom_writer *w,
const struct segmentation *seg,
struct segmentation_probs *segp,
int skip_txfm) {
if (!seg->enabled || !seg->update_map) return;
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
int cdf_num;
const int pred = av1_get_spatial_seg_pred(cm, xd, &cdf_num);
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
if (skip_txfm) {
// Still need to transmit tx size for intra blocks even if skip_txfm is
// true. Changing segment_id may make the tx size become invalid, e.g
// changing from lossless to lossy.
assert(is_inter_block(mbmi, xd->tree_type) ||
!cpi->enc_seg.has_lossless_segment);
set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map,
mbmi->sb_type[xd->tree_type == CHROMA_PART], mi_row,
mi_col, pred);
set_spatial_segment_id(&cm->mi_params, cpi->enc_seg.map,
mbmi->sb_type[xd->tree_type == CHROMA_PART], mi_row,
mi_col, pred);
/* mbmi is read only but we need to update segment_id */
((MB_MODE_INFO *)mbmi)->segment_id = pred;
return;
}
const int coded_id =
av1_neg_interleave(mbmi->segment_id, pred, seg->last_active_segid + 1);
aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num];
aom_write_symbol(w, coded_id, pred_cdf, MAX_SEGMENTS);
set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map,
mbmi->sb_type[xd->tree_type == CHROMA_PART], mi_row,
mi_col, mbmi->segment_id);
}
static AOM_INLINE void write_single_ref(
const MACROBLOCKD *xd, const RefFramesInfo *const ref_frames_info,
aom_writer *w) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
MV_REFERENCE_FRAME ref = mbmi->ref_frame[0];
const int n_refs = ref_frames_info->num_total_refs;
assert(ref < n_refs);
for (int i = 0; i < n_refs - 1; i++) {
const int bit = ref == i;
aom_write_symbol(w, bit, av1_get_pred_cdf_single_ref(xd, i, n_refs), 2);
if (bit) return;
}
assert(ref == (n_refs - 1));
}
static AOM_INLINE void write_compound_ref(
const MACROBLOCKD *xd, const RefFramesInfo *const ref_frames_info,
aom_writer *w) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0];
MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1];
const int n_refs = ref_frames_info->num_total_refs;
#if CONFIG_ALLOW_SAME_REF_COMPOUND
assert(n_refs >= 1);
assert(ref0 <= ref1);
#else
assert(n_refs >= 2);
assert(ref0 < ref1);
#endif // CONFIG_ALLOW_SAME_REF_COMPOUND
int n_bits = 0;
#if CONFIG_ALLOW_SAME_REF_COMPOUND
for (int i = 0; i < n_refs - 1 && n_bits < 2; i++) {
const int bit =
((n_bits == 0) && (ref0 == i)) || ((n_bits == 1) && (ref1 == i));
#else
for (int i = 0; i < n_refs + n_bits - 2 && n_bits < 2; i++) {
const int bit = ref0 == i || ref1 == i;
#endif // CONFIG_ALLOW_SAME_REF_COMPOUND
// bit_type: -1 for ref0, 0 for opposite sided ref1, 1 for same sided ref1
const int bit_type =
n_bits == 0 ? -1
: av1_get_compound_ref_bit_type(ref_frames_info, ref0, i);
// Implicitly signal a 1 when ref0 = RANK_REF0_TO_PRUNE - 1
if (n_bits > 0 || i < RANKED_REF0_TO_PRUNE - 1) {
aom_write_symbol(
w, bit,
av1_get_pred_cdf_compound_ref(xd, i, n_bits, bit_type, n_refs), 2);
}
n_bits += bit;
#if CONFIG_ALLOW_SAME_REF_COMPOUND
if (i < ref_frames_info->num_same_ref_compound) i -= bit;
#endif // CONFIG_ALLOW_SAME_REF_COMPOUND
}
#if !CONFIG_ALLOW_SAME_REF_COMPOUND
assert(IMPLIES(n_bits < 2, AOMMAX(ref0, ref1) == n_refs - 1));
assert(IMPLIES(n_bits < 1, AOMMIN(ref0, ref1) == n_refs - 2));
#endif // CONFIG_ALLOW_SAME_REF_COMPOUND
}
// This function encodes the reference frame
static AOM_INLINE void write_ref_frames(const AV1_COMMON *cm,
const MACROBLOCKD *xd, aom_writer *w) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
const int is_compound = has_second_ref(mbmi);
const int segment_id = mbmi->segment_id;
// If segment level coding of this signal is disabled...
// or the segment allows multiple reference frame options
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) ||
segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
assert(mbmi->ref_frame[0] == get_closest_pastcur_ref_index(cm));
assert(!is_compound);
} else {
// does the feature use compound prediction or not
// (if not specified at the frame/segment level)
if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
if (is_comp_ref_allowed(mbmi->sb_type[PLANE_TYPE_Y]))
aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(cm, xd), 2);
} else {
assert((!is_compound) ==
(cm->current_frame.reference_mode == SINGLE_REFERENCE));
}
if (is_compound) {
write_compound_ref(xd, &cm->ref_frames_info, w);
} else {
write_single_ref(xd, &cm->ref_frames_info, w);
}
}
}
static AOM_INLINE void write_filter_intra_mode_info(
const AV1_COMMON *cm, const MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
aom_writer *w) {
if (av1_filter_intra_allowed(cm, mbmi) && xd->tree_type != CHROMA_PART) {
aom_write_symbol(
w, mbmi->filter_intra_mode_info.use_filter_intra,
xd->tile_ctx->filter_intra_cdfs[mbmi->sb_type[PLANE_TYPE_Y]], 2);
if (mbmi->filter_intra_mode_info.use_filter_intra) {
const FILTER_INTRA_MODE mode =
mbmi->filter_intra_mode_info.filter_intra_mode;
aom_write_symbol(w, mode, xd->tile_ctx->filter_intra_mode_cdf,
FILTER_INTRA_MODES);
}
}
}
#if !CONFIG_AIMC
static AOM_INLINE void write_angle_delta(aom_writer *w, int angle_delta,
aom_cdf_prob *cdf) {
aom_write_symbol(w, angle_delta + MAX_ANGLE_DELTA, cdf,
2 * MAX_ANGLE_DELTA + 1);
}
#endif // !CONFIG_AIMC
static AOM_INLINE void write_mb_interp_filter(AV1_COMMON *const cm,
const MACROBLOCKD *xd,
aom_writer *w) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (!av1_is_interp_needed(cm, xd)) {
#if CONFIG_DEBUG
#if CONFIG_OPTFLOW_REFINEMENT
// Sharp filter is always used whenever optical flow refinement is applied.
int mb_interp_filter =
(mbmi->mode >= NEAR_NEARMV_OPTFLOW || use_opfl_refine_all(cm, mbmi))
? MULTITAP_SHARP
: cm->features.interp_filter;
#else
int mb_interp_filter = cm->features.interp_filter;
#endif // CONFIG_OPTFLOW_REFINEMENT
assert(mbmi->interp_fltr == av1_unswitchable_filter(mb_interp_filter));
(void)mb_interp_filter;
#endif // CONFIG_DEBUG
return;
}
if (cm->features.interp_filter == SWITCHABLE) {
#if CONFIG_OPTFLOW_REFINEMENT
if (mbmi->mode >= NEAR_NEARMV_OPTFLOW || use_opfl_refine_all(cm, mbmi)) {
assert(IMPLIES(
mbmi->mode >= NEAR_NEARMV_OPTFLOW || use_opfl_refine_all(cm, mbmi),
mbmi->interp_fltr == MULTITAP_SHARP));
return;
}
#endif // CONFIG_OPTFLOW_REFINEMENT
const int ctx = av1_get_pred_context_switchable_interp(xd, 0);
const InterpFilter filter = mbmi->interp_fltr;
aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx],
SWITCHABLE_FILTERS);
++cm->cur_frame->interp_filter_selected[filter];
}
}
// Transmit color values with delta encoding. Write the first value as
// literal, and the deltas between each value and the previous one. "min_val" is
// the smallest possible value of the deltas.
static AOM_INLINE void delta_encode_palette_colors(const int *colors, int num,
int bit_depth, int min_val,
aom_writer *w) {
if (num <= 0) return;
assert(colors[0] < (1 << bit_depth));
aom_write_literal(w, colors[0], bit_depth);
if (num == 1) return;
int max_delta = 0;
int deltas[PALETTE_MAX_SIZE];
memset(deltas, 0, sizeof(deltas));
for (int i = 1; i < num; ++i) {
assert(colors[i] < (1 << bit_depth));
const int delta = colors[i] - colors[i - 1];
deltas[i - 1] = delta;
assert(delta >= min_val);
if (delta > max_delta) max_delta = delta;
}
const int min_bits = bit_depth - 3;
int bits = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits);
assert(bits <= bit_depth);
int range = (1 << bit_depth) - colors[0] - min_val;
aom_write_literal(w, bits - min_bits, 2);
for (int i = 0; i < num - 1; ++i) {
aom_write_literal(w, deltas[i] - min_val, bits);
range -= deltas[i];
bits = AOMMIN(bits, av1_ceil_log2(range));
}
}
// Transmit luma palette color values. First signal if each color in the color
// cache is used. Those colors that are not in the cache are transmitted with
// delta encoding.
static AOM_INLINE void write_palette_colors_y(
const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi,
int bit_depth, aom_writer *w) {
const int n = pmi->palette_size[0];
uint16_t color_cache[2 * PALETTE_MAX_SIZE];
const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
int out_cache_colors[PALETTE_MAX_SIZE];
uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
const int n_out_cache =
av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n,
cache_color_found, out_cache_colors);
int n_in_cache = 0;
for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
const int found = cache_color_found[i];
aom_write_bit(w, found);
n_in_cache += found;
}
assert(n_in_cache + n_out_cache == n);
delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w);
}
// Write chroma palette color values. U channel is handled similarly to the luma
// channel. For v channel, either use delta encoding or transmit raw values
// directly, whichever costs less.
static AOM_INLINE void write_palette_colors_uv(
const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi,
int bit_depth, aom_writer *w) {
const int n = pmi->palette_size[1];
const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE;
const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE;
// U channel colors.
uint16_t color_cache[2 * PALETTE_MAX_SIZE];
const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
int out_cache_colors[PALETTE_MAX_SIZE];
uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
const int n_out_cache = av1_index_color_cache(
color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors);
int n_in_cache = 0;
for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
const int found = cache_color_found[i];
aom_write_bit(w, found);
n_in_cache += found;
}
delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w);
// V channel colors. Don't use color cache as the colors are not sorted.
const int max_val = 1 << bit_depth;
int zero_count = 0, min_bits_v = 0;
int bits_v =
av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v);
const int rate_using_delta =
2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count;
const int rate_using_raw = bit_depth * n;
if (rate_using_delta < rate_using_raw) { // delta encoding
assert(colors_v[0] < (1 << bit_depth));
aom_write_bit(w, 1);
aom_write_literal(w, bits_v - min_bits_v, 2);
aom_write_literal(w, colors_v[0], bit_depth);
for (int i = 1; i < n; ++i) {
assert(colors_v[i] < (1 << bit_depth));
if (colors_v[i] == colors_v[i - 1]) { // No need to signal sign bit.
aom_write_literal(w, 0, bits_v);
continue;
}
const int delta = abs((int)colors_v[i] - colors_v[i - 1]);
const int sign_bit = colors_v[i] < colors_v[i - 1];
if (delta <= max_val - delta) {
aom_write_literal(w, delta, bits_v);
aom_write_bit(w, sign_bit);
} else {
aom_write_literal(w, max_val - delta, bits_v);
aom_write_bit(w, !sign_bit);
}
}
} else { // Transmit raw values.
aom_write_bit(w, 0);
for (int i = 0; i < n; ++i) {
assert(colors_v[i] < (1 << bit_depth));
aom_write_literal(w, colors_v[i], bit_depth);
}
}
}
static AOM_INLINE void write_palette_mode_info(const AV1_COMMON *cm,
const MACROBLOCKD *xd,
const MB_MODE_INFO *const mbmi,
aom_writer *w) {
const int num_planes = av1_num_planes(cm);
const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
assert(av1_allow_palette(cm->features.allow_screen_content_tools, bsize));
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
if (mbmi->mode == DC_PRED && xd->tree_type != CHROMA_PART) {
const int n = pmi->palette_size[0];
const int palette_y_mode_ctx = av1_get_palette_mode_ctx(xd);
aom_write_symbol(
w, n > 0,
xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_y_mode_ctx], 2);
if (n > 0) {
aom_write_symbol(w, n - PALETTE_MIN_SIZE,
xd->tile_ctx->palette_y_size_cdf[bsize_ctx],
PALETTE_SIZES);
write_palette_colors_y(xd, pmi, cm->seq_params.bit_depth, w);
}
}
const int uv_dc_pred = num_planes > 1 && xd->tree_type != LUMA_PART &&
mbmi->uv_mode == UV_DC_PRED && xd->is_chroma_ref;
if (uv_dc_pred) {
const int n = pmi->palette_size[1];
const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
aom_write_symbol(w, n > 0,
xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2);
if (n > 0) {
aom_write_symbol(w, n - PALETTE_MIN_SIZE,
xd->tile_ctx->palette_uv_size_cdf[bsize_ctx],
PALETTE_SIZES);
write_palette_colors_uv(xd, pmi, cm->seq_params.bit_depth, w);
}
}
}
void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd,
TX_TYPE tx_type, TX_SIZE tx_size, aom_writer *w) {
MB_MODE_INFO *mbmi = xd->mi[0];
#if CONFIG_ATC_NEWTXSETS
PREDICTION_MODE intra_dir;
if (mbmi->filter_intra_mode_info.use_filter_intra)
intra_dir =
fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode];
else
intra_dir = mbmi->mode;
#endif // CONFIG_ATC_NEWTXSETS
const FeatureFlags *const features = &cm->features;
const int is_inter = is_inter_block(mbmi, xd->tree_type);
if (get_ext_tx_types(tx_size, is_inter, features->reduced_tx_set_used) > 1 &&
((!cm->seg.enabled && cm->quant_params.base_qindex > 0) ||
(cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) &&
!mbmi->skip_txfm[xd->tree_type == CHROMA_PART] &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
const TxSetType tx_set_type = av1_get_ext_tx_set_type(
tx_size, is_inter, features->reduced_tx_set_used);
const int eset =
get_ext_tx_set(tx_size, is_inter, features->reduced_tx_set_used);
// eset == 0 should correspond to a set with only DCT_DCT and there
// is no need to send the tx_type
assert(eset > 0);
#if CONFIG_ATC_NEWTXSETS
const int size_info = av1_size_class[tx_size];
if (!is_inter) {
const int mode_info = av1_md_class[intra_dir];
(void)mode_info;
assert(tx_set_type == EXT_NEW_TX_SET
? av1_mdtx_used_flag[av1_size_class[tx_size]][mode_info]
[get_primary_tx_type(tx_type)]
: av1_ext_tx_used[tx_set_type][get_primary_tx_type(tx_type)]);
}
#else
assert(av1_ext_tx_used[tx_set_type][get_primary_tx_type(tx_type)]);
#endif // CONFIG_ATC_NEWTXSETS
if (is_inter) {
aom_write_symbol(w, av1_ext_tx_ind[tx_set_type][tx_type],
ec_ctx->inter_ext_tx_cdf[eset][square_tx_size],
av1_num_ext_tx_set[tx_set_type]);
} else {
if (mbmi->fsc_mode[xd->tree_type == CHROMA_PART]) {
return;
}
#if !CONFIG_ATC_NEWTXSETS
PREDICTION_MODE intra_dir;
if (mbmi->filter_intra_mode_info.use_filter_intra)
intra_dir =
fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode];
else
intra_dir = mbmi->mode;
#endif // !CONFIG_ATC_NEWTXSETS
aom_write_symbol(
#if CONFIG_ATC_NEWTXSETS
w,
av1_tx_type_to_idx(get_primary_tx_type(tx_type), tx_set_type,
intra_dir, size_info),
#if CONFIG_ATC_REDUCED_TXSET
ec_ctx->intra_ext_tx_cdf[eset + features->reduced_tx_set_used]
[square_tx_size][intra_dir],
features->reduced_tx_set_used
? av1_num_reduced_tx_set
: av1_num_ext_tx_set_intra[tx_set_type]);
#else
ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir],
av1_num_ext_tx_set_intra[tx_set_type]);
#endif // CONFIG_ATC_REDUCED_TXSET
#else
w, av1_ext_tx_ind_intra[tx_set_type][get_primary_tx_type(tx_type)],
ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir],
av1_num_ext_tx_set_intra[tx_set_type]);
#endif // CONFIG_ATC_NEWTXSETS
}
}
}
#if CONFIG_CROSS_CHROMA_TX
void av1_write_cctx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd,
CctxType cctx_type, TX_SIZE tx_size, aom_writer *w) {
MB_MODE_INFO *mbmi = xd->mi[0];
assert(xd->is_chroma_ref);
if (((!cm->seg.enabled && cm->quant_params.base_qindex > 0) ||
(cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) &&
!mbmi->skip_txfm[xd->tree_type == CHROMA_PART] &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
int above_cctx, left_cctx;
#if CONFIG_EXT_RECUR_PARTITIONS
get_above_and_left_cctx_type(cm, xd, &above_cctx, &left_cctx);
#else
get_above_and_left_cctx_type(cm, xd, tx_size, &above_cctx, &left_cctx);
#endif // CONFIG_EXT_RECUR_PARTITIONS
const int cctx_ctx = get_cctx_context(xd, &above_cctx, &left_cctx);
aom_write_symbol(w, cctx_type,
ec_ctx->cctx_type_cdf[square_tx_size][cctx_ctx],
CCTX_TYPES);
}
}
#endif // CONFIG_CROSS_CHROMA_TX
void av1_write_sec_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd,
TX_TYPE tx_type, TX_SIZE tx_size, uint16_t eob,
aom_writer *w) {
MB_MODE_INFO *mbmi = xd->mi[0];
const FeatureFlags *const features = &cm->features;
const int is_inter = is_inter_block(mbmi, xd->tree_type);
if (get_ext_tx_types(tx_size, is_inter, features->reduced_tx_set_used) > 1 &&
((!cm->seg.enabled && cm->quant_params.base_qindex > 0) ||
(cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) &&
!mbmi->skip_txfm[xd->tree_type == CHROMA_PART] &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
if (!is_inter) {
TX_TYPE stx_flag = get_secondary_tx_type(tx_type);
assert(stx_flag <= STX_TYPES - 1);
if (block_signals_sec_tx_type(xd, tx_size, tx_type, eob)) {
aom_write_symbol(w, stx_flag, ec_ctx->stx_cdf[square_tx_size],
STX_TYPES);
}
}
} else if (!is_inter && !xd->lossless[mbmi->segment_id]) {
TX_TYPE stx_flag = get_secondary_tx_type(tx_type);
assert(stx_flag <= STX_TYPES - 1);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
if (block_signals_sec_tx_type(xd, tx_size, tx_type, eob)) {
aom_write_symbol(w, stx_flag, ec_ctx->stx_cdf[square_tx_size], STX_TYPES);
}
}
}
#if !CONFIG_AIMC
static AOM_INLINE void write_intra_y_mode_nonkf(FRAME_CONTEXT *frame_ctx,
BLOCK_SIZE bsize,
PREDICTION_MODE mode,
aom_writer *w) {
aom_write_symbol(w, mode, frame_ctx->y_mode_cdf[size_group_lookup[bsize]],
INTRA_MODES);
}
#endif // !CONFIG_AIMC
static AOM_INLINE void write_mrl_index(FRAME_CONTEXT *ec_ctx, uint8_t mrl_index,
aom_writer *w) {
aom_write_symbol(w, mrl_index, ec_ctx->mrl_index_cdf, MRL_LINE_NUMBER);
}
static AOM_INLINE void write_fsc_mode(uint8_t fsc_mode, aom_writer *w,
aom_cdf_prob *fsc_cdf) {
aom_write_symbol(w, fsc_mode, fsc_cdf, FSC_MODES);
}
#if CONFIG_IMPROVED_CFL
static AOM_INLINE void write_cfl_index(FRAME_CONTEXT *ec_ctx, uint8_t cfl_index,
aom_writer *w) {
aom_write_symbol(w, cfl_index > 0, ec_ctx->cfl_index_cdf, CFL_TYPE_COUNT);
}
#endif
#if !CONFIG_AIMC
static AOM_INLINE void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx,
UV_PREDICTION_MODE uv_mode,
PREDICTION_MODE y_mode,
CFL_ALLOWED_TYPE cfl_allowed,
aom_writer *w) {
aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[cfl_allowed][y_mode],
UV_INTRA_MODES - !cfl_allowed);
}
#endif // !CONFIG_AIMC
static AOM_INLINE void write_cfl_alphas(FRAME_CONTEXT *const ec_ctx,
uint8_t idx, int8_t joint_sign,
aom_writer *w) {
aom_write_symbol(w, joint_sign, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS);
// Magnitudes are only signaled for nonzero codes.
if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
aom_write_symbol(w, CFL_IDX_U(idx), cdf_u, CFL_ALPHABET_SIZE);
}
if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
aom_write_symbol(w, CFL_IDX_V(idx), cdf_v, CFL_ALPHABET_SIZE);
}
}
static AOM_INLINE void write_cdef(AV1_COMMON *cm, MACROBLOCKD *const xd,
aom_writer *w, int skip) {
if (cm->features.coded_lossless || is_global_intrabc_allowed(cm)) return;
#if CONFIG_FIX_CDEF_SYNTAX
if (!cm->cdef_info.cdef_frame_enable) return;
#endif // CONFIG_FIX_CDEF_SYNTAX
// At the start of a superblock, mark that we haven't yet written CDEF
// strengths for any of the CDEF units contained in this superblock.
const int sb_mask = (cm->seq_params.mib_size - 1);
const int mi_row_in_sb = (xd->mi_row & sb_mask);
const int mi_col_in_sb = (xd->mi_col & sb_mask);
if (mi_row_in_sb == 0 && mi_col_in_sb == 0) {
av1_zero(xd->cdef_transmitted);
}
// CDEF unit size is 64x64 irrespective of the superblock size.
const int cdef_size = 1 << (6 - MI_SIZE_LOG2);
// Find index of this CDEF unit in this superblock.
const int index = av1_get_cdef_transmitted_index(xd->mi_row, xd->mi_col);
// Write CDEF strength to the first non-skip coding block in this CDEF unit.
if (!xd->cdef_transmitted[index] && !skip) {
// CDEF strength for this CDEF unit needs to be stored in the MB_MODE_INFO
// of the 1st block in this CDEF unit.
const int first_block_mask = ~(cdef_size - 1);
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int grid_idx =
get_mi_grid_idx(mi_params, xd->mi_row & first_block_mask,
xd->mi_col & first_block_mask);
const MB_MODE_INFO *const mbmi = mi_params->mi_grid_base[grid_idx];
aom_write_literal(w, mbmi->cdef_strength, cm->cdef_info.cdef_bits);
xd->cdef_transmitted[index] = true;
}
}
#if CONFIG_CCSO
static AOM_INLINE void write_ccso(AV1_COMMON *cm, MACROBLOCKD *const xd,
aom_writer *w) {
if (cm->features.coded_lossless) return;
if (is_global_intrabc_allowed(cm)) return;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int blk_size_y =
(1 << (CCSO_BLK_SIZE + xd->plane[1].subsampling_y - MI_SIZE_LOG2)) - 1;
const int blk_size_x =
(1 << (CCSO_BLK_SIZE + xd->plane[1].subsampling_x - MI_SIZE_LOG2)) - 1;
const MB_MODE_INFO *mbmi =
mi_params->mi_grid_base[(mi_row & ~blk_size_y) * mi_params->mi_stride +
(mi_col & ~blk_size_x)];
#if CONFIG_CCSO_EXT
if (!(mi_row & blk_size_y) && !(mi_col & blk_size_x) &&
cm->ccso_info.ccso_enable[0]) {
aom_write_symbol(w, mbmi->ccso_blk_y == 0 ? 0 : 1,
xd->tile_ctx->ccso_cdf[0], 2);
xd->ccso_blk_y = mbmi->ccso_blk_y;
}
#endif
if (!(mi_row & blk_size_y) && !(mi_col & blk_size_x) &&
#if CONFIG_CCSO_EXT
cm->ccso_info.ccso_enable[1]) {
aom_write_symbol(w, mbmi->ccso_blk_u == 0 ? 0 : 1,
xd->tile_ctx->ccso_cdf[1], 2);
#else
cm->ccso_info.ccso_enable[0]) {
aom_write_bit(w, mbmi->ccso_blk_u == 0 ? 0 : 1);
#endif
xd->ccso_blk_u = mbmi->ccso_blk_u;
}
if (!(mi_row & blk_size_y) && !(mi_col & blk_size_x) &&
#if CONFIG_CCSO_EXT
cm->ccso_info.ccso_enable[2]) {
aom_write_symbol(w, mbmi->ccso_blk_v == 0 ? 0 : 1,
xd->tile_ctx->ccso_cdf[2], 2);
#else
cm->ccso_info.ccso_enable[1]) {
aom_write_bit(w, mbmi->ccso_blk_v == 0 ? 0 : 1);
#endif
xd->ccso_blk_v = mbmi->ccso_blk_v;
}
}
#endif
static AOM_INLINE void write_inter_segment_id(
AV1_COMP *cpi, aom_writer *w, const struct segmentation *const seg,
struct segmentation_probs *const segp, int skip, int preskip) {
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
AV1_COMMON *const cm = &cpi->common;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
if (seg->update_map) {
if (preskip) {
if (!seg->segid_preskip) return;
} else {
if (seg->segid_preskip) return;
if (skip) {
write_segment_id(cpi, mbmi, w, seg, segp, 1);
if (seg->temporal_update) mbmi->seg_id_predicted = 0;
return;
}
}
if (seg->temporal_update) {
const int pred_flag = mbmi->seg_id_predicted;
aom_cdf_prob *pred_cdf = av1_get_pred_cdf_seg_id(segp, xd);
aom_write_symbol(w, pred_flag, pred_cdf, 2);
if (!pred_flag) {
write_segment_id(cpi, mbmi, w, seg, segp, 0);
}
if (pred_flag) {
set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map,
mbmi->sb_type[PLANE_TYPE_Y], mi_row, mi_col,
mbmi->segment_id);
}
} else {
write_segment_id(cpi, mbmi, w, seg, segp, 0);
}
}
}
// If delta q is present, writes delta_q index.
// Also writes delta_q loop filter levels, if present.
static AOM_INLINE void write_delta_q_params(AV1_COMP *cpi, int skip,
aom_writer *w) {
AV1_COMMON *const cm = &cpi->common;
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
if (delta_q_info->delta_q_present_flag) {
MACROBLOCK *const x = &cpi->td.mb;
MACROBLOCKD *const xd = &x->e_mbd;
const MB_MODE_INFO *const mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
const int super_block_upper_left =
((xd->mi_row & (cm->seq_params.mib_size - 1)) == 0) &&
((xd->mi_col & (cm->seq_params.mib_size - 1)) == 0);
if ((bsize != cm->seq_params.sb_size || skip == 0) &&
super_block_upper_left) {
assert(mbmi->current_qindex > 0);
const int reduced_delta_qindex =
(mbmi->current_qindex - xd->current_base_qindex) /
delta_q_info->delta_q_res;
write_delta_qindex(xd, reduced_delta_qindex, w);
xd->current_base_qindex = mbmi->current_qindex;
if (delta_q_info->delta_lf_present_flag) {
if (delta_q_info->delta_lf_multi) {
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
int reduced_delta_lflevel =
(mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) /
delta_q_info->delta_lf_res;
write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, w);
xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
}
} else {
int reduced_delta_lflevel =
(mbmi->delta_lf_from_base - xd->delta_lf_from_base) /
delta_q_info->delta_lf_res;
write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, w);
xd->delta_lf_from_base = mbmi->delta_lf_from_base;
}
}
}
}
}
#if CONFIG_AIMC
// write mode set index and mode index in set for y component
static AOM_INLINE void write_intra_luma_mode(MACROBLOCKD *const xd,
aom_writer *w) {
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
MB_MODE_INFO *const mbmi = xd->mi[0];
const int mode_idx = mbmi->y_mode_idx;
assert(mode_idx >= 0 && mode_idx < LUMA_MODE_COUNT);
assert(mbmi->joint_y_mode_delta_angle >= 0 &&
mbmi->joint_y_mode_delta_angle < LUMA_MODE_COUNT);
if (mbmi->joint_y_mode_delta_angle < NON_DIRECTIONAL_MODES_COUNT)
assert(mbmi->joint_y_mode_delta_angle == mbmi->y_mode_idx);
const int context = get_y_mode_idx_ctx(xd);
int mode_set_index = mode_idx < FIRST_MODE_COUNT ? 0 : 1;
mode_set_index += ((mode_idx - FIRST_MODE_COUNT) / SECOND_MODE_COUNT);
aom_write_symbol(w, mode_set_index, ec_ctx->y_mode_set_cdf, INTRA_MODE_SETS);
if (mode_set_index == 0) {
aom_write_symbol(w, mode_idx, ec_ctx->y_mode_idx_cdf_0[context],
FIRST_MODE_COUNT);
} else {
aom_write_symbol(
w,
mode_idx - FIRST_MODE_COUNT - (mode_set_index - 1) * SECOND_MODE_COUNT,
ec_ctx->y_mode_idx_cdf_1[context], SECOND_MODE_COUNT);
}
if (mbmi->joint_y_mode_delta_angle < NON_DIRECTIONAL_MODES_COUNT)
assert(mbmi->joint_y_mode_delta_angle == mbmi->y_mode_idx);
}
// write mode mode index for uv component
static AOM_INLINE void write_intra_uv_mode(MACROBLOCKD *const xd,
CFL_ALLOWED_TYPE cfl_allowed,
aom_writer *w) {
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
MB_MODE_INFO *const mbmi = xd->mi[0];
const int uv_mode_idx = mbmi->uv_mode_idx;
assert(uv_mode_idx >= 0 && uv_mode_idx < UV_INTRA_MODES);
const int context = av1_is_directional_mode(mbmi->mode) ? 1 : 0;
aom_write_symbol(w, uv_mode_idx, ec_ctx->uv_mode_cdf[cfl_allowed][context],
UV_INTRA_MODES - !cfl_allowed);
}
#endif // CONFIG_AIMC
static AOM_INLINE void write_intra_prediction_modes(AV1_COMP *cpi,
int is_keyframe,
aom_writer *w) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->td.mb;
MACROBLOCKD *const xd = &x->e_mbd;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const MB_MODE_INFO *const mbmi = xd->mi[0];
const PREDICTION_MODE mode = mbmi->mode;
const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
#if !CONFIG_AIMC
const int use_angle_delta = av1_use_angle_delta(bsize);
#endif // !CONFIG_AIMC
// Y mode.
if (xd->tree_type != CHROMA_PART) {
#if CONFIG_AIMC
write_intra_luma_mode(xd, w);
if (allow_fsc_intra(cm, xd, bsize, mbmi) && xd->tree_type != CHROMA_PART) {
aom_cdf_prob *fsc_cdf = get_fsc_mode_cdf(xd, bsize, is_keyframe);
write_fsc_mode(mbmi->fsc_mode[xd->tree_type == CHROMA_PART], w, fsc_cdf);
}
#else
if (is_keyframe) {
write_intra_y_mode_kf(ec_ctx, mbmi, xd->neighbors[0], xd->neighbors[1],
mode, w);
} else {
write_intra_y_mode_nonkf(ec_ctx, bsize, mode, w);
}
if (allow_fsc_intra(cm, xd, bsize, mbmi) && xd->tree_type != CHROMA_PART) {
aom_cdf_prob *fsc_cdf = get_fsc_mode_cdf(xd, bsize, is_keyframe);
write_fsc_mode(mbmi->fsc_mode[xd->tree_type == CHROMA_PART], w, fsc_cdf);
}
// Y angle delta.
if (use_angle_delta && av1_is_directional_mode(mode)) {
write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y],
ec_ctx->angle_delta_cdf[PLANE_TYPE_Y][mode - V_PRED]);
}
#endif // CONFIG_AIMC
// Encoding reference line index
if (cm->seq_params.enable_mrls && av1_is_directional_mode(mode)) {
write_mrl_index(ec_ctx, mbmi->mrl_index, w);
}
}
// UV mode and UV angle delta.
if (!cm->seq_params.monochrome && xd->is_chroma_ref &&
xd->tree_type != LUMA_PART) {
const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
#if CONFIG_AIMC
write_intra_uv_mode(xd, is_cfl_allowed(xd), w);
#else
write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w);
if (use_angle_delta && av1_is_directional_mode(get_uv_mode(uv_mode))) {
if (cm->seq_params.enable_sdp) {
write_angle_delta(
w, mbmi->angle_delta[PLANE_TYPE_UV],
ec_ctx->angle_delta_cdf[PLANE_TYPE_UV][uv_mode - V_PRED]);
} else {
write_angle_delta(
w, mbmi->angle_delta[PLANE_TYPE_UV],
ec_ctx->angle_delta_cdf[PLANE_TYPE_Y][uv_mode - V_PRED]);
}
}
#endif // CONFIG_AIMC
if (uv_mode == UV_CFL_PRED) {
#if CONFIG_IMPROVED_CFL
write_cfl_index(ec_ctx, mbmi->cfl_idx, w);
if (mbmi->cfl_idx == 0)
#endif
write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w);
}
}
// Palette.
if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
write_palette_mode_info(cm, xd, mbmi, w);
}
// Filter intra.
write_filter_intra_mode_info(cm, xd, mbmi, w);
}
static INLINE int16_t mode_context_analyzer(
const int16_t mode_context, const MV_REFERENCE_FRAME *const rf) {
if (!is_inter_ref_frame(rf[1])) return mode_context;
#if CONFIG_C076_INTER_MOD_CTX
return mode_context & NEWMV_CTX_MASK;
#else
const int16_t newmv_ctx = mode_context & NEWMV_CTX_MASK;
const int16_t refmv_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
const int16_t comp_ctx = compound_mode_ctx_map[refmv_ctx >> 1][AOMMIN(
newmv_ctx, COMP_NEWMV_CTXS - 1)];
return comp_ctx;
#endif // CONFIG_C076_INTER_MOD_CTX
}
static INLINE int_mv get_ref_mv_from_stack(
int ref_idx, const MV_REFERENCE_FRAME *ref_frame, int ref_mv_idx,
const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame) {
const int8_t ref_frame_type = av1_ref_frame_type(ref_frame);
const CANDIDATE_MV *curr_ref_mv_stack = mbmi_ext_frame->ref_mv_stack;
if (is_inter_ref_frame(ref_frame[1])) {
assert(ref_idx == 0 || ref_idx == 1);
return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv
: curr_ref_mv_stack[ref_mv_idx].this_mv;
}
assert(ref_idx == 0);
#if CONFIG_TIP
if (ref_mv_idx < mbmi_ext_frame->ref_mv_count) {
return curr_ref_mv_stack[ref_mv_idx].this_mv;
} else if (is_tip_ref_frame(ref_frame_type)) {
int_mv zero_mv;
zero_mv.as_int = 0;
return zero_mv;
} else {
return mbmi_ext_frame->global_mvs[ref_frame_type];
}
#else
return ref_mv_idx < mbmi_ext_frame->ref_mv_count
? curr_ref_mv_stack[ref_mv_idx].this_mv
: mbmi_ext_frame->global_mvs[ref_frame_type];
#endif // CONFIG_TIP
}
static INLINE int_mv get_ref_mv(const MACROBLOCK *x, int ref_idx) {
const MACROBLOCKD *xd = &x->e_mbd;
const MB_MODE_INFO *mbmi = xd->mi[0];
const int ref_mv_idx = mbmi->ref_mv_idx;
assert(IMPLIES(have_nearmv_newmv_in_inter_mode(mbmi->mode),
has_second_ref(mbmi)));
return get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, ref_mv_idx,
x->mbmi_ext_frame);
}
#if CONFIG_FLEX_MVRES
static void write_pb_mv_precision(const AV1_COMMON *const cm,
MACROBLOCKD *const xd, aom_writer *w) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
assert(mbmi->pb_mv_precision <= mbmi->max_mv_precision);
assert(mbmi->max_mv_precision == xd->sbi->sb_mv_precision);
assert(av1_get_mbmi_max_mv_precision(cm, xd->sbi, mbmi) ==
mbmi->max_mv_precision);
#if !CONFIG_C071_SUBBLK_WARPMV
assert(check_mv_precision(cm, mbmi));
#endif // !CONFIG_C071_SUBBLK_WARPMV
const int down_ctx = av1_get_pb_mv_precision_down_context(cm, xd);
assert(mbmi->most_probable_pb_mv_precision <= mbmi->max_mv_precision);
assert(mbmi->most_probable_pb_mv_precision ==
cm->features.most_probable_fr_mv_precision);
// One binary symbol is used to signal if the precision is same as the most
// probable precision.
// mpp_flag == 1 indicates that the precision is same as the most probable
// precision in current implementaion, the most probable precision is same as
// the maximum precision value of the block.
const int mpp_flag_context = av1_get_mpp_flag_context(cm, xd);
const int mpp_flag =
(mbmi->pb_mv_precision == mbmi->most_probable_pb_mv_precision);
aom_write_symbol(w, mpp_flag,
xd->tile_ctx->pb_mv_mpp_flag_cdf[mpp_flag_context], 2);
if (!mpp_flag) {
const PRECISION_SET *precision_def =
&av1_mv_precision_sets[mbmi->mb_precision_set];
// instead of directly signaling the precision value, we signal index ( i.e.
// down) of the precision
int down = av1_get_pb_mv_precision_index(mbmi);
int nsymbs = precision_def->num_precisions - 1;
assert(down >= 0 && down <= nsymbs);
aom_write_symbol(
w, down,
xd->tile_ctx->pb_mv_precision_cdf[down_ctx][mbmi->max_mv_precision -
MV_PRECISION_HALF_PEL],
nsymbs);
}
}
#endif
static AOM_INLINE void pack_inter_mode_mvs(AV1_COMP *cpi, aom_writer *w) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->td.mb;
MACROBLOCKD *const xd = &x->e_mbd;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const struct segmentation *const seg = &cm->seg;
struct segmentation_probs *const segp = &ec_ctx->seg;
const MB_MODE_INFO *const mbmi = xd->mi[0];
const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame = x->mbmi_ext_frame;
const PREDICTION_MODE mode = mbmi->mode;
const int segment_id = mbmi->segment_id;
const BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y];
#if CONFIG_FLEX_MVRES
const MvSubpelPrecision pb_mv_precision = mbmi->pb_mv_precision;
#else
const int allow_hp = cm->features.allow_high_precision_mv;
#endif
#if CONFIG_IBC_SR_EXT
const int is_intrabc = is_intrabc_block(mbmi, xd->tree_type);
const int is_inter = is_inter_block(mbmi, xd->tree_type) && !is_intrabc;
#else
const int is_inter = is_inter_block(mbmi, xd->tree_type);
#endif // CONFIG_IBC_SR_EXT
const int is_compound = has_second_ref(mbmi);
int ref;
write_inter_segment_id(cpi, w, seg, segp, 0, 1);
write_skip_mode(cm, xd, segment_id, mbmi, w);
#if CONFIG_SKIP_MODE_ENHANCEMENT
const int skip = write_skip(cm, xd, segment_id, mbmi, w);
#else
assert(
IMPLIES(mbmi->skip_mode, mbmi->skip_txfm[xd->tree_type == CHROMA_PART]));
const int skip =
mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mbmi, w);
#endif // !CONFIG_SKIP_MODE_ENHANCEMENT
write_inter_segment_id(cpi, w, seg, segp, skip, 0);
write_cdef(cm, xd, w, skip);
#if CONFIG_CCSO
if (cm->seq_params.enable_ccso) write_ccso(cm, xd, w);
#endif
write_delta_q_params(cpi, skip, w);
#if CONFIG_WARPMV
// Just for debugging purpose
if (mbmi->mode == WARPMV) {
assert(mbmi->skip_mode == 0);
assert(mbmi->motion_mode == WARP_DELTA ||
mbmi->motion_mode == WARPED_CAUSAL);
assert(mbmi->ref_mv_idx == 0);
assert(!is_tip_ref_frame(mbmi->ref_frame[0]));
assert(is_inter);
assert(!have_drl_index(mode));
#if CONFIG_FLEX_MVRES
assert(mbmi->pb_mv_precision == mbmi->max_mv_precision);
#endif
#if CONFIG_BAWP
assert(mbmi->bawp_flag == 0);
#endif
}
#endif // CONFIG_WARPMV
if (!mbmi->skip_mode)
write_is_inter(cm, xd, mbmi->segment_id, w, is_inter
#if CONFIG_CONTEXT_DERIVATION
,
skip
#endif // CONFIG_CONTEXT_DERIVATION
);
#if CONFIG_SKIP_MODE_ENHANCEMENT
if (mbmi->skip_mode) {
av1_collect_neighbors_ref_counts(xd);
write_drl_idx(cm->features.max_drl_bits, mbmi_ext_frame->mode_context,
ec_ctx, mbmi, mbmi_ext_frame, w);
return;
}
#else
if (mbmi->skip_mode) return;
#endif // CONFIG_SKIP_MODE_ENHANCEMENT
#if CONFIG_IBC_SR_EXT
if (!is_inter && av1_allow_intrabc(cm) && xd->tree_type != CHROMA_PART) {
write_intrabc_info(xd, mbmi_ext_frame, w);
if (is_intrabc_block(mbmi, xd->tree_type)) return;
}
#endif // CONFIG_IBC_SR_EXT
if (!is_inter) {
write_intra_prediction_modes(cpi, 0, w);
} else {
int16_t mode_ctx;
av1_collect_neighbors_ref_counts(xd);
#if CONFIG_TIP
if (cm->features.tip_frame_mode &&
#if CONFIG_EXT_RECUR_PARTITIONS
is_tip_allowed_bsize(mbmi)) {
#else // CONFIG_EXT_RECUR_PARTITIONS
is_tip_allowed_bsize(bsize)) {
#endif // CONFIG_EXT_RECUR_PARTITIONS
const int tip_ctx = get_tip_ctx(xd);
aom_write_symbol(w, is_tip_ref_frame(mbmi->ref_frame[0]),
ec_ctx->tip_cdf[tip_ctx], 2);
}
if (!is_tip_ref_frame(mbmi->ref_frame[0])) write_ref_frames(cm, xd, w);
#else
write_ref_frames(cm, xd, w);
#endif // CONFIG_TIP
mode_ctx =
mode_context_analyzer(mbmi_ext_frame->mode_context, mbmi->ref_frame);
#if CONFIG_JOINT_MVD
const int jmvd_base_ref_list = get_joint_mvd_base_ref_list(cm, mbmi);
#endif // CONFIG_JOINT_MVD
// If segment skip is not enabled code the mode.
if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
if (is_inter_compound_mode(mode))
write_inter_compound_mode(xd, w, mode,
#if CONFIG_OPTFLOW_REFINEMENT
cm, mbmi,
#endif // CONFIG_OPTFLOW_REFINEMENT
mode_ctx);
else if (is_inter_singleref_mode(mode))
write_inter_mode(w, mode, ec_ctx, mode_ctx
#if CONFIG_WARPMV
,
cm, xd, mbmi, bsize
#endif // CONFIG_WARPMV
);
#if CONFIG_WARPMV
#if CONFIG_BAWP
if (cm->features.enable_bawp &&
av1_allow_bawp(mbmi, xd->mi_row, xd->mi_col)) {
aom_write_symbol(w, mbmi->bawp_flag == 1, xd->tile_ctx->bawp_cdf, 2);
}
#endif
write_motion_mode(cm, xd, mbmi, mbmi_ext_frame, w);
int is_warpmv_warp_causal =
(mbmi->motion_mode == WARPED_CAUSAL && mbmi->mode == WARPMV);
if (mbmi->motion_mode == WARP_DELTA || is_warpmv_warp_causal)
write_warp_ref_idx(xd->tile_ctx, mbmi, w);
#endif // CONFIG_WARPMV
#if CONFIG_IMPROVED_JMVD && CONFIG_JOINT_MVD
write_jmvd_scale_mode(xd, w, mbmi);
#endif // CONFIG_IMPROVED_JMVD && CONFIG_JOINT_MVD
#if IMPROVED_AMVD
int max_drl_bits = cm->features.max_drl_bits;
if (mbmi->mode == AMVDNEWMV) max_drl_bits = AOMMIN(max_drl_bits, 1);
#endif // IMPROVED_AMVD
if (have_drl_index(mode))
write_drl_idx(
#if IMPROVED_AMVD
max_drl_bits,
#else
cm->features.max_drl_bits,
#endif // IMPROVED_AMVD
mbmi_ext_frame->mode_context, ec_ctx, mbmi, mbmi_ext_frame, w);
else
assert(mbmi->ref_mv_idx == 0);
#if CONFIG_FLEX_MVRES
if (is_pb_mv_precision_active(cm, mbmi, bsize)) {
write_pb_mv_precision(cm, xd, w);
}
#endif // CONFIG_FLEX_MVRES
}
if (have_newmv_in_each_reference(mode)) {
for (ref = 0; ref < 1 + is_compound; ++ref) {
nmv_context *nmvc = &ec_ctx->nmvc;
const int_mv ref_mv = get_ref_mv(x, ref);
av1_encode_mv(cpi, w,
#if CONFIG_FLEX_MVRES
mbmi->mv[ref].as_mv, ref_mv.as_mv,
#else
&mbmi->mv[ref].as_mv, &ref_mv.as_mv,
#endif
nmvc,
#if CONFIG_FLEX_MVRES
pb_mv_precision);
#else
allow_hp);
#endif
}
} else if (mode == NEAR_NEWMV
#if CONFIG_OPTFLOW_REFINEMENT
|| mode == NEAR_NEWMV_OPTFLOW
#endif // CONFIG_OPTFLOW_REFINEMENT
#if CONFIG_JOINT_MVD
|| (is_joint_mvd_coding_mode(mode) && jmvd_base_ref_list == 1)
#endif // CONFIG_JOINT_MVD
) {
nmv_context *nmvc = &ec_ctx->nmvc;
const int_mv ref_mv = get_ref_mv(x, 1);
av1_encode_mv(cpi, w,
#if CONFIG_FLEX_MVRES
mbmi->mv[1].as_mv, ref_mv.as_mv,
#else
&mbmi->mv[1].as_mv, &ref_mv.as_mv,
#endif
nmvc,
#if CONFIG_FLEX_MVRES
pb_mv_precision);
#else
allow_hp);
#endif
} else if (mode == NEW_NEARMV
#if CONFIG_OPTFLOW_REFINEMENT
|| mode == NEW_NEARMV_OPTFLOW
#endif // CONFIG_OPTFLOW_REFINEMENT
#if CONFIG_JOINT_MVD
|| (is_joint_mvd_coding_mode(mode) && jmvd_base_ref_list == 0)
#endif // CONFIG_JOINT_MVD
) {
nmv_context *nmvc = &ec_ctx->nmvc;
const int_mv ref_mv = get_ref_mv(x, 0);
av1_encode_mv(cpi, w,
#if CONFIG_FLEX_MVRES
mbmi->mv[0].as_mv, ref_mv.as_mv,
#else
&mbmi->mv[0].as_mv, &ref_mv.as_mv,
#endif
nmvc,
#if CONFIG_FLEX_MVRES
pb_mv_precision);
#else
allow_hp);
#endif
}
#if CONFIG_BAWP && !CONFIG_WARPMV
if (cm->features.enable_bawp &&
av1_allow_bawp(mbmi, xd->mi_row, xd->mi_col)) {
aom_write_symbol(w, mbmi->bawp_flag == 1, xd->tile_ctx->bawp_cdf, 2);
}
#endif
#if CONFIG_EXTENDED_WARP_PREDICTION
#if !CONFIG_WARPMV
write_motion_mode(cm, xd, mbmi, mbmi_ext_frame, w);
#else
if (mbmi->motion_mode == WARP_DELTA) {
write_warp_delta(cm, xd, mbmi, mbmi_ext_frame, w);
}
#endif // !CONFIG_WARPMV
#else
if (cpi->common.current_frame.reference_mode != COMPOUND_REFERENCE &&
cpi->common.seq_params.enable_interintra_compound &&
is_interintra_allowed(mbmi)) {
const int interintra = mbmi->ref_frame[1] == INTRA_FRAME;
const int bsize_group = size_group_lookup[bsize];
aom_write_symbol(w, interintra, ec_ctx->interintra_cdf[bsize_group], 2);
if (interintra) {
aom_write_symbol(w, mbmi->interintra_mode,
ec_ctx->interintra_mode_cdf[bsize_group],
INTERINTRA_MODES);
if (av1_is_wedge_used(bsize)) {
aom_write_symbol(w, mbmi->use_wedge_interintra,
ec_ctx->wedge_interintra_cdf[bsize], 2);
if (mbmi->use_wedge_interintra) {
#if CONFIG_WEDGE_MOD_EXT
write_wedge_mode(w, ec_ctx, bsize, mbmi->interintra_wedge_index);
#else
aom_write_symbol(w, mbmi->interintra_wedge_index,
ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
#endif // CONFIG_WEDGE_MOD_EXT
}
}
}
}
if (mbmi->ref_frame[1] != INTRA_FRAME) write_motion_mode(cm, xd, mbmi, w);
#endif // CONFIG_EXTENDED_WARP_PREDICTION
// First write idx to indicate current compound inter prediction mode
// group Group A (0): dist_wtd_comp, compound_average Group B (1):
// interintra, compound_diffwtd, wedge
if (has_second_ref(mbmi)
#if CONFIG_OPTFLOW_REFINEMENT
&& mbmi->mode < NEAR_NEARMV_OPTFLOW
#endif // CONFIG_OPTFLOW_REFINEMENT
#if IMPROVED_AMVD && CONFIG_JOINT_MVD
&& !is_joint_amvd_coding_mode(mbmi->mode)
#endif // IMPROVED_AMVD && CONFIG_JOINT_MVD
) {
const int masked_compound_used = is_any_masked_compound_used(bsize) &&
cm->seq_params.enable_masked_compound;
if (masked_compound_used) {
const int ctx_comp_group_idx = get_comp_group_idx_context(cm, xd);
aom_write_symbol(w, mbmi->comp_group_idx,
ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2);
} else {
assert(mbmi->comp_group_idx == 0);
}
if (mbmi->comp_group_idx == 0) {
assert(mbmi->interinter_comp.type == COMPOUND_AVERAGE);
} else {
assert(cpi->common.current_frame.reference_mode != SINGLE_REFERENCE &&
is_inter_compound_mode(mbmi->mode) &&
mbmi->motion_mode == SIMPLE_TRANSLATION);
assert(masked_compound_used);
// compound_diffwtd, wedge
assert(mbmi->interinter_comp.type == COMPOUND_WEDGE ||
mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
if (is_interinter_compound_used(COMPOUND_WEDGE, bsize))
aom_write_symbol(w, mbmi->interinter_comp.type - COMPOUND_WEDGE,
ec_ctx->compound_type_cdf[bsize],
MASKED_COMPOUND_TYPES);
if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize));
#if CONFIG_WEDGE_MOD_EXT
write_wedge_mode(w, ec_ctx, bsize, mbmi->interinter_comp.wedge_index);
#else
aom_write_symbol(w, mbmi->interinter_comp.wedge_index,
ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
#endif // CONFIG_WEDGE_MOD_EXT
aom_write_bit(w, mbmi->interinter_comp.wedge_sign);
} else {
assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
aom_write_literal(w, mbmi->interinter_comp.mask_type,
MAX_DIFFWTD_MASK_BITS);
}
}
}
write_mb_interp_filter(cm, xd, w);
}
}
#if CONFIG_BVP_IMPROVEMENT
static void write_intrabc_drl_idx(int max_ref_bv_num, FRAME_CONTEXT *ec_ctx,
const MB_MODE_INFO *mbmi,
const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame,
aom_writer *w) {
assert(!mbmi->skip_mode);
assert(mbmi->intrabc_drl_idx < mbmi_ext_frame->ref_mv_count);
assert(mbmi->intrabc_drl_idx < max_ref_bv_num);
(void)mbmi_ext_frame;
int bit_cnt = 0;
for (int idx = 0; idx < max_ref_bv_num - 1; ++idx) {
aom_write_symbol(w, mbmi->intrabc_drl_idx != idx,
ec_ctx->intrabc_drl_idx_cdf[bit_cnt], 2);
if (mbmi->intrabc_drl_idx == idx) break;
++bit_cnt;
}
}
#endif // CONFIG_BVP_IMPROVEMENT
static AOM_INLINE void write_intrabc_info(
MACROBLOCKD *xd, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame,
aom_writer *w) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
int use_intrabc = is_intrabc_block(mbmi, xd->tree_type);
if (xd->tree_type == CHROMA_PART) assert(use_intrabc == 0);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
#if CONFIG_NEW_CONTEXT_MODELING
const int intrabc_ctx = get_intrabc_ctx(xd);
aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf[intrabc_ctx], 2);
#else
aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2);
#endif // CONFIG_NEW_CONTEXT_MODELING
if (use_intrabc) {
assert(mbmi->mode == DC_PRED);
assert(mbmi->motion_mode == SIMPLE_TRANSLATION);
#if CONFIG_FLEX_MVRES
assert(mbmi->pb_mv_precision == MV_PRECISION_ONE_PEL);
#endif
int_mv dv_ref = mbmi_ext_frame->ref_mv_stack[0].this_mv;
#if CONFIG_BVP_IMPROVEMENT
aom_write_symbol(w, mbmi->intrabc_mode, ec_ctx->intrabc_mode_cdf, 2);
write_intrabc_drl_idx(MAX_REF_BV_STACK_SIZE, ec_ctx, mbmi, mbmi_ext_frame,
w);
if (!mbmi->intrabc_mode)
av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc);
#else
av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc);
#endif // CONFIG_BVP_IMPROVEMENT
}
}
static AOM_INLINE void write_mb_modes_kf(
AV1_COMP *cpi, MACROBLOCKD *xd,
const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) {
AV1_COMMON *const cm = &cpi->common;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const struct segmentation *const seg = &cm->seg;
struct segmentation_probs *const segp = &ec_ctx->seg;
const MB_MODE_INFO *const mbmi = xd->mi[0];
if (seg->segid_preskip && seg->update_map)
write_segment_id(cpi, mbmi, w, seg, segp, 0);
const int skip = write_skip(cm, xd, mbmi->segment_id, mbmi, w);
if (!seg->segid_preskip && seg->update_map)
write_segment_id(cpi, mbmi, w, seg, segp, skip);
if (xd->tree_type != CHROMA_PART) write_cdef(cm, xd, w, skip);
#if CONFIG_CCSO
if (cm->seq_params.enable_ccso
#if CONFIG_CCSO_EXT
&& xd->tree_type != CHROMA_PART
#else
&& xd->tree_type != LUMA_PART
#endif
)
write_ccso(cm, xd, w);
#endif
write_delta_q_params(cpi, skip, w);
if (av1_allow_intrabc(cm) && xd->tree_type != CHROMA_PART) {
write_intrabc_info(xd, mbmi_ext_frame, w);
if (is_intrabc_block(mbmi, xd->tree_type)) return;
}
write_intra_prediction_modes(cpi, 1, w);
}
#if CONFIG_RD_DEBUG
static AOM_INLINE void dump_mode_info(MB_MODE_INFO *mi) {
printf("\nmi->mi_row == %d\n", mi->mi_row);
printf("&& mi->mi_col == %d\n", mi->mi_col);
printf("&& mi->sb_type[0] == %d\n", mi->sb_type[0]);
printf("&& mi->sb_type[1] == %d\n", mi->sb_type[1]);
printf("&& mi->tx_size == %d\n", mi->tx_size);
printf("&& mi->mode == %d\n", mi->mode);
}
static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats,
int plane) {
if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) {
int r, c;
printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n",
plane, rd_stats->txb_coeff_cost[plane], token_stats->cost);
printf("rd txb_coeff_cost_map\n");
for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) {
for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) {
printf("%d ", rd_stats->txb_coeff_cost_map[plane][r][c]);
}
printf("\n");
}
printf("pack txb_coeff_cost_map\n");
for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) {
for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) {
printf("%d ", token_stats->txb_coeff_cost_map[r][c]);
}
printf("\n");
}
return 1;
}
return 0;
}
#endif
#if ENC_MISMATCH_DEBUG
static AOM_INLINE void enc_dump_logs(
const AV1_COMMON *const cm,
const MBMIExtFrameBufferInfo *const mbmi_ext_info, int mi_row, int mi_col) {
const MB_MODE_INFO *const mbmi = *(
cm->mi_params.mi_grid_base + (mi_row * cm->mi_params.mi_stride + mi_col));
const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame =
mbmi_ext_info->frame_base + get_mi_ext_idx(mi_row, mi_col,
cm->mi_params.mi_alloc_bsize,
mbmi_ext_info->stride);
if (is_inter_block(mbmi, SHARED_PART)) {
#define FRAME_TO_CHECK 11
if (cm->current_frame.frame_number == FRAME_TO_CHECK &&
cm->show_frame == 1) {
const BLOCK_SIZE bsize = mbmi->sb_type;
int_mv mv[2] = { 0 };
const int is_comp_ref = has_second_ref(mbmi);
for (int ref = 0; ref < 1 + is_comp_ref; ++ref)
mv[ref].as_mv = mbmi->mv[ref].as_mv;
if (!is_comp_ref) {
mv[1].as_int = 0;
}
const int16_t mode_ctx =
is_comp_ref ? 0
: mode_context_analyzer(mbmi_ext_frame->mode_context,
mbmi->ref_frame);
const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
int16_t zeromv_ctx = -1;
int16_t refmv_ctx = -1;
if (mbmi->mode != NEWMV) {
zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
if (mbmi->mode != GLOBALMV)
refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
}
printf(
"=== ENCODER ===: "
"Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, "
"show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, "
"ref[1]=%d, motion_mode=%d, mode_ctx=%d, "
"newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n",
cm->current_frame.frame_number, mi_row, mi_col, mbmi->skip_mode,
mbmi->mode, bsize, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col,
mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0],
mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx,
zeromv_ctx, refmv_ctx, mbmi->tx_size);
}
}
}
#endif // ENC_MISMATCH_DEBUG
static AOM_INLINE void write_mbmi_b(AV1_COMP *cpi, aom_writer *w) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
MB_MODE_INFO *m = xd->mi[0];
if (frame_is_intra_only(cm)) {
write_mb_modes_kf(cpi, xd, cpi->td.mb.mbmi_ext_frame, w);
} else {
// has_subpel_mv_component needs the ref frame buffers set up to look
// up if they are scaled. has_subpel_mv_component is in turn needed by
// write_switchable_interp_filter, which is called by pack_inter_mode_mvs.
set_ref_ptrs(cm, xd, m->ref_frame[0], m->ref_frame[1]);
#if ENC_MISMATCH_DEBUG
enc_dump_logs(cm, &cpi->mbmi_ext_info, xd->mi_row, xd->mi_col);
#endif // ENC_MISMATCH_DEBUG
pack_inter_mode_mvs(cpi, w);
}
}
static AOM_INLINE void write_inter_txb_coeff(
AV1_COMMON *const cm, MACROBLOCK *const x, MB_MODE_INFO *const mbmi,
aom_writer *w, const TokenExtra **tok, const TokenExtra *const tok_end,
TOKEN_STATS *token_stats, const int row, const int col, int *block,
const int plane) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
const BLOCK_SIZE plane_bsize =
get_mb_plane_block_size(xd, mbmi, plane, ss_x, ss_y);
#if !CONFIG_EXT_RECUR_PARTITIONS
assert(plane_bsize ==
get_plane_block_size(mbmi->sb_type[PLANE_TYPE_Y], ss_x, ss_y));
#endif // !CONFIG_EXT_RECUR_PARTITIONS
assert(plane_bsize < BLOCK_SIZES_ALL);
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
const int step =
tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
const int bkw = tx_size_wide_unit[max_tx_size];
const int bkh = tx_size_high_unit[max_tx_size];
const BLOCK_SIZE max_unit_bsize =
get_plane_block_size(BLOCK_64X64, ss_x, ss_y);
const int num_4x4_w = mi_size_wide[plane_bsize];
const int num_4x4_h = mi_size_high[plane_bsize];
const int mu_blocks_wide = mi_size_wide[max_unit_bsize];
const int mu_blocks_high = mi_size_high[max_unit_bsize];
const int unit_height = AOMMIN(mu_blocks_high + (row >> ss_y), num_4x4_h);
const int unit_width = AOMMIN(mu_blocks_wide + (col >> ss_x), num_4x4_w);
for (int blk_row = row >> ss_y; blk_row < unit_height; blk_row += bkh) {
for (int blk_col = col >> ss_x; blk_col < unit_width; blk_col += bkw) {
#if CONFIG_CROSS_CHROMA_TX
if (plane == AOM_PLANE_V && is_cctx_allowed(cm, xd)) {
pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, AOM_PLANE_U,
plane_bsize, cm->seq_params.bit_depth,
block[AOM_PLANE_U], blk_row, blk_col, max_tx_size,
token_stats);
block[AOM_PLANE_U] += step;
}
pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, plane, plane_bsize,
cm->seq_params.bit_depth, block[plane], blk_row, blk_col,
max_tx_size, token_stats);
block[plane] += step;
#else
pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, plane, plane_bsize,
cm->seq_params.bit_depth, *block, blk_row, blk_col,
max_tx_size, token_stats);
*block += step;
#endif // CONFIG_CROSS_CHROMA_TX
}
}
}
static AOM_INLINE void write_tokens_b(AV1_COMP *cpi, aom_writer *w,
const TokenExtra **tok,
const TokenExtra *const tok_end) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->td.mb;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
#if CONFIG_EXT_RECUR_PARTITIONS
const BLOCK_SIZE bsize = get_bsize_base(xd, mbmi, AOM_PLANE_Y);
#else
const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
#endif // CONFIG_EXT_RECUR_PARTITIONS
assert(!mbmi->skip_txfm[xd->tree_type == CHROMA_PART]);
const int is_inter = is_inter_block(mbmi, xd->tree_type);
if (!is_inter) {
av1_write_intra_coeffs_mb(cm, x, w, bsize);
} else {
int block[MAX_MB_PLANE] = { 0 };
assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x,
xd->plane[0].subsampling_y));
const int num_4x4_w = mi_size_wide[bsize];
const int num_4x4_h = mi_size_high[bsize];
TOKEN_STATS token_stats;
init_token_stats(&token_stats);
const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
assert(max_unit_bsize == get_plane_block_size(BLOCK_64X64,
xd->plane[0].subsampling_x,
xd->plane[0].subsampling_y));
int mu_blocks_wide = mi_size_wide[max_unit_bsize];
int mu_blocks_high = mi_size_high[max_unit_bsize];
mu_blocks_wide = AOMMIN(num_4x4_w, mu_blocks_wide);
mu_blocks_high = AOMMIN(num_4x4_h, mu_blocks_high);
for (int row = 0; row < num_4x4_h; row += mu_blocks_high) {
for (int col = 0; col < num_4x4_w; col += mu_blocks_wide) {
const int plane_start = get_partition_plane_start(xd->tree_type);
const int plane_end =
get_partition_plane_end(xd->tree_type, av1_num_planes(cm));
for (int plane = plane_start; plane < plane_end; ++plane) {
if (plane && !xd->is_chroma_ref) break;
#if CONFIG_CROSS_CHROMA_TX
if (plane == AOM_PLANE_U && is_cctx_allowed(cm, xd)) continue;
write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats, row,
col, block, plane);
#else
write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats, row,
col, &block[plane], plane);
#endif // CONFIG_CROSS_CHROMA_TX
}
}
}
#if CONFIG_RD_DEBUG
for (int plane = 0; plane < num_planes; ++plane) {
if (mbmi->sb_type[xd->tree_type == CHROMA_PART] >= BLOCK_8X8 &&
rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) {
dump_mode_info(mbmi);
assert(0);
}
}
#endif // CONFIG_RD_DEBUG
}
}
static AOM_INLINE void write_modes_b(AV1_COMP *cpi, const TileInfo *const tile,
aom_writer *w, const TokenExtra **tok,
const TokenExtra *const tok_end,
int mi_row, int mi_col) {
const AV1_COMMON *cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
const int grid_idx = mi_row * mi_params->mi_stride + mi_col;
xd->mi = mi_params->mi_grid_base + grid_idx;
cpi->td.mb.mbmi_ext_frame =
cpi->mbmi_ext_info.frame_base +
get_mi_ext_idx(mi_row, mi_col, cm->mi_params.mi_alloc_bsize,
cpi->mbmi_ext_info.stride);
xd->tx_type_map = mi_params->tx_type_map + grid_idx;
xd->tx_type_map_stride = mi_params->mi_stride;
#if CONFIG_CROSS_CHROMA_TX
xd->cctx_type_map = mi_params->cctx_type_map + grid_idx;
xd->cctx_type_map_stride = mi_params->mi_stride;
#endif // CONFIG_CROSS_CHROMA_TX
MB_MODE_INFO *mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
if (xd->tree_type == SHARED_PART)
assert(mbmi->sb_type[PLANE_TYPE_Y] == mbmi->sb_type[PLANE_TYPE_UV]);
assert(bsize <= cm->seq_params.sb_size ||
(bsize >= BLOCK_SIZES && bsize < BLOCK_SIZES_ALL));
const int bh = mi_size_high[bsize];
const int bw = mi_size_wide[bsize];
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
mi_params->mi_cols, &mbmi->chroma_ref_info);
#if CONFIG_CROSS_CHROMA_TX
// For skip blocks, reset the corresponding area in cctx_type_map to
// CCTX_NONE, which will be used as contexts for later blocks. No need to use
// av1_get_adjusted_tx_size because uv_txsize is intended to cover the entire
// prediction block area
if (is_cctx_enabled(cm, xd) &&
mbmi->skip_txfm[xd->tree_type == CHROMA_PART] &&
xd->tree_type != LUMA_PART && xd->is_chroma_ref) {
struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U];
const BLOCK_SIZE uv_bsize = get_mb_plane_block_size(
xd, mbmi, AOM_PLANE_U, pd->subsampling_x, pd->subsampling_y);
const TX_SIZE uv_txsize = max_txsize_rect_lookup[uv_bsize];
int row_offset, col_offset;
#if CONFIG_EXT_RECUR_PARTITIONS
get_chroma_mi_offsets(xd, &row_offset, &col_offset);
#else
get_chroma_mi_offsets(xd, uv_txsize, &row_offset, &col_offset);
#endif // CONFIG_EXT_RECUR_PARTITIONS
update_cctx_array(xd, 0, 0, row_offset, col_offset, uv_txsize, CCTX_NONE);
}
#endif // CONFIG_CROSS_CHROMA_TX
xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
write_mbmi_b(cpi, w);
const int plane_start = get_partition_plane_start(xd->tree_type);
const int plane_end =
get_partition_plane_end(xd->tree_type, AOMMIN(2, av1_num_planes(cm)));
for (int plane = plane_start; plane < plane_end; ++plane) {
const uint8_t palette_size_plane =
mbmi->palette_mode_info.palette_size[plane];
assert(!mbmi->skip_mode || !palette_size_plane);
if (palette_size_plane > 0) {
assert(mbmi->use_intrabc[plane] == 0);
assert(av1_allow_palette(cm->features.allow_screen_content_tools,
mbmi->sb_type[plane]));
assert(!plane || xd->is_chroma_ref);
int rows, cols;
av1_get_block_dimensions(mbmi->sb_type[plane], plane, xd, NULL, NULL,
&rows, &cols);
assert(*tok < tok_end);
#if CONFIG_NEW_COLOR_MAP_CODING
pack_map_tokens(w, tok, palette_size_plane, cols, rows);
#else
pack_map_tokens(w, tok, palette_size_plane, rows * cols);
#endif // CONFIG_NEW_COLOR_MAP_CODING
}
}
const int is_inter_tx = is_inter_block(mbmi, xd->tree_type);
const int skip_txfm = mbmi->skip_txfm[xd->tree_type == CHROMA_PART];
const int segment_id = mbmi->segment_id;
if (xd->tree_type != CHROMA_PART) {
if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) &&
!(is_inter_tx && skip_txfm) && !xd->lossless[segment_id]) {
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0);
if (is_inter_tx) { // This implies skip flag is 0.
const int txbh = tx_size_high_unit[max_tx_size];
const int txbw = tx_size_wide_unit[max_tx_size];
const int width = mi_size_wide[bsize];
const int height = mi_size_high[bsize];
for (int idy = 0; idy < height; idy += txbh) {
for (int idx = 0; idx < width; idx += txbw) {
#if CONFIG_NEW_TX_PARTITION
write_tx_partition(xd, mbmi, max_tx_size, idy, idx, w);
#else
write_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, w);
#endif // CONFIG_NEW_TX_PARTITION
}
}
} else {
#if CONFIG_NEW_TX_PARTITION
write_tx_partition(xd, mbmi, max_tx_size, 0, 0, w);
#else
write_selected_tx_size(xd, w);
#endif
set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, 0, xd);
}
} else {
set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height,
skip_txfm && is_inter_tx, xd);
}
}
if (!mbmi->skip_txfm[xd->tree_type == CHROMA_PART]) {
write_tokens_b(cpi, w, tok, tok_end);
}
#if CONFIG_PC_WIENER
else if (!is_global_intrabc_allowed(cm) && !cm->features.coded_lossless) {
// Assert only when LR is enabled.
assert(1 == av1_get_txk_skip(cm, xd->mi_row, xd->mi_col, 0, 0, 0));
}
#endif // CONFIG_PC_WIENER
av1_mark_block_as_coded(xd, bsize, cm->seq_params.sb_size);
}
static AOM_INLINE void write_partition(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd, int mi_row,
int mi_col, PARTITION_TYPE p,
BLOCK_SIZE bsize,
#if CONFIG_EXT_RECUR_PARTITIONS
const PARTITION_TREE *ptree,
const PARTITION_TREE *ptree_luma,
#endif // CONFIG_EXT_RECUR_PARTITIONS
aom_writer *w) {
if (!is_partition_point(bsize)) return;
const int plane = xd->tree_type == CHROMA_PART;
if (bsize == BLOCK_8X8 && plane > 0) return;
#if CONFIG_EXT_RECUR_PARTITIONS
const int ssx = cm->seq_params.subsampling_x;
const int ssy = cm->seq_params.subsampling_y;
if (is_luma_chroma_share_same_partition(xd->tree_type, ptree_luma, bsize)) {
assert(p ==
sdp_chroma_part_from_luma(bsize, ptree_luma->partition, ssx, ssy));
return;
}
PARTITION_TYPE implied_partition;
const bool is_part_implied = is_partition_implied_at_boundary(
&cm->mi_params, xd->tree_type, ssx, ssy, mi_row, mi_col, bsize,
&ptree->chroma_ref_info, &implied_partition);
if (is_part_implied) {
assert(p == implied_partition);
return;
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
#if CONFIG_EXT_RECUR_PARTITIONS
const bool do_split = p != PARTITION_NONE;
aom_write_symbol(w, do_split, ec_ctx->do_split_cdf[plane][ctx], 2);
if (!do_split) {
return;
}
RECT_PART_TYPE rect_type = get_rect_part_type(p);
if (rect_type_implied_by_bsize(bsize, xd->tree_type) == RECT_INVALID) {
aom_write_symbol(w, rect_type, ec_ctx->rect_type_cdf[plane][ctx], 2);
}
const bool disable_ext_part = !cm->seq_params.enable_ext_partitions;
const bool ext_partition_allowed =
!disable_ext_part &&
is_ext_partition_allowed(bsize, rect_type, xd->tree_type);
if (ext_partition_allowed) {
const bool do_ext_partition = (p >= PARTITION_HORZ_3);
aom_write_symbol(w, do_ext_partition,
ec_ctx->do_ext_partition_cdf[plane][rect_type][ctx], 2);
}
#else // CONFIG_EXT_RECUR_PARTITIONS
const int hbs_w = mi_size_wide[bsize] / 2;
const int hbs_h = mi_size_high[bsize] / 2;
const int has_rows = (mi_row + hbs_h) < cm->mi_params.mi_rows;
const int has_cols = (mi_col + hbs_w) < cm->mi_params.mi_cols;
if (!has_rows && !has_cols) {
assert(p == PARTITION_SPLIT);
return;
}
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int parent_block_width = block_size_wide[bsize];
if (xd->tree_type == CHROMA_PART && parent_block_width >= SHARED_PART_SIZE) {
int luma_split_flag = get_luma_split_flag(bsize, mi_params, mi_row, mi_col);
// if luma blocks uses smaller blocks, then chroma will also split
if (luma_split_flag > 3) {
assert(p == PARTITION_SPLIT);
return;
}
}
if (has_rows && has_cols) {
aom_write_symbol(w, p, ec_ctx->partition_cdf[plane][ctx],
partition_cdf_length(bsize));
} else if (!has_rows && has_cols) {
assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
assert(bsize > BLOCK_8X8);
aom_cdf_prob cdf[2];
partition_gather_vert_alike(cdf, ec_ctx->partition_cdf[plane][ctx], bsize);
aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
} else {
assert(has_rows && !has_cols);
assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
assert(bsize > BLOCK_8X8);
aom_cdf_prob cdf[2];
partition_gather_horz_alike(cdf, ec_ctx->partition_cdf[plane][ctx], bsize);
aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
}
static AOM_INLINE void write_modes_sb(
AV1_COMP *const cpi, const TileInfo *const tile, aom_writer *const w,
const TokenExtra **tok, const TokenExtra *const tok_end,
PARTITION_TREE *ptree,
#if CONFIG_EXT_RECUR_PARTITIONS
PARTITION_TREE *ptree_luma,
#endif // CONFIG_EXT_RECUR_PARTITIONS
int mi_row, int mi_col, BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
assert(bsize < BLOCK_SIZES_ALL);
const int hbs_w = mi_size_wide[bsize] / 2;
const int hbs_h = mi_size_high[bsize] / 2;
#if !CONFIG_H_PARTITION
const int qbs_w = mi_size_wide[bsize] / 4;
const int qbs_h = mi_size_high[bsize] / 4;
#endif // !CONFIG_H_PARTITION
assert(ptree);
const PARTITION_TYPE partition = ptree->partition;
const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
const int plane_start = get_partition_plane_start(xd->tree_type);
const int plane_end =
get_partition_plane_end(xd->tree_type, av1_num_planes(cm));
for (int plane = plane_start; plane < plane_end; ++plane) {
int rcol0, rcol1, rrow0, rrow1;
if (cm->rst_info[plane].frame_restoration_type != RESTORE_NONE &&
av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize,
&rcol0, &rcol1, &rrow0, &rrow1)) {
const int rstride = cm->rst_info[plane].horz_units_per_tile;
for (int rrow = rrow0; rrow < rrow1; ++rrow) {
for (int rcol = rcol0; rcol < rcol1; ++rcol) {
const int runit_idx = rcol + rrow * rstride;
const RestorationUnitInfo *rui =
&cm->rst_info[plane].unit_info[runit_idx];
loop_restoration_write_sb_coeffs(cm, xd, rui, w, plane,
cpi->td.counts);
}
}
}
}
#if CONFIG_EXT_RECUR_PARTITIONS
write_partition(cm, xd, mi_row, mi_col, partition, bsize, ptree, ptree_luma,
w);
const int track_ptree_luma =
ptree_luma ? (partition == ptree_luma->partition) : 0;
#else
write_partition(cm, xd, mi_row, mi_col, partition, bsize, w);
#endif // CONFIG_EXT_RECUR_PARTITIONS
switch (partition) {
case PARTITION_NONE:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
break;
case PARTITION_HORZ:
#if CONFIG_EXT_RECUR_PARTITIONS
write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[0],
track_ptree_luma ? ptree_luma->sub_tree[0] : NULL, mi_row,
mi_col, subsize);
if (mi_row + hbs_h < mi_params->mi_rows) {
write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[1],
track_ptree_luma ? ptree_luma->sub_tree[1] : NULL,
mi_row + hbs_h, mi_col, subsize);
}
#else // CONFIG_EXT_RECUR_PARTITIONS
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
if (mi_row + hbs_h < mi_params->mi_rows)
write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs_h, mi_col);
#endif // CONFIG_EXT_RECUR_PARTITIONS
break;
case PARTITION_VERT:
#if CONFIG_EXT_RECUR_PARTITIONS
write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[0],
track_ptree_luma ? ptree_luma->sub_tree[0] : NULL, mi_row,
mi_col, subsize);
if (mi_col + hbs_w < mi_params->mi_cols) {
write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[1],
track_ptree_luma ? ptree_luma->sub_tree[1] : NULL,
mi_row, mi_col + hbs_w, subsize);
}
#else // CONFIG_EXT_RECUR_PARTITIONS
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
if (mi_col + hbs_w < mi_params->mi_cols)
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs_w);
#endif
break;
#if CONFIG_EXT_RECUR_PARTITIONS
#if CONFIG_H_PARTITION
case PARTITION_HORZ_3:
case PARTITION_VERT_3:
for (int i = 0; i < 4; ++i) {
BLOCK_SIZE this_bsize = get_h_partition_subsize(bsize, i, partition);
const int offset_r = get_h_partition_offset_mi_row(bsize, i, partition);
const int offset_c = get_h_partition_offset_mi_col(bsize, i, partition);
assert(this_bsize != BLOCK_INVALID);
assert(offset_r >= 0 && offset_c >= 0);
const int this_mi_row = mi_row + offset_r;
const int this_mi_col = mi_col + offset_c;
if (partition == PARTITION_HORZ_3) {
if (this_mi_row >= cm->mi_params.mi_rows) break;
} else {
if (this_mi_col >= cm->mi_params.mi_cols) break;
}
write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[i],
track_ptree_luma ? ptree_luma->sub_tree[i] : NULL,
this_mi_row, this_mi_col, this_bsize);
}
break;
#else
case PARTITION_HORZ_3:
write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[0],
track_ptree_luma ? ptree_luma->sub_tree[0] : NULL, mi_row,
mi_col, subsize);
if (mi_row + qbs_h >= mi_params->mi_rows) break;
write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[1],
track_ptree_luma ? ptree_luma->sub_tree[1] : NULL,
mi_row + qbs_h, mi_col,
get_partition_subsize(bsize, PARTITION_HORZ));
if (mi_row + 3 * qbs_h >= mi_params->mi_rows) break;
write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[2],
track_ptree_luma ? ptree_luma->sub_tree[2] : NULL,
mi_row + 3 * qbs_h, mi_col, subsize);
break;
case PARTITION_VERT_3:
write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[0],
track_ptree_luma ? ptree_luma->sub_tree[0] : NULL, mi_row,
mi_col, subsize);
if (mi_col + qbs_w >= mi_params->mi_cols) break;
write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[1],
track_ptree_luma ? ptree_luma->sub_tree[1] : NULL, mi_row,
mi_col + qbs_w,
get_partition_subsize(bsize, PARTITION_VERT));
if (mi_col + 3 * qbs_w >= mi_params->mi_cols) break;
write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[2],
track_ptree_luma ? ptree_luma->sub_tree[2] : NULL, mi_row,
mi_col + 3 * qbs_w, subsize);
break;
#endif // CONFIG_H_PARTITION
#else
case PARTITION_SPLIT:
write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[0], mi_row,
mi_col, subsize);
write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[1], mi_row,
mi_col + hbs_w, subsize);
write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[2],
mi_row + hbs_h, mi_col, subsize);
write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[3],
mi_row + hbs_h, mi_col + hbs_w, subsize);
break;
case PARTITION_HORZ_A:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs_w);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs_h, mi_col);
break;
case PARTITION_HORZ_B:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs_h, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs_h, mi_col + hbs_w);
break;
case PARTITION_VERT_A:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs_h, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs_w);
break;
case PARTITION_VERT_B:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs_w);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs_h, mi_col + hbs_w);
break;
case PARTITION_HORZ_4:
for (int i = 0; i < 4; ++i) {
int this_mi_row = mi_row + i * qbs_h;
if (i > 0 && this_mi_row >= mi_params->mi_rows) break;
write_modes_b(cpi, tile, w, tok, tok_end, this_mi_row, mi_col);
}
break;
case PARTITION_VERT_4:
for (int i = 0; i < 4; ++i) {
int this_mi_col = mi_col + i * qbs_w;
if (i > 0 && this_mi_col >= mi_params->mi_cols) break;
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, this_mi_col);
}
break;
#endif // CONFIG_EXT_RECUR_PARTITIONS
default: assert(0); break;
}
// update partition context
update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
}
static AOM_INLINE void write_modes(AV1_COMP *const cpi,
const TileInfo *const tile,
aom_writer *const w, int tile_row,
int tile_col) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
const int mi_row_start = tile->mi_row_start;
const int mi_row_end = tile->mi_row_end;
const int mi_col_start = tile->mi_col_start;
const int mi_col_end = tile->mi_col_end;
const int num_planes = av1_num_planes(cm);
av1_zero_above_context(cm, xd, mi_col_start, mi_col_end, tile->tile_row);
av1_init_above_context(&cm->above_contexts, num_planes, tile->tile_row, xd);
if (cpi->common.delta_q_info.delta_q_present_flag) {
xd->current_base_qindex = cpi->common.quant_params.base_qindex;
if (cpi->common.delta_q_info.delta_lf_present_flag) {
av1_reset_loop_filter_delta(xd, num_planes);
}
}
for (int mi_row = mi_row_start; mi_row < mi_row_end;
mi_row += cm->seq_params.mib_size) {
const int sb_row_in_tile =
(mi_row - tile->mi_row_start) >> cm->seq_params.mib_size_log2;
const TokenExtra *tok =
cpi->token_info.tplist[tile_row][tile_col][sb_row_in_tile].start;
const TokenExtra *tok_end =
tok + cpi->token_info.tplist[tile_row][tile_col][sb_row_in_tile].count;
av1_zero_left_context(xd);
for (int mi_col = mi_col_start; mi_col < mi_col_end;
mi_col += cm->seq_params.mib_size) {
av1_reset_is_mi_coded_map(xd, cm->seq_params.mib_size);
xd->sbi = av1_get_sb_info(cm, mi_row, mi_col);
cpi->td.mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col);
const int total_loop_num =
(frame_is_intra_only(cm) && !cm->seq_params.monochrome &&
cm->seq_params.enable_sdp)
? 2
: 1;
xd->tree_type = (total_loop_num == 1 ? SHARED_PART : LUMA_PART);
write_modes_sb(cpi, tile, w, &tok, tok_end,
xd->sbi->ptree_root[av1_get_sdp_idx(xd->tree_type)],
#if CONFIG_EXT_RECUR_PARTITIONS
NULL,
#endif // CONFIG_EXT_RECUR_PARTITIONS
mi_row, mi_col, cm->seq_params.sb_size);
if (total_loop_num == 2) {
xd->tree_type = CHROMA_PART;
write_modes_sb(cpi, tile, w, &tok, tok_end,
xd->sbi->ptree_root[av1_get_sdp_idx(xd->tree_type)],
#if CONFIG_EXT_RECUR_PARTITIONS
xd->sbi->ptree_root[0],
#endif // CONFIG_EXT_RECUR_PARTITIONS
mi_row, mi_col, cm->seq_params.sb_size);
xd->tree_type = SHARED_PART;
}
}
assert(tok == tok_end);
}
}
// Same function as write_uniform but writing to uncompresses header wb
static AOM_INLINE void wb_write_uniform(struct aom_write_bit_buffer *wb, int n,
int v) {
const int l = get_unsigned_bits(n);
const int m = (1 << l) - n;
if (l == 0) return;
if (v < m) {
aom_wb_write_literal(wb, v, l - 1);
} else {
aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1);
aom_wb_write_literal(wb, (v - m) & 1, 1);
}
}
#if CONFIG_LR_FLEX_SYNTAX
// Converts frame restoration type to a coded index depending on lr tools
// that are enabled for the frame for a given plane.
static int frame_restoration_type_to_index(
const AV1_COMMON *const cm, int plane,
RestorationType frame_restoration_type) {
int ndx = 0;
for (RestorationType r = RESTORE_NONE; r < frame_restoration_type; ++r) {
if (((cm->features.lr_tools_disable_mask[plane] >> r) & 1) == 0) ndx++;
}
return ndx;
}
#endif // CONFIG_LR_FLEX_SYNTAX
static AOM_INLINE void encode_restoration_mode(
AV1_COMMON *cm, struct aom_write_bit_buffer *wb) {
assert(!cm->features.all_lossless);
if (!cm->seq_params.enable_restoration) return;
if (is_global_intrabc_allowed(cm)) return;
const int num_planes = av1_num_planes(cm);
int all_none = 1, chroma_none = 1;
for (int p = 0; p < num_planes; ++p) {
RestorationInfo *rsi = &cm->rst_info[p];
if (rsi->frame_restoration_type != RESTORE_NONE) {
all_none = 0;
chroma_none &= p == 0;
}
#if CONFIG_LR_FLEX_SYNTAX
assert(IMPLIES(cm->features.lr_tools_count[p] < 2,
rsi->frame_restoration_type != RESTORE_SWITCHABLE));
const int ndx =
frame_restoration_type_to_index(cm, p, rsi->frame_restoration_type);
wb_write_uniform(wb, cm->features.lr_frame_tools_count[p], ndx);
uint8_t plane_lr_tools_disable_mask = cm->features.lr_tools_disable_mask[p];
uint8_t sw_lr_tools_disable_mask = rsi->sw_lr_tools_disable_mask;
if (rsi->frame_restoration_type == RESTORE_SWITCHABLE &&
cm->features.lr_tools_count[p] > 2) {
if ((sw_lr_tools_disable_mask | plane_lr_tools_disable_mask) ==
plane_lr_tools_disable_mask) {
aom_wb_write_bit(wb, 0);
} else {
aom_wb_write_bit(wb, 1);
for (int i = 1; i < RESTORE_SWITCHABLE_TYPES; ++i) {
if (!(plane_lr_tools_disable_mask & (1 << i))) {
aom_wb_write_bit(wb, ((sw_lr_tools_disable_mask >> i) & 1));
plane_lr_tools_disable_mask |=
(sw_lr_tools_disable_mask & (1 << i));
}
}
av1_set_lr_tools(plane_lr_tools_disable_mask, p, &cm->features);
}
}
#else
switch (rsi->frame_restoration_type) {
case RESTORE_NONE: aom_wb_write_bit(wb, 0); aom_wb_write_bit(wb, 0);
#if CONFIG_WIENER_NONSEP || CONFIG_PC_WIENER
aom_wb_write_bit(wb, 0);
#endif // CONFIG_WIENER_NONSEP || CONFIG_PC_WIENER
break;
case RESTORE_WIENER:
aom_wb_write_bit(wb, 1);
aom_wb_write_bit(wb, 0);
break;
case RESTORE_SGRPROJ:
aom_wb_write_bit(wb, 1);
aom_wb_write_bit(wb, 1);
break;
#if CONFIG_WIENER_NONSEP
case RESTORE_WIENER_NONSEP:
aom_wb_write_bit(wb, 0);
aom_wb_write_bit(wb, 0);
aom_wb_write_bit(wb, 1);
#if CONFIG_PC_WIENER
aom_wb_write_bit(wb, 0);
#endif // CONFIG_PC_WIENER
break;
#endif // CONFIG_WIENER_NONSEP
#if CONFIG_PC_WIENER
case RESTORE_PC_WIENER:
aom_wb_write_bit(wb, 0);
aom_wb_write_bit(wb, 0);
aom_wb_write_bit(wb, 1);
#if CONFIG_WIENER_NONSEP
aom_wb_write_bit(wb, 1);
#endif // CONFIG_WIENER_NONSEP
break;
#endif // CONFIG_PC_WIENER
case RESTORE_SWITCHABLE:
aom_wb_write_bit(wb, 0);
aom_wb_write_bit(wb, 1);
break;
default: assert(0);
}
#endif // CONFIG_LR_FLEX_SYNTAX
#if CONFIG_WIENER_NONSEP
const int is_wiener_nonsep_possible =
rsi->frame_restoration_type == RESTORE_WIENER_NONSEP ||
rsi->frame_restoration_type == RESTORE_SWITCHABLE;
if (is_wiener_nonsep_possible)
assert(rsi->num_filter_classes == (p == AOM_PLANE_Y
? NUM_WIENERNS_CLASS_INIT_LUMA
: NUM_WIENERNS_CLASS_INIT_CHROMA));
#endif // CONFIG_WIENER_NONSEP
}
if (!all_none) {
assert(cm->seq_params.sb_size == BLOCK_64X64 ||
cm->seq_params.sb_size == BLOCK_128X128);
const int sb_size = cm->seq_params.sb_size == BLOCK_128X128 ? 128 : 64;
RestorationInfo *rsi = &cm->rst_info[0];
assert(rsi->restoration_unit_size >= sb_size);
assert(RESTORATION_UNITSIZE_MAX == 256);
if (sb_size == 64) {
aom_wb_write_bit(wb, rsi->restoration_unit_size > 64);
}
if (rsi->restoration_unit_size > 64) {
aom_wb_write_bit(wb, rsi->restoration_unit_size > 128);
}
}
if (num_planes > 1) {
int s = AOMMIN(cm->seq_params.subsampling_x, cm->seq_params.subsampling_y);
if (s && !chroma_none) {
aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size !=
cm->rst_info[0].restoration_unit_size);
assert(cm->rst_info[1].restoration_unit_size ==
cm->rst_info[0].restoration_unit_size ||
cm->rst_info[1].restoration_unit_size ==
(cm->rst_info[0].restoration_unit_size >> s));
assert(cm->rst_info[2].restoration_unit_size ==
cm->rst_info[1].restoration_unit_size);
} else if (!s) {
assert(cm->rst_info[1].restoration_unit_size ==
cm->rst_info[0].restoration_unit_size);
assert(cm->rst_info[2].restoration_unit_size ==
cm->rst_info[1].restoration_unit_size);
}
}
}
static AOM_INLINE void write_wiener_filter(MACROBLOCKD *xd, int wiener_win,
const WienerInfo *wiener_info,
WienerInfoBank *bank,
aom_writer *wb) {
#if CONFIG_LR_MERGE_COEFFS
const int equal_ref = check_wiener_bank_eq(bank, wiener_info);
const int exact_match = (equal_ref >= 0);
aom_write_symbol(wb, exact_match, xd->tile_ctx->merged_param_cdf, 2);
const int ref = wiener_info->bank_ref;
assert(IMPLIES(exact_match, ref == equal_ref));
assert(ref < AOMMAX(1, bank->bank_size));
int match = 0;
for (int k = 0; k < AOMMAX(0, bank->bank_size - 1); ++k) {
match = (k == ref);
aom_write_literal(wb, match, 1);
if (match) break;
}
assert(IMPLIES(!match, ref == AOMMAX(0, bank->bank_size - 1)));
if (exact_match) {
if (bank->bank_size == 0) av1_add_to_wiener_bank(bank, wiener_info);
return;
}
#else
const int ref = 0;
(void)xd;
#endif // CONFIG_LR_MERGE_COEFFS
const WienerInfo *ref_wiener_info = av1_ref_from_wiener_bank(bank, ref);
if (wiener_win == WIENER_WIN)
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
WIENER_FILT_TAP0_SUBEXP_K,
ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV);
else
assert(wiener_info->vfilter[0] == 0 &&
wiener_info->vfilter[WIENER_WIN - 1] == 0);
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
WIENER_FILT_TAP1_SUBEXP_K,
ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV);
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
WIENER_FILT_TAP2_SUBEXP_K,
ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV);
if (wiener_win == WIENER_WIN)
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
WIENER_FILT_TAP0_SUBEXP_K,
ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV);
else
assert(wiener_info->hfilter[0] == 0 &&
wiener_info->hfilter[WIENER_WIN - 1] == 0);
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
WIENER_FILT_TAP1_SUBEXP_K,
ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV);
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
WIENER_FILT_TAP2_SUBEXP_K,
ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV);
av1_add_to_wiener_bank(bank, wiener_info);
return;
}
static AOM_INLINE void write_sgrproj_filter(MACROBLOCKD *xd,
const SgrprojInfo *sgrproj_info,
SgrprojInfoBank *bank,
aom_writer *wb) {
#if CONFIG_LR_MERGE_COEFFS
const int equal_ref = check_sgrproj_bank_eq(bank, sgrproj_info);
const int exact_match = (equal_ref >= 0);
aom_write_symbol(wb, exact_match, xd->tile_ctx->merged_param_cdf, 2);
const int ref = sgrproj_info->bank_ref;
assert(IMPLIES(exact_match, ref == equal_ref));
assert(ref < AOMMAX(1, bank->bank_size));
int match = 0;
for (int k = 0; k < AOMMAX(0, bank->bank_size - 1); ++k) {
match = (k == ref);
aom_write_literal(wb, match, 1);
if (match) break;
}
assert(IMPLIES(!match, ref == AOMMAX(0, bank->bank_size - 1)));
if (exact_match) {
if (bank->bank_size == 0) av1_add_to_sgrproj_bank(bank, sgrproj_info);
return;
}
#else
const int ref = 0;
(void)xd;
#endif // CONFIG_LR_MERGE_COEFFS
const SgrprojInfo *ref_sgrproj_info = av1_ref_from_sgrproj_bank(bank, ref);
aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS);
const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep];
if (params->r[0] == 0) {
assert(sgrproj_info->xqd[0] == 0);
aom_write_primitive_refsubexpfin(
wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
} else if (params->r[1] == 0) {
aom_write_primitive_refsubexpfin(
wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
} else {
aom_write_primitive_refsubexpfin(
wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
aom_write_primitive_refsubexpfin(
wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
}
av1_add_to_sgrproj_bank(bank, sgrproj_info);
return;
}
#if CONFIG_WIENER_NONSEP
#if CONFIG_LR_MERGE_COEFFS
static int check_and_write_merge_info(
const WienerNonsepInfo *wienerns_info, const WienerNonsepInfoBank *bank,
const WienernsFilterParameters *nsfilter_params, int wiener_class_id,
int *ref_for_class, MACROBLOCKD *xd, aom_writer *wb) {
const int is_equal =
check_wienerns_bank_eq(bank, wienerns_info, nsfilter_params->ncoeffs,
wiener_class_id, ref_for_class);
const int exact_match = (is_equal >= 0);
aom_write_symbol(wb, exact_match, xd->tile_ctx->merged_param_cdf, 2);
if (!exact_match) {
ref_for_class[wiener_class_id] =
wienerns_info->bank_ref_for_class[wiener_class_id];
}
const int ref = ref_for_class[wiener_class_id];
assert(ref < AOMMAX(1, bank->bank_size_for_class[wiener_class_id]));
int match = 0;
for (int k = 0; k < bank->bank_size_for_class[wiener_class_id] - 1; ++k) {
match = (k == ref);
aom_write_literal(wb, match, 1);
if (match) break;
}
assert(
IMPLIES(!match, ref == bank->bank_size_for_class[wiener_class_id] - 1));
return exact_match;
}
#endif // CONFIG_LR_MERGE_COEFFS
static AOM_INLINE void write_wienerns_filter(
MACROBLOCKD *xd, int plane, const WienerNonsepInfo *wienerns_info,
WienerNonsepInfoBank *bank, aom_writer *wb) {
const WienernsFilterParameters *nsfilter_params =
get_wienerns_parameters(xd->current_base_qindex, plane != AOM_PLANE_Y);
int skip_filter_write_for_class[WIENERNS_MAX_CLASSES] = { 0 };
int ref_for_class[WIENERNS_MAX_CLASSES] = { 0 };
#if CONFIG_LR_MERGE_COEFFS
for (int c_id = 0; c_id < wienerns_info->num_classes; ++c_id) {
skip_filter_write_for_class[c_id] = check_and_write_merge_info(
wienerns_info, bank, nsfilter_params, c_id, ref_for_class, xd, wb);
}
#else
(void)xd;
#endif // CONFIG_LR_MERGE_COEFFS
const int num_classes = wienerns_info->num_classes;
assert(num_classes <= WIENERNS_MAX_CLASSES);
const int beg_feat = 0;
const int end_feat = nsfilter_params->ncoeffs;
const int(*wienerns_coeffs)[WIENERNS_COEFCFG_LEN] = nsfilter_params->coeffs;
int reduce_step[WIENERNS_REDUCE_STEPS];
for (int c_id = 0; c_id < num_classes; ++c_id) {
if (skip_filter_write_for_class[c_id]) continue;
const int ref = ref_for_class[c_id];
const WienerNonsepInfo *ref_wienerns_info =
av1_constref_from_wienerns_bank(bank, ref, c_id);
const int16_t *wienerns_info_nsfilter =
const_nsfilter_taps(wienerns_info, c_id);
const int16_t *ref_wienerns_info_nsfilter =
const_nsfilter_taps(ref_wienerns_info, c_id);
memset(reduce_step, 0, sizeof(reduce_step));
if (end_feat - beg_feat > 1 && wienerns_info_nsfilter[end_feat - 1] == 0) {
reduce_step[WIENERNS_REDUCE_STEPS - 1] = 1;
if (end_feat - beg_feat > 2 &&
wienerns_info_nsfilter[end_feat - 2] == 0) {
reduce_step[WIENERNS_REDUCE_STEPS - 2] = 1;
if (end_feat - beg_feat > 3 &&
wienerns_info_nsfilter[end_feat - 3] == 0) {
reduce_step[WIENERNS_REDUCE_STEPS - 3] = 1;
if (end_feat - beg_feat > 4 &&
wienerns_info_nsfilter[end_feat - 4] == 0) {
reduce_step[WIENERNS_REDUCE_STEPS - 4] = 1;
if (end_feat - beg_feat > 5 &&
wienerns_info_nsfilter[end_feat - 5] == 0) {
reduce_step[WIENERNS_REDUCE_STEPS - 5] = 1;
}
}
}
}
}
// Whether the number of taps is odd or even. For luma
// the #taps can be either odd or even. If odd, the last
// tap corresponds to dc offset. For chroma, the #taps is
// assumed to be always even.
// if #taps is odd, the exit points for signaling are:
// #total_taps - 1, #total_taps - 3, #total_taps - 5.
// If #taps is even, the exit points for signaling are:
// #total_taps - 2, #total_taps - 4, #total_taps - 6.
const int rodd = plane ? 0 : (end_feat & 1);
for (int i = beg_feat; i < end_feat; ++i) {
if (rodd && i == end_feat - 5 && i != beg_feat) {
aom_write_symbol(wb, reduce_step[0],
xd->tile_ctx->wienerns_reduce_cdf[0], 2);
if (reduce_step[0]) break;
}
if (!rodd && i == end_feat - 4 && i != beg_feat) {
aom_write_symbol(wb, reduce_step[1],
xd->tile_ctx->wienerns_reduce_cdf[1], 2);
if (reduce_step[1]) break;
}
if (rodd && i == end_feat - 3 && i != beg_feat) {
aom_write_symbol(wb, reduce_step[2],
xd->tile_ctx->wienerns_reduce_cdf[2], 2);
if (reduce_step[2]) break;
}
if (!rodd && i == end_feat - 2 && i != beg_feat) {
aom_write_symbol(wb, reduce_step[3],
xd->tile_ctx->wienerns_reduce_cdf[3], 2);
if (reduce_step[3]) break;
}
if (rodd && i == end_feat - 1 && i != beg_feat) {
aom_write_symbol(wb, reduce_step[4],
xd->tile_ctx->wienerns_reduce_cdf[4], 2);
if (reduce_step[4]) break;
}
#if ENABLE_LR_4PART_CODE
aom_write_4part_wref(
wb,
ref_wienerns_info_nsfilter[i] -
wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID],
wienerns_info_nsfilter[i] -
wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID],
xd->tile_ctx->wienerns_4part_cdf[wienerns_coeffs[i - beg_feat]
[WIENERNS_PAR_ID]],
wienerns_coeffs[i - beg_feat][WIENERNS_BIT_ID]);
#else
aom_write_primitive_refsubexpfin(
wb, (1 << wienerns_coeffs[i - beg_feat][WIENERNS_BIT_ID]),
wienerns_coeffs[i - beg_feat][WIENERNS_PAR_ID],
ref_wienerns_info_nsfilter[i] -
wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID],
wienerns_info_nsfilter[i] -
wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID]);
#endif // ENABLE_LR_4PART_CODE
}
av1_add_to_wienerns_bank(bank, wienerns_info, c_id);
}
return;
}
#endif // CONFIG_WIENER_NONSEP
static AOM_INLINE void loop_restoration_write_sb_coeffs(
const AV1_COMMON *const cm, MACROBLOCKD *xd, const RestorationUnitInfo *rui,
aom_writer *const w, int plane, FRAME_COUNTS *counts) {
const RestorationInfo *rsi = cm->rst_info + plane;
RestorationType frame_rtype = rsi->frame_restoration_type;
assert(frame_rtype != RESTORE_NONE);
(void)counts;
assert(!cm->features.all_lossless);
const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN;
RestorationType unit_rtype = rui->restoration_type;
#if CONFIG_LR_FLEX_SYNTAX
assert(((cm->features.lr_tools_disable_mask[plane] >> rui->restoration_type) &
1) == 0);
#endif // CONFIG_LR_FLEX_SYNTAX
if (frame_rtype == RESTORE_SWITCHABLE) {
#if CONFIG_LR_FLEX_SYNTAX
int found = 0;
for (int re = 0; re <= cm->features.lr_last_switchable_ndx[plane]; re++) {
if (cm->features.lr_tools_disable_mask[plane] & (1 << re)) continue;
found = (re == (int)unit_rtype);
aom_write_symbol(w, found,
xd->tile_ctx->switchable_flex_restore_cdf[re][plane], 2);
if (found) break;
}
assert(IMPLIES(
!found,
(int)unit_rtype == cm->features.lr_last_switchable_ndx_0_type[plane]));
#else
aom_write_symbol(w, unit_rtype, xd->tile_ctx->switchable_restore_cdf,
RESTORE_SWITCHABLE_TYPES);
#if CONFIG_ENTROPY_STATS
++counts->switchable_restore[unit_rtype];
#endif
#endif // CONFIG_LR_FLEX_SYNTAX
switch (unit_rtype) {
case RESTORE_WIENER:
write_wiener_filter(xd, wiener_win, &rui->wiener_info,
&xd->wiener_info[plane], w);
break;
case RESTORE_SGRPROJ:
write_sgrproj_filter(xd, &rui->sgrproj_info, &xd->sgrproj_info[plane],
w);
break;
#if CONFIG_WIENER_NONSEP
case RESTORE_WIENER_NONSEP:
write_wienerns_filter(xd, plane, &rui->wienerns_info,
&xd->wienerns_info[plane], w);
break;
#endif // CONFIG_WIENER_NONSEP
#if CONFIG_PC_WIENER
case RESTORE_PC_WIENER:
// No side-information for now.
break;
#endif // CONFIG_PC_WIENER
default: assert(unit_rtype == RESTORE_NONE); break;
}
} else if (frame_rtype == RESTORE_WIENER) {
aom_write_symbol(w, unit_rtype != RESTORE_NONE,
xd->tile_ctx->wiener_restore_cdf, 2);
#if CONFIG_ENTROPY_STATS
++counts->wiener_restore[unit_rtype != RESTORE_NONE];
#endif
if (unit_rtype != RESTORE_NONE) {
write_wiener_filter(xd, wiener_win, &rui->wiener_info,
&xd->wiener_info[plane], w);
}
} else if (frame_rtype == RESTORE_SGRPROJ) {
aom_write_symbol(w, unit_rtype != RESTORE_NONE,
xd->tile_ctx->sgrproj_restore_cdf, 2);
#if CONFIG_ENTROPY_STATS
++counts->sgrproj_restore[unit_rtype != RESTORE_NONE];
#endif
if (unit_rtype != RESTORE_NONE) {
write_sgrproj_filter(xd, &rui->sgrproj_info, &xd->sgrproj_info[plane], w);
}
#if CONFIG_WIENER_NONSEP
} else if (frame_rtype == RESTORE_WIENER_NONSEP) {
aom_write_symbol(w, unit_rtype != RESTORE_NONE,
xd->tile_ctx->wienerns_restore_cdf, 2);
#if CONFIG_ENTROPY_STATS
++counts->wienerns_restore[unit_rtype != RESTORE_NONE];
#endif // CONFIG_ENTROPY_STATS
if (unit_rtype != RESTORE_NONE) {
write_wienerns_filter(xd, plane, &rui->wienerns_info,
&xd->wienerns_info[plane], w);
}
#endif // CONFIG_WIENER_NONSEP
#if CONFIG_PC_WIENER
} else if (frame_rtype == RESTORE_PC_WIENER) {
aom_write_symbol(w, unit_rtype != RESTORE_NONE,
xd->tile_ctx->pc_wiener_restore_cdf, 2);
#if CONFIG_ENTROPY_STATS
++counts->pc_wiener_restore[unit_rtype != RESTORE_NONE];
#endif // CONFIG_ENTROPY_STATS
if (unit_rtype != RESTORE_NONE) {
// No side-information for now.
}
#endif // CONFIG_PC_WIENER
}
}
static AOM_INLINE void encode_loopfilter(AV1_COMMON *cm,
struct aom_write_bit_buffer *wb) {
assert(!cm->features.coded_lossless);
if (is_global_intrabc_allowed(cm)) return;
const int num_planes = av1_num_planes(cm);
struct loopfilter *lf = &cm->lf;
// Encode the loop filter level and type
aom_wb_write_bit(wb, lf->filter_level[0]);
#if DF_DUAL
aom_wb_write_bit(wb, lf->filter_level[1]);
#endif
if (num_planes > 1) {
if (lf->filter_level[0] || lf->filter_level[1]) {
aom_wb_write_bit(wb, lf->filter_level_u);
aom_wb_write_bit(wb, lf->filter_level_v);
}
}
#if DF_DUAL
if (lf->filter_level[0]) {
int luma_delta_q_flag = lf->delta_q_luma[0] != 0;
aom_wb_write_bit(wb, luma_delta_q_flag);
if (luma_delta_q_flag) {
aom_wb_write_literal(wb, lf->delta_q_luma[0] + DF_PAR_OFFSET,
DF_PAR_BITS);
}
#if DF_TWO_PARAM
int luma_delta_side_flag = lf->delta_side_luma[0] != 0;
aom_wb_write_bit(wb, luma_delta_side_flag);
if (luma_delta_side_flag) {
aom_wb_write_literal(wb, lf->delta_side_luma[0] + DF_PAR_OFFSET,
DF_PAR_BITS);
}
#else
assert(lf->delta_q_luma[0] == lf->delta_side_luma[0]);
#endif // DF_TWO_PARAM
}
if (lf->filter_level[1]) {
int luma_delta_q_flag = lf->delta_q_luma[1] != lf->delta_q_luma[0];
aom_wb_write_bit(wb, luma_delta_q_flag);
if (luma_delta_q_flag) {
aom_wb_write_literal(wb, lf->delta_q_luma[1] + DF_PAR_OFFSET,
DF_PAR_BITS);
}
#if DF_TWO_PARAM
int luma_delta_side_flag = lf->delta_side_luma[1] != lf->delta_side_luma[0];
aom_wb_write_bit(wb, luma_delta_side_flag);
if (luma_delta_side_flag) {
aom_wb_write_literal(wb, lf->delta_side_luma[1] + DF_PAR_OFFSET,
DF_PAR_BITS);
}
#else
assert(lf->delta_q_luma[1] == lf->delta_side_luma[1]);
#endif // DF_TWO_PARAM
}
#else
if (lf->filter_level[0] || lf->filter_level[1]) {
int luma_delta_q_flag = lf->delta_q_luma != 0;
aom_wb_write_bit(wb, luma_delta_q_flag);
if (luma_delta_q_flag) {
aom_wb_write_literal(wb, lf->delta_q_luma + DF_PAR_OFFSET, DF_PAR_BITS);
}
#if DF_TWO_PARAM
int luma_delta_side_flag = lf->delta_side_luma != 0;
aom_wb_write_bit(wb, luma_delta_side_flag);
if (luma_delta_side_flag) {
aom_wb_write_literal(wb, lf->delta_side_luma + DF_PAR_OFFSET,
DF_PAR_BITS);
}
#else
assert(lf->delta_q_luma == lf->delta_side_luma);
#endif // DF_TWO_PARAM
}
#endif // DF_DUAL
if (lf->filter_level_u) {
int u_delta_q_flag = lf->delta_q_u != 0;
aom_wb_write_bit(wb, u_delta_q_flag);
if (u_delta_q_flag) {
aom_wb_write_literal(wb, lf->delta_q_u + DF_PAR_OFFSET, DF_PAR_BITS);
}
#if DF_TWO_PARAM
int u_delta_side_flag = lf->delta_side_u != 0;
aom_wb_write_bit(wb, u_delta_side_flag);
if (u_delta_side_flag) {
aom_wb_write_literal(wb, lf->delta_side_u + DF_PAR_OFFSET, DF_PAR_BITS);
}
#else
assert(lf->delta_q_u == lf->delta_side_u);
#endif // DF_TWO_PARAM
}
if (lf->filter_level_v) {
int v_delta_q_flag = lf->delta_q_v != 0;
aom_wb_write_bit(wb, v_delta_q_flag);
if (v_delta_q_flag) {
aom_wb_write_literal(wb, lf->delta_q_v + DF_PAR_OFFSET, DF_PAR_BITS);
}
#if DF_TWO_PARAM
int v_delta_side_flag = lf->delta_side_v != 0;
aom_wb_write_bit(wb, v_delta_side_flag);
if (v_delta_side_flag) {
aom_wb_write_literal(wb, lf->delta_side_v + DF_PAR_OFFSET, DF_PAR_BITS);
}
#else
assert(lf->delta_q_v == lf->delta_side_v);
#endif // DF_TWO_PARAM
}
}
static AOM_INLINE void encode_cdef(const AV1_COMMON *cm,
struct aom_write_bit_buffer *wb) {
assert(!cm->features.coded_lossless);
if (!cm->seq_params.enable_cdef) return;
if (is_global_intrabc_allowed(cm)) return;
#if CONFIG_FIX_CDEF_SYNTAX
aom_wb_write_bit(wb, cm->cdef_info.cdef_frame_enable);
if (!cm->cdef_info.cdef_frame_enable) return;
#endif // CONFIG_FIX_CDEF_SYNTAX
const int num_planes = av1_num_planes(cm);
int i;
aom_wb_write_literal(wb, cm->cdef_info.cdef_damping - 3, 2);
aom_wb_write_literal(wb, cm->cdef_info.cdef_bits, 2);
for (i = 0; i < cm->cdef_info.nb_cdef_strengths; i++) {
aom_wb_write_literal(wb, cm->cdef_info.cdef_strengths[i],
CDEF_STRENGTH_BITS);
if (num_planes > 1)
aom_wb_write_literal(wb, cm->cdef_info.cdef_uv_strengths[i],
CDEF_STRENGTH_BITS);
}
}
#if CONFIG_CCSO
static AOM_INLINE void encode_ccso(const AV1_COMMON *cm,
struct aom_write_bit_buffer *wb) {
if (is_global_intrabc_allowed(cm)) return;
#if CONFIG_CCSO_EXT
const int ccso_offset[8] = { 0, 1, -1, 3, -3, 7, -7, -10 };
for (int plane = 0; plane < av1_num_planes(cm); plane++) {
#else
const int ccso_offset[8] = { 0, 1, -1, 3, -3, 5, -5, -7 };
for (int plane = 0; plane < 2; plane++) {
#endif
aom_wb_write_literal(wb, cm->ccso_info.ccso_enable[plane], 1);
if (cm->ccso_info.ccso_enable[plane]) {
aom_wb_write_literal(wb, cm->ccso_info.quant_idx[plane], 2);
aom_wb_write_literal(wb, cm->ccso_info.ext_filter_support[plane], 3);
#if CONFIG_CCSO_EXT
aom_wb_write_literal(wb, cm->ccso_info.max_band_log2[plane], 2);
const int max_band = 1 << cm->ccso_info.max_band_log2[plane];
#endif
for (int d0 = 0; d0 < CCSO_INPUT_INTERVAL; d0++) {
for (int d1 = 0; d1 < CCSO_INPUT_INTERVAL; d1++) {
#if !CONFIG_CCSO_EXT
const int lut_idx_ext = (d0 << 2) + d1;
#else
for (int band_num = 0; band_num < max_band; band_num++) {
const int lut_idx_ext = (band_num << 4) + (d0 << 2) + d1;
#endif
for (int offset_idx = 0; offset_idx < 8; offset_idx++) {
if (cm->ccso_info.filter_offset[plane][lut_idx_ext] ==
ccso_offset[offset_idx]) {
aom_wb_write_literal(wb, offset_idx, 3);
break;
}
}
#if CONFIG_CCSO_EXT
}
#endif
}
}
}
}
}
#endif
static AOM_INLINE void write_delta_q(struct aom_write_bit_buffer *wb,
int delta_q) {
if (delta_q != 0) {
aom_wb_write_bit(wb, 1);
aom_wb_write_inv_signed_literal(wb, delta_q, 6);
} else {
aom_wb_write_bit(wb, 0);
}
}
static AOM_INLINE void encode_quantization(
const CommonQuantParams *const quant_params, int num_planes,
aom_bit_depth_t bit_depth, bool separate_uv_delta_q,
struct aom_write_bit_buffer *wb) {
aom_wb_write_literal(
wb, quant_params->base_qindex,
bit_depth == AOM_BITS_8 ? QINDEX_BITS_UNEXT : QINDEX_BITS);
write_delta_q(wb, quant_params->y_dc_delta_q);
if (num_planes > 1) {
int diff_uv_delta =
(quant_params->u_dc_delta_q != quant_params->v_dc_delta_q) ||
(quant_params->u_ac_delta_q != quant_params->v_ac_delta_q);
if (separate_uv_delta_q) aom_wb_write_bit(wb, diff_uv_delta);
write_delta_q(wb, quant_params->u_dc_delta_q);
write_delta_q(wb, quant_params->u_ac_delta_q);
if (diff_uv_delta) {
write_delta_q(wb, quant_params->v_dc_delta_q);
write_delta_q(wb, quant_params->v_ac_delta_q);
}
}
aom_wb_write_bit(wb, quant_params->using_qmatrix);
if (quant_params->using_qmatrix) {
aom_wb_write_literal(wb, quant_params->qmatrix_level_y, QM_LEVEL_BITS);
aom_wb_write_literal(wb, quant_params->qmatrix_level_u, QM_LEVEL_BITS);
if (!separate_uv_delta_q)
assert(quant_params->qmatrix_level_u == quant_params->qmatrix_level_v);
else
aom_wb_write_literal(wb, quant_params->qmatrix_level_v, QM_LEVEL_BITS);
}
}
static AOM_INLINE void encode_segmentation(AV1_COMMON *cm, MACROBLOCKD *xd,
struct aom_write_bit_buffer *wb) {
int i, j;
struct segmentation *seg = &cm->seg;
aom_wb_write_bit(wb, seg->enabled);
if (!seg->enabled) return;
// Write update flags
if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) {
assert(seg->update_map == 1);
seg->temporal_update = 0;
assert(seg->update_data == 1);
} else {
aom_wb_write_bit(wb, seg->update_map);
if (seg->update_map) {
// Select the coding strategy (temporal or spatial)
av1_choose_segmap_coding_method(cm, xd);
aom_wb_write_bit(wb, seg->temporal_update);
}
aom_wb_write_bit(wb, seg->update_data);
}
// Segmentation data
if (seg->update_data) {
for (i = 0; i < MAX_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
const int active = segfeature_active(seg, i, j);
aom_wb_write_bit(wb, active);
if (active) {
const int data_max = av1_seg_feature_data_max(j);
const int data_min = -data_max;
const int ubits = get_unsigned_bits(data_max);
const int data = clamp(get_segdata(seg, i, j), data_min, data_max);
if (av1_is_segfeature_signed(j)) {
aom_wb_write_inv_signed_literal(wb, data, ubits);
} else {
aom_wb_write_literal(wb, data, ubits);
}
}
}
}
}
}
static AOM_INLINE void write_frame_interp_filter(
InterpFilter filter, struct aom_write_bit_buffer *wb) {
aom_wb_write_bit(wb, filter == SWITCHABLE);
if (filter != SWITCHABLE)
aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS);
}
static AOM_INLINE void write_tile_info_max_tile(
const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) {
int width_mi =
ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols, cm->seq_params.mib_size_log2);
int height_mi =
ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, cm->seq_params.mib_size_log2);
int width_sb = width_mi >> cm->seq_params.mib_size_log2;
int height_sb = height_mi >> cm->seq_params.mib_size_log2;
int size_sb, i;
const CommonTileParams *const tiles = &cm->tiles;
aom_wb_write_bit(wb, tiles->uniform_spacing);
if (tiles->uniform_spacing) {
int ones = tiles->log2_cols - tiles->min_log2_cols;
while (ones--) {
aom_wb_write_bit(wb, 1);
}
if (tiles->log2_cols < tiles->max_log2_cols) {
aom_wb_write_bit(wb, 0);
}
// rows
ones = tiles->log2_rows - tiles->min_log2_rows;
while (ones--) {
aom_wb_write_bit(wb, 1);
}
if (tiles->log2_rows < tiles->max_log2_rows) {
aom_wb_write_bit(wb, 0);
}
} else {
// Explicit tiles with configurable tile widths and heights
// columns
for (i = 0; i < tiles->cols; i++) {
size_sb = tiles->col_start_sb[i + 1] - tiles->col_start_sb[i];
wb_write_uniform(wb, AOMMIN(width_sb, tiles->max_width_sb), size_sb - 1);
width_sb -= size_sb;
}
assert(width_sb == 0);
// rows
for (i = 0; i < tiles->rows; i++) {
size_sb = tiles->row_start_sb[i + 1] - tiles->row_start_sb[i];
wb_write_uniform(wb, AOMMIN(height_sb, tiles->max_height_sb),
size_sb - 1);
height_sb -= size_sb;
}
assert(height_sb == 0);
}
}
static AOM_INLINE void write_tile_info(const AV1_COMMON *const cm,
struct aom_write_bit_buffer *saved_wb,
struct aom_write_bit_buffer *wb) {
write_tile_info_max_tile(cm, wb);
*saved_wb = *wb;
if (cm->tiles.rows * cm->tiles.cols > 1) {
// tile id used for cdf update
aom_wb_write_literal(wb, 0, cm->tiles.log2_cols + cm->tiles.log2_rows);
// Number of bytes in tile size - 1
aom_wb_write_literal(wb, 3, 2);
}
}
static AOM_INLINE void write_ext_tile_info(
const AV1_COMMON *const cm, struct aom_write_bit_buffer *saved_wb,
struct aom_write_bit_buffer *wb) {
// This information is stored as a separate byte.
int mod = wb->bit_offset % CHAR_BIT;
if (mod > 0) aom_wb_write_literal(wb, 0, CHAR_BIT - mod);
assert(aom_wb_is_byte_aligned(wb));
*saved_wb = *wb;
if (cm->tiles.rows * cm->tiles.cols > 1) {
// Note that the last item in the uncompressed header is the data
// describing tile configuration.
// Number of bytes in tile column size - 1
aom_wb_write_literal(wb, 0, 2);
// Number of bytes in tile size - 1
aom_wb_write_literal(wb, 0, 2);
}
}
// Stores the location and size of a tile's data in the bitstream. Used for
// later identifying identical tiles
typedef struct TileBufferEnc {
uint8_t *data;
size_t size;
} TileBufferEnc;
static INLINE int find_identical_tile(
const int tile_row, const int tile_col,
TileBufferEnc (*const tile_buffers)[MAX_TILE_COLS]) {
const MV32 candidate_offset[1] = { { 1, 0 } };
const uint8_t *const cur_tile_data =
tile_buffers[tile_row][tile_col].data + 4;
const size_t cur_tile_size = tile_buffers[tile_row][tile_col].size;
int i;
if (tile_row == 0) return 0;
// (TODO: yunqingwang) For now, only above tile is checked and used.
// More candidates such as left tile can be added later.
for (i = 0; i < 1; i++) {
int row_offset = candidate_offset[0].row;
int col_offset = candidate_offset[0].col;
int row = tile_row - row_offset;
int col = tile_col - col_offset;
const uint8_t *tile_data;
TileBufferEnc *candidate;
if (row < 0 || col < 0) continue;
const uint32_t tile_hdr = mem_get_le32(tile_buffers[row][col].data);
// Read out tile-copy-mode bit:
if ((tile_hdr >> 31) == 1) {
// The candidate is a copy tile itself: the offset is stored in bits
// 30 through 24 inclusive.
row_offset += (tile_hdr >> 24) & 0x7f;
row = tile_row - row_offset;
}
candidate = &tile_buffers[row][col];
if (row_offset >= 128 || candidate->size != cur_tile_size) continue;
tile_data = candidate->data + 4;
if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue;
// Identical tile found
assert(row_offset > 0);
return row_offset;
}
// No identical tile found
return 0;
}
static AOM_INLINE void write_render_size(const AV1_COMMON *cm,
struct aom_write_bit_buffer *wb) {
const int scaling_active = av1_resize_scaled(cm);
aom_wb_write_bit(wb, scaling_active);
if (scaling_active) {
aom_wb_write_literal(wb, cm->render_width - 1, 16);
aom_wb_write_literal(wb, cm->render_height - 1, 16);
}
}
static AOM_INLINE void write_superres_scale(const AV1_COMMON *const cm,
struct aom_write_bit_buffer *wb) {
const SequenceHeader *const seq_params = &cm->seq_params;
if (!seq_params->enable_superres) {
assert(cm->superres_scale_denominator == SCALE_NUMERATOR);
return;
}
// First bit is whether to to scale or not
if (cm->superres_scale_denominator == SCALE_NUMERATOR) {
aom_wb_write_bit(wb, 0); // no scaling
} else {
aom_wb_write_bit(wb, 1); // scaling, write scale factor
assert(cm->superres_scale_denominator >= SUPERRES_SCALE_DENOMINATOR_MIN);
assert(cm->superres_scale_denominator <
SUPERRES_SCALE_DENOMINATOR_MIN + (1 << SUPERRES_SCALE_BITS));
aom_wb_write_literal(
wb, cm->superres_scale_denominator - SUPERRES_SCALE_DENOMINATOR_MIN,
SUPERRES_SCALE_BITS);
}
}
static AOM_INLINE void write_frame_size(const AV1_COMMON *cm,
int frame_size_override,
struct aom_write_bit_buffer *wb) {
const int coded_width = cm->superres_upscaled_width - 1;
const int coded_height = cm->superres_upscaled_height - 1;
if (frame_size_override) {
const SequenceHeader *seq_params = &cm->seq_params;
int num_bits_width = seq_params->num_bits_width;
int num_bits_height = seq_params->num_bits_height;
aom_wb_write_literal(wb, coded_width, num_bits_width);
aom_wb_write_literal(wb, coded_height, num_bits_height);
}
write_superres_scale(cm, wb);
write_render_size(cm, wb);
}
static AOM_INLINE void write_frame_size_with_refs(
const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) {
int found = 0;
MV_REFERENCE_FRAME ref_frame;
for (ref_frame = 0; ref_frame < INTER_REFS_PER_FRAME; ++ref_frame) {
const YV12_BUFFER_CONFIG *cfg = get_ref_frame_yv12_buf(cm, ref_frame);
if (cfg != NULL) {
found = cm->superres_upscaled_width == cfg->y_crop_width &&
cm->superres_upscaled_height == cfg->y_crop_height;
found &= cm->render_width == cfg->render_width &&
cm->render_height == cfg->render_height;
}
aom_wb_write_bit(wb, found);
if (found) {
write_superres_scale(cm, wb);
break;
}
}
if (!found) {
int frame_size_override = 1; // Always equal to 1 in this function
write_frame_size(cm, frame_size_override, wb);
}
}
static AOM_INLINE void write_profile(BITSTREAM_PROFILE profile,
struct aom_write_bit_buffer *wb) {
assert(profile >= PROFILE_0 && profile < MAX_PROFILES);
aom_wb_write_literal(wb, profile, PROFILE_BITS);
}
static AOM_INLINE void write_bitdepth(const SequenceHeader *const seq_params,
struct aom_write_bit_buffer *wb) {
// Profile 0/1: [0] for 8 bit, [1] 10-bit
// Profile 2: [0] for 8 bit, [10] 10-bit, [11] - 12-bit
aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_8 ? 0 : 1);
if (seq_params->profile == PROFILE_2 && seq_params->bit_depth != AOM_BITS_8) {
aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_10 ? 0 : 1);
}
}
static AOM_INLINE void write_color_config(
const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) {
write_bitdepth(seq_params, wb);
const int is_monochrome = seq_params->monochrome;
// monochrome bit
if (seq_params->profile != PROFILE_1)
aom_wb_write_bit(wb, is_monochrome);
else
assert(!is_monochrome);
if (seq_params->color_primaries == AOM_CICP_CP_UNSPECIFIED &&
seq_params->transfer_characteristics == AOM_CICP_TC_UNSPECIFIED &&
seq_params->matrix_coefficients == AOM_CICP_MC_UNSPECIFIED) {
aom_wb_write_bit(wb, 0); // No color description present
} else {
aom_wb_write_bit(wb, 1); // Color description present
aom_wb_write_literal(wb, seq_params->color_primaries, 8);
aom_wb_write_literal(wb, seq_params->transfer_characteristics, 8);
aom_wb_write_literal(wb, seq_params->matrix_coefficients, 8);
}
if (is_monochrome) {
// 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
aom_wb_write_bit(wb, seq_params->color_range);
} else {
if (seq_params->color_primaries == AOM_CICP_CP_BT_709 &&
seq_params->transfer_characteristics == AOM_CICP_TC_SRGB &&
seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
assert(seq_params->profile == PROFILE_1 ||
(seq_params->profile == PROFILE_2 &&
seq_params->bit_depth == AOM_BITS_12));
} else {
// 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
aom_wb_write_bit(wb, seq_params->color_range);
if (seq_params->profile == PROFILE_0) {
// 420 only
assert(seq_params->subsampling_x == 1 &&
seq_params->subsampling_y == 1);
} else if (seq_params->profile == PROFILE_1) {
// 444 only
assert(seq_params->subsampling_x == 0 &&
seq_params->subsampling_y == 0);
} else if (seq_params->profile == PROFILE_2) {
if (seq_params->bit_depth == AOM_BITS_12) {
// 420, 444 or 422
aom_wb_write_bit(wb, seq_params->subsampling_x);
if (seq_params->subsampling_x == 0) {
assert(seq_params->subsampling_y == 0 &&
"4:4:0 subsampling not allowed in AV1");
} else {
aom_wb_write_bit(wb, seq_params->subsampling_y);
}
} else {
// 422 only
assert(seq_params->subsampling_x == 1 &&
seq_params->subsampling_y == 0);
}
}
if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
assert(seq_params->subsampling_x == 0 &&
seq_params->subsampling_y == 0);
}
if (seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) {
aom_wb_write_literal(wb, seq_params->chroma_sample_position, 2);
}
}
aom_wb_write_bit(wb, seq_params->separate_uv_delta_q);
}
assert(seq_params->base_y_dc_delta_q <= DELTA_DCQUANT_MAX);
aom_wb_write_unsigned_literal(
wb, seq_params->base_y_dc_delta_q - DELTA_DCQUANT_MIN,
DELTA_DCQUANT_BITS);
if (!is_monochrome) {
assert(seq_params->base_uv_dc_delta_q >= DELTA_DCQUANT_MIN);
aom_wb_write_unsigned_literal(
wb, seq_params->base_uv_dc_delta_q - DELTA_DCQUANT_MIN,
DELTA_DCQUANT_BITS);
}
}
static AOM_INLINE void write_timing_info_header(
const aom_timing_info_t *const timing_info,
struct aom_write_bit_buffer *wb) {
aom_wb_write_unsigned_literal(wb, timing_info->num_units_in_display_tick, 32);
aom_wb_write_unsigned_literal(wb, timing_info->time_scale, 32);
aom_wb_write_bit(wb, timing_info->equal_picture_interval);
if (timing_info->equal_picture_interval) {
aom_wb_write_uvlc(wb, timing_info->num_ticks_per_picture - 1);
}
}
static AOM_INLINE void write_decoder_model_info(
const aom_dec_model_info_t *const decoder_model_info,
struct aom_write_bit_buffer *wb) {
aom_wb_write_literal(
wb, decoder_model_info->encoder_decoder_buffer_delay_length - 1, 5);
aom_wb_write_unsigned_literal(
wb, decoder_model_info->num_units_in_decoding_tick, 32);
aom_wb_write_literal(wb, decoder_model_info->buffer_removal_time_length - 1,
5);
aom_wb_write_literal(
wb, decoder_model_info->frame_presentation_time_length - 1, 5);
}
static AOM_INLINE void write_dec_model_op_parameters(
const aom_dec_model_op_parameters_t *op_params, int buffer_delay_length,
struct aom_write_bit_buffer *wb) {
aom_wb_write_unsigned_literal(wb, op_params->decoder_buffer_delay,
buffer_delay_length);
aom_wb_write_unsigned_literal(wb, op_params->encoder_buffer_delay,
buffer_delay_length);
aom_wb_write_bit(wb, op_params->low_delay_mode_flag);
}
static AOM_INLINE void write_tu_pts_info(AV1_COMMON *const cm,
struct aom_write_bit_buffer *wb) {
aom_wb_write_unsigned_literal(
wb, cm->frame_presentation_time,
cm->seq_params.decoder_model_info.frame_presentation_time_length);
}
static AOM_INLINE void write_film_grain_params(
const AV1_COMP *const cpi, struct aom_write_bit_buffer *wb) {
const AV1_COMMON *const cm = &cpi->common;
const aom_film_grain_t *const pars = &cm->cur_frame->film_grain_params;
aom_wb_write_bit(wb, pars->apply_grain);
if (!pars->apply_grain) return;
aom_wb_write_literal(wb, pars->random_seed, 16);
if (cm->current_frame.frame_type == INTER_FRAME)
aom_wb_write_bit(wb, pars->update_parameters);
if (!pars->update_parameters) {
int ref_frame, ref_idx;
for (ref_frame = 0; ref_frame < INTER_REFS_PER_FRAME; ref_frame++) {
ref_idx = get_ref_frame_map_idx(cm, ref_frame);
assert(ref_idx != INVALID_IDX);
const RefCntBuffer *const buf = cm->ref_frame_map[ref_idx];
if (buf->film_grain_params_present &&
av1_check_grain_params_equiv(pars, &buf->film_grain_params)) {
break;
}
}
assert(ref_frame < REF_FRAMES);
aom_wb_write_literal(wb, ref_idx, 3);
return;
}
// Scaling functions parameters
aom_wb_write_literal(wb, pars->num_y_points, 4); // max 14
for (int i = 0; i < pars->num_y_points; i++) {
aom_wb_write_literal(wb, pars->scaling_points_y[i][0], 8);
aom_wb_write_literal(wb, pars->scaling_points_y[i][1], 8);
}
if (!cm->seq_params.monochrome) {
aom_wb_write_bit(wb, pars->chroma_scaling_from_luma);
} else {
assert(!pars->chroma_scaling_from_luma);
}
if (cm->seq_params.monochrome || pars->chroma_scaling_from_luma ||
((cm->seq_params.subsampling_x == 1) &&
(cm->seq_params.subsampling_y == 1) && (pars->num_y_points == 0))) {
assert(pars->num_cb_points == 0 && pars->num_cr_points == 0);
} else {
aom_wb_write_literal(wb, pars->num_cb_points, 4); // max 10
for (int i = 0; i < pars->num_cb_points; i++) {
aom_wb_write_literal(wb, pars->scaling_points_cb[i][0], 8);
aom_wb_write_literal(wb, pars->scaling_points_cb[i][1], 8);
}
aom_wb_write_literal(wb, pars->num_cr_points, 4); // max 10
for (int i = 0; i < pars->num_cr_points; i++) {
aom_wb_write_literal(wb, pars->scaling_points_cr[i][0], 8);
aom_wb_write_literal(wb, pars->scaling_points_cr[i][1], 8);
}
}
aom_wb_write_literal(wb, pars->scaling_shift - 8, 2); // 8 + value
// AR coefficients
// Only sent if the corresponsing scaling function has
// more than 0 points
aom_wb_write_literal(wb, pars->ar_coeff_lag, 2);
int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1);
int num_pos_chroma = num_pos_luma;
if (pars->num_y_points > 0) ++num_pos_chroma;
if (pars->num_y_points)
for (int i = 0; i < num_pos_luma; i++)
aom_wb_write_literal(wb, pars->ar_coeffs_y[i] + 128, 8);
if (pars->num_cb_points || pars->chroma_scaling_from_luma)
for (int i = 0; i < num_pos_chroma; i++)
aom_wb_write_literal(wb, pars->ar_coeffs_cb[i] + 128, 8);
if (pars->num_cr_points || pars->chroma_scaling_from_luma)
for (int i = 0; i < num_pos_chroma; i++)
aom_wb_write_literal(wb, pars->ar_coeffs_cr[i] + 128, 8);
aom_wb_write_literal(wb, pars->ar_coeff_shift - 6, 2); // 8 + value
aom_wb_write_literal(wb, pars->grain_scale_shift, 2);
if (pars->num_cb_points) {
aom_wb_write_literal(wb, pars->cb_mult, 8);
aom_wb_write_literal(wb, pars->cb_luma_mult, 8);
aom_wb_write_literal(wb, pars->cb_offset, 9);
}
if (pars->num_cr_points) {
aom_wb_write_literal(wb, pars->cr_mult, 8);
aom_wb_write_literal(wb, pars->cr_luma_mult, 8);
aom_wb_write_literal(wb, pars->cr_offset, 9);
}
aom_wb_write_bit(wb, pars->overlap_flag);
aom_wb_write_bit(wb, pars->clip_to_restricted_range);
}
static AOM_INLINE void write_sb_size(const SequenceHeader *const seq_params,
struct aom_write_bit_buffer *wb) {
(void)seq_params;
(void)wb;
assert(seq_params->mib_size == mi_size_wide[seq_params->sb_size]);
assert(seq_params->mib_size == 1 << seq_params->mib_size_log2);
assert(seq_params->sb_size == BLOCK_128X128 ||
seq_params->sb_size == BLOCK_64X64);
aom_wb_write_bit(wb, seq_params->sb_size == BLOCK_128X128 ? 1 : 0);
}
static AOM_INLINE void write_sequence_header(
const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) {
aom_wb_write_literal(wb, seq_params->num_bits_width - 1, 4);
aom_wb_write_literal(wb, seq_params->num_bits_height - 1, 4);
aom_wb_write_literal(wb, seq_params->max_frame_width - 1,
seq_params->num_bits_width);
aom_wb_write_literal(wb, seq_params->max_frame_height - 1,
seq_params->num_bits_height);
if (!seq_params->reduced_still_picture_hdr) {
aom_wb_write_bit(wb, seq_params->frame_id_numbers_present_flag);
if (seq_params->frame_id_numbers_present_flag) {
// We must always have delta_frame_id_length < frame_id_length,
// in order for a frame to be referenced with a unique delta.
// Avoid wasting bits by using a coding that enforces this restriction.
aom_wb_write_literal(wb, seq_params->delta_frame_id_length - 2, 4);
aom_wb_write_literal(
wb,
seq_params->frame_id_length - seq_params->delta_frame_id_length - 1,
3);
}
}
write_sb_size(seq_params, wb);
aom_wb_write_bit(wb, seq_params->enable_filter_intra);
aom_wb_write_bit(wb, seq_params->enable_intra_edge_filter);
if (!seq_params->reduced_still_picture_hdr) {
#if CONFIG_EXTENDED_WARP_PREDICTION
// Encode allowed motion modes
// Skip SIMPLE_TRANSLATION, as that is always enabled
int seq_enabled_motion_modes = seq_params->seq_enabled_motion_modes;
assert((seq_enabled_motion_modes & (1 << SIMPLE_TRANSLATION)) != 0);
for (int motion_mode = INTERINTRA; motion_mode < MOTION_MODES;
motion_mode++) {
int enabled =
(seq_enabled_motion_modes & (1 << motion_mode)) != 0 ? 1 : 0;
aom_wb_write_bit(wb, enabled);
}
#else
aom_wb_write_bit(wb, seq_params->enable_interintra_compound);
#endif // CONFIG_EXTENDED_WARP_PREDICTION
aom_wb_write_bit(wb, seq_params->enable_masked_compound);
#if !CONFIG_EXTENDED_WARP_PREDICTION
aom_wb_write_bit(wb, seq_params->enable_warped_motion);
#endif // !CONFIG_EXTENDED_WARP_PREDICTION
aom_wb_write_bit(wb, seq_params->order_hint_info.enable_order_hint);
if (seq_params->order_hint_info.enable_order_hint) {
aom_wb_write_bit(wb, seq_params->order_hint_info.enable_ref_frame_mvs);
}
if (seq_params->force_screen_content_tools == 2) {
aom_wb_write_bit(wb, 1);
} else {
aom_wb_write_bit(wb, 0);
aom_wb_write_bit(wb, seq_params->force_screen_content_tools);
}
if (seq_params->force_screen_content_tools > 0) {
if (seq_params->force_integer_mv == 2) {
aom_wb_write_bit(wb, 1);
} else {
aom_wb_write_bit(wb, 0);
aom_wb_write_bit(wb, seq_params->force_integer_mv);
}
} else {
assert(seq_params->force_integer_mv == 2);
}
if (seq_params->order_hint_info.enable_order_hint)
aom_wb_write_literal(
wb, seq_params->order_hint_info.order_hint_bits_minus_1, 3);
}
aom_wb_write_bit(wb, seq_params->enable_superres);
aom_wb_write_bit(wb, seq_params->enable_cdef);
aom_wb_write_bit(wb, seq_params->enable_restoration);
#if CONFIG_LR_FLEX_SYNTAX
if (seq_params->enable_restoration) {
for (int i = 1; i < RESTORE_SWITCHABLE_TYPES; ++i) {
aom_wb_write_bit(wb, (seq_params->lr_tools_disable_mask[0] >> i) & 1);
}
const int uv_neq_y =
(seq_params->lr_tools_disable_mask[1] !=
(seq_params->lr_tools_disable_mask[0] | DEF_UV_LR_TOOLS_DISABLE_MASK));
aom_wb_write_bit(wb, uv_neq_y);
if (uv_neq_y) {
for (int i = 1; i < RESTORE_SWITCHABLE_TYPES; ++i) {
if (DEF_UV_LR_TOOLS_DISABLE_MASK | (1 << i)) continue;
aom_wb_write_bit(wb, (seq_params->lr_tools_disable_mask[1] >> i) & 1);
}
}
}
#endif // CONFIG_LR_FLEX_SYNTAX
}
static AOM_INLINE void write_sequence_header_beyond_av1(
const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) {
#if CONFIG_REF_MV_BANK
aom_wb_write_bit(wb, seq_params->enable_refmvbank);
#endif // CONFIG_REF_MV_BANK
aom_wb_write_bit(wb, seq_params->explicit_ref_frame_map);
// A bit is sent here to indicate if the max number of references is 7. If
// this bit is 0, then two more bits are sent to indicate the exact number
// of references allowed (range: 3 to 6).
aom_wb_write_bit(wb, seq_params->max_reference_frames < 7);
if (seq_params->max_reference_frames < 7)
aom_wb_write_literal(wb, seq_params->max_reference_frames - 3, 2);
#if CONFIG_ALLOW_SAME_REF_COMPOUND
aom_wb_write_literal(wb, seq_params->num_same_ref_compound, 2);
#endif // CONFIG_ALLOW_SAME_REF_COMPOUND
aom_wb_write_bit(wb, seq_params->enable_sdp);
aom_wb_write_bit(wb, seq_params->enable_ist);
#if CONFIG_CROSS_CHROMA_TX
if (!seq_params->monochrome) aom_wb_write_bit(wb, seq_params->enable_cctx);
#endif // CONFIG_CROSS_CHROMA_TX
aom_wb_write_bit(wb, seq_params->enable_mrls);
#if CONFIG_TIP
aom_wb_write_literal(wb, seq_params->enable_tip, 2);
if (seq_params->enable_tip) {
aom_wb_write_bit(wb, seq_params->enable_tip_hole_fill);
}
#endif // CONFIG_TIP
#if CONFIG_BAWP
aom_wb_write_bit(wb, seq_params->enable_bawp);
#endif // CONFIG_BAWP
aom_wb_write_bit(wb, seq_params->enable_fsc);
#if CONFIG_CCSO
aom_wb_write_bit(wb, seq_params->enable_ccso);
#endif
#if CONFIG_PEF
aom_wb_write_bit(wb, seq_params->enable_pef);
#endif // CONFIG_PEF
#if CONFIG_ORIP
aom_wb_write_bit(wb, seq_params->enable_orip);
#endif
#if CONFIG_OPTFLOW_REFINEMENT
if (seq_params->order_hint_info.enable_order_hint)
aom_wb_write_literal(wb, seq_params->enable_opfl_refine, 2);
#endif // CONFIG_OPTFLOW_REFINEMENT
aom_wb_write_bit(wb, seq_params->enable_ibp);
#if CONFIG_ADAPTIVE_MVD
aom_wb_write_bit(wb, seq_params->enable_adaptive_mvd);
#endif // CONFIG_ADAPTIVE_MVD
#if CONFIG_FLEX_MVRES
aom_wb_write_bit(wb, seq_params->enable_flex_mvres);
#endif // CONFIG_FLEX_MVRES
#if CONFIG_ADAPTIVE_DS_FILTER
aom_wb_write_literal(wb, seq_params->enable_cfl_ds_filter, 2);
#endif // CONFIG_ADAPTIVE_DS_FILTER
#if CONFIG_PAR_HIDING
aom_wb_write_bit(wb, seq_params->enable_parity_hiding);
#endif // CONFIG_PAR_HIDING
#if CONFIG_EXT_RECUR_PARTITIONS
aom_wb_write_bit(wb, seq_params->enable_ext_partitions);
#endif // CONFIG_EXT_RECUR_PARTITIONS
}
static AOM_INLINE void write_global_motion_params(
const WarpedMotionParams *params, const WarpedMotionParams *ref_params,
#if !CONFIG_FLEX_MVRES
struct aom_write_bit_buffer *wb, int allow_hp) {
#else
struct aom_write_bit_buffer *wb, MvSubpelPrecision precision) {
const int precision_loss = get_gm_precision_loss(precision);
#endif
const TransformationType type = params->wmtype;
aom_wb_write_bit(wb, type != IDENTITY);
if (type != IDENTITY) {
aom_wb_write_bit(wb, type == ROTZOOM);
if (type != ROTZOOM) aom_wb_write_bit(wb, type == TRANSLATION);
}
if (type >= ROTZOOM) {
aom_wb_write_signed_primitive_refsubexpfin(
wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) -
(1 << GM_ALPHA_PREC_BITS),
(params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
aom_wb_write_signed_primitive_refsubexpfin(
wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF),
(params->wmmat[3] >> GM_ALPHA_PREC_DIFF));
}
if (type >= AFFINE) {
aom_wb_write_signed_primitive_refsubexpfin(
wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF),
(params->wmmat[4] >> GM_ALPHA_PREC_DIFF));
aom_wb_write_signed_primitive_refsubexpfin(
wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
(1 << GM_ALPHA_PREC_BITS),
(params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
}
if (type >= TRANSLATION) {
#if CONFIG_FLEX_MVRES
const int trans_bits = (type == TRANSLATION)
? GM_ABS_TRANS_ONLY_BITS - precision_loss
: GM_ABS_TRANS_BITS;
const int trans_prec_diff = (type == TRANSLATION)
? GM_TRANS_ONLY_PREC_DIFF + precision_loss
: GM_TRANS_PREC_DIFF;
#else
const int trans_bits = (type == TRANSLATION)
? GM_ABS_TRANS_ONLY_BITS - !allow_hp
: GM_ABS_TRANS_BITS;
const int trans_prec_diff = (type == TRANSLATION)
? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
: GM_TRANS_PREC_DIFF;
#endif
aom_wb_write_signed_primitive_refsubexpfin(
wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
(ref_params->wmmat[0] >> trans_prec_diff),
(params->wmmat[0] >> trans_prec_diff));
aom_wb_write_signed_primitive_refsubexpfin(
wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
(ref_params->wmmat[1] >> trans_prec_diff),
(params->wmmat[1] >> trans_prec_diff));
}
}
static AOM_INLINE void write_global_motion(AV1_COMP *cpi,
struct aom_write_bit_buffer *wb) {
AV1_COMMON *const cm = &cpi->common;
int frame;
for (frame = 0; frame < cm->ref_frames_info.num_total_refs; ++frame) {
const WarpedMotionParams *ref_params =
cm->prev_frame ? &cm->prev_frame->global_motion[frame]
: &default_warp_params;
write_global_motion_params(&cm->global_motion[frame], ref_params, wb,
#if !CONFIG_FLEX_MVRES
cm->features.allow_high_precision_mv);
#else
cm->features.fr_mv_precision);
#endif
// TODO(sarahparker, debargha): The logic in the commented out code below
// does not work currently and causes mismatches when resize is on.
// Fix it before turning the optimization back on.
/*
YV12_BUFFER_CONFIG *ref_buf = get_ref_frame_yv12_buf(cpi, frame);
if (cpi->source->y_crop_width == ref_buf->y_crop_width &&
cpi->source->y_crop_height == ref_buf->y_crop_height) {
write_global_motion_params(&cm->global_motion[frame],
&cm->prev_frame->global_motion[frame], wb,
cm->features.allow_high_precision_mv);
} else {
assert(cm->global_motion[frame].wmtype == IDENTITY &&
"Invalid warp type for frames of different resolutions");
}
*/
/*
printf("Frame %d/%d: Enc Ref %d: %d %d %d %d\n",
cm->current_frame.frame_number, cm->show_frame, frame,
cm->global_motion[frame].wmmat[0],
cm->global_motion[frame].wmmat[1], cm->global_motion[frame].wmmat[2],
cm->global_motion[frame].wmmat[3]);
*/
}
}
// New function based on HLS R18
static AOM_INLINE void write_uncompressed_header_obu(
AV1_COMP *cpi, struct aom_write_bit_buffer *saved_wb,
struct aom_write_bit_buffer *wb) {
AV1_COMMON *const cm = &cpi->common;
const SequenceHeader *const seq_params = &cm->seq_params;
const CommonQuantParams *quant_params = &cm->quant_params;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
CurrentFrame *const current_frame = &cm->current_frame;
FeatureFlags *const features = &cm->features;
if (seq_params->still_picture) {
assert(cm->show_existing_frame == 0);
assert(cm->show_frame == 1);
assert(current_frame->frame_type == KEY_FRAME);
}
if (!seq_params->reduced_still_picture_hdr) {
if (encode_show_existing_frame(cm)) {
aom_wb_write_bit(wb, 1); // show_existing_frame
aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3);
if (seq_params->decoder_model_info_present_flag &&
seq_params->timing_info.equal_picture_interval == 0) {
write_tu_pts_info(cm, wb);
}
if (seq_params->frame_id_numbers_present_flag) {
int frame_id_len = seq_params->frame_id_length;
int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show];
aom_wb_write_literal(wb, display_frame_id, frame_id_len);
}
return;
} else {
aom_wb_write_bit(wb, 0); // show_existing_frame
}
aom_wb_write_literal(wb, current_frame->frame_type, 2);
aom_wb_write_bit(wb, cm->show_frame);
if (cm->show_frame) {
if (seq_params->decoder_model_info_present_flag &&
seq_params->timing_info.equal_picture_interval == 0)
write_tu_pts_info(cm, wb);
} else {
aom_wb_write_bit(wb, cm->showable_frame);
}
if (frame_is_sframe(cm)) {
assert(features->error_resilient_mode);
} else if (!(current_frame->frame_type == KEY_FRAME && cm->show_frame)) {
aom_wb_write_bit(wb, features->error_resilient_mode);
}
}
aom_wb_write_bit(wb, features->disable_cdf_update);
#if DS_FRAME_LEVEL
if (current_frame->frame_type == KEY_FRAME) {
aom_wb_write_literal(wb, features->ds_filter_type, 2);
}
#endif // DS_FRAME_LEVEL
if (seq_params->force_screen_content_tools == 2) {
aom_wb_write_bit(wb, features->allow_screen_content_tools);
} else {
assert(features->allow_screen_content_tools ==
seq_params->force_screen_content_tools);
}
if (features->allow_screen_content_tools) {
if (seq_params->force_integer_mv == 2) {
aom_wb_write_bit(wb, features->cur_frame_force_integer_mv);
} else {
assert(features->cur_frame_force_integer_mv ==
seq_params->force_integer_mv);
}
} else {
assert(features->cur_frame_force_integer_mv == 0);
}
int frame_size_override_flag = 0;
if (seq_params->reduced_still_picture_hdr) {
assert(cm->superres_upscaled_width == seq_params->max_frame_width &&
cm->superres_upscaled_height == seq_params->max_frame_height);
} else {
if (seq_params->frame_id_numbers_present_flag) {
int frame_id_len = seq_params->frame_id_length;
aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len);
}
if (cm->superres_upscaled_width > seq_params->max_frame_width ||
cm->superres_upscaled_height > seq_params->max_frame_height) {
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Frame dimensions are larger than the maximum values");
}
frame_size_override_flag =
frame_is_sframe(cm)
? 1
: (cm->superres_upscaled_width != seq_params->max_frame_width ||
cm->superres_upscaled_height != seq_params->max_frame_height);
if (!frame_is_sframe(cm)) aom_wb_write_bit(wb, frame_size_override_flag);
if (seq_params->order_hint_info.enable_order_hint)
aom_wb_write_literal(
wb, current_frame->order_hint,
seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
if (!features->error_resilient_mode && !frame_is_intra_only(cm)) {
aom_wb_write_literal(wb, features->primary_ref_frame, PRIMARY_REF_BITS);
}
}
if (seq_params->decoder_model_info_present_flag) {
aom_wb_write_bit(wb, cm->buffer_removal_time_present);
if (cm->buffer_removal_time_present) {
for (int op_num = 0;
op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) {
if (seq_params->op_params[op_num].decoder_model_param_present_flag) {
if (((seq_params->operating_point_idc[op_num] >>
cm->temporal_layer_id) &
0x1 &&
(seq_params->operating_point_idc[op_num] >>
(cm->spatial_layer_id + 8)) &
0x1) ||
seq_params->operating_point_idc[op_num] == 0) {
aom_wb_write_unsigned_literal(
wb, cm->buffer_removal_times[op_num],
seq_params->decoder_model_info.buffer_removal_time_length);
cm->buffer_removal_times[op_num]++;
if (cm->buffer_removal_times[op_num] == 0) {
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"buffer_removal_time overflowed");
}
}
}
}
}
}
// Shown keyframes and switch-frames automatically refreshes all reference
// frames. For all other frame types, we need to write refresh_frame_flags.
if ((current_frame->frame_type == KEY_FRAME && !cm->show_frame) ||
current_frame->frame_type == INTER_FRAME ||
current_frame->frame_type == INTRA_ONLY_FRAME)
aom_wb_write_literal(wb, current_frame->refresh_frame_flags, REF_FRAMES);
if (!frame_is_intra_only(cm) || current_frame->refresh_frame_flags != 0xff) {
// Write all ref frame order hints if error_resilient_mode == 1
if (features->error_resilient_mode &&
seq_params->order_hint_info.enable_order_hint) {
for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) {
aom_wb_write_literal(
wb, cm->ref_frame_map[ref_idx]->order_hint,
seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
}
}
// Write all ref frame base_qindex if error_resilient_mode == 1. This is
// required by reference mapping.
if (features->error_resilient_mode) {
for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) {
aom_wb_write_literal(wb, cm->ref_frame_map[ref_idx]->base_qindex,
cm->seq_params.bit_depth == AOM_BITS_8
? QINDEX_BITS_UNEXT
: QINDEX_BITS);
}
}
}
if (current_frame->frame_type == KEY_FRAME) {
write_frame_size(cm, frame_size_override_flag, wb);
assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
aom_wb_write_bit(wb, features->allow_intrabc);
#if CONFIG_IBC_SR_EXT
if (features->allow_intrabc) {
aom_wb_write_bit(wb, features->allow_global_intrabc);
if (features->allow_global_intrabc) {
aom_wb_write_bit(wb, features->allow_local_intrabc);
}
#if CONFIG_BVP_IMPROVEMENT
aom_wb_write_primitive_quniform(
wb, MAX_MAX_DRL_BITS - MIN_MAX_DRL_BITS + 1,
features->max_drl_bits - MIN_MAX_DRL_BITS);
#endif // CONFIG_BVP_IMPROVEMENT
}
#endif // CONFIG_IBC_SR_EXT
} else {
if (current_frame->frame_type == INTRA_ONLY_FRAME) {
write_frame_size(cm, frame_size_override_flag, wb);
assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
aom_wb_write_bit(wb, features->allow_intrabc);
#if CONFIG_IBC_SR_EXT
if (features->allow_intrabc) {
aom_wb_write_bit(wb, features->allow_global_intrabc);
if (features->allow_global_intrabc) {
aom_wb_write_bit(wb, features->allow_local_intrabc);
}
#if CONFIG_BVP_IMPROVEMENT
aom_wb_write_primitive_quniform(
wb, MAX_MAX_DRL_BITS - MIN_MAX_DRL_BITS + 1,
features->max_drl_bits - MIN_MAX_DRL_BITS);
#endif // CONFIG_BVP_IMPROVEMENT
}
#endif // CONFIG_IBC_SR_EXT
} else if (current_frame->frame_type == INTER_FRAME ||
frame_is_sframe(cm)) {
MV_REFERENCE_FRAME ref_frame;
// NOTE: Error resilient mode turns off frame_refs_short_signaling
// automatically.
#define FRAME_REFS_SHORT_SIGNALING 0
#if FRAME_REFS_SHORT_SIGNALING
current_frame->frame_refs_short_signaling =
seq_params->order_hint_info.enable_order_hint;
#endif // FRAME_REFS_SHORT_SIGNALING
// By default, no need to signal ref mapping indices in NRS because
// decoder can derive them unless order_hint is not available. Explicit
// signaling happens only when enabled by the command line flag or in
// error resilient mode
const int explicit_ref_frame_map =
cm->features.error_resilient_mode || frame_is_sframe(cm) ||
seq_params->explicit_ref_frame_map ||
!seq_params->order_hint_info.enable_order_hint;
if (explicit_ref_frame_map)
aom_wb_write_literal(wb, cm->ref_frames_info.num_total_refs,
REF_FRAMES_LOG2);
for (ref_frame = 0; ref_frame < cm->ref_frames_info.num_total_refs;
++ref_frame) {
assert(get_ref_frame_map_idx(cm, ref_frame) != INVALID_IDX);
if (explicit_ref_frame_map)
aom_wb_write_literal(wb, get_ref_frame_map_idx(cm, ref_frame),
REF_FRAMES_LOG2);
if (seq_params->frame_id_numbers_present_flag) {
int i = get_ref_frame_map_idx(cm, ref_frame);
int frame_id_len = seq_params->frame_id_length;
int diff_len = seq_params->delta_frame_id_length;
int delta_frame_id_minus_1 =
((cm->current_frame_id - cm->ref_frame_id[i] +
(1 << frame_id_len)) %
(1 << frame_id_len)) -
1;
if (delta_frame_id_minus_1 < 0 ||
delta_frame_id_minus_1 >= (1 << diff_len)) {
aom_internal_error(&cpi->common.error, AOM_CODEC_ERROR,
"Invalid delta_frame_id_minus_1");
}
aom_wb_write_literal(wb, delta_frame_id_minus_1, diff_len);
}
}
if (!features->error_resilient_mode && frame_size_override_flag) {
write_frame_size_with_refs(cm, wb);
} else {
write_frame_size(cm, frame_size_override_flag, wb);
}
if (frame_might_allow_ref_frame_mvs(cm)) {
aom_wb_write_bit(wb, features->allow_ref_frame_mvs);
} else {
assert(features->allow_ref_frame_mvs == 0);
}
#if CONFIG_PEF
if (cm->seq_params.enable_pef) {
aom_wb_write_bit(wb, features->allow_pef);
if (features->allow_pef) {
aom_wb_write_bit(wb, cm->pef_params.pef_delta - 1);
}
}
#endif // CONFIG_PEF
#if CONFIG_TIP
if (cm->seq_params.enable_tip) {
assert(IMPLIES(av1_superres_scaled(cm),
features->tip_frame_mode != TIP_FRAME_AS_OUTPUT));
aom_wb_write_literal(wb, features->tip_frame_mode, 2);
if (features->tip_frame_mode && cm->seq_params.enable_tip_hole_fill) {
aom_wb_write_bit(wb, features->allow_tip_hole_fill);
}
}
if (!cm->seq_params.enable_tip ||
features->tip_frame_mode != TIP_FRAME_AS_OUTPUT) {
#endif // CONFIG_TIP
#if CONFIG_IBC_SR_EXT
if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
aom_wb_write_bit(wb, features->allow_intrabc);
#endif // CONFIG_IBC_SR_EXT
aom_wb_write_primitive_quniform(
wb, MAX_MAX_DRL_BITS - MIN_MAX_DRL_BITS + 1,
features->max_drl_bits - MIN_MAX_DRL_BITS);
#if CONFIG_FLEX_MVRES
if (!features->cur_frame_force_integer_mv) {
aom_wb_write_bit(wb,
features->fr_mv_precision > MV_PRECISION_QTR_PEL);
assert(features->fr_mv_precision ==
features->most_probable_fr_mv_precision);
}
#if CONFIG_DEBUG
else {
assert(features->fr_mv_precision == MV_PRECISION_ONE_PEL);
}
assert(IMPLIES(features->cur_frame_force_integer_mv,
features->fr_mv_precision == MV_PRECISION_ONE_PEL));
#endif
#else
if (!features->cur_frame_force_integer_mv) {
aom_wb_write_bit(wb, features->allow_high_precision_mv);
}
#endif
write_frame_interp_filter(features->interp_filter, wb);
#if CONFIG_EXTENDED_WARP_PREDICTION
int seq_enabled_motion_modes = seq_params->seq_enabled_motion_modes;
int frame_enabled_motion_modes = features->enabled_motion_modes;
assert((frame_enabled_motion_modes & (1 << SIMPLE_TRANSLATION)) != 0);
for (int motion_mode = INTERINTRA; motion_mode < MOTION_MODES;
motion_mode++) {
if (seq_enabled_motion_modes & (1 << motion_mode)) {
int enabled =
(frame_enabled_motion_modes & (1 << motion_mode)) != 0 ? 1 : 0;
aom_wb_write_bit(wb, enabled);
} else {
assert((frame_enabled_motion_modes & (1 << motion_mode)) == 0);
}
}
#else
aom_wb_write_bit(wb, features->switchable_motion_mode);
#endif // CONFIG_EXTENDED_WARP_PREDICTION
#if CONFIG_OPTFLOW_REFINEMENT
if (cm->seq_params.enable_opfl_refine == AOM_OPFL_REFINE_AUTO) {
aom_wb_write_literal(wb, features->opfl_refine_type, 2);
}
#endif // CONFIG_OPTFLOW_REFINEMENT
#if CONFIG_TIP
}
#endif // CONFIG_TIP
}
}
#if CONFIG_TIP
if (features->tip_frame_mode == TIP_FRAME_AS_OUTPUT) {
aom_wb_write_literal(wb, quant_params->base_qindex,
cm->seq_params.bit_depth == AOM_BITS_8
? QINDEX_BITS_UNEXT
: QINDEX_BITS);
write_tile_info(cm, saved_wb, wb);
if (seq_params->film_grain_params_present &&
(cm->show_frame || cm->showable_frame))
write_film_grain_params(cpi, wb);
return;
}
#endif // CONFIG_TIP
const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) &&
!(features->disable_cdf_update);
if (cm->tiles.large_scale)
assert(features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
if (might_bwd_adapt) {
aom_wb_write_bit(
wb, features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
}
write_tile_info(cm, saved_wb, wb);
encode_quantization(quant_params, av1_num_planes(cm),
cm->seq_params.bit_depth,
cm->seq_params.separate_uv_delta_q, wb);
encode_segmentation(cm, xd, wb);
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
if (delta_q_info->delta_q_present_flag) assert(quant_params->base_qindex > 0);
if (quant_params->base_qindex > 0) {
aom_wb_write_bit(wb, delta_q_info->delta_q_present_flag);
if (delta_q_info->delta_q_present_flag) {
aom_wb_write_literal(wb, get_msb(delta_q_info->delta_q_res), 2);
xd->current_base_qindex = quant_params->base_qindex;
if (is_global_intrabc_allowed(cm))
assert(delta_q_info->delta_lf_present_flag == 0);
else
aom_wb_write_bit(wb, delta_q_info->delta_lf_present_flag);
if (delta_q_info->delta_lf_present_flag) {
aom_wb_write_literal(wb, get_msb(delta_q_info->delta_lf_res), 2);
aom_wb_write_bit(wb, delta_q_info->delta_lf_multi);
av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
}
}
}
if (features->all_lossless) {
assert(!av1_superres_scaled(cm));
} else {
if (!features->coded_lossless) {
encode_loopfilter(cm, wb);
encode_cdef(cm, wb);
}
encode_restoration_mode(cm, wb);
#if CONFIG_CCSO
if (!features->coded_lossless && cm->seq_params.enable_ccso) {
encode_ccso(cm, wb);
}
#endif
}
#if CONFIG_PAR_HIDING
if (features->coded_lossless || !cm->seq_params.enable_parity_hiding) {
assert(features->allow_parity_hiding == false);
} else {
aom_wb_write_bit(wb, features->allow_parity_hiding);
}
#endif // CONFIG_PAR_HIDING
// Write TX mode
if (features->coded_lossless)
assert(features->tx_mode == ONLY_4X4);
else
aom_wb_write_bit(wb, features->tx_mode == TX_MODE_SELECT);
if (!frame_is_intra_only(cm)) {
const int use_hybrid_pred =
current_frame->reference_mode == REFERENCE_MODE_SELECT;
aom_wb_write_bit(wb, use_hybrid_pred);
}
if (current_frame->skip_mode_info.skip_mode_allowed)
aom_wb_write_bit(wb, current_frame->skip_mode_info.skip_mode_flag);
#if !CONFIG_EXTENDED_WARP_PREDICTION
if (frame_might_allow_warped_motion(cm))
aom_wb_write_bit(wb, features->allow_warped_motion);
else
assert(!features->allow_warped_motion);
#endif // !CONFIG_EXTENDED_WARP_PREDICTION
#if CONFIG_BAWP
if (!frame_is_intra_only(cm) && seq_params->enable_bawp)
aom_wb_write_bit(wb, features->enable_bawp);
#endif // CONFIG_BAWP
aom_wb_write_bit(wb, features->reduced_tx_set_used);
if (!frame_is_intra_only(cm)) write_global_motion(cpi, wb);
if (seq_params->film_grain_params_present &&
(cm->show_frame || cm->showable_frame))
write_film_grain_params(cpi, wb);
if (cm->tiles.large_scale) write_ext_tile_info(cm, saved_wb, wb);
}
static int choose_size_bytes(uint32_t size, int spare_msbs) {
// Choose the number of bytes required to represent size, without
// using the 'spare_msbs' number of most significant bits.
// Make sure we will fit in 4 bytes to start with..
if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1;
// Normalise to 32 bits
size <<= spare_msbs;
if (size >> 24 != 0)
return 4;
else if (size >> 16 != 0)
return 3;
else if (size >> 8 != 0)
return 2;
else
return 1;
}
static AOM_INLINE void mem_put_varsize(uint8_t *const dst, const int sz,
const int val) {
switch (sz) {
case 1: dst[0] = (uint8_t)(val & 0xff); break;
case 2: mem_put_le16(dst, val); break;
case 3: mem_put_le24(dst, val); break;
case 4: mem_put_le32(dst, val); break;
default: assert(0 && "Invalid size"); break;
}
}
static int remux_tiles(const CommonTileParams *const tiles, uint8_t *dst,
const uint32_t data_size, const uint32_t max_tile_size,
const uint32_t max_tile_col_size,
int *const tile_size_bytes,
int *const tile_col_size_bytes) {
// Choose the tile size bytes (tsb) and tile column size bytes (tcsb)
int tsb;
int tcsb;
if (tiles->large_scale) {
// The top bit in the tile size field indicates tile copy mode, so we
// have 1 less bit to code the tile size
tsb = choose_size_bytes(max_tile_size, 1);
tcsb = choose_size_bytes(max_tile_col_size, 0);
} else {
tsb = choose_size_bytes(max_tile_size, 0);
tcsb = 4; // This is ignored
(void)max_tile_col_size;
}
assert(tsb > 0);
assert(tcsb > 0);
*tile_size_bytes = tsb;
*tile_col_size_bytes = tcsb;
if (tsb == 4 && tcsb == 4) return data_size;
uint32_t wpos = 0;
uint32_t rpos = 0;
if (tiles->large_scale) {
int tile_row;
int tile_col;
for (tile_col = 0; tile_col < tiles->cols; tile_col++) {
// All but the last column has a column header
if (tile_col < tiles->cols - 1) {
uint32_t tile_col_size = mem_get_le32(dst + rpos);
rpos += 4;
// Adjust the tile column size by the number of bytes removed
// from the tile size fields.
tile_col_size -= (4 - tsb) * tiles->rows;
mem_put_varsize(dst + wpos, tcsb, tile_col_size);
wpos += tcsb;
}
for (tile_row = 0; tile_row < tiles->rows; tile_row++) {
// All, including the last row has a header
uint32_t tile_header = mem_get_le32(dst + rpos);
rpos += 4;
// If this is a copy tile, we need to shift the MSB to the
// top bit of the new width, and there is no data to copy.
if (tile_header >> 31 != 0) {
if (tsb < 4) tile_header >>= 32 - 8 * tsb;
mem_put_varsize(dst + wpos, tsb, tile_header);
wpos += tsb;
} else {
mem_put_varsize(dst + wpos, tsb, tile_header);
wpos += tsb;
tile_header += AV1_MIN_TILE_SIZE_BYTES;
memmove(dst + wpos, dst + rpos, tile_header);
rpos += tile_header;
wpos += tile_header;
}
}
}
assert(rpos > wpos);
assert(rpos == data_size);
return wpos;
}
const int n_tiles = tiles->cols * tiles->rows;
int n;
for (n = 0; n < n_tiles; n++) {
int tile_size;
if (n == n_tiles - 1) {
tile_size = data_size - rpos;
} else {
tile_size = mem_get_le32(dst + rpos);
rpos += 4;
mem_put_varsize(dst + wpos, tsb, tile_size);
tile_size += AV1_MIN_TILE_SIZE_BYTES;
wpos += tsb;
}
memmove(dst + wpos, dst + rpos, tile_size);
rpos += tile_size;
wpos += tile_size;
}
assert(rpos > wpos);
assert(rpos == data_size);
return wpos;
}
uint32_t av1_write_obu_header(AV1LevelParams *const level_params,
OBU_TYPE obu_type, int obu_extension,
uint8_t *const dst) {
if (level_params->keep_level_stats &&
(obu_type == OBU_FRAME || obu_type == OBU_FRAME_HEADER))
++level_params->frame_header_count;
struct aom_write_bit_buffer wb = { dst, 0 };
uint32_t size = 0;
aom_wb_write_literal(&wb, 0, 1); // forbidden bit.
aom_wb_write_literal(&wb, (int)obu_type, 4);
aom_wb_write_literal(&wb, obu_extension ? 1 : 0, 1);
aom_wb_write_literal(&wb, 1, 1); // obu_has_payload_length_field
aom_wb_write_literal(&wb, 0, 1); // reserved
if (obu_extension) {
aom_wb_write_literal(&wb, obu_extension & 0xFF, 8);
}
size = aom_wb_bytes_written(&wb);
return size;
}
int av1_write_uleb_obu_size(size_t obu_header_size, size_t obu_payload_size,
uint8_t *dest) {
const size_t offset = obu_header_size;
size_t coded_obu_size = 0;
const uint32_t obu_size = (uint32_t)obu_payload_size;
assert(obu_size == obu_payload_size);
if (aom_uleb_encode(obu_size, sizeof(obu_size), dest + offset,
&coded_obu_size) != 0) {
return AOM_CODEC_ERROR;
}
return AOM_CODEC_OK;
}
static size_t obu_memmove(size_t obu_header_size, size_t obu_payload_size,
uint8_t *data) {
const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size);
const size_t move_dst_offset = length_field_size + obu_header_size;
const size_t move_src_offset = obu_header_size;
const size_t move_size = obu_payload_size;
memmove(data + move_dst_offset, data + move_src_offset, move_size);
return length_field_size;
}
static AOM_INLINE void add_trailing_bits(struct aom_write_bit_buffer *wb) {
if (aom_wb_is_byte_aligned(wb)) {
aom_wb_write_literal(wb, 0x80, 8);
} else {
// assumes that the other bits are already 0s
aom_wb_write_bit(wb, 1);
}
}
static AOM_INLINE void write_bitstream_level(AV1_LEVEL seq_level_idx,
struct aom_write_bit_buffer *wb) {
assert(is_valid_seq_level_idx(seq_level_idx));
aom_wb_write_literal(wb, seq_level_idx, LEVEL_BITS);
}
uint32_t av1_write_sequence_header_obu(const SequenceHeader *seq_params,
uint8_t *const dst) {
struct aom_write_bit_buffer wb = { dst, 0 };
uint32_t size = 0;
write_profile(seq_params->profile, &wb);
// Still picture or not
aom_wb_write_bit(&wb, seq_params->still_picture);
assert(IMPLIES(!seq_params->still_picture,
!seq_params->reduced_still_picture_hdr));
// whether to use reduced still picture header
aom_wb_write_bit(&wb, seq_params->reduced_still_picture_hdr);
if (seq_params->reduced_still_picture_hdr) {
assert(seq_params->timing_info_present == 0);
assert(seq_params->decoder_model_info_present_flag == 0);
assert(seq_params->display_model_info_present_flag == 0);
write_bitstream_level(seq_params->seq_level_idx[0], &wb);
} else {
aom_wb_write_bit(
&wb, seq_params->timing_info_present); // timing info present flag
if (seq_params->timing_info_present) {
// timing_info
write_timing_info_header(&seq_params->timing_info, &wb);
aom_wb_write_bit(&wb, seq_params->decoder_model_info_present_flag);
if (seq_params->decoder_model_info_present_flag) {
write_decoder_model_info(&seq_params->decoder_model_info, &wb);
}
}
aom_wb_write_bit(&wb, seq_params->display_model_info_present_flag);
aom_wb_write_literal(&wb, seq_params->operating_points_cnt_minus_1,
OP_POINTS_CNT_MINUS_1_BITS);
int i;
for (i = 0; i < seq_params->operating_points_cnt_minus_1 + 1; i++) {
aom_wb_write_literal(&wb, seq_params->operating_point_idc[i],
OP_POINTS_IDC_BITS);
write_bitstream_level(seq_params->seq_level_idx[i], &wb);
if (seq_params->seq_level_idx[i] >= SEQ_LEVEL_4_0)
aom_wb_write_bit(&wb, seq_params->tier[i]);
if (seq_params->decoder_model_info_present_flag) {
aom_wb_write_bit(
&wb, seq_params->op_params[i].decoder_model_param_present_flag);
if (seq_params->op_params[i].decoder_model_param_present_flag) {
write_dec_model_op_parameters(
&seq_params->op_params[i],
seq_params->decoder_model_info
.encoder_decoder_buffer_delay_length,
&wb);
}
}
if (seq_params->display_model_info_present_flag) {
aom_wb_write_bit(
&wb, seq_params->op_params[i].display_model_param_present_flag);
if (seq_params->op_params[i].display_model_param_present_flag) {
assert(seq_params->op_params[i].initial_display_delay <= 10);
aom_wb_write_literal(
&wb, seq_params->op_params[i].initial_display_delay - 1, 4);
}
}
}
}
write_sequence_header(seq_params, &wb);
write_color_config(seq_params, &wb);
aom_wb_write_bit(&wb, seq_params->film_grain_params_present);
// Sequence header for coding tools beyond AV1
write_sequence_header_beyond_av1(seq_params, &wb);
add_trailing_bits(&wb);
size = aom_wb_bytes_written(&wb);
return size;
}
static uint32_t write_frame_header_obu(AV1_COMP *cpi,
struct aom_write_bit_buffer *saved_wb,
uint8_t *const dst,
int append_trailing_bits) {
struct aom_write_bit_buffer wb = { dst, 0 };
write_uncompressed_header_obu(cpi, saved_wb, &wb);
if (append_trailing_bits) add_trailing_bits(&wb);
return aom_wb_bytes_written(&wb);
}
static uint32_t write_tile_group_header(uint8_t *const dst, int start_tile,
int end_tile, int tiles_log2,
int tile_start_and_end_present_flag) {
struct aom_write_bit_buffer wb = { dst, 0 };
uint32_t size = 0;
if (!tiles_log2) return size;
aom_wb_write_bit(&wb, tile_start_and_end_present_flag);
if (tile_start_and_end_present_flag) {
aom_wb_write_literal(&wb, start_tile, tiles_log2);
aom_wb_write_literal(&wb, end_tile, tiles_log2);
}
size = aom_wb_bytes_written(&wb);
return size;
}
typedef struct {
uint8_t *frame_header;
size_t obu_header_byte_offset;
size_t total_length;
} FrameHeaderInfo;
extern void av1_print_uncompressed_frame_header(const uint8_t *data, int size,
const char *filename);
static uint32_t write_tiles_in_tg_obus(AV1_COMP *const cpi, uint8_t *const dst,
struct aom_write_bit_buffer *saved_wb,
uint8_t obu_extension_header,
const FrameHeaderInfo *fh_info,
int *const largest_tile_id) {
AV1_COMMON *const cm = &cpi->common;
const CommonTileParams *const tiles = &cm->tiles;
AV1LevelParams *const level_params = &cpi->level_params;
aom_writer mode_bc;
int tile_row, tile_col;
// Store the location and size of each tile's data in the bitstream:
TileBufferEnc tile_buffers[MAX_TILE_ROWS][MAX_TILE_COLS];
uint32_t total_size = 0;
const int tile_cols = tiles->cols;
const int tile_rows = tiles->rows;
unsigned int tile_size = 0;
unsigned int max_tile_size = 0;
unsigned int max_tile_col_size = 0;
const int n_log2_tiles = tiles->log2_rows + tiles->log2_cols;
// Fixed size tile groups for the moment
const int num_tg_hdrs = cpi->num_tg;
const int tg_size =
(tiles->large_scale)
? 1
: (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs;
int tile_count = 0;
int curr_tg_data_size = 0;
uint8_t *data = dst;
int new_tg = 1;
const int have_tiles = tile_cols * tile_rows > 1;
int first_tg = 1;
*largest_tile_id = 0;
if (tiles->large_scale) {
// For large_scale_tile case, we always have only one tile group, so it can
// be written as an OBU_FRAME.
const OBU_TYPE obu_type = OBU_FRAME;
const uint32_t tg_hdr_size =
av1_write_obu_header(level_params, obu_type, 0, data);
data += tg_hdr_size;
const uint32_t frame_header_size =
write_frame_header_obu(cpi, saved_wb, data, 0);
data += frame_header_size;
total_size += frame_header_size;
// (yunqing) This test ensures the correctness of large scale tile coding.
if (cpi->oxcf.tile_cfg.enable_ext_tile_debug) {
char fn[20] = "./fh";
fn[4] = cm->current_frame.frame_number / 100 + '0';
fn[5] = (cm->current_frame.frame_number % 100) / 10 + '0';
fn[6] = (cm->current_frame.frame_number % 10) + '0';
fn[7] = '\0';
av1_print_uncompressed_frame_header(data - frame_header_size,
frame_header_size, fn);
}
int tile_size_bytes = 0;
int tile_col_size_bytes = 0;
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
TileInfo tile_info;
const int is_last_col = (tile_col == tile_cols - 1);
const uint32_t col_offset = total_size;
av1_tile_set_col(&tile_info, cm, tile_col);
// The last column does not have a column header
if (!is_last_col) total_size += 4;
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col];
const int data_offset = have_tiles ? 4 : 0;
const int tile_idx = tile_row * tile_cols + tile_col;
TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
av1_tile_set_row(&tile_info, cm, tile_row);
buf->data = dst + total_size + tg_hdr_size;
// Is CONFIG_EXT_TILE = 1, every tile in the row has a header,
// even for the last one, unless no tiling is used at all.
total_size += data_offset;
cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx;
mode_bc.allow_update_cdf = !tiles->large_scale;
mode_bc.allow_update_cdf =
mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;
aom_start_encode(&mode_bc, buf->data + data_offset);
write_modes(cpi, &tile_info, &mode_bc, tile_row, tile_col);
aom_stop_encode(&mode_bc);
tile_size = mode_bc.pos;
buf->size = tile_size;
// Record the maximum tile size we see, so we can compact headers later.
if (tile_size > max_tile_size) {
max_tile_size = tile_size;
*largest_tile_id = tile_cols * tile_row + tile_col;
}
if (have_tiles) {
// tile header: size of this tile, or copy offset
uint32_t tile_header = tile_size - AV1_MIN_TILE_SIZE_BYTES;
const int tile_copy_mode =
((AOMMAX(tiles->width, tiles->height) << MI_SIZE_LOG2) <= 256)
? 1
: 0;
// If tile_copy_mode = 1, check if this tile is a copy tile.
// Very low chances to have copy tiles on the key frames, so don't
// search on key frames to reduce unnecessary search.
if (cm->current_frame.frame_type != KEY_FRAME && tile_copy_mode) {
const int identical_tile_offset =
find_identical_tile(tile_row, tile_col, tile_buffers);
// Indicate a copy-tile by setting the most significant bit.
// The row-offset to copy from is stored in the highest byte.
// remux_tiles will move these around later
if (identical_tile_offset > 0) {
tile_size = 0;
tile_header = identical_tile_offset | 0x80;
tile_header <<= 24;
}
}
mem_put_le32(buf->data, tile_header);
}
total_size += tile_size;
}
if (!is_last_col) {
uint32_t col_size = total_size - col_offset - 4;
mem_put_le32(dst + col_offset + tg_hdr_size, col_size);
// Record the maximum tile column size we see.
max_tile_col_size = AOMMAX(max_tile_col_size, col_size);
}
}
if (have_tiles) {
total_size = remux_tiles(tiles, data, total_size - frame_header_size,
max_tile_size, max_tile_col_size,
&tile_size_bytes, &tile_col_size_bytes);
total_size += frame_header_size;
}
// In EXT_TILE case, only use 1 tile group. Follow the obu syntax, write
// current tile group size before tile data(include tile column header).
// Tile group size doesn't include the bytes storing tg size.
total_size += tg_hdr_size;
const uint32_t obu_payload_size = total_size - tg_hdr_size;
const size_t length_field_size =
obu_memmove(tg_hdr_size, obu_payload_size, dst);
if (av1_write_uleb_obu_size(tg_hdr_size, obu_payload_size, dst) !=
AOM_CODEC_OK) {
assert(0);
}
total_size += (uint32_t)length_field_size;
saved_wb->bit_buffer += length_field_size;
// Now fill in the gaps in the uncompressed header.
if (have_tiles) {
assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4);
aom_wb_overwrite_literal(saved_wb, tile_col_size_bytes - 1, 2);
assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
}
return total_size;
}
uint32_t obu_header_size = 0;
uint8_t *tile_data_start = dst + total_size;
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
TileInfo tile_info;
av1_tile_set_row(&tile_info, cm, tile_row);
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
const int tile_idx = tile_row * tile_cols + tile_col;
TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col];
TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
int is_last_tile_in_tg = 0;
if (new_tg) {
data = dst + total_size;
// A new tile group begins at this tile. Write the obu header and
// tile group header
const OBU_TYPE obu_type =
(num_tg_hdrs == 1) ? OBU_FRAME : OBU_TILE_GROUP;
curr_tg_data_size = av1_write_obu_header(level_params, obu_type,
obu_extension_header, data);
obu_header_size = curr_tg_data_size;
if (num_tg_hdrs == 1) {
curr_tg_data_size += write_frame_header_obu(
cpi, saved_wb, data + curr_tg_data_size, 0);
}
curr_tg_data_size += write_tile_group_header(
data + curr_tg_data_size, tile_idx,
AOMMIN(tile_idx + tg_size - 1, tile_cols * tile_rows - 1),
n_log2_tiles, cpi->num_tg > 1);
total_size += curr_tg_data_size;
tile_data_start += curr_tg_data_size;
new_tg = 0;
tile_count = 0;
}
tile_count++;
av1_tile_set_col(&tile_info, cm, tile_col);
if (tile_count == tg_size || tile_idx == (tile_cols * tile_rows - 1)) {
is_last_tile_in_tg = 1;
new_tg = 1;
} else {
is_last_tile_in_tg = 0;
}
buf->data = dst + total_size;
// The last tile of the tile group does not have a header.
if (!is_last_tile_in_tg) total_size += 4;
cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx;
mode_bc.allow_update_cdf = 1;
mode_bc.allow_update_cdf =
mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;
const int num_planes = av1_num_planes(cm);
#if CONFIG_WIENER_NONSEP
int num_filter_classes[MAX_MB_PLANE];
for (int p = 0; p < num_planes; ++p)
num_filter_classes[p] = cm->rst_info[p].num_filter_classes;
#endif // CONFIG_WIENER_NONSEP
av1_reset_loop_restoration(&cpi->td.mb.e_mbd, 0, num_planes
#if CONFIG_WIENER_NONSEP
,
num_filter_classes
#endif // CONFIG_WIENER_NONSEP
);
aom_start_encode(&mode_bc, dst + total_size);
write_modes(cpi, &tile_info, &mode_bc, tile_row, tile_col);
aom_stop_encode(&mode_bc);
tile_size = mode_bc.pos;
assert(tile_size >= AV1_MIN_TILE_SIZE_BYTES);
curr_tg_data_size += (tile_size + (is_last_tile_in_tg ? 0 : 4));
buf->size = tile_size;
if (tile_size > max_tile_size) {
*largest_tile_id = tile_cols * tile_row + tile_col;
max_tile_size = tile_size;
}
if (!is_last_tile_in_tg) {
// size of this tile
mem_put_le32(buf->data, tile_size - AV1_MIN_TILE_SIZE_BYTES);
} else {
// write current tile group size
const uint32_t obu_payload_size = curr_tg_data_size - obu_header_size;
const size_t length_field_size =
obu_memmove(obu_header_size, obu_payload_size, data);
if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
AOM_CODEC_OK) {
assert(0);
}
curr_tg_data_size += (int)length_field_size;
total_size += (uint32_t)length_field_size;
tile_data_start += length_field_size;
if (num_tg_hdrs == 1) {
// if this tg is combined with the frame header then update saved
// frame header base offset accroding to length field size
saved_wb->bit_buffer += length_field_size;
}
if (!first_tg && cm->features.error_resilient_mode) {
// Make room for a duplicate Frame Header OBU.
memmove(data + fh_info->total_length, data, curr_tg_data_size);
// Insert a copy of the Frame Header OBU.
memcpy(data, fh_info->frame_header, fh_info->total_length);
// Force context update tile to be the first tile in error
// resiliant mode as the duplicate frame headers will have
// context_update_tile_id set to 0
*largest_tile_id = 0;
// Rewrite the OBU header to change the OBU type to Redundant Frame
// Header.
av1_write_obu_header(level_params, OBU_REDUNDANT_FRAME_HEADER,
obu_extension_header,
&data[fh_info->obu_header_byte_offset]);
data += fh_info->total_length;
curr_tg_data_size += (int)(fh_info->total_length);
total_size += (uint32_t)(fh_info->total_length);
}
first_tg = 0;
}
total_size += tile_size;
}
}
if (have_tiles) {
// Fill in context_update_tile_id indicating the tile to use for the
// cdf update. The encoder currently sets it to the largest tile
// (but is up to the encoder)
aom_wb_overwrite_literal(saved_wb, *largest_tile_id,
tiles->log2_cols + tiles->log2_rows);
// If more than one tile group. tile_size_bytes takes the default value 4
// and does not need to be set. For a single tile group it is set in the
// section below.
if (num_tg_hdrs == 1) {
int tile_size_bytes = 4, unused;
const uint32_t tile_data_offset = (uint32_t)(tile_data_start - dst);
const uint32_t tile_data_size = total_size - tile_data_offset;
total_size =
remux_tiles(tiles, tile_data_start, tile_data_size, max_tile_size,
max_tile_col_size, &tile_size_bytes, &unused);
total_size += tile_data_offset;
assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
// Update the OBU length if remux_tiles() reduced the size.
uint64_t payload_size;
size_t length_field_size;
int res =
aom_uleb_decode(dst + obu_header_size, total_size - obu_header_size,
&payload_size, &length_field_size);
assert(res == 0);
(void)res;
const uint64_t new_payload_size =
total_size - obu_header_size - length_field_size;
if (new_payload_size != payload_size) {
size_t new_length_field_size;
res = aom_uleb_encode(new_payload_size, length_field_size,
dst + obu_header_size, &new_length_field_size);
assert(res == 0);
if (new_length_field_size < length_field_size) {
const size_t src_offset = obu_header_size + length_field_size;
const size_t dst_offset = obu_header_size + new_length_field_size;
memmove(dst + dst_offset, dst + src_offset, (size_t)payload_size);
total_size -= (int)(length_field_size - new_length_field_size);
}
}
}
}
return total_size;
}
static size_t av1_write_metadata_obu(const aom_metadata_t *metadata,
uint8_t *const dst) {
size_t coded_metadata_size = 0;
const uint64_t metadata_type = (uint64_t)metadata->type;
if (aom_uleb_encode(metadata_type, sizeof(metadata_type), dst,
&coded_metadata_size) != 0) {
return 0;
}
memcpy(dst + coded_metadata_size, metadata->payload, metadata->sz);
// Add trailing bits.
dst[coded_metadata_size + metadata->sz] = 0x80;
return (uint32_t)(coded_metadata_size + metadata->sz + 1);
}
static size_t av1_write_metadata_array(AV1_COMP *const cpi, uint8_t *dst) {
if (!cpi->source) return 0;
AV1_COMMON *const cm = &cpi->common;
aom_metadata_array_t *arr = cpi->source->metadata;
if (!arr) return 0;
size_t obu_header_size = 0;
size_t obu_payload_size = 0;
size_t total_bytes_written = 0;
size_t length_field_size = 0;
for (size_t i = 0; i < arr->sz; i++) {
aom_metadata_t *current_metadata = arr->metadata_array[i];
if (current_metadata && current_metadata->payload) {
if ((cm->current_frame.frame_type == KEY_FRAME &&
current_metadata->insert_flag == AOM_MIF_KEY_FRAME) ||
(cm->current_frame.frame_type != KEY_FRAME &&
current_metadata->insert_flag == AOM_MIF_NON_KEY_FRAME) ||
current_metadata->insert_flag == AOM_MIF_ANY_FRAME) {
obu_header_size =
av1_write_obu_header(&cpi->level_params, OBU_METADATA, 0, dst);
obu_payload_size =
av1_write_metadata_obu(current_metadata, dst + obu_header_size);
length_field_size = obu_memmove(obu_header_size, obu_payload_size, dst);
if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, dst) ==
AOM_CODEC_OK) {
const size_t obu_size = obu_header_size + obu_payload_size;
dst += obu_size + length_field_size;
total_bytes_written += obu_size + length_field_size;
} else {
aom_internal_error(&cpi->common.error, AOM_CODEC_ERROR,
"Error writing metadata OBU size");
}
}
}
}
return total_bytes_written;
}
static void write_frame_hash(AV1_COMP *const cpi,
struct aom_write_bit_buffer *wb,
aom_image_t *img) {
MD5Context md5_ctx;
unsigned char md5_digest[16];
const int yuv[3] = { AOM_PLANE_Y, AOM_PLANE_U, AOM_PLANE_V };
const int planes = img->monochrome ? 1 : 3;
if (cpi->oxcf.tool_cfg.frame_hash_per_plane) {
for (int i = 0; i < planes; i++) {
MD5Init(&md5_ctx);
raw_update_image_md5(img, &yuv[i], 1, &md5_ctx);
MD5Final(md5_digest, &md5_ctx);
for (size_t j = 0; j < sizeof(md5_digest); j++)
aom_wb_write_literal(wb, md5_digest[j], 8);
}
} else {
MD5Init(&md5_ctx);
raw_update_image_md5(img, yuv, planes, &md5_ctx);
MD5Final(md5_digest, &md5_ctx);
for (size_t i = 0; i < sizeof(md5_digest); i++)
aom_wb_write_literal(wb, md5_digest[i], 8);
}
}
static size_t av1_write_frame_hash_metadata(
AV1_COMP *const cpi, uint8_t *dst,
const aom_film_grain_t *const grain_params) {
if (!cpi->source) return 0;
AV1_COMMON *const cm = &cpi->common;
aom_image_t img;
unsigned char
payload[49]; // max three hash values per plane (48 bytes) + 1 bytes
struct aom_write_bit_buffer wb = { payload, 0 };
yuvconfig2image(&img, &cm->cur_frame->buf, NULL);
aom_wb_write_literal(&wb, 0, 4); // hash_type, 0 = md5
aom_wb_write_literal(&wb, cpi->oxcf.tool_cfg.frame_hash_per_plane, 1);
aom_wb_write_literal(&wb, !!grain_params, 1);
aom_wb_write_literal(&wb, 0, 2);
if (grain_params) {
const int w_even = ALIGN_POWER_OF_TWO(img.d_w, 1);
const int h_even = ALIGN_POWER_OF_TWO(img.d_h, 1);
aom_image_t *grain_img = aom_img_alloc(NULL, img.fmt, w_even, h_even, 32);
if (!grain_img) {
aom_internal_error(&cpi->common.error, AOM_CODEC_MEM_ERROR,
"Error allocating film grain image");
}
if (av1_add_film_grain(grain_params, &img, grain_img)) {
aom_internal_error(&cpi->common.error, AOM_CODEC_MEM_ERROR,
"Grain systhesis failed");
}
write_frame_hash(cpi, &wb, grain_img);
aom_img_free(grain_img);
} else {
write_frame_hash(cpi, &wb, &img);
}
aom_metadata_t *metadata =
aom_img_metadata_alloc(OBU_METADATA_TYPE_DECODED_FRAME_HASH, payload,
aom_wb_bytes_written(&wb), AOM_MIF_ANY_FRAME);
if (!metadata) {
aom_internal_error(&cpi->common.error, AOM_CODEC_MEM_ERROR,
"Error allocating metadata");
}
size_t total_bytes_written = 0;
size_t obu_header_size =
av1_write_obu_header(&cpi->level_params, OBU_METADATA, 0, dst);
size_t obu_payload_size =
av1_write_metadata_obu(metadata, dst + obu_header_size);
size_t length_field_size =
obu_memmove(obu_header_size, obu_payload_size, dst);
if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, dst) ==
AOM_CODEC_OK) {
const size_t obu_size = obu_header_size + obu_payload_size;
total_bytes_written += obu_size + length_field_size;
} else {
aom_internal_error(&cpi->common.error, AOM_CODEC_ERROR,
"Error writing metadata OBU size");
}
aom_img_metadata_free(metadata);
return total_bytes_written;
}
int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t *size,
int *const largest_tile_id) {
uint8_t *data = dst;
uint32_t data_size;
AV1_COMMON *const cm = &cpi->common;
AV1LevelParams *const level_params = &cpi->level_params;
uint32_t obu_header_size = 0;
uint32_t obu_payload_size = 0;
FrameHeaderInfo fh_info = { NULL, 0, 0 };
const uint8_t obu_extension_header =
cm->temporal_layer_id << 5 | cm->spatial_layer_id << 3 | 0;
// If no non-zero delta_q has been used, reset delta_q_present_flag
if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) {
cm->delta_q_info.delta_q_present_flag = 0;
}
#if CONFIG_BITSTREAM_DEBUG
bitstream_queue_reset_write();
#endif
level_params->frame_header_count = 0;
// The TD is now written outside the frame encode loop
// write sequence header obu if KEY_FRAME, preceded by 4-byte size
if (cm->current_frame.frame_type == KEY_FRAME && !cpi->no_show_fwd_kf) {
obu_header_size =
av1_write_obu_header(level_params, OBU_SEQUENCE_HEADER, 0, data);
obu_payload_size =
av1_write_sequence_header_obu(&cm->seq_params, data + obu_header_size);
const size_t length_field_size =
obu_memmove(obu_header_size, obu_payload_size, data);
if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
AOM_CODEC_OK) {
return AOM_CODEC_ERROR;
}
data += obu_header_size + obu_payload_size + length_field_size;
}
// write metadata obus before the frame obu that has the show_frame flag set
if (cm->show_frame) data += av1_write_metadata_array(cpi, data);
if (cpi->oxcf.tool_cfg.frame_hash_metadata) {
const aom_film_grain_t *grain_params = &cm->cur_frame->film_grain_params;
const int apply_grain =
cm->seq_params.film_grain_params_present && grain_params->apply_grain;
// write frame hash metadata obu for raw frames before the frame obu that
// has the tile groups
const int write_raw_frame_hash =
((cpi->oxcf.tool_cfg.frame_hash_metadata & 1) ||
((cpi->oxcf.tool_cfg.frame_hash_metadata & 2) && !apply_grain)) &&
(cm->show_frame || cm->showable_frame) &&
!encode_show_existing_frame(cm);
if (write_raw_frame_hash)
data += av1_write_frame_hash_metadata(cpi, data, NULL);
// write frame hash metadata obu for frames with film grain params applied
// before the frame obu that outputs the frame
const int write_grain_frame_hash =
(cpi->oxcf.tool_cfg.frame_hash_metadata & 2) && cm->show_frame &&
apply_grain;
if (write_grain_frame_hash)
data += av1_write_frame_hash_metadata(cpi, data, grain_params);
}
const int write_frame_header =
(cpi->num_tg > 1 || encode_show_existing_frame(cm)
#if CONFIG_TIP
|| (cm->features.tip_frame_mode == TIP_FRAME_AS_OUTPUT)
#endif // CONFIG_TIP
);
struct aom_write_bit_buffer saved_wb = { NULL, 0 };
size_t length_field = 0;
if (write_frame_header) {
// Write Frame Header OBU.
fh_info.frame_header = data;
obu_header_size = av1_write_obu_header(level_params, OBU_FRAME_HEADER,
obu_extension_header, data);
obu_payload_size =
write_frame_header_obu(cpi, &saved_wb, data + obu_header_size, 1);
length_field = obu_memmove(obu_header_size, obu_payload_size, data);
if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
AOM_CODEC_OK) {
return AOM_CODEC_ERROR;
}
fh_info.obu_header_byte_offset = 0;
fh_info.total_length = obu_header_size + obu_payload_size + length_field;
data += fh_info.total_length;
}
if (encode_show_existing_frame(cm)
#if CONFIG_TIP
|| (cm->features.tip_frame_mode == TIP_FRAME_AS_OUTPUT)
#endif // CONFIG_TIP
) {
data_size = 0;
} else {
// Since length_field is determined adaptively after frame header
// encoding, saved_wb must be adjusted accordingly.
saved_wb.bit_buffer += length_field;
// Each tile group obu will be preceded by 4-byte size of the tile group
// obu
data_size = write_tiles_in_tg_obus(
cpi, data, &saved_wb, obu_extension_header, &fh_info, largest_tile_id);
}
data += data_size;
*size = data - dst;
return AOM_CODEC_OK;
}