blob: 55751d678646417d004f99d2546973fd6f23b0bd [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <assert.h>
#include "av1/common/blockd.h"
#include "av1/common/cdef.h"
#include "av1/common/cdef_block.h"
#include "av1/common/cfl.h"
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/seg_common.h"
#include "av1/common/warped_motion.h"
#include "av1/decoder/decodeframe.h"
#include "av1/decoder/decodemv.h"
#include "aom_dsp/aom_dsp_common.h"
#define ACCT_STR __func__
#define DEC_MISMATCH_DEBUG 0
#if !CONFIG_AIMC
static PREDICTION_MODE read_intra_mode(aom_reader *r, aom_cdf_prob *cdf) {
return (PREDICTION_MODE)aom_read_symbol(r, cdf, INTRA_MODES, ACCT_STR);
}
#endif // !CONFIG_AIMC
static void read_cdef(AV1_COMMON *cm, aom_reader *r, MACROBLOCKD *const xd) {
assert(xd->tree_type != CHROMA_PART);
const int skip_txfm = xd->mi[0]->skip_txfm[0];
if (cm->features.coded_lossless) return;
if (is_global_intrabc_allowed(cm)) {
#if CONFIG_FIX_CDEF_SYNTAX
assert(cm->cdef_info.cdef_frame_enable == 0);
#else
assert(cm->cdef_info.cdef_bits == 0);
#endif // CONFIG_FIX_CDEF_SYNTAX
return;
}
#if CONFIG_FIX_CDEF_SYNTAX
if (!cm->cdef_info.cdef_frame_enable) return;
#endif // CONFIG_FIX_CDEF_SYNTAX
// At the start of a superblock, mark that we haven't yet read CDEF strengths
// for any of the CDEF units contained in this superblock.
const int sb_mask = (cm->seq_params.mib_size - 1);
const int mi_row_in_sb = (xd->mi_row & sb_mask);
const int mi_col_in_sb = (xd->mi_col & sb_mask);
if (mi_row_in_sb == 0 && mi_col_in_sb == 0) {
av1_zero(xd->cdef_transmitted);
}
// CDEF unit size is 64x64 irrespective of the superblock size.
const int cdef_size = 1 << MI_IN_CDEF_LINEAR_LOG2;
// Find index of this CDEF unit in this superblock.
const int index = av1_get_cdef_transmitted_index(xd->mi_row, xd->mi_col);
// Read CDEF strength from the first non-skip coding block in this CDEF unit.
if (!xd->cdef_transmitted[index] && !skip_txfm) {
// CDEF strength for this CDEF unit needs to be read into the MB_MODE_INFO
// of the 1st block in this CDEF unit.
const int first_block_mask = ~(cdef_size - 1);
CommonModeInfoParams *const mi_params = &cm->mi_params;
const int grid_idx =
get_mi_grid_idx(mi_params, xd->mi_row & first_block_mask,
xd->mi_col & first_block_mask);
MB_MODE_INFO *const mbmi = mi_params->mi_grid_base[grid_idx];
mbmi->cdef_strength =
aom_read_literal(r, cm->cdef_info.cdef_bits, ACCT_STR);
xd->cdef_transmitted[index] = true;
}
}
#if CONFIG_CCSO
static void read_ccso(AV1_COMMON *cm, aom_reader *r, MACROBLOCKD *const xd) {
if (cm->features.coded_lossless) return;
if (is_global_intrabc_allowed(cm)) return;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int blk_size_y =
(1 << (CCSO_BLK_SIZE + xd->plane[1].subsampling_y - MI_SIZE_LOG2)) - 1;
const int blk_size_x =
(1 << (CCSO_BLK_SIZE + xd->plane[1].subsampling_x - MI_SIZE_LOG2)) - 1;
#if CONFIG_CCSO_EXT
if (!(mi_row & blk_size_y) && !(mi_col & blk_size_x) &&
cm->ccso_info.ccso_enable[0]) {
const int blk_idc =
aom_read_symbol(r, xd->tile_ctx->ccso_cdf[0], 2, ACCT_STR);
xd->ccso_blk_y = blk_idc;
mi_params
->mi_grid_base[(mi_row & ~blk_size_y) * mi_params->mi_stride +
(mi_col & ~blk_size_x)]
->ccso_blk_y = blk_idc;
}
#endif
if (!(mi_row & blk_size_y) && !(mi_col & blk_size_x) &&
#if CONFIG_CCSO_EXT
cm->ccso_info.ccso_enable[1]) {
const int blk_idc =
aom_read_symbol(r, xd->tile_ctx->ccso_cdf[1], 2, ACCT_STR);
#else
cm->ccso_info.ccso_enable[0]) {
const int blk_idc = aom_read_bit(r, ACCT_STR);
#endif
xd->ccso_blk_u = blk_idc;
mi_params
->mi_grid_base[(mi_row & ~blk_size_y) * mi_params->mi_stride +
(mi_col & ~blk_size_x)]
->ccso_blk_u = blk_idc;
}
if (!(mi_row & blk_size_y) && !(mi_col & blk_size_x) &&
#if CONFIG_CCSO_EXT
cm->ccso_info.ccso_enable[2]) {
const int blk_idc =
aom_read_symbol(r, xd->tile_ctx->ccso_cdf[2], 2, ACCT_STR);
#else
cm->ccso_info.ccso_enable[1]) {
const int blk_idc = aom_read_bit(r, ACCT_STR);
#endif
xd->ccso_blk_v = blk_idc;
mi_params
->mi_grid_base[(mi_row & ~blk_size_y) * mi_params->mi_stride +
(mi_col & ~blk_size_x)]
->ccso_blk_v = blk_idc;
}
}
#endif
static int read_delta_qindex(AV1_COMMON *cm, const MACROBLOCKD *xd,
aom_reader *r, MB_MODE_INFO *const mbmi) {
int sign, abs, reduced_delta_qindex = 0;
BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
const int b_col = xd->mi_col & (cm->seq_params.mib_size - 1);
const int b_row = xd->mi_row & (cm->seq_params.mib_size - 1);
const int read_delta_q_flag = (b_col == 0 && b_row == 0);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if ((bsize != cm->seq_params.sb_size ||
mbmi->skip_txfm[xd->tree_type == CHROMA_PART] == 0) &&
read_delta_q_flag) {
abs = aom_read_symbol(r, ec_ctx->delta_q_cdf, DELTA_Q_PROBS + 1, ACCT_STR);
const int smallval = (abs < DELTA_Q_SMALL);
if (!smallval) {
const int rem_bits = aom_read_literal(r, 3, ACCT_STR) + 1;
const int thr = (1 << rem_bits) + 1;
abs = aom_read_literal(r, rem_bits, ACCT_STR) + thr;
}
if (abs) {
sign = aom_read_bit(r, ACCT_STR);
} else {
sign = 1;
}
reduced_delta_qindex = sign ? -abs : abs;
}
return reduced_delta_qindex;
}
static int read_delta_lflevel(const AV1_COMMON *const cm, aom_reader *r,
aom_cdf_prob *const cdf,
const MB_MODE_INFO *const mbmi, int mi_col,
int mi_row, int tree_type) {
int reduced_delta_lflevel = 0;
const int plane_type = (tree_type == CHROMA_PART);
const BLOCK_SIZE bsize = mbmi->sb_type[plane_type];
const int b_col = mi_col & (cm->seq_params.mib_size - 1);
const int b_row = mi_row & (cm->seq_params.mib_size - 1);
const int read_delta_lf_flag = (b_col == 0 && b_row == 0);
if ((bsize != cm->seq_params.sb_size || mbmi->skip_txfm[plane_type] == 0) &&
read_delta_lf_flag) {
int abs = aom_read_symbol(r, cdf, DELTA_LF_PROBS + 1, ACCT_STR);
const int smallval = (abs < DELTA_LF_SMALL);
if (!smallval) {
const int rem_bits = aom_read_literal(r, 3, ACCT_STR) + 1;
const int thr = (1 << rem_bits) + 1;
abs = aom_read_literal(r, rem_bits, ACCT_STR) + thr;
}
const int sign = abs ? aom_read_bit(r, ACCT_STR) : 1;
reduced_delta_lflevel = sign ? -abs : abs;
}
return reduced_delta_lflevel;
}
static uint8_t read_mrl_index(FRAME_CONTEXT *ec_ctx, aom_reader *r) {
const uint8_t mrl_index =
aom_read_symbol(r, ec_ctx->mrl_index_cdf, MRL_LINE_NUMBER, ACCT_STR);
return mrl_index;
}
static uint8_t read_fsc_mode(aom_reader *r, aom_cdf_prob *fsc_cdf) {
const uint8_t fsc_mode = aom_read_symbol(r, fsc_cdf, FSC_MODES, ACCT_STR);
return fsc_mode;
}
#if CONFIG_IMPROVED_CFL
static uint8_t read_cfl_index(FRAME_CONTEXT *ec_ctx, aom_reader *r) {
uint8_t cfl_index =
aom_read_symbol(r, ec_ctx->cfl_index_cdf, CFL_TYPE_COUNT, ACCT_STR);
return cfl_index;
}
#endif
#if !CONFIG_AIMC
static UV_PREDICTION_MODE read_intra_mode_uv(FRAME_CONTEXT *ec_ctx,
aom_reader *r,
CFL_ALLOWED_TYPE cfl_allowed,
PREDICTION_MODE y_mode) {
const UV_PREDICTION_MODE uv_mode =
aom_read_symbol(r, ec_ctx->uv_mode_cdf[cfl_allowed][y_mode],
UV_INTRA_MODES - !cfl_allowed, ACCT_STR);
return uv_mode;
}
#endif // !CONFIG_AIMC
static uint8_t read_cfl_alphas(FRAME_CONTEXT *const ec_ctx, aom_reader *r,
int8_t *signs_out) {
const int8_t joint_sign =
aom_read_symbol(r, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS, "cfl:signs");
uint8_t idx = 0;
// Magnitudes are only coded for nonzero values
if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
idx = (uint8_t)aom_read_symbol(r, cdf_u, CFL_ALPHABET_SIZE, "cfl:alpha_u")
<< CFL_ALPHABET_SIZE_LOG2;
}
if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
idx += (uint8_t)aom_read_symbol(r, cdf_v, CFL_ALPHABET_SIZE, "cfl:alpha_v");
}
*signs_out = joint_sign;
return idx;
}
static INTERINTRA_MODE read_interintra_mode(MACROBLOCKD *xd, aom_reader *r,
int size_group) {
const INTERINTRA_MODE ii_mode = (INTERINTRA_MODE)aom_read_symbol(
r, xd->tile_ctx->interintra_mode_cdf[size_group], INTERINTRA_MODES,
ACCT_STR);
return ii_mode;
}
static PREDICTION_MODE read_inter_mode(FRAME_CONTEXT *ec_ctx, aom_reader *r,
int16_t ctx
#if CONFIG_WARPMV
,
const AV1_COMMON *const cm,
const MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi,
BLOCK_SIZE bsize
#endif // CONFIG_WARPMV
) {
const int16_t ismode_ctx = inter_single_mode_ctx(ctx);
#if CONFIG_WARPMV
int is_warpmv = 0;
if (is_warpmv_mode_allowed(cm, mbmi, bsize)) {
const int16_t iswarpmvmode_ctx = inter_warpmv_mode_ctx(cm, xd, mbmi);
is_warpmv = aom_read_symbol(
r, ec_ctx->inter_warp_mode_cdf[iswarpmvmode_ctx], 2, ACCT_STR);
if (is_warpmv) {
return WARPMV;
}
}
#endif // CONFIG_WARPMV
return SINGLE_INTER_MODE_START +
aom_read_symbol(r, ec_ctx->inter_single_mode_cdf[ismode_ctx],
INTER_SINGLE_MODES, ACCT_STR);
}
static void read_drl_idx(int max_drl_bits, const int16_t mode_ctx,
FRAME_CONTEXT *ec_ctx, DecoderCodingBlock *dcb,
MB_MODE_INFO *mbmi, aom_reader *r) {
MACROBLOCKD *const xd = &dcb->xd;
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
mbmi->ref_mv_idx = 0;
#if !CONFIG_SKIP_MODE_ENHANCEMENT
assert(!mbmi->skip_mode);
#endif // CONFIG_SKIP_MODE_ENHANCEMENT
for (int idx = 0; idx < max_drl_bits; ++idx) {
aom_cdf_prob *drl_cdf =
#if CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
mbmi->skip_mode ? ec_ctx->skip_drl_cdf[AOMMIN(idx, 2)]
: av1_get_drl_cdf(ec_ctx, xd->weight[ref_frame_type],
mode_ctx, idx);
#else
av1_get_drl_cdf(ec_ctx, xd->weight[ref_frame_type], mode_ctx, idx);
#endif // CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
int drl_idx = aom_read_symbol(r, drl_cdf, 2, ACCT_STR);
mbmi->ref_mv_idx = idx + drl_idx;
if (!drl_idx) break;
}
assert(mbmi->ref_mv_idx < max_drl_bits + 1);
}
#if CONFIG_WEDGE_MOD_EXT
static int8_t read_wedge_mode(aom_reader *r, FRAME_CONTEXT *ec_ctx,
const BLOCK_SIZE bsize) {
int wedge_angle_dir =
aom_read_symbol(r, ec_ctx->wedge_angle_dir_cdf[bsize], 2, ACCT_STR);
int wedge_angle = WEDGE_ANGLES;
if (wedge_angle_dir == 0) {
wedge_angle = aom_read_symbol(r, ec_ctx->wedge_angle_0_cdf[bsize],
H_WEDGE_ANGLES, ACCT_STR);
} else {
wedge_angle =
H_WEDGE_ANGLES + aom_read_symbol(r, ec_ctx->wedge_angle_1_cdf[bsize],
H_WEDGE_ANGLES, ACCT_STR);
}
int wedge_dist = 0;
if ((wedge_angle >= H_WEDGE_ANGLES) ||
(wedge_angle == WEDGE_90 || wedge_angle == WEDGE_180)) {
wedge_dist = aom_read_symbol(r, ec_ctx->wedge_dist_cdf2[bsize],
NUM_WEDGE_DIST - 1, ACCT_STR) +
1;
} else {
assert(wedge_angle < H_WEDGE_ANGLES);
wedge_dist = aom_read_symbol(r, ec_ctx->wedge_dist_cdf[bsize],
NUM_WEDGE_DIST, ACCT_STR);
}
return wedge_angle_dist_2_index[wedge_angle][wedge_dist];
}
#endif // CONFIG_WEDGE_MOD_EXT
#if CONFIG_EXTENDED_WARP_PREDICTION
#if CONFIG_WARP_REF_LIST
// read the reference index warp_ref_idx of WRL
static void read_warp_ref_idx(FRAME_CONTEXT *ec_ctx, MB_MODE_INFO *mbmi,
aom_reader *r) {
if (mbmi->max_num_warp_candidates <= 1) {
mbmi->warp_ref_idx = 0;
return;
}
int max_idx_bits = mbmi->max_num_warp_candidates - 1;
for (int bit_idx = 0; bit_idx < max_idx_bits; ++bit_idx) {
aom_cdf_prob *warp_ref_idx_cdf = av1_get_warp_ref_idx_cdf(ec_ctx, bit_idx);
int warp_idx = aom_read_symbol(r, warp_ref_idx_cdf, 2, ACCT_STR);
mbmi->warp_ref_idx = bit_idx + warp_idx;
if (!warp_idx) break;
}
}
#endif // CONFIG_WARP_REF_LIST
// Read the delta for a single warp parameter
// Each delta is coded as a symbol in the range
// -WARP_DELTA_CODED_MAX, ..., 0, ..., +WARP_DELTA_CODED_MAX
static int read_warp_delta_param(const MACROBLOCKD *xd, int index,
aom_reader *r) {
assert(2 <= index && index <= 5);
int index_type = (index == 2 || index == 5) ? 0 : 1;
int coded_value =
aom_read_symbol(r, xd->tile_ctx->warp_delta_param_cdf[index_type],
WARP_DELTA_NUM_SYMBOLS, ACCT_STR);
return (coded_value - WARP_DELTA_CODED_MAX) * WARP_DELTA_STEP;
}
static void read_warp_delta(const AV1_COMMON *cm, const MACROBLOCKD *xd,
MB_MODE_INFO *mbmi, aom_reader *r
#if CONFIG_WARP_REF_LIST
,
WARP_CANDIDATE *warp_param_stack
#endif // CONFIG_WARP_REF_LIST
) {
WarpedMotionParams *params = &mbmi->wm_params[0];
int mi_row = xd->mi_row;
int mi_col = xd->mi_col;
const BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y];
#if CONFIG_WARP_REF_LIST && !CONFIG_WARPMV
read_warp_ref_idx(xd->tile_ctx, mbmi, r);
#endif // CONFIG_WARP_REF_LIST && !CONFIG_WARPMV
// Figure out what parameters to use as a base
WarpedMotionParams base_params;
int_mv center_mv;
av1_get_warp_base_params(cm,
#if !CONFIG_WARP_REF_LIST
xd,
#endif //! CONFIG_WARP_REF_LIST
mbmi,
#if !CONFIG_WARP_REF_LIST
xd->ref_mv_stack[mbmi->ref_frame[0]],
#endif //! CONFIG_WARP_REF_LIST
&base_params, &center_mv
#if CONFIG_WARP_REF_LIST
,
warp_param_stack
#endif // CONFIG_WARP_REF_LIST
);
// TODO(rachelbarker): Allow signaling warp type?
#if CONFIG_WARP_REF_LIST
if (allow_warp_parameter_signaling(mbmi)) {
#endif // CONFIG_WARP_REF_LIST
params->wmtype = ROTZOOM;
params->wmmat[2] = base_params.wmmat[2] + read_warp_delta_param(xd, 2, r);
params->wmmat[3] = base_params.wmmat[3] + read_warp_delta_param(xd, 3, r);
params->wmmat[4] = -params->wmmat[3];
params->wmmat[5] = params->wmmat[2];
#if CONFIG_WARP_REF_LIST
} else {
*params = base_params;
}
#endif // CONFIG_WARP_REF_LIST
av1_reduce_warp_model(params);
int valid = av1_get_shear_params(params);
params->invalid = !valid;
if (!valid) {
#if WARPED_MOTION_DEBUG
printf("Warning: unexpected WARP_DELTA model from aomenc\n");
#endif
return;
}
av1_set_warp_translation(mi_row, mi_col, bsize, center_mv.as_mv, params);
#if CONFIG_C071_SUBBLK_WARPMV
assign_warpmv(cm, xd->submi, bsize, params, mi_row, mi_col);
#endif // CONFIG_C071_SUBBLK_WARPMV
}
static MOTION_MODE read_motion_mode(AV1_COMMON *cm, MACROBLOCKD *xd,
MB_MODE_INFO *mbmi, aom_reader *r) {
const BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y];
#if CONFIG_WARP_REF_LIST
mbmi->max_num_warp_candidates = 0;
#endif // CONFIG_WARP_REF_LIST
const RefCntBuffer *const refbuf = get_ref_frame_buf(cm, mbmi->ref_frame[0]);
const int allowed_motion_modes =
motion_mode_allowed(cm, xd, xd->ref_mv_stack[mbmi->ref_frame[0]], mbmi,
refbuf ? refbuf->base_qindex : -1);
#if CONFIG_WARPMV
if (mbmi->mode == WARPMV) {
if (allowed_motion_modes & (1 << WARPED_CAUSAL)) {
int use_warped_causal = aom_read_symbol(
r, xd->tile_ctx->warped_causal_warpmv_cdf[bsize], 2, ACCT_STR);
if (use_warped_causal) return WARPED_CAUSAL;
}
#if CONFIG_INTERINTRA_WARP
if (allowed_motion_modes & (1 << WARPED_CAUSAL_INTERINTRA)) {
int use_warped_causal_interintra = aom_read_symbol(
r, xd->tile_ctx->warped_causal_interintra_warpmv_cdf[bsize], 2,
ACCT_STR);
if (use_warped_causal_interintra) return WARPED_CAUSAL_INTERINTRA;
}
#endif // CONFIG_INTERINTRA_WARP
return WARP_DELTA;
}
#endif // CONFIG_WARPMV
mbmi->use_wedge_interintra = 0;
if (allowed_motion_modes & (1 << INTERINTRA)) {
const int bsize_group = size_group_lookup[bsize];
const int use_interintra = aom_read_symbol(
r, xd->tile_ctx->interintra_cdf[bsize_group], 2, ACCT_STR);
assert(mbmi->ref_frame[1] == NONE_FRAME);
if (use_interintra) {
const INTERINTRA_MODE interintra_mode =
read_interintra_mode(xd, r, bsize_group);
mbmi->ref_frame[1] = INTRA_FRAME;
mbmi->interintra_mode = interintra_mode;
mbmi->angle_delta[PLANE_TYPE_Y] = 0;
mbmi->angle_delta[PLANE_TYPE_UV] = 0;
mbmi->filter_intra_mode_info.use_filter_intra = 0;
if (av1_is_wedge_used(bsize)) {
mbmi->use_wedge_interintra = aom_read_symbol(
r, xd->tile_ctx->wedge_interintra_cdf[bsize], 2, ACCT_STR);
if (mbmi->use_wedge_interintra) {
#if CONFIG_WEDGE_MOD_EXT
mbmi->interintra_wedge_index =
read_wedge_mode(r, xd->tile_ctx, bsize);
assert(mbmi->interintra_wedge_index != -1);
#else
mbmi->interintra_wedge_index = (int8_t)aom_read_symbol(
r, xd->tile_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES, ACCT_STR);
#endif
}
}
return INTERINTRA;
}
}
if (allowed_motion_modes & (1 << OBMC_CAUSAL)) {
int use_obmc =
aom_read_symbol(r, xd->tile_ctx->obmc_cdf[bsize], 2, ACCT_STR);
if (use_obmc) {
return OBMC_CAUSAL;
}
}
if (allowed_motion_modes & (1 << WARP_EXTEND)) {
const int ctx1 = av1_get_warp_extend_ctx1(xd, mbmi);
const int ctx2 = av1_get_warp_extend_ctx2(xd, mbmi);
int use_warp_extend = aom_read_symbol(
r, xd->tile_ctx->warp_extend_cdf[ctx1][ctx2], 2, ACCT_STR);
if (use_warp_extend) {
return WARP_EXTEND;
}
}
if (allowed_motion_modes & (1 << WARPED_CAUSAL)) {
int use_warped_causal =
aom_read_symbol(r, xd->tile_ctx->warped_causal_cdf[bsize], 2, ACCT_STR);
if (use_warped_causal) return WARPED_CAUSAL;
}
#if CONFIG_INTERINTRA_WARP
if (allowed_motion_modes & (1 << WARPED_CAUSAL_INTERINTRA)) {
int use_warped_causal_interintra = aom_read_symbol(
r, xd->tile_ctx->warped_causal_interintra_cdf[bsize], 2, ACCT_STR);
if (use_warped_causal_interintra) return WARPED_CAUSAL_INTERINTRA;
}
#endif // CONFIG_INTERINTRA_WARP
if (allowed_motion_modes & (1 << WARP_DELTA)) {
int use_warp_delta =
aom_read_symbol(r, xd->tile_ctx->warp_delta_cdf[bsize], 2, ACCT_STR);
if (use_warp_delta) {
mbmi->motion_mode = WARP_DELTA;
#if !CONFIG_WARPMV
#if CONFIG_WARP_REF_LIST
WARP_CANDIDATE warp_param_stack[MAX_WARP_REF_CANDIDATES];
mbmi->max_num_warp_candidates =
(mbmi->mode == GLOBALMV || mbmi->mode == NEARMV)
? 1
: MAX_WARP_REF_CANDIDATES;
av1_find_warp_delta_base_candidates(
xd, mbmi, warp_param_stack,
xd->warp_param_stack[av1_ref_frame_type(mbmi->ref_frame)],
xd->valid_num_warp_candidates[av1_ref_frame_type(mbmi->ref_frame)],
NULL);
#endif // CONFIG_WARP_REF_LIST
read_warp_delta(cm, xd, mbmi, r
#if CONFIG_WARP_REF_LIST
,
warp_param_stack
#endif // CONFIG_WARP_REF_LIST
);
#endif // !CONFIG_WARPMV
return WARP_DELTA;
}
}
return SIMPLE_TRANSLATION;
}
#else
static MOTION_MODE read_motion_mode(AV1_COMMON *cm, MACROBLOCKD *xd,
MB_MODE_INFO *mbmi, aom_reader *r) {
if (mbmi->skip_mode) return SIMPLE_TRANSLATION;
#if CONFIG_TIP
if (is_tip_ref_frame(mbmi->ref_frame[0])) return SIMPLE_TRANSLATION;
#endif // CONFIG_TIP
const MOTION_MODE last_motion_mode_allowed =
motion_mode_allowed(cm, xd, mbmi);
int motion_mode;
if (last_motion_mode_allowed == SIMPLE_TRANSLATION) return SIMPLE_TRANSLATION;
if (last_motion_mode_allowed == OBMC_CAUSAL) {
motion_mode = aom_read_symbol(
r, xd->tile_ctx->obmc_cdf[mbmi->sb_type[PLANE_TYPE_Y]], 2, ACCT_STR);
return (MOTION_MODE)(SIMPLE_TRANSLATION + motion_mode);
} else {
motion_mode = aom_read_symbol(
r, xd->tile_ctx->motion_mode_cdf[mbmi->sb_type[PLANE_TYPE_Y]],
MOTION_MODES, ACCT_STR);
return (MOTION_MODE)(SIMPLE_TRANSLATION + motion_mode);
}
}
#endif // CONFIG_EXTENDED_WARP_PREDICTION
#if CONFIG_IMPROVED_JMVD && CONFIG_JOINT_MVD
// Read scale mode flag for joint mvd coding mode
static PREDICTION_MODE read_jmvd_scale_mode(MACROBLOCKD *xd, aom_reader *r,
MB_MODE_INFO *const mbmi) {
if (!is_joint_mvd_coding_mode(mbmi->mode)) return 0;
#if CONFIG_ADAPTIVE_MVD
const int is_joint_amvd_mode = is_joint_amvd_coding_mode(mbmi->mode);
aom_cdf_prob *jmvd_scale_mode_cdf =
is_joint_amvd_mode ? xd->tile_ctx->jmvd_amvd_scale_mode_cdf
: xd->tile_ctx->jmvd_scale_mode_cdf;
const int jmvd_scale_cnt = is_joint_amvd_mode ? JOINT_AMVD_SCALE_FACTOR_CNT
: JOINT_NEWMV_SCALE_FACTOR_CNT;
const int jmvd_scale_mode =
aom_read_symbol(r, jmvd_scale_mode_cdf, jmvd_scale_cnt, ACCT_STR);
#else
const int jmvd_scale_mode =
aom_read_symbol(r, xd->tile_ctx->jmvd_scale_mode_cdf,
JOINT_NEWMV_SCALE_FACTOR_CNT, ACCT_STR);
#endif // CONFIG_ADAPTIVE_MVD
return jmvd_scale_mode;
}
#endif // CONFIG_IMPROVED_JMVD && CONFIG_JOINT_MVD
static PREDICTION_MODE read_inter_compound_mode(MACROBLOCKD *xd, aom_reader *r,
#if CONFIG_OPTFLOW_REFINEMENT
const AV1_COMMON *cm,
MB_MODE_INFO *const mbmi,
#endif // CONFIG_OPTFLOW_REFINEMNET
int16_t ctx) {
#if CONFIG_OPTFLOW_REFINEMENT
int use_optical_flow = 0;
if (cm->features.opfl_refine_type == REFINE_SWITCHABLE &&
is_opfl_refine_allowed(cm, mbmi)) {
use_optical_flow =
aom_read_symbol(r, xd->tile_ctx->use_optflow_cdf[ctx], 2, ACCT_STR);
}
#endif // CONFIG_OPTFLOW_REFINEMENT
const int mode =
#if CONFIG_OPTFLOW_REFINEMENT
aom_read_symbol(r, xd->tile_ctx->inter_compound_mode_cdf[ctx],
INTER_COMPOUND_REF_TYPES, ACCT_STR);
#else
aom_read_symbol(r, xd->tile_ctx->inter_compound_mode_cdf[ctx],
INTER_COMPOUND_MODES, ACCT_STR);
#endif // CONFIG_OPTFLOW_REFINEMENT
#if CONFIG_OPTFLOW_REFINEMENT
if (use_optical_flow) {
assert(is_inter_compound_mode(comp_idx_to_opfl_mode[mode]));
return comp_idx_to_opfl_mode[mode];
}
#endif // CONFIG_OPTFLOW_REFINEMENT
assert(is_inter_compound_mode(NEAR_NEARMV + mode));
return NEAR_NEARMV + mode;
}
int av1_neg_deinterleave(int diff, int ref, int max) {
if (!ref) return diff;
if (ref >= (max - 1)) return max - diff - 1;
if (2 * ref < max) {
if (diff <= 2 * ref) {
if (diff & 1)
return ref + ((diff + 1) >> 1);
else
return ref - (diff >> 1);
}
return diff;
} else {
if (diff <= 2 * (max - ref - 1)) {
if (diff & 1)
return ref + ((diff + 1) >> 1);
else
return ref - (diff >> 1);
}
return max - (diff + 1);
}
}
static int read_segment_id(AV1_COMMON *const cm, const MACROBLOCKD *const xd,
aom_reader *r, int skip) {
int cdf_num;
const int pred = av1_get_spatial_seg_pred(cm, xd, &cdf_num);
if (skip) return pred;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
struct segmentation *const seg = &cm->seg;
struct segmentation_probs *const segp = &ec_ctx->seg;
aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num];
const int coded_id = aom_read_symbol(r, pred_cdf, MAX_SEGMENTS, ACCT_STR);
const int segment_id =
av1_neg_deinterleave(coded_id, pred, seg->last_active_segid + 1);
if (segment_id < 0 || segment_id > seg->last_active_segid) {
aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
"Corrupted segment_ids");
}
return segment_id;
}
static int dec_get_segment_id(const AV1_COMMON *cm, const uint8_t *segment_ids,
int mi_offset, int x_inside_boundary,
int y_inside_boundary) {
int segment_id = INT_MAX;
for (int y = 0; y < y_inside_boundary; y++)
for (int x = 0; x < x_inside_boundary; x++)
segment_id = AOMMIN(
segment_id, segment_ids[mi_offset + y * cm->mi_params.mi_cols + x]);
assert(segment_id >= 0 && segment_id < MAX_SEGMENTS);
return segment_id;
}
static void set_segment_id(AV1_COMMON *cm, int mi_offset, int x_inside_boundary,
int y_inside_boundary, int segment_id) {
assert(segment_id >= 0 && segment_id < MAX_SEGMENTS);
for (int y = 0; y < y_inside_boundary; y++)
for (int x = 0; x < x_inside_boundary; x++)
cm->cur_frame->seg_map[mi_offset + y * cm->mi_params.mi_cols + x] =
segment_id;
}
static int read_intra_segment_id(AV1_COMMON *const cm,
const MACROBLOCKD *const xd, int bsize,
aom_reader *r, int skip) {
struct segmentation *const seg = &cm->seg;
if (!seg->enabled) return 0; // Default for disabled segmentation
assert(seg->update_map && !seg->temporal_update);
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int mi_offset = mi_row * mi_params->mi_cols + mi_col;
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
const int x_inside_boundary = AOMMIN(mi_params->mi_cols - mi_col, bw);
const int y_inside_boundary = AOMMIN(mi_params->mi_rows - mi_row, bh);
const int segment_id = read_segment_id(cm, xd, r, skip);
set_segment_id(cm, mi_offset, x_inside_boundary, y_inside_boundary,
segment_id);
return segment_id;
}
static void copy_segment_id(const CommonModeInfoParams *const mi_params,
const uint8_t *last_segment_ids,
uint8_t *current_segment_ids, int mi_offset,
int x_inside_boundary, int y_inside_boundary) {
for (int y = 0; y < y_inside_boundary; y++)
for (int x = 0; x < x_inside_boundary; x++)
current_segment_ids[mi_offset + y * mi_params->mi_cols + x] =
last_segment_ids
? last_segment_ids[mi_offset + y * mi_params->mi_cols + x]
: 0;
}
static int get_predicted_segment_id(AV1_COMMON *const cm, int mi_offset,
int x_inside_boundary,
int y_inside_boundary) {
return cm->last_frame_seg_map
? dec_get_segment_id(cm, cm->last_frame_seg_map, mi_offset,
x_inside_boundary, y_inside_boundary)
: 0;
}
static int read_inter_segment_id(AV1_COMMON *const cm, MACROBLOCKD *const xd,
int preskip, aom_reader *r) {
struct segmentation *const seg = &cm->seg;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
MB_MODE_INFO *const mbmi = xd->mi[0];
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int mi_offset = mi_row * mi_params->mi_cols + mi_col;
const int bw = mi_size_wide[mbmi->sb_type[PLANE_TYPE_Y]];
const int bh = mi_size_high[mbmi->sb_type[PLANE_TYPE_Y]];
// TODO(slavarnway): move x_inside_boundary, y_inside_boundary into xd ?????
const int x_inside_boundary = AOMMIN(mi_params->mi_cols - mi_col, bw);
const int y_inside_boundary = AOMMIN(mi_params->mi_rows - mi_row, bh);
if (!seg->enabled) return 0; // Default for disabled segmentation
if (!seg->update_map) {
copy_segment_id(mi_params, cm->last_frame_seg_map, cm->cur_frame->seg_map,
mi_offset, x_inside_boundary, y_inside_boundary);
return get_predicted_segment_id(cm, mi_offset, x_inside_boundary,
y_inside_boundary);
}
int segment_id;
if (preskip) {
if (!seg->segid_preskip) return 0;
} else {
if (mbmi->skip_txfm[xd->tree_type == CHROMA_PART]) {
if (seg->temporal_update) {
mbmi->seg_id_predicted = 0;
}
segment_id = read_segment_id(cm, xd, r, 1);
set_segment_id(cm, mi_offset, x_inside_boundary, y_inside_boundary,
segment_id);
return segment_id;
}
}
if (seg->temporal_update) {
const int ctx = av1_get_pred_context_seg_id(xd);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
struct segmentation_probs *const segp = &ec_ctx->seg;
aom_cdf_prob *pred_cdf = segp->pred_cdf[ctx];
mbmi->seg_id_predicted = aom_read_symbol(r, pred_cdf, 2, ACCT_STR);
if (mbmi->seg_id_predicted) {
segment_id = get_predicted_segment_id(cm, mi_offset, x_inside_boundary,
y_inside_boundary);
} else {
segment_id = read_segment_id(cm, xd, r, 0);
}
} else {
segment_id = read_segment_id(cm, xd, r, 0);
}
set_segment_id(cm, mi_offset, x_inside_boundary, y_inside_boundary,
segment_id);
return segment_id;
}
static int read_skip_mode(AV1_COMMON *cm, const MACROBLOCKD *xd, int segment_id,
aom_reader *r) {
if (!cm->current_frame.skip_mode_info.skip_mode_flag) return 0;
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 0;
}
if (!is_comp_ref_allowed(xd->mi[0]->sb_type[xd->tree_type == CHROMA_PART]))
return 0;
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
// These features imply single-reference mode, while skip mode implies
// compound reference. Hence, the two are mutually exclusive.
// In other words, skip_mode is implicitly 0 here.
return 0;
}
const int ctx = av1_get_skip_mode_context(xd);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const int skip_mode =
aom_read_symbol(r, ec_ctx->skip_mode_cdfs[ctx], 2, ACCT_STR);
return skip_mode;
}
static int read_skip_txfm(AV1_COMMON *cm, const MACROBLOCKD *xd, int segment_id,
aom_reader *r) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 1;
} else {
const int ctx = av1_get_skip_txfm_context(xd);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const int skip_txfm =
aom_read_symbol(r, ec_ctx->skip_txfm_cdfs[ctx], 2, ACCT_STR);
return skip_txfm;
}
}
#if !CONFIG_INDEP_PALETTE_PARSING
// Merge the sorted list of cached colors(cached_colors[0...n_cached_colors-1])
// and the sorted list of transmitted colors(colors[n_cached_colors...n-1]) into
// one single sorted list(colors[...]).
static void merge_colors(uint16_t *colors, uint16_t *cached_colors,
int n_colors, int n_cached_colors) {
if (n_cached_colors == 0) return;
int cache_idx = 0, trans_idx = n_cached_colors;
for (int i = 0; i < n_colors; ++i) {
if (cache_idx < n_cached_colors &&
(trans_idx >= n_colors ||
cached_colors[cache_idx] <= colors[trans_idx])) {
colors[i] = cached_colors[cache_idx++];
} else {
assert(trans_idx < n_colors);
colors[i] = colors[trans_idx++];
}
}
}
#endif //! CONFIG_INDEP_PALETTE_PARSING
static void read_palette_colors_y(MACROBLOCKD *const xd, int bit_depth,
PALETTE_MODE_INFO *const pmi, aom_reader *r) {
#if CONFIG_INDEP_PALETTE_PARSING
uint16_t color_cache[2 * PALETTE_MAX_SIZE];
const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
const int n = pmi->palette_size[0];
int idx = 0;
for (int i = 0; i < n_cache && idx < n; ++i) {
if (aom_read_bit(r, ACCT_STR)) pmi->palette_colors[idx++] = color_cache[i];
}
if (idx < n) {
pmi->palette_colors[idx++] = aom_read_literal(r, bit_depth, ACCT_STR);
if (idx < n) {
const int min_bits = bit_depth - 3;
int bits = min_bits + aom_read_literal(r, 2, ACCT_STR);
int range = (1 << bit_depth) - pmi->palette_colors[idx - 1] - 1;
for (; idx < n; ++idx) {
assert(range >= 0);
const int delta = aom_read_literal(r, bits, ACCT_STR) + 1;
pmi->palette_colors[idx] = clamp(pmi->palette_colors[idx - 1] + delta,
0, (1 << bit_depth) - 1);
range -= (pmi->palette_colors[idx] - pmi->palette_colors[idx - 1]);
bits = AOMMIN(bits, av1_ceil_log2(range));
}
}
}
// Sort Y palette
for (int i = 0; i < n; i++) {
for (int j = 1; j < n - i; j++) {
if (pmi->palette_colors[j - 1] > pmi->palette_colors[j]) {
const uint16_t tmp = pmi->palette_colors[j - 1];
pmi->palette_colors[j - 1] = pmi->palette_colors[j];
pmi->palette_colors[j] = tmp;
}
}
}
#else
uint16_t color_cache[2 * PALETTE_MAX_SIZE];
uint16_t cached_colors[PALETTE_MAX_SIZE];
const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
const int n = pmi->palette_size[0];
int idx = 0;
for (int i = 0; i < n_cache && idx < n; ++i)
if (aom_read_bit(r, ACCT_STR)) cached_colors[idx++] = color_cache[i];
if (idx < n) {
const int n_cached_colors = idx;
pmi->palette_colors[idx++] = aom_read_literal(r, bit_depth, ACCT_STR);
if (idx < n) {
const int min_bits = bit_depth - 3;
int bits = min_bits + aom_read_literal(r, 2, ACCT_STR);
int range = (1 << bit_depth) - pmi->palette_colors[idx - 1] - 1;
for (; idx < n; ++idx) {
assert(range >= 0);
const int delta = aom_read_literal(r, bits, ACCT_STR) + 1;
pmi->palette_colors[idx] = clamp(pmi->palette_colors[idx - 1] + delta,
0, (1 << bit_depth) - 1);
range -= (pmi->palette_colors[idx] - pmi->palette_colors[idx - 1]);
bits = AOMMIN(bits, av1_ceil_log2(range));
}
}
merge_colors(pmi->palette_colors, cached_colors, n, n_cached_colors);
} else {
memcpy(pmi->palette_colors, cached_colors, n * sizeof(cached_colors[0]));
}
#endif // CONFIG_INDEP_PALETTE_PARSING
}
static void read_palette_colors_uv(MACROBLOCKD *const xd, int bit_depth,
PALETTE_MODE_INFO *const pmi,
aom_reader *r) {
#if CONFIG_INDEP_PALETTE_PARSING
const int n = pmi->palette_size[1];
// U channel colors.
uint16_t color_cache[2 * PALETTE_MAX_SIZE];
const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
int idx = PALETTE_MAX_SIZE;
for (int i = 0; i < n_cache && idx < PALETTE_MAX_SIZE + n; ++i)
if (aom_read_bit(r, ACCT_STR)) pmi->palette_colors[idx++] = color_cache[i];
if (idx < PALETTE_MAX_SIZE + n) {
pmi->palette_colors[idx++] = aom_read_literal(r, bit_depth, ACCT_STR);
if (idx < PALETTE_MAX_SIZE + n) {
const int min_bits = bit_depth - 3;
int bits = min_bits + aom_read_literal(r, 2, ACCT_STR);
int range = (1 << bit_depth) - pmi->palette_colors[idx - 1];
for (; idx < PALETTE_MAX_SIZE + n; ++idx) {
assert(range >= 0);
const int delta = aom_read_literal(r, bits, ACCT_STR);
pmi->palette_colors[idx] = clamp(pmi->palette_colors[idx - 1] + delta,
0, (1 << bit_depth) - 1);
range -= (pmi->palette_colors[idx] - pmi->palette_colors[idx - 1]);
bits = AOMMIN(bits, av1_ceil_log2(range));
}
}
}
// Sort U palette
for (int i = 0; i < n; i++) {
for (int j = 1; j < n - i; j++) {
if (pmi->palette_colors[PALETTE_MAX_SIZE + j - 1] >
pmi->palette_colors[PALETTE_MAX_SIZE + j]) {
const uint16_t tmp = pmi->palette_colors[PALETTE_MAX_SIZE + j - 1];
pmi->palette_colors[PALETTE_MAX_SIZE + j - 1] =
pmi->palette_colors[PALETTE_MAX_SIZE + j];
pmi->palette_colors[PALETTE_MAX_SIZE + j] = tmp;
}
}
}
#else
const int n = pmi->palette_size[1];
// U channel colors.
uint16_t color_cache[2 * PALETTE_MAX_SIZE];
uint16_t cached_colors[PALETTE_MAX_SIZE];
const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
int idx = 0;
for (int i = 0; i < n_cache && idx < n; ++i)
if (aom_read_bit(r, ACCT_STR)) cached_colors[idx++] = color_cache[i];
if (idx < n) {
const int n_cached_colors = idx;
idx += PALETTE_MAX_SIZE;
pmi->palette_colors[idx++] = aom_read_literal(r, bit_depth, ACCT_STR);
if (idx < PALETTE_MAX_SIZE + n) {
const int min_bits = bit_depth - 3;
int bits = min_bits + aom_read_literal(r, 2, ACCT_STR);
int range = (1 << bit_depth) - pmi->palette_colors[idx - 1];
for (; idx < PALETTE_MAX_SIZE + n; ++idx) {
assert(range >= 0);
const int delta = aom_read_literal(r, bits, ACCT_STR);
pmi->palette_colors[idx] = clamp(pmi->palette_colors[idx - 1] + delta,
0, (1 << bit_depth) - 1);
range -= (pmi->palette_colors[idx] - pmi->palette_colors[idx - 1]);
bits = AOMMIN(bits, av1_ceil_log2(range));
}
}
merge_colors(pmi->palette_colors + PALETTE_MAX_SIZE, cached_colors, n,
n_cached_colors);
} else {
memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, cached_colors,
n * sizeof(cached_colors[0]));
}
#endif // CONFIG_INDEP_PALETTE_PARSING
// V channel colors.
if (aom_read_bit(r, ACCT_STR)) { // Delta encoding.
const int min_bits_v = bit_depth - 4;
const int max_val = 1 << bit_depth;
int bits = min_bits_v + aom_read_literal(r, 2, ACCT_STR);
pmi->palette_colors[2 * PALETTE_MAX_SIZE] =
aom_read_literal(r, bit_depth, ACCT_STR);
for (int i = 1; i < n; ++i) {
int delta = aom_read_literal(r, bits, ACCT_STR);
if (delta && aom_read_bit(r, ACCT_STR)) delta = -delta;
int val = (int)pmi->palette_colors[2 * PALETTE_MAX_SIZE + i - 1] + delta;
if (val < 0) val += max_val;
if (val >= max_val) val -= max_val;
pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] = val;
}
} else {
for (int i = 0; i < n; ++i) {
pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] =
aom_read_literal(r, bit_depth, ACCT_STR);
}
}
}
static void read_palette_mode_info(AV1_COMMON *const cm, MACROBLOCKD *const xd,
aom_reader *r) {
const int num_planes = av1_num_planes(cm);
MB_MODE_INFO *const mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
assert(av1_allow_palette(cm->features.allow_screen_content_tools, bsize));
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
if (mbmi->mode == DC_PRED && xd->tree_type != CHROMA_PART) {
const int palette_mode_ctx = av1_get_palette_mode_ctx(xd);
const int modev = aom_read_symbol(
r, xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_mode_ctx], 2,
ACCT_STR);
if (modev) {
pmi->palette_size[0] =
aom_read_symbol(r, xd->tile_ctx->palette_y_size_cdf[bsize_ctx],
PALETTE_SIZES, ACCT_STR) +
2;
read_palette_colors_y(xd, cm->seq_params.bit_depth, pmi, r);
}
}
if (num_planes > 1 && xd->tree_type != LUMA_PART &&
mbmi->uv_mode == UV_DC_PRED && xd->is_chroma_ref) {
const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
const int modev = aom_read_symbol(
r, xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2, ACCT_STR);
if (modev) {
pmi->palette_size[1] =
aom_read_symbol(r, xd->tile_ctx->palette_uv_size_cdf[bsize_ctx],
PALETTE_SIZES, ACCT_STR) +
2;
read_palette_colors_uv(xd, cm->seq_params.bit_depth, pmi, r);
}
}
}
#if !CONFIG_AIMC
static int read_angle_delta(aom_reader *r, aom_cdf_prob *cdf) {
const int sym = aom_read_symbol(r, cdf, 2 * MAX_ANGLE_DELTA + 1, ACCT_STR);
return sym - MAX_ANGLE_DELTA;
}
#endif // !CONFIG_AIMC
static void read_filter_intra_mode_info(const AV1_COMMON *const cm,
MACROBLOCKD *const xd, aom_reader *r) {
MB_MODE_INFO *const mbmi = xd->mi[0];
FILTER_INTRA_MODE_INFO *filter_intra_mode_info =
&mbmi->filter_intra_mode_info;
if (av1_filter_intra_allowed(cm, mbmi) && xd->tree_type != CHROMA_PART) {
filter_intra_mode_info->use_filter_intra = aom_read_symbol(
r, xd->tile_ctx->filter_intra_cdfs[mbmi->sb_type[PLANE_TYPE_Y]], 2,
ACCT_STR);
if (filter_intra_mode_info->use_filter_intra) {
filter_intra_mode_info->filter_intra_mode = aom_read_symbol(
r, xd->tile_ctx->filter_intra_mode_cdf, FILTER_INTRA_MODES, ACCT_STR);
}
} else {
filter_intra_mode_info->use_filter_intra = 0;
}
}
void av1_read_tx_type(const AV1_COMMON *const cm, MACROBLOCKD *xd, int blk_row,
int blk_col, TX_SIZE tx_size, aom_reader *r) {
MB_MODE_INFO *mbmi = xd->mi[0];
TX_TYPE *tx_type =
&xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
*tx_type = DCT_DCT;
// No need to read transform type if block is skipped.
if (mbmi->skip_txfm[xd->tree_type == CHROMA_PART] ||
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP))
return;
// No need to read transform type for lossless mode(qindex==0).
const int qindex = xd->qindex[mbmi->segment_id];
if (qindex == 0) return;
const int inter_block = is_inter_block(mbmi, xd->tree_type);
if (get_ext_tx_types(tx_size, inter_block, cm->features.reduced_tx_set_used) >
1) {
const TxSetType tx_set_type = av1_get_ext_tx_set_type(
tx_size, inter_block, cm->features.reduced_tx_set_used);
const int eset =
get_ext_tx_set(tx_size, inter_block, cm->features.reduced_tx_set_used);
// eset == 0 should correspond to a set with only DCT_DCT and
// there is no need to read the tx_type
assert(eset != 0);
const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (inter_block) {
*tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol(
r, ec_ctx->inter_ext_tx_cdf[eset][square_tx_size],
av1_num_ext_tx_set[tx_set_type], ACCT_STR)];
} else {
if (mbmi->fsc_mode[xd->tree_type == CHROMA_PART]) {
*tx_type = IDTX;
return;
}
const PREDICTION_MODE intra_mode =
mbmi->filter_intra_mode_info.use_filter_intra
? fimode_to_intradir[mbmi->filter_intra_mode_info
.filter_intra_mode]
: mbmi->mode;
#if CONFIG_ATC_NEWTXSETS
#if CONFIG_ATC_REDUCED_TXSET
const int size_info = av1_size_class[tx_size];
*tx_type = av1_tx_idx_to_type(
aom_read_symbol(
r,
ec_ctx->intra_ext_tx_cdf[eset + cm->features.reduced_tx_set_used]
[square_tx_size][intra_mode],
cm->features.reduced_tx_set_used
? av1_num_reduced_tx_set
: av1_num_ext_tx_set_intra[tx_set_type],
ACCT_STR),
tx_set_type, intra_mode, size_info);
#else
const int size_info = av1_size_class[tx_size];
*tx_type = av1_tx_idx_to_type(
aom_read_symbol(
r, ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_mode],
av1_num_ext_tx_set_intra[tx_set_type], ACCT_STR),
tx_set_type, intra_mode, size_info);
#endif // CONFIG_ATC_REDUCED_TXSET
#else
*tx_type = av1_ext_tx_inv_intra[tx_set_type][aom_read_symbol(
r, ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_mode],
av1_num_ext_tx_set_intra[tx_set_type], ACCT_STR)];
#endif // CONFIG_ATC_NEWTXSETS
}
}
}
#if CONFIG_CROSS_CHROMA_TX
void av1_read_cctx_type(const AV1_COMMON *const cm, MACROBLOCKD *xd,
int blk_row, int blk_col, TX_SIZE tx_size,
aom_reader *r) {
MB_MODE_INFO *mbmi = xd->mi[0];
// If it is a sub 8x8 chroma block, derive the mi_row and mi_col of the
// parent block area. Then apply cctx type update to this area w.r.t the
// offsets derived
int row_offset, col_offset;
#if CONFIG_EXT_RECUR_PARTITIONS
get_chroma_mi_offsets(xd, &row_offset, &col_offset);
#else
get_chroma_mi_offsets(xd, tx_size, &row_offset, &col_offset);
#endif // CONFIG_EXT_RECUR_PARTITIONS
update_cctx_array(xd, blk_row, blk_col, row_offset, col_offset, tx_size,
CCTX_NONE);
// No need to read transform type if block is skipped.
if (mbmi->skip_txfm[xd->tree_type == CHROMA_PART] ||
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP))
return;
// No need to read transform type for lossless mode(qindex==0).
const int qindex = xd->qindex[mbmi->segment_id];
if (qindex == 0) return;
CctxType cctx_type = CCTX_NONE;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
int above_cctx, left_cctx;
#if CONFIG_EXT_RECUR_PARTITIONS
get_above_and_left_cctx_type(cm, xd, &above_cctx, &left_cctx);
#else
get_above_and_left_cctx_type(cm, xd, tx_size, &above_cctx, &left_cctx);
#endif // CONFIG_EXT_RECUR_PARTITIONS
const int cctx_ctx = get_cctx_context(xd, &above_cctx, &left_cctx);
cctx_type = aom_read_symbol(
r, ec_ctx->cctx_type_cdf[square_tx_size][cctx_ctx], CCTX_TYPES, ACCT_STR);
update_cctx_array(xd, blk_row, blk_col, row_offset, col_offset, tx_size,
cctx_type);
}
#endif // CONFIG_CROSS_CHROMA_TX
void av1_read_sec_tx_type(const AV1_COMMON *const cm, MACROBLOCKD *xd,
int blk_row, int blk_col, TX_SIZE tx_size,
uint16_t *eob, aom_reader *r) {
MB_MODE_INFO *mbmi = xd->mi[0];
TX_TYPE *tx_type =
&xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
// No need to read transform type if block is skipped.
if (mbmi->skip_txfm[xd->tree_type == CHROMA_PART] ||
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP))
return;
// No need to read transform type for lossless mode(qindex==0).
const int qindex = xd->qindex[mbmi->segment_id];
if (qindex == 0) return;
const int inter_block = is_inter_block(mbmi, xd->tree_type);
if (get_ext_tx_types(tx_size, inter_block, cm->features.reduced_tx_set_used) >
1) {
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
if (!inter_block) {
if (block_signals_sec_tx_type(xd, tx_size, *tx_type, *eob)) {
const uint8_t stx_flag = aom_read_symbol(
r, ec_ctx->stx_cdf[square_tx_size], STX_TYPES, ACCT_STR);
*tx_type |= (stx_flag << 4);
}
}
} else if (!inter_block) {
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
if (block_signals_sec_tx_type(xd, tx_size, *tx_type, *eob)) {
const uint8_t stx_flag = aom_read_symbol(
r, ec_ctx->stx_cdf[square_tx_size], STX_TYPES, ACCT_STR);
*tx_type |= (stx_flag << 4);
}
}
}
#if CONFIG_FLEX_MVRES
static INLINE void read_mv(aom_reader *r, MV *mv, MV ref,
#if CONFIG_ADAPTIVE_MVD
int is_adaptive_mvd,
#endif // CONFIG_ADAPTIVE_MVD
nmv_context *ctx, MvSubpelPrecision precision);
#else
static INLINE void read_mv(aom_reader *r, MV *mv, const MV *ref,
#if CONFIG_ADAPTIVE_MVD
int is_adaptive_mvd,
#endif // CONFIG_ADAPTIVE_MVD
nmv_context *ctx, MvSubpelPrecision precision);
#endif
static INLINE int is_mv_valid(const MV *mv);
static INLINE int assign_dv(AV1_COMMON *cm, MACROBLOCKD *xd, int_mv *mv,
const int_mv *ref_mv, int mi_row, int mi_col,
BLOCK_SIZE bsize, aom_reader *r) {
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
#if CONFIG_BVP_IMPROVEMENT
const MB_MODE_INFO *const mbmi = xd->mi[0];
if (mbmi->intrabc_mode == 1) {
mv->as_int = ref_mv->as_int;
} else {
#endif // CONFIG_BVP_IMPROVEMENT
#if CONFIG_FLEX_MVRES
read_mv(r, &mv->as_mv, ref_mv->as_mv,
#if CONFIG_ADAPTIVE_MVD
0,
#endif
&ec_ctx->ndvc, MV_PRECISION_ONE_PEL);
#else
read_mv(r, &mv->as_mv, &ref_mv->as_mv,
#if CONFIG_ADAPTIVE_MVD
0,
#endif
&ec_ctx->ndvc, MV_SUBPEL_NONE);
#endif
#if CONFIG_BVP_IMPROVEMENT
}
#endif // CONFIG_BVP_IMPROVEMENT
// DV should not have sub-pel.
assert((mv->as_mv.col & 7) == 0);
assert((mv->as_mv.row & 7) == 0);
mv->as_mv.col = (mv->as_mv.col >> 3) * 8;
mv->as_mv.row = (mv->as_mv.row >> 3) * 8;
int valid = is_mv_valid(&mv->as_mv) &&
av1_is_dv_valid(mv->as_mv, cm, xd, mi_row, mi_col, bsize,
cm->seq_params.mib_size_log2);
return valid;
}
#if CONFIG_BVP_IMPROVEMENT
static void read_intrabc_drl_idx(int max_ref_bv_cnt, FRAME_CONTEXT *ec_ctx,
MB_MODE_INFO *mbmi, aom_reader *r) {
mbmi->intrabc_drl_idx = 0;
int bit_cnt = 0;
for (int idx = 0; idx < max_ref_bv_cnt - 1; ++idx) {
const int intrabc_drl_idx =
aom_read_symbol(r, ec_ctx->intrabc_drl_idx_cdf[bit_cnt], 2, ACCT_STR);
mbmi->intrabc_drl_idx = idx + intrabc_drl_idx;
if (!intrabc_drl_idx) break;
++bit_cnt;
}
assert(mbmi->intrabc_drl_idx < max_ref_bv_cnt);
}
#endif // CONFIG_BVP_IMPROVEMENT
static void read_intrabc_info(AV1_COMMON *const cm, DecoderCodingBlock *dcb,
aom_reader *r) {
MACROBLOCKD *const xd = &dcb->xd;
MB_MODE_INFO *const mbmi = xd->mi[0];
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
assert(xd->tree_type != CHROMA_PART);
#if CONFIG_NEW_CONTEXT_MODELING
mbmi->use_intrabc[0] = 0;
mbmi->use_intrabc[1] = 0;
const int intrabc_ctx = get_intrabc_ctx(xd);
mbmi->use_intrabc[xd->tree_type == CHROMA_PART] =
aom_read_symbol(r, ec_ctx->intrabc_cdf[intrabc_ctx], 2, ACCT_STR);
#else
mbmi->use_intrabc[xd->tree_type == CHROMA_PART] =
aom_read_symbol(r, ec_ctx->intrabc_cdf, 2, ACCT_STR);
#endif // CONFIG_NEW_CONTEXT_MODELING
if (xd->tree_type == CHROMA_PART)
assert(mbmi->use_intrabc[PLANE_TYPE_UV] == 0);
if (mbmi->use_intrabc[xd->tree_type == CHROMA_PART]) {
BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
mbmi->mode = DC_PRED;
mbmi->fsc_mode[PLANE_TYPE_Y] = 0;
mbmi->fsc_mode[PLANE_TYPE_UV] = 0;
mbmi->uv_mode = UV_DC_PRED;
mbmi->interp_fltr = BILINEAR;
mbmi->motion_mode = SIMPLE_TRANSLATION;
#if CONFIG_FLEX_MVRES
// CHECK(cm->features.fr_mv_precision != MV_PRECISION_ONE_PEL, "
// fr_mv_precision is not same as MV_PRECISION_ONE_PEL for intra-bc
// blocks");
set_default_max_mv_precision(mbmi, xd->sbi->sb_mv_precision);
set_mv_precision(mbmi, MV_PRECISION_ONE_PEL);
set_default_precision_set(cm, mbmi, bsize);
set_most_probable_mv_precision(cm, mbmi, bsize);
#endif
#if CONFIG_BAWP
mbmi->bawp_flag = 0;
#endif
#if !CONFIG_C076_INTER_MOD_CTX
int16_t inter_mode_ctx[MODE_CTX_REF_FRAMES];
#endif // !CONFIG_C076_INTER_MOD_CTX
// TODO(kslu): Rework av1_find_mv_refs to avoid having this big array
// ref_mvs
int_mv ref_mvs[INTRA_FRAME + 1][MAX_MV_REF_CANDIDATES];
#if CONFIG_BVP_IMPROVEMENT
for (int i = 0; i < MAX_REF_BV_STACK_SIZE; ++i) {
xd->ref_mv_stack[INTRA_FRAME][i].this_mv.as_int = 0;
xd->ref_mv_stack[INTRA_FRAME][i].comp_mv.as_int = 0;
#if CONFIG_EXTENDED_WARP_PREDICTION
xd->ref_mv_stack[INTRA_FRAME][i].row_offset = OFFSET_NONSPATIAL;
xd->ref_mv_stack[INTRA_FRAME][i].col_offset = OFFSET_NONSPATIAL;
#endif // CONFIG_EXTENDED_WARP_PREDICTION
}
#endif // CONFIG_BVP_IMPROVEMENT
av1_find_mv_refs(cm, xd, mbmi, INTRA_FRAME, dcb->ref_mv_count,
xd->ref_mv_stack, xd->weight, ref_mvs, /*global_mvs=*/NULL
#if !CONFIG_C076_INTER_MOD_CTX
,
inter_mode_ctx
#endif // !CONFIG_C076_INTER_MOD_CTX
#if CONFIG_WARP_REF_LIST
,
NULL, 0, NULL
#endif // CONFIG_WARP_REF_LIST
);
#if CONFIG_BVP_IMPROVEMENT
mbmi->intrabc_mode =
aom_read_symbol(r, ec_ctx->intrabc_mode_cdf, 2, ACCT_STR);
read_intrabc_drl_idx(MAX_REF_BV_STACK_SIZE, ec_ctx, mbmi, r);
int_mv dv_ref =
xd->ref_mv_stack[INTRA_FRAME][mbmi->intrabc_drl_idx].this_mv;
#else
int_mv nearestmv, nearmv;
#if CONFIG_FLEX_MVRES
av1_find_best_ref_mvs(ref_mvs[INTRA_FRAME], &nearestmv, &nearmv,
mbmi->pb_mv_precision);
assert(cm->features.fr_mv_precision == MV_PRECISION_ONE_PEL &&
mbmi->max_mv_precision == MV_PRECISION_ONE_PEL);
#else
av1_find_best_ref_mvs(0, ref_mvs[INTRA_FRAME], &nearestmv, &nearmv, 0);
#endif
int_mv dv_ref = nearestmv.as_int == 0 ? nearmv : nearestmv;
#endif // CONFIG_BVP_IMPROVEMENT
if (dv_ref.as_int == 0)
av1_find_ref_dv(&dv_ref, &xd->tile, cm->seq_params.mib_size, xd->mi_row);
// Ref DV should not have sub-pel.
int valid_dv = (dv_ref.as_mv.col & 7) == 0 && (dv_ref.as_mv.row & 7) == 0;
dv_ref.as_mv.col = (dv_ref.as_mv.col >> 3) * 8;
dv_ref.as_mv.row = (dv_ref.as_mv.row >> 3) * 8;
valid_dv = valid_dv && assign_dv(cm, xd, &mbmi->mv[0], &dv_ref, xd->mi_row,
xd->mi_col, bsize, r);
if (!valid_dv) {
// Intra bc motion vectors are not valid - signal corrupt frame
aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
"Invalid intrabc dv");
}
}
}
// If delta q is present, reads delta_q index.
// Also reads delta_q loop filter levels, if present.
static void read_delta_q_params(AV1_COMMON *const cm, MACROBLOCKD *const xd,
aom_reader *r) {
DeltaQInfo *const delta_q_info = &cm->delta_q_info;
if (delta_q_info->delta_q_present_flag) {
MB_MODE_INFO *const mbmi = xd->mi[0];
xd->current_base_qindex +=
read_delta_qindex(cm, xd, r, mbmi) * delta_q_info->delta_q_res;
/* Normative: Clamp to [1,MAXQ] to not interfere with lossless mode */
xd->current_base_qindex =
clamp(xd->current_base_qindex, 1,
cm->seq_params.bit_depth == AOM_BITS_8 ? MAXQ_8_BITS
: cm->seq_params.bit_depth == AOM_BITS_10 ? MAXQ_10_BITS
: MAXQ);
FRAME_CONTEXT *const ec_ctx = xd->tile_ctx;
if (delta_q_info->delta_lf_present_flag) {
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
if (delta_q_info->delta_lf_multi) {
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
const int tmp_lvl =
xd->delta_lf[lf_id] +
read_delta_lflevel(cm, r, ec_ctx->delta_lf_multi_cdf[lf_id], mbmi,
mi_col, mi_row, xd->tree_type) *
delta_q_info->delta_lf_res;
mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id] =
clamp(tmp_lvl, -MAX_LOOP_FILTER, MAX_LOOP_FILTER);
}
} else {
const int tmp_lvl =
xd->delta_lf_from_base +
read_delta_lflevel(cm, r, ec_ctx->delta_lf_cdf, mbmi, mi_col,
mi_row, xd->tree_type) *
delta_q_info->delta_lf_res;
mbmi->delta_lf_from_base = xd->delta_lf_from_base =
clamp(tmp_lvl, -MAX_LOOP_FILTER, MAX_LOOP_FILTER);
}
}
}
}
#if CONFIG_AIMC
// read mode set index and mode index in set for y component,
// and map it to y mode and delta angle
static void read_intra_luma_mode(MACROBLOCKD *const xd, aom_reader *r) {
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
MB_MODE_INFO *const mbmi = xd->mi[0];
uint8_t mode_idx = 0;
const int context = get_y_mode_idx_ctx(xd);
int mode_set_index =
aom_read_symbol(r, ec_ctx->y_mode_set_cdf, INTRA_MODE_SETS, ACCT_STR);
if (mode_set_index == 0) {
mode_idx = aom_read_symbol(r, ec_ctx->y_mode_idx_cdf_0[context],
FIRST_MODE_COUNT, ACCT_STR);
} else {
mode_idx = FIRST_MODE_COUNT + (mode_set_index - 1) * SECOND_MODE_COUNT +
aom_read_symbol(r, ec_ctx->y_mode_idx_cdf_1[context],
SECOND_MODE_COUNT, ACCT_STR);
}
assert(mode_idx < LUMA_MODE_COUNT);
get_y_intra_mode_set(mbmi, xd);
mbmi->joint_y_mode_delta_angle = mbmi->y_intra_mode_list[mode_idx];
set_y_mode_and_delta_angle(mbmi->joint_y_mode_delta_angle, mbmi);
mbmi->y_mode_idx = mode_idx;
if (mbmi->joint_y_mode_delta_angle < NON_DIRECTIONAL_MODES_COUNT)
assert(mbmi->joint_y_mode_delta_angle == mbmi->y_mode_idx);
}
// read mode index for uv component and map it to uv mode and delta angle
static void read_intra_uv_mode(MACROBLOCKD *const xd,
CFL_ALLOWED_TYPE cfl_allowed, aom_reader *r) {
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
MB_MODE_INFO *const mbmi = xd->mi[0];
const int context = av1_is_directional_mode(mbmi->mode) ? 1 : 0;
const int uv_mode_idx =
aom_read_symbol(r, ec_ctx->uv_mode_cdf[cfl_allowed][context],
UV_INTRA_MODES - !cfl_allowed, ACCT_STR);
assert(uv_mode_idx >= 0 && uv_mode_idx < UV_INTRA_MODES);
get_uv_intra_mode_set(mbmi);
mbmi->uv_mode = mbmi->uv_intra_mode_list[uv_mode_idx];
if (mbmi->uv_mode == mbmi->mode)
mbmi->angle_delta[PLANE_TYPE_UV] = mbmi->angle_delta[PLANE_TYPE_Y];
else
mbmi->angle_delta[PLANE_TYPE_UV] = 0;
}
#endif // CONFIG_AIMC
static void read_intra_frame_mode_info(AV1_COMMON *const cm,
DecoderCodingBlock *dcb, aom_reader *r) {
MACROBLOCKD *const xd = &dcb->xd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
struct segmentation *const seg = &cm->seg;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (seg->segid_preskip)
mbmi->segment_id = read_intra_segment_id(cm, xd, bsize, r, 0);
#if CONFIG_SKIP_MODE_ENHANCEMENT
mbmi->skip_mode = 0;
#endif // CONFIG_SKIP_MODE_ENHANCEMENT
mbmi->skip_txfm[xd->tree_type == CHROMA_PART] =
read_skip_txfm(cm, xd, mbmi->segment_id, r);
if (!seg->segid_preskip)
mbmi->segment_id = read_intra_segment_id(
cm, xd, bsize, r, mbmi->skip_txfm[xd->tree_type == CHROMA_PART]);
if (xd->tree_type != CHROMA_PART) read_cdef(cm, r, xd);
#if CONFIG_CCSO
if (cm->seq_params.enable_ccso
#if CONFIG_CCSO_EXT
&& xd->tree_type != CHROMA_PART
#else
&& xd->tree_type != LUMA_PART
#endif
)
read_ccso(cm, r, xd);
#endif
read_delta_q_params(cm, xd, r);
mbmi->current_qindex = xd->current_base_qindex;
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->ref_frame[1] = NONE_FRAME;
if (xd->tree_type != CHROMA_PART) mbmi->palette_mode_info.palette_size[0] = 0;
mbmi->palette_mode_info.palette_size[1] = 0;
if (xd->tree_type != CHROMA_PART)
mbmi->filter_intra_mode_info.use_filter_intra = 0;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
xd->above_txfm_context = cm->above_contexts.txfm[xd->tile.tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
if (av1_allow_intrabc(cm) && xd->tree_type != CHROMA_PART) {
read_intrabc_info(cm, dcb, r);
if (is_intrabc_block(mbmi, xd->tree_type)) return;
}
#if !CONFIG_AIMC
const int use_angle_delta = av1_use_angle_delta(bsize);
#endif // !CONFIG_AIMC
if (xd->tree_type != CHROMA_PART) {
#if CONFIG_AIMC
read_intra_luma_mode(xd, r);
if (allow_fsc_intra(cm, xd, bsize, mbmi)) {
aom_cdf_prob *fsc_cdf = get_fsc_mode_cdf(xd, bsize, 1);
mbmi->fsc_mode[xd->tree_type == CHROMA_PART] = read_fsc_mode(r, fsc_cdf);
} else {
mbmi->fsc_mode[xd->tree_type == CHROMA_PART] = 0;
}
#else
mbmi->mode = read_intra_mode(
r, get_y_mode_cdf(ec_ctx, xd->neighbors[0], xd->neighbors[1]));
if (allow_fsc_intra(cm, xd, bsize, mbmi)) {
aom_cdf_prob *fsc_cdf = get_fsc_mode_cdf(xd, bsize, 1);
mbmi->fsc_mode[xd->tree_type == CHROMA_PART] = read_fsc_mode(r, fsc_cdf);
} else {
mbmi->fsc_mode[xd->tree_type == CHROMA_PART] = 0;
}
mbmi->angle_delta[PLANE_TYPE_Y] =
(use_angle_delta && av1_is_directional_mode(mbmi->mode))
? read_angle_delta(
r, ec_ctx->angle_delta_cdf[PLANE_TYPE_Y][mbmi->mode - V_PRED])
: 0;
#endif // CONFIG_AIMC
mbmi->mrl_index =
(cm->seq_params.enable_mrls && av1_is_directional_mode(mbmi->mode))
? read_mrl_index(ec_ctx, r)
: 0;
}
if (xd->tree_type != LUMA_PART) {
if (!cm->seq_params.monochrome && xd->is_chroma_ref) {
#if CONFIG_AIMC
read_intra_uv_mode(xd, is_cfl_allowed(xd), r);
#else
mbmi->uv_mode =
read_intra_mode_uv(ec_ctx, r, is_cfl_allowed(xd), mbmi->mode);
if (cm->seq_params.enable_sdp) {
mbmi->angle_delta[PLANE_TYPE_UV] =
(use_angle_delta &&
av1_is_directional_mode(get_uv_mode(mbmi->uv_mode)))
? read_angle_delta(
r, ec_ctx->angle_delta_cdf[PLANE_TYPE_UV]
[mbmi->uv_mode - V_PRED])
: 0;
} else {
mbmi->angle_delta[PLANE_TYPE_UV] =
(use_angle_delta &&
av1_is_directional_mode(get_uv_mode(mbmi->uv_mode)))
? read_angle_delta(
r, ec_ctx->angle_delta_cdf[PLANE_TYPE_Y]
[mbmi->uv_mode - V_PRED])
: 0;
}
#endif // CONFIG_AIMC
if (mbmi->uv_mode == UV_CFL_PRED) {
#if CONFIG_IMPROVED_CFL
{ mbmi->cfl_idx = read_cfl_index(ec_ctx, r); }
if (mbmi->cfl_idx == 0)
#endif
mbmi->cfl_alpha_idx =
read_cfl_alphas(ec_ctx, r, &mbmi->cfl_alpha_signs);
}
} else {
// Avoid decoding angle_info if there is is no chroma prediction
mbmi->uv_mode = UV_DC_PRED;
}
xd->cfl.store_y = store_cfl_required(cm, xd);
} else {
// Avoid decoding angle_info if there is is no chroma prediction
mbmi->uv_mode = UV_DC_PRED;
}
if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize))
read_palette_mode_info(cm, xd, r);
if (xd->tree_type != CHROMA_PART) read_filter_intra_mode_info(cm, xd, r);
}
#if CONFIG_FLEX_MVRES
// Read the MVD for the lower precision
// this function is executed when the precision is less than integer pixel
// precision
static int read_mv_component_low_precision(aom_reader *r, nmv_component *mvcomp,
MvSubpelPrecision precision) {
int offset, mag;
const int sign = aom_read_symbol(r, mvcomp->sign_cdf, 2, ACCT_STR);
const int num_mv_classes = MV_CLASSES - (precision <= MV_PRECISION_FOUR_PEL) -
(precision <= MV_PRECISION_8_PEL);
int mv_class = aom_read_symbol(
r, mvcomp->classes_cdf[av1_get_mv_class_context(precision)],
num_mv_classes, ACCT_STR);
if (precision <= MV_PRECISION_FOUR_PEL && mv_class >= MV_CLASS_1)
mv_class += (precision == MV_PRECISION_FOUR_PEL ? 1 : 2);
int has_offset = (mv_class >= min_class_with_offset[precision]);
assert(MV_PRECISION_ONE_PEL >= precision);
const int precision_diff = MV_PRECISION_ONE_PEL - precision;
const uint8_t start_lsb = (precision_diff >= 0) ? (uint8_t)precision_diff : 0;
// Integer part
if (!has_offset) {
mag = mv_class ? (1 << mv_class) : 0; // int mv data
} else {
const int n = (mv_class == MV_CLASS_0) ? 1 : mv_class;
offset = 0;
for (int i = start_lsb; i < n; ++i)
offset |= aom_read_symbol(r, mvcomp->bits_cdf[i], 2, ACCT_STR) << i;
const int base = mv_class ? (1 << mv_class) : 0;
mag = (offset + base); // int mv data
}
const int nonZero_offset = (1 << start_lsb);
mag = (mag + nonZero_offset) << 3;
return sign ? -mag : mag;
}
#endif
static int read_mv_component(aom_reader *r, nmv_component *mvcomp,
#if CONFIG_ADAPTIVE_MVD
int is_adaptive_mvd,
#endif // CONFIG_ADAPTIVE_MVD
#if CONFIG_FLEX_MVRES
MvSubpelPrecision precision) {
#else
int use_subpel, int usehp) {
#endif
#if CONFIG_FLEX_MVRES
if (precision < MV_PRECISION_ONE_PEL) {
#if CONFIG_ADAPTIVE_MVD
assert(!is_adaptive_mvd);
#endif
return read_mv_component_low_precision(r, mvcomp, precision);
}
#endif
int mag, d, fr, hp;
const int sign = aom_read_symbol(r, mvcomp->sign_cdf, 2, ACCT_STR);
const int mv_class =
#if CONFIG_ADAPTIVE_MVD
is_adaptive_mvd
? aom_read_symbol(r, mvcomp->amvd_classes_cdf, MV_CLASSES, ACCT_STR)
:
#endif // CONFIG_ADAPTIVE_MVD
#if CONFIG_FLEX_MVRES
aom_read_symbol(
r, mvcomp->classes_cdf[av1_get_mv_class_context(precision)],
MV_CLASSES, ACCT_STR);
#else
aom_read_symbol(r, mvcomp->classes_cdf, MV_CLASSES, ACCT_STR);
#endif
const int class0 = mv_class == MV_CLASS_0;
#if CONFIG_ADAPTIVE_MVD
int use_mv_class_offset = 1;
if (mv_class > MV_CLASS_0 && is_adaptive_mvd) use_mv_class_offset = 0;
if (use_mv_class_offset) {
#endif // CONFIG_ADAPTIVE_MVD
// Integer part
if (class0) {
d = aom_read_symbol(r, mvcomp->class0_cdf, CLASS0_SIZE, ACCT_STR);
mag = 0;
} else {
const int n = mv_class + CLASS0_BITS - 1; // number of bits
d = 0;
for (int i = 0; i < n; ++i)
d |= aom_read_symbol(r, mvcomp->bits_cdf[i], 2, ACCT_STR) << i;
mag = CLASS0_SIZE << (mv_class + 2);
}
#if CONFIG_ADAPTIVE_MVD
} else {
const int n = mv_class + CLASS0_BITS - 1; // number of bits
d = 0;
for (int i = 0; i < n; ++i) d |= 1 << i;
mag = CLASS0_SIZE << (mv_class + 2);
}
#endif // CONFIG_ADAPTIVE_MVD
#if CONFIG_ADAPTIVE_MVD
#if CONFIG_FLEX_MVRES
int use_subpel = 1;
#endif
if (is_adaptive_mvd) {
use_subpel &= class0;
use_subpel &= (d == 0);
}
#endif // CONFIG_ADAPTIVE_MVD
#if CONFIG_FLEX_MVRES
if (precision > MV_PRECISION_ONE_PEL
#if CONFIG_ADAPTIVE_MVD
&& use_subpel
#endif
) {
#else
if (use_subpel) {
#endif
// Fractional part
// 1/2 and 1/4 pel parts
#if CONFIG_FLEX_MVRES
fr = aom_read_symbol(
r, class0 ? mvcomp->class0_fp_cdf[d][0] : mvcomp->fp_cdf[0], 2,
ACCT_STR)
<< 1;
fr += precision > MV_PRECISION_HALF_PEL
? aom_read_symbol(r,
class0 ? mvcomp->class0_fp_cdf[d][1 + (fr >> 1)]
: mvcomp->fp_cdf[1 + (fr >> 1)],
2, ACCT_STR)
: 1;
#else
fr = aom_read_symbol(r, class0 ? mvcomp->class0_fp_cdf[d] : mvcomp->fp_cdf,
MV_FP_SIZE, ACCT_STR);
#endif // CONFIG_FLEX_MVRES
#if CONFIG_FLEX_MVRES
// 1/8 pel part (if hp is not used, the default value of the hp is 1)
hp = (precision > MV_PRECISION_QTR_PEL)
#else
hp = usehp
#endif
? aom_read_symbol(r,
class0 ? mvcomp->class0_hp_cdf : mvcomp->hp_cdf,
2, ACCT_STR)
: 1;
} else {
fr = 3;
hp = 1;
}
// Result
mag += ((d << 3) | (fr << 1) | hp) + 1;
return sign ? -mag : mag;
}
#if CONFIG_FLEX_MVRES
static INLINE void read_mv(aom_reader *r, MV *mv, MV ref,
#if CONFIG_ADAPTIVE_MVD
int is_adaptive_mvd,
#endif // CONFIG_ADAPTIVE_MVD
nmv_context *ctx, MvSubpelPrecision precision) {
#else
static INLINE void read_mv(aom_reader *r, MV *mv, const MV *ref,
#if CONFIG_ADAPTIVE_MVD
int is_adaptive_mvd,
#endif // CONFIG_ADAPTIVE_MVD
nmv_context *ctx, MvSubpelPrecision precision) {
#endif
MV diff = kZeroMv;
#if IMPROVED_AMVD && CONFIG_ADAPTIVE_MVD
#if !CONFIG_FLEX_MVRES
if (is_adaptive_mvd && precision > MV_SUBPEL_NONE)
precision = MV_SUBPEL_LOW_PRECISION;
#endif
#endif // IMPROVED_AMVD && CONFIG_JOINT_MVD
const MV_JOINT_TYPE joint_type =
#if CONFIG_ADAPTIVE_MVD
is_adaptive_mvd ? (MV_JOINT_TYPE)aom_read_symbol(r, ctx->amvd_joints_cdf,
MV_JOINTS, ACCT_STR)
:
#endif // CONFIG_ADAPTIVE_MVD
(MV_JOINT_TYPE)aom_read_symbol(r, ctx->joints_cdf,
MV_JOINTS, ACCT_STR);
if (mv_joint_vertical(joint_type))
diff.row = read_mv_component(r, &ctx->comps[0],
#if CONFIG_ADAPTIVE_MVD
is_adaptive_mvd,
#endif
#if CONFIG_FLEX_MVRES
precision);
#else
precision > MV_SUBPEL_NONE,
precision > MV_SUBPEL_LOW_PRECISION);
#endif
if (mv_joint_horizontal(joint_type))
diff.col = read_mv_component(r, &ctx->comps[1],
#if CONFIG_ADAPTIVE_MVD
is_adaptive_mvd,
#endif
#if CONFIG_FLEX_MVRES
precision);
#else
precision > MV_SUBPEL_NONE,
precision > MV_SUBPEL_LOW_PRECISION);
#endif
#if CONFIG_FLEX_MVRES
#if BUGFIX_AMVD_AMVR
if (!is_adaptive_mvd)
#endif // BUGFIX_AMVD_AMVR
#if CONFIG_C071_SUBBLK_WARPMV
if (precision < MV_PRECISION_HALF_PEL)
#endif // CONFIG_C071_SUBBLK_WARPMV
lower_mv_precision(&ref, precision);
mv->row = ref.row + diff.row;
mv->col = ref.col + diff.col;
#else
mv->row = ref->row + diff.row;
mv->col = ref->col + diff.col;
#endif
}
static REFERENCE_MODE read_block_reference_mode(AV1_COMMON *cm,
const MACROBLOCKD *xd,
aom_reader *r) {
if (!is_comp_ref_allowed(xd->mi[0]->sb_type[PLANE_TYPE_Y]))
return SINGLE_REFERENCE;
if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
const int ctx = av1_get_reference_mode_context(cm, xd);
const REFERENCE_MODE mode = (REFERENCE_MODE)aom_read_symbol(
r, xd->tile_ctx->comp_inter_cdf[ctx], 2, ACCT_STR);
return mode; // SINGLE_REFERENCE or COMPOUND_REFERENCE
} else {
assert(cm->current_frame.reference_mode == SINGLE_REFERENCE);
return cm->current_frame.reference_mode;
}
}
static AOM_INLINE void read_single_ref(
MACROBLOCKD *const xd, MV_REFERENCE_FRAME ref_frame[2],
const RefFramesInfo *const ref_frames_info, aom_reader *r) {
const int n_refs = ref_frames_info->num_total_refs;
for (int i = 0; i < n_refs - 1; i++) {
const int bit = aom_read_symbol(
r, av1_get_pred_cdf_single_ref(xd, i, n_refs), 2, ACCT_STR);
if (bit) {
ref_frame[0] = i;
return;
}
}
ref_frame[0] = n_refs - 1;
}
static AOM_INLINE void read_compound_ref(
const MACROBLOCKD *xd, MV_REFERENCE_FRAME ref_frame[2],
const RefFramesInfo *const ref_frames_info, aom_reader *r) {
const int n_refs = ref_frames_info->num_total_refs;
#if !CONFIG_ALLOW_SAME_REF_COMPOUND
assert(n_refs >= 2);
#endif // CONFIG_ALLOW_SAME_REF_COMPOUND
int n_bits = 0;
#if CONFIG_ALLOW_SAME_REF_COMPOUND
for (int i = 0; i < n_refs - 1 && n_bits < 2; i++) {
#else
for (int i = 0; i < n_refs + n_bits - 2 && n_bits < 2; i++) {
#endif // CONFIG_ALLOW_SAME_REF_COMPOUND
// bit_type: -1 for ref0, 0 for opposite sided ref1, 1 for same sided ref1
const int bit_type = n_bits == 0 ? -1
: av1_get_compound_ref_bit_type(
ref_frames_info, ref_frame[0], i);
const int bit = (n_bits == 0 && i >= RANKED_REF0_TO_PRUNE - 1)
? 1
: aom_read_symbol(r,
av1_get_pred_cdf_compound_ref(
xd, i, n_bits, bit_type, n_refs),
2, ACCT_STR);
if (bit) {
ref_frame[n_bits++] = i;
#if CONFIG_ALLOW_SAME_REF_COMPOUND
if (i < ref_frames_info->num_same_ref_compound) i -= 1;
#endif // CONFIG_ALLOW_SAME_REF_COMPOUND
}
}
if (n_bits < 2) ref_frame[1] = n_refs - 1;
#if CONFIG_ALLOW_SAME_REF_COMPOUND
if (n_bits < 1) ref_frame[0] = n_refs - 1;
#else
if (n_bits < 1) ref_frame[0] = n_refs - 2;
#endif // CONFIG_ALLOW_SAME_REF_COMPOUND
}
static void set_ref_frames_for_skip_mode(AV1_COMMON *const cm,
MV_REFERENCE_FRAME ref_frame[2]) {
ref_frame[0] = cm->current_frame.skip_mode_info.ref_frame_idx_0;
ref_frame[1] = cm->current_frame.skip_mode_info.ref_frame_idx_1;
}
// Read the reference frame
static void read_ref_frames(AV1_COMMON *const cm, MACROBLOCKD *const xd,
aom_reader *r, int segment_id,
MV_REFERENCE_FRAME ref_frame[2]) {
if (xd->mi[0]->skip_mode) {
set_ref_frames_for_skip_mode(cm, ref_frame);
return;
}
#if CONFIG_TIP
ref_frame[0] = NONE_FRAME;
ref_frame[1] = NONE_FRAME;
#if !CONFIG_EXT_RECUR_PARTITIONS
const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y];
#endif // !CONFIG_EXT_RECUR_PARTITIONS
if (cm->features.tip_frame_mode &&
#if CONFIG_EXT_RECUR_PARTITIONS
is_tip_allowed_bsize(xd->mi[0])) {
#else // CONFIG_EXT_RECUR_PARTITIONS
is_tip_allowed_bsize(bsize)) {
#endif // CONFIG_EXT_RECUR_PARTITIONS
const int tip_ctx = get_tip_ctx(xd);
if (aom_read_symbol(r, xd->tile_ctx->tip_cdf[tip_ctx], 2, ACCT_STR)) {
ref_frame[0] = TIP_FRAME;
}
}
if (is_tip_ref_frame(ref_frame[0])) return;
#endif // CONFIG_TIP
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) ||
segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
ref_frame[0] = get_closest_pastcur_ref_index(cm);
ref_frame[1] = NONE_FRAME;
} else {
const REFERENCE_MODE mode = read_block_reference_mode(cm, xd, r);
if (mode == COMPOUND_REFERENCE) {
read_compound_ref(xd, ref_frame, &cm->ref_frames_info, r);
} else if (mode == SINGLE_REFERENCE) {
read_single_ref(xd, ref_frame, &cm->ref_frames_info, r);
ref_frame[1] = NONE_FRAME;
} else {
assert(0 && "Invalid prediction mode.");
}
}
}
static INLINE void read_mb_interp_filter(const MACROBLOCKD *const xd,
InterpFilter interp_filter,
const AV1_COMMON *cm,
MB_MODE_INFO *const mbmi,
aom_reader *r) {
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (!av1_is_interp_needed(cm, xd)) {
set_default_interp_filters(mbmi,
#if CONFIG_OPTFLOW_REFINEMENT
cm,
#endif // CONFIG_OPTFLOW_REFINEMENT
interp_filter);
return;
}
if (interp_filter != SWITCHABLE) {
mbmi->interp_fltr = interp_filter;
} else {
const int ctx = av1_get_pred_context_switchable_interp(xd, 0);
const InterpFilter filter = (InterpFilter)aom_read_symbol(
r, ec_ctx->switchable_interp_cdf[ctx], SWITCHABLE_FILTERS, ACCT_STR);
mbmi->interp_fltr = filter;
}
}
static void read_intra_block_mode_info(AV1_COMMON *const cm,
MACROBLOCKD *const xd,
MB_MODE_INFO *const mbmi,
aom_reader *r) {
const BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y];
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->ref_frame[1] = NONE_FRAME;
#if CONFIG_FLEX_MVRES
set_default_max_mv_precision(mbmi, xd->sbi->sb_mv_precision);
set_mv_precision(mbmi, mbmi->max_mv_precision);
set_default_precision_set(cm, mbmi, bsize);
set_most_probable_mv_precision(cm, mbmi, bsize);
#endif
#if CONFIG_BAWP
mbmi->bawp_flag = 0;
#endif
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
#if CONFIG_AIMC
read_intra_luma_mode(xd, r);
if (allow_fsc_intra(cm, xd, bsize, mbmi) && xd->tree_type != CHROMA_PART) {
aom_cdf_prob *fsc_cdf = get_fsc_mode_cdf(xd, bsize, 0);
mbmi->fsc_mode[xd->tree_type == CHROMA_PART] = read_fsc_mode(r, fsc_cdf);
} else {
mbmi->fsc_mode[xd->tree_type == CHROMA_PART] = 0;
}
#else
const int use_angle_delta = av1_use_angle_delta(bsize);
mbmi->mode = read_intra_mode(r, ec_ctx->y_mode_cdf[size_group_lookup[bsize]]);
if (allow_fsc_intra(cm, xd, bsize, mbmi) && xd->tree_type != CHROMA_PART) {
aom_cdf_prob *fsc_cdf = get_fsc_mode_cdf(xd, bsize, 0);
mbmi->fsc_mode[xd->tree_type == CHROMA_PART] = read_fsc_mode(r, fsc_cdf);
if (mbmi->fsc_mode[xd->tree_type == CHROMA_PART]) {
mbmi->angle_delta[PLANE_TYPE_Y] = 0;
}
} else {
mbmi->fsc_mode[xd->tree_type == CHROMA_PART] = 0;
}
mbmi->angle_delta[PLANE_TYPE_Y] =
use_angle_delta && av1_is_directional_mode(mbmi->mode)
? read_angle_delta(
r, ec_ctx->angle_delta_cdf[PLANE_TYPE_Y][mbmi->mode - V_PRED])
: 0;
#endif // CONFIG_AIMC
if (xd->tree_type != CHROMA_PART)
// Parsing reference line index
mbmi->mrl_index =
(cm->seq_params.enable_mrls && av1_is_directional_mode(mbmi->mode))
? read_mrl_index(ec_ctx, r)
: 0;
if (!cm->seq_params.monochrome && xd->is_chroma_ref) {
#if CONFIG_AIMC
read_intra_uv_mode(xd, is_cfl_allowed(xd), r);
#else
mbmi->uv_mode =
read_intra_mode_uv(ec_ctx, r, is_cfl_allowed(xd), mbmi->mode);
if (cm->seq_params.enable_sdp) {
mbmi->angle_delta[PLANE_TYPE_UV] =
use_angle_delta && av1_is_directional_mode(get_uv_mode(mbmi->uv_mode))
? read_angle_delta(
r, ec_ctx->angle_delta_cdf[PLANE_TYPE_UV]
[mbmi->uv_mode - V_PRED])
: 0;
} else {
mbmi->angle_delta[PLANE_TYPE_UV] =
use_angle_delta && av1_is_directional_mode(get_uv_mode(mbmi->uv_mode))
? read_angle_delta(
r, ec_ctx->angle_delta_cdf[PLANE_TYPE_Y]
[mbmi->uv_mode - V_PRED])
: 0;
}
#endif // CONFIG_AIMC
if (mbmi->uv_mode == UV_CFL_PRED) {
#if CONFIG_IMPROVED_CFL
{ mbmi->cfl_idx = read_cfl_index(ec_ctx, r); }
if (mbmi->cfl_idx == 0)
#endif
{
mbmi->cfl_alpha_idx =
read_cfl_alphas(xd->tile_ctx, r, &mbmi->cfl_alpha_signs);
}
}
} else {
// Avoid decoding angle_info if there is is no chroma prediction
mbmi->uv_mode = UV_DC_PRED;
}
if (xd->tree_type != LUMA_PART) xd->cfl.store_y = store_cfl_required(cm, xd);
if (xd->tree_type != CHROMA_PART) mbmi->palette_mode_info.palette_size[0] = 0;
mbmi->palette_mode_info.palette_size[1] = 0;
if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize))
read_palette_mode_info(cm, xd, r);
if (xd->tree_type != CHROMA_PART) read_filter_intra_mode_info(cm, xd, r);
}
static INLINE int is_mv_valid(const MV *mv) {
return mv->row > MV_LOW && mv->row < MV_UPP && mv->col > MV_LOW &&
mv->col < MV_UPP;
}
static INLINE int assign_mv(AV1_COMMON *cm, MACROBLOCKD *xd,
PREDICTION_MODE mode,
MV_REFERENCE_FRAME ref_frame[2], int_mv mv[2],
int_mv ref_mv[2], int is_compound,
#if !CONFIG_FLEX_MVRES
int allow_hp,
#else
MvSubpelPrecision precision,
#endif
#if CONFIG_WARPMV
const WarpedMotionParams *ref_warp_model,
#endif // CONFIG_WARPMV
aom_reader *r) {
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
MB_MODE_INFO *mbmi = xd->mi[0];
BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y];
FeatureFlags *const features = &cm->features;
#if CONFIG_FLEX_MVRES
assert(IMPLIES(features->cur_frame_force_integer_mv,
precision == MV_PRECISION_ONE_PEL));
#else
if (features->cur_frame_force_integer_mv) {
allow_hp = MV_SUBPEL_NONE;
}
#endif
#if CONFIG_JOINT_MVD
int first_ref_dist = 0;
int sec_ref_dist = 0;
const int same_side = is_ref_frame_same_side(cm, mbmi);
const int jmvd_base_ref_list = get_joint_mvd_base_ref_list(cm, mbmi);
// check whether joint mvd is applied or not
if (is_joint_mvd_coding_mode(mbmi->mode)) {
first_ref_dist =
cm->ref_frame_relative_dist[mbmi->ref_frame[jmvd_base_ref_list]];
sec_ref_dist =
cm->ref_frame_relative_dist[mbmi->ref_frame[1 - jmvd_base_ref_list]];
assert(first_ref_dist >= sec_ref_dist);
}
#endif // CONFIG_JOINT_MVD
#if CONFIG_ADAPTIVE_MVD
const int is_adaptive_mvd = enable_adaptive_mvd_resolution(cm, mbmi);
#if CONFIG_FLEX_MVRES
assert(!(is_adaptive_mvd && is_pb_mv_precision_active(cm, mbmi, bsize)));
#endif
#endif // CONFIG_ADAPTIVE_MVD
switch (mode) {
#if IMPROVED_AMVD
case AMVDNEWMV:
#endif // IMPROVED_AMVD
case NEWMV: {
nmv_context *const nmvc = &ec_ctx->nmvc;
read_mv(r, &mv[0].as_mv,
#if CONFIG_FLEX_MVRES
ref_mv[0].as_mv,
#else
&ref_mv[0].as_mv,
#endif
#if CONFIG_ADAPTIVE_MVD
is_adaptive_mvd,
#endif // CONFIG_ADAPTIVE_MVD
nmvc,
#if CONFIG_FLEX_MVRES
precision);
#else
allow_hp);
#endif
break;
}
case NEARMV: {
mv[0].as_int = ref_mv[0].as_int;
break;
}
#if CONFIG_WARPMV
case WARPMV: {
assert(ref_warp_model);
mbmi->mv[0] = get_mv_from_wrl(xd, ref_warp_model,
#if CONFIG_FLEX_MVRES
MV_PRECISION_ONE_EIGHTH_PEL,
#else
1, 0,
#endif
bsize, xd->mi_col, xd->mi_row);
break;
}
#endif // CONFIG_WARPMV
case GLOBALMV: {
#if CONFIG_FLEX_MVRES
mv[0].as_int =
get_warp_motion_vector(xd, &cm->global_motion[ref_frame[0]],
features->fr_mv_precision, bsize, xd->mi_col,
xd->mi_row)
#else
mv[0].as_int = get_warp_motion_vector(
xd, &cm->global_motion[ref_frame[0]],
features->allow_high_precision_mv, bsize, xd->mi_col,
xd->mi_row, features->cur_frame_force_integer_mv)
#endif
.as_int;
break;
}
case NEW_NEWMV:
#if CONFIG_OPTFLOW_REFINEMENT
case NEW_NEWMV_OPTFLOW:
#endif // CONFIG_OPTFLOW_REFINEMENT
{
assert(is_compound);
for (int i = 0; i < 2; ++i) {
nmv_context *const nmvc = &ec_ctx->nmvc;
read_mv(r, &mv[i].as_mv,
#if CONFIG_FLEX_MVRES
ref_mv[i].as_mv,
#else
&ref_mv[i].as_mv,
#endif
#if CONFIG_ADAPTIVE_MVD
is_adaptive_mvd,
#endif // CONFIG_ADAPTIVE_MVD
nmvc,
#if CONFIG_FLEX_MVRES
precision);
#else
allow_hp);
#endif
}
break;
}
case NEAR_NEARMV:
#if CONFIG_OPTFLOW_REFINEMENT
case NEAR_NEARMV_OPTFLOW:
#endif // CONFIG_OPTFLOW_REFINEMENT
{
assert(is_compound);
mv[0].as_int = ref_mv[0].as_int;
mv[1].as_int = ref_mv[1].as_int;
break;
}
case NEAR_NEWMV:
#if CONFIG_OPTFLOW_REFINEMENT
case NEAR_NEWMV_OPTFLOW:
#endif // CONFIG_OPTFLOW_REFINEMENT
{
nmv_context *const nmvc = &ec_ctx->nmvc;
mv[0].as_int = ref_mv[0].as_int;
read_mv(r, &mv[1].as_mv,
#if CONFIG_FLEX_MVRES
ref_mv[1].as_mv,
#else
&ref_mv[1].as_mv,
#endif
#if CONFIG_ADAPTIVE_MVD
is_adaptive_mvd,
#endif // CONFIG_ADAPTIVE_MVD
nmvc,
#if CONFIG_FLEX_MVRES
precision);
#else
allow_hp);
#endif
assert(is_compound);
break;
}
case NEW_NEARMV:
#if CONFIG_OPTFLOW_REFINEMENT
case NEW_NEARMV_OPTFLOW:
#endif // CONFIG_OPTFLOW_REFINEMENT
{
nmv_context *const nmvc = &ec_ctx->nmvc;
assert(is_compound);
mv[1].as_int = ref_mv[1].as_int;
read_mv(r, &mv[0].as_mv,
#if CONFIG_FLEX_MVRES
ref_mv[0].as_mv,
#else
&ref_mv[0].as_mv,
#endif
#if CONFIG_ADAPTIVE_MVD
is_adaptive_mvd,
#endif // CONFIG_ADAPTIVE_MVD
nmvc,
#if CONFIG_FLEX_MVRES
precision);
#else
allow_hp);
#endif
break;
}
case GLOBAL_GLOBALMV: {
assert(is_compound);
mv[0].as_int =
get_warp_motion_vector(xd, &cm->global_motion[ref_frame[0]],
#if CONFIG_FLEX_MVRES
features->fr_mv_precision,
#else
features->allow_high_precision_mv,
#endif
bsize, xd->mi_col, xd->mi_row
#if !CONFIG_FLEX_MVRES
,
features->cur_frame_force_integer_mv
#endif
)
.as_int;
mv[1].as_int =
get_warp_motion_vector(xd, &cm->global_motion[ref_frame[1]],
#if CONFIG_FLEX_MVRES
features->fr_mv_precision,
#else
features->allow_high_precision_mv,
#endif
bsize, xd->mi_col, xd->mi_row
#if !CONFIG_FLEX_MVRES
,
features->cur_frame_force_integer_mv
#endif
)
.as_int;
break;
}
#if CONFIG_JOINT_MVD
#if CONFIG_OPTFLOW_REFINEMENT
case JOINT_NEWMV_OPTFLOW:
#if IMPROVED_AMVD
case JOINT_AMVDNEWMV_OPTFLOW:
#endif // IMPROVED_AMVD
#endif // CONFIG_OPTFLOW_REFINEMENT
#if IMPROVED_AMVD
case JOINT_AMVDNEWMV:
#endif // IMPROVED_AMVD
case JOINT_NEWMV: {
nmv_context *const nmvc = &ec_ctx->nmvc;
assert(is_compound);
mv[1 - jmvd_base_ref_list].as_int = ref_mv[1 - jmvd_base_ref_list].as_int;
read_mv(r, &mv[jmvd_base_ref_list].as_mv,
#if CONFIG_FLEX_MVRES
ref_mv[jmvd_base_ref_list].as_mv,
#else
&ref_mv[jmvd_base_ref_list].as_mv,
#endif
#if CONFIG_ADAPTIVE_MVD
is_adaptive_mvd,
#endif // CONFIG_ADAPTIVE_MVD
nmvc,
#if CONFIG_FLEX_MVRES
precision);
#else
allow_hp);
#endif
sec_ref_dist = same_side ? sec_ref_dist : -sec_ref_dist;
MV other_mvd = { 0, 0 };
MV diff = { 0, 0 };
#if CONFIG_FLEX_MVRES
MV low_prec_refmv = ref_mv[jmvd_base_ref_list].as_mv;
#if BUGFIX_AMVD_AMVR
if (!is_adaptive_mvd)
#endif // BUGFIX_AMVD_AMVR
#if CONFIG_C071_SUBBLK_WARPMV
if (precision < MV_PRECISION_HALF_PEL)
#endif // CONFIG_C071_SUBBLK_WARPMV
lower_mv_precision(&low_prec_refmv, precision);
diff.row = mv[jmvd_base_ref_list].as_mv.row - low_prec_refmv.row;
diff.col = mv[jmvd_base_ref_list].as_mv.col - low_prec_refmv.col;
#else
diff.row = mv[jmvd_base_ref_list].as_mv.row -
ref_mv[jmvd_base_ref_list].as_mv.row;
diff.col = mv[jmvd_base_ref_list].as_mv.col -
ref_mv[jmvd_base_ref_list].as_mv.col;
#endif
get_mv_projection(&other_mvd, diff, sec_ref_dist, first_ref_dist);
#if CONFIG_IMPROVED_JMVD
scale_other_mvd(&other_mvd, mbmi->jmvd_scale_mode, mbmi->mode);
#endif // CONFIG_IMPROVED_JMVD
#if !CONFIG_C071_SUBBLK_WARPMV
#if CONFIG_FLEX_MVRES
// TODO(Mohammed): Do we need to apply block level lower mv precision?
lower_mv_precision(&other_mvd, features->fr_mv_precision);
#else
lower_mv_precision(&other_mvd,
#if IMPROVED_AMVD
allow_hp & !is_adaptive_mvd,
#else
allow_hp,
#endif // IMPROVED_AMVD
features->cur_frame_force_integer_mv);
#endif
#endif // !CONFIG_C071_SUBBLK_WARPMV
mv[1 - jmvd_base_ref_list].as_mv.row =
(int)(ref_mv[1 - jmvd_base_ref_list].as_mv.row + other_mvd.row);
mv[1 - jmvd_base_ref_list].as_mv.col =
(int)(ref_mv[1 - jmvd_base_ref_list].as_mv.col + other_mvd.col);
break;
}
#endif // CONFIG_JOINT_MVD
default: {
return 0;
}
}
int ret = is_mv_valid(&mv[0].as_mv);
if (is_compound) {
ret = ret && is_mv_valid(&mv[1].as_mv);
}
return ret;
}
static int read_is_inter_block(AV1_COMMON *const cm, MACROBLOCKD *const xd,
int segment_id, aom_reader *r
#if CONFIG_CONTEXT_DERIVATION
,
const int skip_txfm
#endif // CONFIG_CONTEXT_DERIVATION
) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
return 1;
}
const int ctx = av1_get_intra_inter_context(xd);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const int is_inter =
#if CONFIG_CONTEXT_DERIVATION
aom_read_symbol(r, ec_ctx->intra_inter_cdf[skip_txfm][ctx], 2, ACCT_STR);
#else
aom_read_symbol(r, ec_ctx->intra_inter_cdf[ctx], 2, ACCT_STR);
#endif // CONFIG_CONTEXT_DERIVATION
return is_inter;
}
#if DEC_MISMATCH_DEBUG
static void dec_dump_logs(AV1_COMMON *cm, MB_MODE_INFO *const mbmi, int mi_row,
int mi_col, int16_t mode_ctx) {
int_mv mv[2] = { { 0 } };
for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref)
mv[ref].as_mv = mbmi->mv[ref].as_mv;
const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
int16_t zeromv_ctx = -1;
int16_t refmv_ctx = -1;
if (mbmi->mode != NEWMV) {
zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
if (mbmi->mode != GLOBALMV)
refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
}
#define FRAME_TO_CHECK 11
if (cm->current_frame.frame_number == FRAME_TO_CHECK && cm->show_frame == 1) {
printf(
"=== DECODER ===: "
"Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, "
"show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, "
"ref[1]=%d, motion_mode=%d, mode_ctx=%d, "
"newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n",
cm->current_frame.frame_number, mi_row, mi_col, mbmi->skip_mode,
mbmi->mode, mbmi->sb_type, cm->show_frame, mv[0].as_mv.row,
mv[0].as_mv.col, mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0],
mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx, zeromv_ctx,
refmv_ctx, mbmi->tx_size);
}
}
#endif // DEC_MISMATCH_DEBUG
#if CONFIG_FLEX_MVRES
MvSubpelPrecision av1_read_pb_mv_precision(AV1_COMMON *const cm,
MACROBLOCKD *const xd,
aom_reader *r) {
MB_MODE_INFO *const mbmi = xd->mi[0];
assert(mbmi->max_mv_precision ==
av1_get_mbmi_max_mv_precision(cm, xd->sbi, mbmi));
assert(mbmi->max_mv_precision >= MV_PRECISION_HALF_PEL);
const MvSubpelPrecision max_precision = mbmi->max_mv_precision;
const int down_ctx = av1_get_pb_mv_precision_down_context(cm, xd);
assert(mbmi->most_probable_pb_mv_precision <= mbmi->max_mv_precision);
assert(mbmi->most_probable_pb_mv_precision ==
cm->features.most_probable_fr_mv_precision);
const int mpp_flag_context = av1_get_mpp_flag_context(cm, xd);
const int mpp_flag = aom_read_symbol(
r, xd->tile_ctx->pb_mv_mpp_flag_cdf[mpp_flag_context], 2, ACCT_STR);
if (mpp_flag) return mbmi->most_probable_pb_mv_precision;
const PRECISION_SET *precision_def =
&av1_mv_precision_sets[mbmi->mb_precision_set];
int nsymbs = precision_def->num_precisions - 1;
int down = aom_read_symbol(
r,
xd->tile_ctx->pb_mv_precision_cdf[down_ctx]
[max_precision - MV_PRECISION_HALF_PEL],
nsymbs, ACCT_STR);
return av1_get_precision_from_index(mbmi, down);
}
#endif // CONFIG_FLEX_MVRES
static void read_inter_block_mode_info(AV1Decoder *const pbi,
DecoderCodingBlock *dcb,
MB_MODE_INFO *const mbmi,
aom_reader *r) {
AV1_COMMON *const cm = &pbi->common;
FeatureFlags *const features = &cm->features;
const BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y];
#if !CONFIG_FLEX_MVRES
const int allow_hp = features->allow_high_precision_mv;
#endif
int_mv ref_mv[2];
int_mv ref_mvs[MODE_CTX_REF_FRAMES][MAX_MV_REF_CANDIDATES] = { { { 0 } } };
int16_t inter_mode_ctx[MODE_CTX_REF_FRAMES];
int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE];
MACROBLOCKD *const xd = &dcb->xd;
#if CONFIG_FLEX_MVRES
SB_INFO *sbi = xd->sbi;
#endif
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
mbmi->uv_mode = UV_DC_PRED;
mbmi->palette_mode_info.palette_size[0] = 0;
mbmi->palette_mode_info.palette_size[1] = 0;
mbmi->fsc_mode[PLANE_TYPE_Y] = 0;
mbmi->fsc_mode[PLANE_TYPE_UV] = 0;
#if CONFIG_NEW_CONTEXT_MODELING
mbmi->use_intrabc[0] = 0;
mbmi->use_intrabc[1] = 0;
#endif // CONFIG_NEW_CONTEXT_MODELING
#if CONFIG_FLEX_MVRES
set_default_max_mv_precision(mbmi, sbi->sb_mv_precision);
set_mv_precision(mbmi, mbmi->max_mv_precision); // initialize to max
set_default_precision_set(cm, mbmi, bsize);
set_most_probable_mv_precision(cm, mbmi, bsize);
#endif // CONFIG_FLEX_MVRES
#if CONFIG_BAWP
mbmi->bawp_flag = 0;
#endif
av1_collect_neighbors_ref_counts(xd);
read_ref_frames(cm, xd, r, mbmi->segment_id, mbmi->ref_frame);
const int is_compound = has_second_ref(mbmi);
const MV_REFERENCE_FRAME ref_frame = av1_ref_frame_type(mbmi->ref_frame);
#if CONFIG_WARP_REF_LIST
av1_initialize_warp_wrl_list(xd->warp_param_stack,
xd->valid_num_warp_candidates);
#endif // CONFIG_WARP_REF_LIST
av1_find_mv_refs(
cm, xd, mbmi, ref_frame, dcb->ref_mv_count, xd->ref_mv_stack, xd->weight,
ref_mvs, /*global_mvs=*/NULL
#if !CONFIG_C076_INTER_MOD_CTX
,
inter_mode_ctx
#endif // !CONFIG_C076_INTER_MOD_CTX
#if CONFIG_WARP_REF_LIST
,
xd->warp_param_stack,
ref_frame < INTER_REFS_PER_FRAME ? MAX_WARP_REF_CANDIDATES : 0,
xd->valid_num_warp_candidates
#endif // CONFIG_WARP_REF_LIST
);
#if CONFIG_C076_INTER_MOD_CTX
av1_find_mode_ctx(cm, xd, inter_mode_ctx, ref_frame);
#endif // CONFIG_C076_INTER_MOD_CTX
mbmi->ref_mv_idx = 0;
#if CONFIG_WARP_REF_LIST
mbmi->warp_ref_idx = 0;
mbmi->max_num_warp_candidates = 0;
#endif // CONFIG_WARP_REF_LIST
#if CONFIG_WARPMV
mbmi->motion_mode = SIMPLE_TRANSLATION;
WARP_CANDIDATE warp_param_stack[MAX_WARP_REF_CANDIDATES];
WarpedMotionParams ref_warp_model;
#endif // CONFIG_WARPMV
if (mbmi->skip_mode) {
assert(is_compound);
#if CONFIG_SKIP_MODE_ENHANCEMENT && CONFIG_OPTFLOW_REFINEMENT
mbmi->mode =
(cm->features.opfl_refine_type ? NEAR_NEARMV_OPTFLOW : NEAR_NEARMV);
#else
mbmi->mode = NEAR_NEARMV;
#endif // CONFIG_SKIP_MODE_ENHANCEMENT && CONFIG_OPTFLOW_REFINEMENT
#if CONFIG_SKIP_MODE_ENHANCEMENT
read_drl_idx(cm->features.max_drl_bits,
av1_mode_context_pristine(inter_mode_ctx, mbmi->ref_frame),
ec_ctx, dcb, mbmi, r);
#endif // CONFIG_SKIP_MODE_ENHANCEMENT
#if CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
mbmi->ref_frame[0] =
xd->skip_mvp_candidate_list.ref_frame0[mbmi->ref_mv_idx];
mbmi->ref_frame[1] =
xd->skip_mvp_candidate_list.ref_frame1[mbmi->ref_mv_idx];
#endif // CONFIG_SKIP_MODE_DRL_WITH_REF_IDX
} else {
if (segfeature_active(&cm->seg,