blob: 17dcc75db66b3141f3a10cc6e19f79898cb031d2 [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <math.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/av1_loopfilter.h"
#include "av1/common/reconinter.h"
#include "av1/common/seg_common.h"
#define DF_MVS 0
#if DF_MVS
#define DF_MV_THRESH 8
#endif
#define MAX_SIDE_TABLE 296
// based on int side_threshold = (int)(32 * AOMMAX(0.0444 * q_ind - 2.9936, 0.31
// * q_ind - 39) );
static const int16_t side_thresholds[MAX_SIDE_TABLE] = {
-16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16,
-16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16,
-16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16,
-16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16,
-16, -16, -16, -16, -16, -14, -13, -11, -10, -9, -7, -6, -4,
-3, -2, 0, 0, 2, 3, 5, 6, 7, 9, 10, 12, 13,
15, 16, 17, 19, 20, 22, 23, 24, 26, 27, 29, 30, 32,
33, 34, 36, 37, 39, 40, 42, 43, 44, 46, 47, 49, 50,
51, 53, 54, 56, 57, 59, 60, 61, 63, 64, 66, 67, 69,
70, 71, 73, 74, 76, 77, 78, 80, 81, 83, 84, 86, 87,
88, 90, 91, 93, 94, 96, 101, 111, 120, 130, 140, 150, 160,
170, 180, 190, 200, 210, 220, 230, 240, 249, 259, 269, 279, 289,
299, 309, 319, 329, 339, 349, 359, 368, 378, 388, 398, 408, 418,
428, 438, 448, 458, 468, 478, 488, 497, 507, 517, 527, 537, 547,
557, 567, 577, 587, 597, 607, 616, 626, 636, 646, 656, 666, 676,
686, 696, 706, 716, 726, 736, 745, 755, 765, 775, 785, 795, 805,
815, 825, 835, 845, 855, 864, 874, 884, 894, 904, 914, 924, 934,
944, 954, 964, 974, 984, 993, 1003, 1013, 1023, 1033, 1043, 1053, 1063,
1073, 1083, 1093, 1103, 1112, 1122, 1132, 1142, 1152, 1162, 1172, 1182, 1192,
1202, 1212, 1222, 1232, 1241, 1251, 1261, 1271, 1281, 1291, 1301, 1311, 1321,
1331, 1341, 1351, 1360, 1370, 1380, 1390, 1400, 1410, 1420, 1430, 1440, 1450,
1460, 1470, 1480, 1489, 1499, 1509, 1519, 1529, 1539, 1549, 1559, 1569, 1579,
1589, 1599, 1608, 1618, 1628, 1638, 1648, 1658, 1668, 1678
};
static const SEG_LVL_FEATURES seg_lvl_lf_lut[MAX_MB_PLANE][2] = {
{ SEG_LVL_ALT_LF_Y_V, SEG_LVL_ALT_LF_Y_H },
{ SEG_LVL_ALT_LF_U, SEG_LVL_ALT_LF_U },
{ SEG_LVL_ALT_LF_V, SEG_LVL_ALT_LF_V }
};
static const int mode_lf_lut[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // INTRA_MODES
1, 0, 1, // INTER_SINGLE_MODES (GLOBALMV == 0)
1, // AMVDNEWMV
#if CONFIG_EXTENDED_WARP_PREDICTION
1, // WARPMV
#endif // CONFIG_EXTENDED_WARP_PREDICTION
1, 1, 1, 0, 1, // INTER_COMPOUND_MODES (GLOBAL_GLOBALMV == 0)
1, 1,
#if CONFIG_OPTFLOW_REFINEMENT
1, 1, 1, 1, 1, 1,
#endif // CONFIG_OPTFLOW_REFINEMENT
};
// Function obtains q_threshold from the quantization index.
int df_quant_from_qindex(int q_index, int bit_depth) {
int qstep = ROUND_POWER_OF_TWO(av1_ac_quant_QTX(q_index, 0, bit_depth),
QUANT_TABLE_BITS);
int q_threshold = qstep >> 6;
return q_threshold;
}
// Function obtains side_threshold from the quantization index.
int df_side_from_qindex(int q_index, int bit_depth) {
assert(bit_depth <= 12);
int q_ind = clamp(q_index - 24 * (bit_depth - 8), 0, MAX_SIDE_TABLE - 1);
int side_threshold = side_thresholds[q_ind];
side_threshold =
AOMMAX(side_threshold + (1 << (12 - bit_depth)), 0) >>
(13 - bit_depth); // to avoid rounding down for higher bit depths
return side_threshold;
}
uint16_t av1_get_filter_q(const loop_filter_info_n *lfi_n, const int dir_idx,
int plane, const MB_MODE_INFO *mbmi) {
const int segment_id = mbmi->segment_id;
// TODO(Andrey): non-CTC conditions
return lfi_n->q_thr[plane][segment_id][dir_idx][COMPACT_INDEX0_NRS(
mbmi->ref_frame[0])][mode_lf_lut[mbmi->mode]];
}
uint16_t av1_get_filter_side(const loop_filter_info_n *lfi_n, const int dir_idx,
int plane, const MB_MODE_INFO *mbmi) {
const int segment_id = mbmi->segment_id;
// TODO(Andrey): non-CTC conditions
return lfi_n->side_thr[plane][segment_id][dir_idx][COMPACT_INDEX0_NRS(
mbmi->ref_frame[0])][mode_lf_lut[mbmi->mode]];
}
void av1_loop_filter_init(AV1_COMMON *cm) {
assert(MB_MODE_COUNT == NELEMENTS(mode_lf_lut));
struct loopfilter *lf = &cm->lf;
lf->combine_vert_horz_lf = 1;
}
// Update the loop filter for the current frame.
// This should be called before loop_filter_rows(),
// av1_loop_filter_frame() calls this function directly.
void av1_loop_filter_frame_init(AV1_COMMON *cm, int plane_start,
int plane_end) {
int q_ind[MAX_MB_PLANE], q_ind_r[MAX_MB_PLANE], side_ind[MAX_MB_PLANE],
side_ind_r[MAX_MB_PLANE];
int plane;
int seg_id;
// n_shift is the multiplier for lf_deltas
// the multiplier is 1 for when filter_lvl is between 0 and 31;
// 2 when filter_lvl is between 32 and 63
loop_filter_info_n *const lfi = &cm->lf_info;
struct loopfilter *const lf = &cm->lf;
const struct segmentation *const seg = &cm->seg;
#if DF_DUAL
q_ind[0] =
cm->quant_params.base_qindex + cm->lf.delta_q_luma[0] * DF_DELTA_SCALE;
side_ind[0] =
cm->quant_params.base_qindex + cm->lf.delta_side_luma[0] * DF_DELTA_SCALE;
#else
q_ind[0] =
cm->quant_params.base_qindex + cm->lf.delta_q_luma * DF_DELTA_SCALE;
side_ind[0] =
cm->quant_params.base_qindex + cm->lf.delta_side_luma * DF_DELTA_SCALE;
#endif // DF_DUAL
q_ind[1] = cm->quant_params.base_qindex + cm->quant_params.u_ac_delta_q +
cm->lf.delta_q_u * DF_DELTA_SCALE;
side_ind[1] = cm->quant_params.base_qindex + cm->quant_params.u_ac_delta_q +
cm->lf.delta_side_u * DF_DELTA_SCALE;
q_ind[2] = cm->quant_params.base_qindex + cm->quant_params.v_ac_delta_q +
cm->lf.delta_q_v * DF_DELTA_SCALE;
side_ind[2] = cm->quant_params.base_qindex + cm->quant_params.v_ac_delta_q +
cm->lf.delta_side_v * DF_DELTA_SCALE;
#if DF_DUAL
q_ind_r[0] =
cm->quant_params.base_qindex + cm->lf.delta_q_luma[1] * DF_DELTA_SCALE;
side_ind_r[0] =
cm->quant_params.base_qindex + cm->lf.delta_side_luma[1] * DF_DELTA_SCALE;
#else
q_ind_r[0] =
cm->quant_params.base_qindex + cm->lf.delta_q_luma * DF_DELTA_SCALE;
side_ind_r[0] =
cm->quant_params.base_qindex + cm->lf.delta_side_luma * DF_DELTA_SCALE;
#endif // DF_DUAL
q_ind_r[1] = cm->quant_params.base_qindex + cm->quant_params.u_ac_delta_q +
cm->lf.delta_q_u * DF_DELTA_SCALE;
side_ind_r[1] = cm->quant_params.base_qindex + cm->quant_params.u_ac_delta_q +
cm->lf.delta_side_u * DF_DELTA_SCALE;
q_ind_r[2] = cm->quant_params.base_qindex + cm->quant_params.v_ac_delta_q +
cm->lf.delta_q_v * DF_DELTA_SCALE;
side_ind_r[2] = cm->quant_params.base_qindex + cm->quant_params.v_ac_delta_q +
cm->lf.delta_side_v * DF_DELTA_SCALE;
assert(plane_start >= AOM_PLANE_Y);
assert(plane_end <= MAX_MB_PLANE);
for (plane = plane_start; plane < plane_end; plane++) {
if (plane == 0 && !cm->lf.filter_level[0] && !cm->lf.filter_level[1])
break;
else if (plane == 1 && !cm->lf.filter_level_u)
continue;
else if (plane == 2 && !cm->lf.filter_level_v)
continue;
for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) {
for (int dir = 0; dir < 2; ++dir) {
int q_ind_seg = (dir == 0) ? q_ind[plane] : q_ind_r[plane];
int side_ind_seg = (dir == 0) ? side_ind[plane] : side_ind_r[plane];
const int seg_lf_feature_id = seg_lvl_lf_lut[plane][dir];
if (segfeature_active(seg, seg_id, seg_lf_feature_id)) {
const int data = get_segdata(&cm->seg, seg_id, seg_lf_feature_id);
// TODO(Andrey): add separate offsets to segments for q and side
// thresholds // add clamp
q_ind_seg += data;
side_ind_seg += data;
}
if (!lf->mode_ref_delta_enabled) {
int q_thr_seg =
df_quant_from_qindex(q_ind_seg, cm->seq_params.bit_depth);
int side_thr_seg =
df_side_from_qindex(side_ind_seg, cm->seq_params.bit_depth);
// we could get rid of this if we assume that deltas are set to
// zero when not in use; encoder always uses deltas
int ref, mode;
lfi->q_thr[plane][seg_id][dir][INTRA_FRAME_INDEX][0] = q_thr_seg;
lfi->side_thr[plane][seg_id][dir][INTRA_FRAME_INDEX][0] =
side_thr_seg;
for (ref = 0; ref < INTER_REFS_PER_FRAME; ++ref) {
for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) {
lfi->q_thr[plane][seg_id][dir][ref][mode] = q_thr_seg;
lfi->side_thr[plane][seg_id][dir][ref][mode] = side_thr_seg;
}
}
for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) {
lfi->q_thr[plane][seg_id][dir][TIP_FRAME_INDEX][mode] = q_thr_seg;
lfi->side_thr[plane][seg_id][dir][TIP_FRAME_INDEX][mode] =
side_thr_seg;
}
} else {
// we could get rid of this if we assume that deltas are set to
// zero when not in use; encoder always uses deltas
const int scale = 4;
int ref, mode;
lfi->q_thr[plane][seg_id][dir][INTRA_FRAME_INDEX][0] =
df_quant_from_qindex(
q_ind_seg + lf->ref_deltas[INTRA_FRAME_INDEX] * scale,
cm->seq_params.bit_depth);
lfi->side_thr[plane][seg_id][dir][INTRA_FRAME_INDEX][0] =
df_side_from_qindex(
side_ind_seg + lf->ref_deltas[INTRA_FRAME_INDEX] * scale,
cm->seq_params.bit_depth); // TODO: use a different delta?
for (ref = 0; ref < INTER_REFS_PER_FRAME; ++ref) {
for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) {
lfi->q_thr[plane][seg_id][dir][ref][mode] =
df_quant_from_qindex(q_ind_seg + lf->ref_deltas[ref] * scale +
lf->mode_deltas[mode] * scale,
cm->seq_params.bit_depth);
lfi->side_thr[plane][seg_id][dir][ref][mode] =
df_side_from_qindex(side_ind_seg +
lf->ref_deltas[ref] * scale +
lf->mode_deltas[mode] * scale,
cm->seq_params.bit_depth);
}
}
const int scale_ref_deltas = lf->ref_deltas[TIP_FRAME_INDEX] * scale;
for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) {
lfi->q_thr[plane][seg_id][dir][TIP_FRAME_INDEX][mode] =
df_quant_from_qindex(q_ind_seg + scale_ref_deltas +
lf->mode_deltas[mode] * scale,
cm->seq_params.bit_depth);
lfi->side_thr[plane][seg_id][dir][TIP_FRAME_INDEX][mode] =
df_side_from_qindex(side_ind_seg + scale_ref_deltas +
lf->mode_deltas[mode] * scale,
cm->seq_params.bit_depth);
}
}
}
}
}
}
#if CONFIG_TX_PARTITION_TYPE_EXT
static TX_SIZE get_transform_size(const MACROBLOCKD *const xd,
const MB_MODE_INFO *const mbmi,
const EDGE_DIR edge_dir, const int mi_row,
const int mi_col, const int plane,
const TREE_TYPE tree_type,
const struct macroblockd_plane *plane_ptr) {
assert(mbmi != NULL);
if (xd && xd->lossless[mbmi->segment_id]) return TX_4X4;
const int plane_type = av1_get_sdp_idx(tree_type);
#if CONFIG_EXT_RECUR_PARTITIONS
const BLOCK_SIZE bsize_base =
get_bsize_base_from_tree_type(mbmi, tree_type, plane);
#endif // CONFIG_EXT_RECUR_PARTITIONS
TX_SIZE tx_size = TX_INVALID;
if (plane != AOM_PLANE_Y) {
tx_size =
#if CONFIG_EXT_RECUR_PARTITIONS
av1_get_max_uv_txsize(bsize_base, plane_ptr->subsampling_x,
plane_ptr->subsampling_y);
#else
av1_get_max_uv_txsize(mbmi->sb_type[plane_type],
plane_ptr->subsampling_x,
plane_ptr->subsampling_y);
#endif // CONFIG_EXT_RECUR_PARTITIONS
}
if (plane == AOM_PLANE_Y && !mbmi->skip_txfm[SHARED_PART]) {
const BLOCK_SIZE sb_type = mbmi->sb_type[plane_type];
int row_mask = mi_size_high[sb_type] - 1;
int col_mask = mi_size_wide[sb_type] - 1;
const int blk_row = mi_row & row_mask;
const int blk_col = mi_col & col_mask;
assert(blk_row >= 0);
assert(blk_col >= 0);
int txp_index = is_inter_block(mbmi, SHARED_PART)
? av1_get_txb_size_index(sb_type, blk_row, blk_col)
: 0;
const TX_PARTITION_TYPE partition = mbmi->tx_partition_type[txp_index];
const TX_SIZE max_tx_size = max_txsize_rect_lookup[sb_type];
if (partition == TX_PARTITION_HORZ_M || partition == TX_PARTITION_VERT_M) {
TXB_POS_INFO txb_pos;
TX_SIZE sub_txs[MAX_TX_PARTITIONS] = { 0 };
get_tx_partition_sizes(partition, max_tx_size, &txb_pos, sub_txs);
int mi_blk_row = blk_row & 0xf;
int mi_blk_col = blk_col & 0xf;
int txb_idx;
for (txb_idx = 0; txb_idx < txb_pos.n_partitions; ++txb_idx) {
TX_SIZE sub_tx = sub_txs[txb_idx];
int txh = tx_size_high_unit[sub_tx];
int txw = tx_size_wide_unit[sub_tx];
if (mi_blk_row >= txb_pos.row_offset[txb_idx] &&
mi_blk_row < txb_pos.row_offset[txb_idx] + txh &&
mi_blk_col >= txb_pos.col_offset[txb_idx] &&
mi_blk_col < txb_pos.col_offset[txb_idx] + txw)
break;
}
assert(txb_pos.n_partitions > 1);
assert(txb_idx < txb_pos.n_partitions);
TX_SIZE tmp_tx_size = sub_txs[txb_idx];
assert(tmp_tx_size < TX_SIZES_ALL);
tx_size = tmp_tx_size;
} else {
tx_size = get_tx_partition_one_size(partition, max_tx_size);
}
}
if (plane == AOM_PLANE_Y && mbmi->skip_txfm[SHARED_PART]) {
const BLOCK_SIZE sb_type = mbmi->sb_type[plane_type];
tx_size = max_txsize_rect_lookup[sb_type];
}
assert(tx_size < TX_SIZES_ALL);
// since in case of chrominance or non-square transform need to convert
// transform size into transform size in particular direction.
// for vertical edge, filter direction is horizontal, for horizontal
// edge, filter direction is vertical.
tx_size = (edge_dir == VERT_EDGE) ? txsize_horz_map[tx_size]
: txsize_vert_map[tx_size];
return tx_size;
}
#else
static TX_SIZE get_transform_size(const MACROBLOCKD *const xd,
const MB_MODE_INFO *const mbmi,
const EDGE_DIR edge_dir, const int mi_row,
const int mi_col, const int plane,
const TREE_TYPE tree_type,
const struct macroblockd_plane *plane_ptr) {
assert(mbmi != NULL);
if (xd && xd->lossless[mbmi->segment_id]) return TX_4X4;
const int plane_type = av1_get_sdp_idx(tree_type);
#if CONFIG_EXT_RECUR_PARTITIONS
const BLOCK_SIZE bsize_base =
get_bsize_base_from_tree_type(mbmi, tree_type, plane);
#endif // CONFIG_EXT_RECUR_PARTITIONS
TX_SIZE tx_size =
(plane == AOM_PLANE_Y)
? mbmi->tx_size
#if CONFIG_EXT_RECUR_PARTITIONS
: av1_get_max_uv_txsize(bsize_base, plane_ptr->subsampling_x,
plane_ptr->subsampling_y);
#else
: av1_get_max_uv_txsize(mbmi->sb_type[plane_type],
plane_ptr->subsampling_x,
plane_ptr->subsampling_y);
#endif // CONFIG_EXT_RECUR_PARTITIONS
assert(tx_size < TX_SIZES_ALL);
if ((plane == AOM_PLANE_Y) && is_inter_block(mbmi, SHARED_PART) &&
!mbmi->skip_txfm[SHARED_PART]) {
const BLOCK_SIZE sb_type = mbmi->sb_type[plane_type];
const int blk_row = mi_row - mbmi->mi_row_start;
const int blk_col = mi_col - mbmi->mi_col_start;
assert(blk_row >= 0);
assert(blk_col >= 0);
const TX_SIZE mb_tx_size =
mbmi->inter_tx_size[av1_get_txb_size_index(sb_type, blk_row, blk_col)];
assert(mb_tx_size < TX_SIZES_ALL);
tx_size = mb_tx_size;
}
// since in case of chrominance or non-square transform need to convert
// transform size into transform size in particular direction.
// for vertical edge, filter direction is horizontal, for horizontal
// edge, filter direction is vertical.
tx_size = (VERT_EDGE == edge_dir) ? txsize_horz_map[tx_size]
: txsize_vert_map[tx_size];
return tx_size;
}
#endif // CONFIG_TX_PARTITION_TYPE_EXT
typedef struct AV1_DEBLOCKING_PARAMETERS {
// length of the filter applied to the outer edge
uint32_t filter_length;
// deblocking limits
const uint8_t *lim;
const uint8_t *mblim;
const uint8_t *hev_thr;
uint16_t q_threshold;
uint16_t side_threshold;
} AV1_DEBLOCKING_PARAMETERS;
#if CONFIG_LF_SUB_PU
// Check whether current block is TIP mode
static AOM_INLINE void check_tip_edge(const MB_MODE_INFO *const mbmi,
const int scale_horz,
const int scale_vert, TX_SIZE *ts,
int32_t *tip_edge) {
const bool is_tip_mode = is_tip_ref_frame(mbmi->ref_frame[0]);
if (is_tip_mode) {
*tip_edge = 1;
const int tip_ts = (scale_horz || scale_vert) ? TX_4X4 : TX_8X8;
*ts = tip_ts;
}
}
#if CONFIG_OPTFLOW_REFINEMENT
// Check whether current block is OPFL mode
static AOM_INLINE void check_opfl_edge(const AV1_COMMON *const cm,
const int plane,
const MB_MODE_INFO *const mbmi,
TX_SIZE *ts, int32_t *opfl_edge) {
if (plane > 0) return;
const bool is_opfl_mode = opfl_allowed_for_cur_block(cm, mbmi);
if (is_opfl_mode) {
*opfl_edge = 1;
const int opfl_ts = TX_8X8;
*ts = opfl_ts;
}
}
#endif // CONFIG_OPTFLOW_REFINEMENT
#if CONFIG_REFINEMV
// Check whether current block is RFMV mode
static AOM_INLINE void check_rfmv_edge(const MB_MODE_INFO *const mbmi,
const int scale_horz,
const int scale_vert, TX_SIZE *ts,
int32_t *rfmv_edge) {
const int is_rfmv_mode =
mbmi->refinemv_flag && !is_tip_ref_frame(mbmi->ref_frame[0]);
if (is_rfmv_mode) {
*rfmv_edge = 1;
const int rfmv_ts = (scale_horz || scale_vert) ? TX_8X8 : TX_16X16;
*ts = rfmv_ts;
}
}
#endif // CONFIG_REFINEMV
// Check whether current block is sub-prediction mode
static AOM_INLINE void check_sub_pu_edge(
const AV1_COMMON *const cm, const MACROBLOCKD *const xd,
const MB_MODE_INFO *const mbmi, const int plane, const int scale_horz,
const int scale_vert, const EDGE_DIR edge_dir, const uint32_t coord,
TX_SIZE *ts, int32_t *sub_pu_edge) {
if (!cm->features.allow_lf_sub_pu) return;
const int is_inter = is_inter_block(mbmi, xd->tree_type);
if (!is_inter) return;
int temp_edge = 0;
TX_SIZE temp_ts = 0;
check_tip_edge(mbmi, scale_horz, scale_vert, &temp_ts, &temp_edge);
#if CONFIG_OPTFLOW_REFINEMENT
if (!temp_edge) check_opfl_edge(cm, plane, mbmi, &temp_ts, &temp_edge);
#endif // CONFIG_OPTFLOW_REFINEMENT
#if CONFIG_REFINEMV
if (!temp_edge)
check_rfmv_edge(mbmi, scale_horz, scale_vert, &temp_ts, &temp_edge);
#endif // CONFIG_REFINEMV
if (temp_edge) {
const int curr_tx =
edge_dir == VERT_EDGE ? tx_size_wide[temp_ts] : tx_size_high[temp_ts];
const int orig_tx =
edge_dir == VERT_EDGE ? tx_size_wide[*ts] : tx_size_high[*ts];
if (curr_tx < orig_tx) {
const uint32_t sub_pu_masks = edge_dir == VERT_EDGE
? tx_size_wide[temp_ts] - 1
: tx_size_high[temp_ts] - 1;
*sub_pu_edge = (coord & sub_pu_masks) ? (0) : (1);
if (*sub_pu_edge) *ts = temp_ts;
}
}
}
#endif // CONFIG_LF_SUB_PU
// Return TX_SIZE from get_transform_size(), so it is plane and direction
// aware
static TX_SIZE set_lpf_parameters(
AV1_DEBLOCKING_PARAMETERS *const params, const ptrdiff_t mode_step,
const AV1_COMMON *const cm, const MACROBLOCKD *const xd,
const EDGE_DIR edge_dir, const uint32_t x, const uint32_t y,
const int plane, const struct macroblockd_plane *const plane_ptr) {
// reset to initial values
params->filter_length = 0;
TREE_TYPE tree_type = SHARED_PART;
#if !CONFIG_EXTENDED_SDP
const bool is_sdp_eligible = frame_is_intra_only(cm) &&
!cm->seq_params.monochrome &&
cm->seq_params.enable_sdp;
if (is_sdp_eligible) {
tree_type = (plane == AOM_PLANE_Y) ? LUMA_PART : CHROMA_PART;
}
const int plane_type = is_sdp_eligible && plane > 0;
#endif // !CONFIG_EXTENDED_SDP
// no deblocking is required
const uint32_t width = plane_ptr->dst.width;
const uint32_t height = plane_ptr->dst.height;
if ((width <= x) || (height <= y)) {
// just return the smallest transform unit size
return TX_4X4;
}
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
// for sub8x8 block, chroma prediction mode is obtained from the bottom/right
// mi structure of the co-located 8x8 luma block. so for chroma plane, mi_row
// and mi_col should map to the bottom/right mi structure, i.e, both mi_row
// and mi_col should be odd number for chroma plane.
const int mi_row = scale_vert | ((y << scale_vert) >> MI_SIZE_LOG2);
const int mi_col = scale_horz | ((x << scale_horz) >> MI_SIZE_LOG2);
MB_MODE_INFO **mi =
cm->mi_params.mi_grid_base + mi_row * cm->mi_params.mi_stride + mi_col;
const MB_MODE_INFO *mbmi = mi[0];
// If current mbmi is not correctly setup, return an invalid value to stop
// filtering. One example is that if this tile is not coded, then its mbmi
// it not set up.
if (mbmi == NULL) return TX_INVALID;
#if CONFIG_EXTENDED_SDP
const bool is_sdp_eligible = cm->seq_params.enable_sdp &&
!cm->seq_params.monochrome &&
mbmi->region_type == INTRA_REGION;
if (is_sdp_eligible) {
tree_type = (plane == AOM_PLANE_Y) ? LUMA_PART : CHROMA_PART;
}
const int plane_type = is_sdp_eligible && plane > 0;
#endif // CONFIG_EXTENDED_SDP
#if CONFIG_LF_SUB_PU
TX_SIZE ts = get_transform_size(xd, mi[0], edge_dir, mi_row, mi_col, plane,
tree_type, plane_ptr);
const TX_SIZE ts_ori = ts;
#else
const TX_SIZE ts = get_transform_size(xd, mi[0], edge_dir, mi_row, mi_col,
plane, tree_type, plane_ptr);
#endif // CONFIG_LF_SUB_PU
{
const uint32_t coord = (VERT_EDGE == edge_dir) ? (x) : (y);
const uint32_t transform_masks =
edge_dir == VERT_EDGE ? tx_size_wide[ts] - 1 : tx_size_high[ts] - 1;
const int32_t tu_edge = (coord & transform_masks) ? (0) : (1);
#if CONFIG_LF_SUB_PU
int32_t sub_pu_edge = 0;
check_sub_pu_edge(cm, xd, mbmi, plane, scale_horz, scale_vert, edge_dir,
coord, &ts, &sub_pu_edge);
if (!tu_edge && !sub_pu_edge)
#else
if (!tu_edge)
#endif // CONFIG_LF_SUB_PU
return ts;
// prepare outer edge parameters. deblock the edge if it's an edge of a TU
{
const uint32_t curr_q =
av1_get_filter_q(&cm->lf_info, edge_dir, plane, mbmi);
const uint32_t curr_side =
av1_get_filter_side(&cm->lf_info, edge_dir, plane, mbmi);
const int curr_skipped =
mbmi->skip_txfm[plane_type] && is_inter_block(mbmi, tree_type);
if (coord) {
{
const MB_MODE_INFO *const mi_prev = *(mi - mode_step);
if (mi_prev == NULL) return TX_INVALID;
const int pv_row =
(VERT_EDGE == edge_dir) ? (mi_row) : (mi_row - (1 << scale_vert));
const int pv_col =
(VERT_EDGE == edge_dir) ? (mi_col - (1 << scale_horz)) : (mi_col);
#if CONFIG_EXTENDED_SDP
TREE_TYPE prev_tree_type = SHARED_PART;
const bool is_prev_sdp_eligible =
cm->seq_params.enable_sdp && !cm->seq_params.monochrome &&
mi_prev->region_type == INTRA_REGION;
// With SDP in inter frames, the tree type of current block can be
// different with previous block, so we can't copy the tree type of
// current block to previous block, and we need to fetch the tree type
// of a previous block.
if (is_prev_sdp_eligible) {
prev_tree_type = (plane == AOM_PLANE_Y) ? LUMA_PART : CHROMA_PART;
}
const TX_SIZE pv_ts =
get_transform_size(xd, mi_prev, edge_dir, pv_row, pv_col, plane,
prev_tree_type, plane_ptr);
#else
const TX_SIZE pv_ts =
get_transform_size(xd, mi_prev, edge_dir, pv_row, pv_col, plane,
tree_type, plane_ptr);
#endif // CONFIG_EXTENDED_SDP
const uint32_t pv_q =
av1_get_filter_q(&cm->lf_info, edge_dir, plane, mi_prev);
const uint32_t pv_side =
av1_get_filter_side(&cm->lf_info, edge_dir, plane, mi_prev);
const int pv_skip_txfm = mi_prev->skip_txfm[plane_type] &&
is_inter_block(mi_prev, tree_type);
const BLOCK_SIZE bsize = get_mb_plane_block_size_from_tree_type(
mbmi, tree_type, plane, plane_ptr->subsampling_x,
plane_ptr->subsampling_y);
#if !CONFIG_EXT_RECUR_PARTITIONS
assert(bsize == get_plane_block_size(mbmi->sb_type[plane_type],
plane_ptr->subsampling_x,
plane_ptr->subsampling_y));
#endif // !CONFIG_EXT_RECUR_PARTITIONS
assert(bsize < BLOCK_SIZES_ALL);
const int prediction_masks = edge_dir == VERT_EDGE
? block_size_wide[bsize] - 1
: block_size_high[bsize] - 1;
const int32_t pu_edge = !(coord & prediction_masks);
// if the current and the previous blocks are skipped,
// deblock the edge if the edge belongs to a PU's edge only.
#if DF_REDUCED_SB_EDGE
const BLOCK_SIZE superblock_size = get_plane_block_size(
cm->sb_size, plane_ptr->subsampling_x, plane_ptr->subsampling_y);
const int vert_sb_mask = block_size_high[superblock_size] - 1;
int horz_superblock_edge =
(HORZ_EDGE == edge_dir) && !(coord & vert_sb_mask);
const unsigned int hor_sb_size = block_size_wide[superblock_size];
int vert_tile_edge = 0;
for (int i = 1; i < cm->tiles.cols; ++i) {
if (cm->tiles.col_start_sb[i] * hor_sb_size == coord) {
vert_tile_edge = 1;
}
}
#endif // DF_REDUCED_SB_EDGE
#if DF_MVS
// Check difference between MVs, may need consider cases with
// inter-intra
int diff_mvs = 0;
if (pv_skip_txfm && curr_skipped && pu_edge) {
if ((!has_second_ref(mi_prev) && has_second_ref(mbmi)) ||
(has_second_ref(mi_prev) && !has_second_ref(mbmi))) {
diff_mvs = 1;
} else if (!has_second_ref(mi_prev) &&
!has_second_ref(
mbmi) /*second term can be removed*/) { // One ref
// frame
// case
if (mi_prev->ref_frame[0] != mbmi->ref_frame[0]) {
diff_mvs = 1;
} else if (abs(mi_prev->mv[0].as_mv.row -
mbmi->mv[0].as_mv.row) >= DF_MV_THRESH ||
abs(mi_prev->mv[0].as_mv.col -
mbmi->mv[0].as_mv.col) >= DF_MV_THRESH) {
diff_mvs = 1;
}
} else { // if more than two ref frames
if (mi_prev->ref_frame[0] == mbmi->ref_frame[0] &&
mi_prev->ref_frame[1] == mbmi->ref_frame[1]) {
if (abs(mi_prev->mv[0].as_mv.row - mbmi->mv[0].as_mv.row) >=
DF_MV_THRESH ||
abs(mi_prev->mv[0].as_mv.col - mbmi->mv[0].as_mv.col) >=
DF_MV_THRESH ||
abs(mi_prev->mv[1].as_mv.row - mbmi->mv[1].as_mv.row) >=
DF_MV_THRESH ||
abs(mi_prev->mv[1].as_mv.col - mbmi->mv[1].as_mv.col) >=
DF_MV_THRESH) {
diff_mvs = 1;
}
} else if (mi_prev->ref_frame[0] == mbmi->ref_frame[1] &&
mi_prev->ref_frame[1] == mbmi->ref_frame[0]) {
if (abs(mi_prev->mv[0].as_mv.row - mbmi->mv[1].as_mv.row) >=
DF_MV_THRESH ||
abs(mi_prev->mv[0].as_mv.col - mbmi->mv[1].as_mv.col) >=
DF_MV_THRESH ||
abs(mi_prev->mv[1].as_mv.row - mbmi->mv[0].as_mv.row) >=
DF_MV_THRESH ||
abs(mi_prev->mv[1].as_mv.col - mbmi->mv[0].as_mv.col) >=
DF_MV_THRESH) {
diff_mvs = 1;
}
} else {
diff_mvs = 1;
}
}
}
#endif // DF_MVS
#if CONFIG_LF_SUB_PU
const int none_skip_txfm = (!pv_skip_txfm || !curr_skipped);
#endif // CONFIG_LF_SUB_PU
if (((curr_q && curr_side) || (pv_q && pv_side)) &&
#if DF_MVS
(!pv_skip_txfm || !curr_skipped || diff_mvs)) {
#else
#if CONFIG_LF_SUB_PU
(none_skip_txfm || sub_pu_edge
#else
(!pv_skip_txfm || !curr_skipped
#endif // CONFIG_LF_SUB_PU
|| pu_edge)) {
#endif
#if CONFIG_LF_SUB_PU
int is_sub_pu_edge =
sub_pu_edge ? (((none_skip_txfm && tu_edge) || pu_edge) ? 0 : 1)
: 0;
TX_SIZE clipped_ts = is_sub_pu_edge ? ts : ts_ori;
#else
TX_SIZE clipped_ts = ts;
#endif // CONFIG_LF_SUB_PU
if (!plane) {
if (((VERT_EDGE == edge_dir) && (width < x + 16)) ||
((HORZ_EDGE == edge_dir) && (height < y + 16))) {
// make sure filtering does not get outside the frame size
clipped_ts = AOMMIN(clipped_ts, TX_16X16);
}
} else {
if (((VERT_EDGE == edge_dir) && (width < x + 8)) ||
((HORZ_EDGE == edge_dir) && (height < y + 8))) {
// make sure filtering does not get outside the frame size
clipped_ts = AOMMIN(clipped_ts, TX_8X8);
}
}
const TX_SIZE min_ts = AOMMIN(clipped_ts, pv_ts);
if (TX_4X4 >= min_ts) {
params->filter_length = 4;
} else if (TX_8X8 == min_ts) {
#if !DF_CHROMA_WIDE
if (plane != 0)
params->filter_length = 6;
else
#endif // !DF_CHROMA_WIDE
params->filter_length = 8;
#if DF_FILT26
} else if (TX_16X16 == min_ts) {
params->filter_length = 14;
// No wide filtering for chroma plane
if (plane != 0) {
#if DF_CHROMA_WIDE
params->filter_length = 10;
#else
params->filter_length = 6;
#endif // DF_CHROMA_WIDE
}
} else {
#if DF_REDUCED_SB_EDGE
if (horz_superblock_edge || vert_tile_edge) {
if (plane != 0) {
params->filter_length = 6;
} else
params->filter_length = 14;
} else
#endif // DF_REDUCED_SB_EDGE
{
params->filter_length = 22;
// No wide filtering for chroma plane
if (plane != 0) {
#if DF_CHROMA_WIDE
params->filter_length = 10;
#else
params->filter_length = 6;
#endif // DF_CHROMA_WIDE
}
}
}
#else
} else {
params->filter_length = 14;
// No wide filtering for chroma plane
if (plane != 0) {
params->filter_length = 6;
}
}
#endif // DF_FILT26
// update the level if the current block is skipped,
// but the previous one is not
params->q_threshold = (curr_q) ? (curr_q) : (pv_q);
params->side_threshold = (curr_side) ? (curr_side) : (pv_side);
#if CONFIG_LF_SUB_PU
if (is_sub_pu_edge) {
params->q_threshold >>= SUB_PU_THR_SHIFT;
params->side_threshold >>= SUB_PU_THR_SHIFT;
}
#endif // CONFIG_LF_SUB_PU
}
}
}
}
}
return ts;
}
void av1_filter_block_plane_vert(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd, const int plane,
const MACROBLOCKD_PLANE *const plane_ptr,
const uint32_t mi_row, const uint32_t mi_col) {
if (!plane && !cm->lf.filter_level[0]) return;
const int mib_size = cm->mib_size;
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
uint16_t *const dst_ptr = plane_ptr->dst.buf;
const int dst_stride = plane_ptr->dst.stride;
const int y_range = (mib_size >> scale_vert);
const int x_range = (mib_size >> scale_horz);
for (int y = 0; y < y_range; y++) {
uint16_t *p = dst_ptr + y * MI_SIZE * dst_stride;
for (int x = 0; x < x_range;) {
// inner loop always filter vertical edges in a MI block. If MI size
// is 8x8, it will filter the vertical edge aligned with a 8x8 block.
// If 4x4 transform is used, it will then filter the internal edge
// aligned with a 4x4 block
const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE;
const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE;
uint32_t advance_units;
TX_SIZE tx_size;
AV1_DEBLOCKING_PARAMETERS params;
memset(&params, 0, sizeof(params));
tx_size =
set_lpf_parameters(&params, ((ptrdiff_t)1 << scale_horz), cm, xd,
VERT_EDGE, curr_x, curr_y, plane, plane_ptr);
if (tx_size == TX_INVALID) {
params.filter_length = 0;
tx_size = TX_4X4;
}
const aom_bit_depth_t bit_depth = cm->seq_params.bit_depth;
if (params.filter_length) {
aom_highbd_lpf_vertical_generic_c(p, dst_stride, params.filter_length,
&params.q_threshold,
&params.side_threshold, bit_depth
#if CONFIG_LF_SUB_PU
,
4
#endif // CONFIG_LF_SUB_PU
);
}
// advance the destination pointer
advance_units = tx_size_wide_unit[tx_size];
x += advance_units;
p += advance_units * MI_SIZE;
}
}
}
void av1_filter_block_plane_horz(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd, const int plane,
const MACROBLOCKD_PLANE *const plane_ptr,
const uint32_t mi_row, const uint32_t mi_col) {
if (!plane && !cm->lf.filter_level[1]) return;
const int mib_size = cm->mib_size;
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
uint16_t *const dst_ptr = plane_ptr->dst.buf;
const int dst_stride = plane_ptr->dst.stride;
const int y_range = (mib_size >> scale_vert);
const int x_range = (mib_size >> scale_horz);
for (int x = 0; x < x_range; x++) {
uint16_t *p = dst_ptr + x * MI_SIZE;
for (int y = 0; y < y_range;) {
// inner loop always filter vertical edges in a MI block. If MI size
// is 8x8, it will first filter the vertical edge aligned with a 8x8
// block. If 4x4 transform is used, it will then filter the internal
// edge aligned with a 4x4 block
const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE;
const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE;
uint32_t advance_units;
TX_SIZE tx_size;
AV1_DEBLOCKING_PARAMETERS params;
memset(&params, 0, sizeof(params));
tx_size = set_lpf_parameters(
&params, (cm->mi_params.mi_stride << scale_vert), cm, xd, HORZ_EDGE,
curr_x, curr_y, plane, plane_ptr);
if (tx_size == TX_INVALID) {
params.filter_length = 0;
tx_size = TX_4X4;
}
const aom_bit_depth_t bit_depth = cm->seq_params.bit_depth;
if (params.filter_length) {
aom_highbd_lpf_horizontal_generic_c(p, dst_stride, params.filter_length,
&params.q_threshold,
&params.side_threshold, bit_depth
#if CONFIG_LF_SUB_PU
,
4
#endif // CONFIG_LF_SUB_PU
);
}
// advance the destination pointer
advance_units = tx_size_high_unit[tx_size];
y += advance_units;
p += advance_units * dst_stride * MI_SIZE;
}
}
}
void av1_filter_block_plane_vert_test(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd,
const int plane,
const MACROBLOCKD_PLANE *const plane_ptr,
const uint32_t mi_row,
const uint32_t mi_col) {
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
const int y_range = cm->mi_params.mi_rows >> scale_vert;
const int x_range = cm->mi_params.mi_cols >> scale_horz;
for (int y = 0; y < y_range; y++) {
for (int x = 0; x < x_range;) {
// inner loop always filter vertical edges in a MI block. If MI size
// is 8x8, it will filter the vertical edge aligned with a 8x8 block.
// If 4x4 transform is used, it will then filter the internal edge
// aligned with a 4x4 block
const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE;
const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE;
uint32_t advance_units;
TX_SIZE tx_size;
AV1_DEBLOCKING_PARAMETERS params;
memset(&params, 0, sizeof(params));
tx_size =
set_lpf_parameters(&params, ((ptrdiff_t)1 << scale_horz), cm, xd,
VERT_EDGE, curr_x, curr_y, plane, plane_ptr);
if (tx_size == TX_INVALID) {
params.filter_length = 0;
tx_size = TX_4X4;
}
// advance the destination pointer
advance_units = tx_size_wide_unit[tx_size];
x += advance_units;
}
}
}
void av1_filter_block_plane_horz_test(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd,
const int plane,
const MACROBLOCKD_PLANE *const plane_ptr,
const uint32_t mi_row,
const uint32_t mi_col) {
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
const int y_range = cm->mi_params.mi_rows >> scale_vert;
const int x_range = cm->mi_params.mi_cols >> scale_horz;
for (int x = 0; x < x_range; x++) {
for (int y = 0; y < y_range;) {
// inner loop always filter vertical edges in a MI block. If MI size
// is 8x8, it will first filter the vertical edge aligned with a 8x8
// block. If 4x4 transform is used, it will then filter the internal
// edge aligned with a 4x4 block
const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE;
const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE;
uint32_t advance_units;
TX_SIZE tx_size;
AV1_DEBLOCKING_PARAMETERS params;
memset(&params, 0, sizeof(params));
tx_size = set_lpf_parameters(
&params, (cm->mi_params.mi_stride << scale_vert), cm, xd, HORZ_EDGE,
curr_x, curr_y, plane, plane_ptr);
if (tx_size == TX_INVALID) {
params.filter_length = 0;
tx_size = TX_4X4;
}
// advance the destination pointer
advance_units = tx_size_high_unit[tx_size];
y += advance_units;
}
}
}
static void loop_filter_rows(YV12_BUFFER_CONFIG *frame_buffer, AV1_COMMON *cm,
MACROBLOCKD *xd, int start, int stop,
#if CONFIG_LPF_MASK
int is_decoding,
#endif
int plane_start, int plane_end) {
struct macroblockd_plane *pd = xd->plane;
const int col_start = 0;
const int col_end = cm->mi_params.mi_cols;
int mi_row, mi_col;
int plane;
#if CONFIG_LPF_MASK
if (is_decoding) {
cm->is_decoding = is_decoding;
for (plane = plane_start; plane < plane_end; plane++) {
if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1]))
break;
else if (plane == 1 && !(cm->lf.filter_level_u))
continue;
else if (plane == 2 && !(cm->lf.filter_level_v))
continue;
av1_setup_dst_planes(pd, frame_buffer, 0, 0, plane, plane + 1, NULL);
av1_build_bitmask_vert_info(cm, &pd[plane], plane);
av1_build_bitmask_horz_info(cm, &pd[plane], plane);
// apply loop filtering which only goes through buffer once
for (mi_row = start; mi_row < stop; mi_row += MI_SIZE_64X64) {
for (mi_col = col_start; mi_col < col_end; mi_col += MI_SIZE_64X64) {
av1_setup_dst_planes(pd, frame_buffer, mi_row, mi_col, plane,
plane + 1, NULL);
av1_filter_block_plane_bitmask_vert(cm, &pd[plane], plane, mi_row,
mi_col);
if (mi_col - MI_SIZE_64X64 >= 0) {
av1_setup_dst_planes(pd, frame_buffer, mi_row,
mi_col - MI_SIZE_64X64, plane, plane + 1,
NULL);
av1_filter_block_plane_bitmask_horz(cm, &pd[plane], plane, mi_row,
mi_col - MI_SIZE_64X64);
}
}
av1_setup_dst_planes(pd, frame_buffer, mi_row, mi_col - MI_SIZE_64X64,
plane, plane + 1, NULL);
av1_filter_block_plane_bitmask_horz(cm, &pd[plane], plane, mi_row,
mi_col - MI_SIZE_64X64);
}
}
return;
}
#endif
const int mib_size = cm->mib_size;
for (plane = plane_start; plane < plane_end; plane++) {
if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1]))
break;
else if (plane == 1 && !(cm->lf.filter_level_u))
continue;
else if (plane == 2 && !(cm->lf.filter_level_v))
continue;
if (cm->lf.combine_vert_horz_lf) {
// filter all vertical and horizontal edges in every super block
for (mi_row = start; mi_row < stop; mi_row += mib_size) {
for (mi_col = col_start; mi_col < col_end; mi_col += mib_size) {
// filter vertical edges
av1_setup_dst_planes(pd, frame_buffer, mi_row, mi_col, plane,
plane + 1, NULL);
av1_filter_block_plane_vert(cm, xd, plane, &pd[plane], mi_row,
mi_col);
// filter horizontal edges
if (mi_col - mib_size >= 0) {
av1_setup_dst_planes(pd, frame_buffer, mi_row, mi_col - mib_size,
plane, plane + 1, NULL);
av1_filter_block_plane_horz(cm, xd, plane, &pd[plane], mi_row,
mi_col - mib_size);
}
}
// filter horizontal edges
av1_setup_dst_planes(pd, frame_buffer, mi_row, mi_col - mib_size, plane,
plane + 1, NULL);
av1_filter_block_plane_horz(cm, xd, plane, &pd[plane], mi_row,
mi_col - mib_size);
}
} else {
// filter all vertical edges in every 128x128 super block
for (mi_row = start; mi_row < stop; mi_row += mib_size) {
for (mi_col = col_start; mi_col < col_end; mi_col += mib_size) {
av1_setup_dst_planes(pd, frame_buffer, mi_row, mi_col, plane,
plane + 1, NULL);
av1_filter_block_plane_vert(cm, xd, plane, &pd[plane], mi_row,
mi_col);
}
}
// filter all horizontal edges in every 128x128 super block
for (mi_row = start; mi_row < stop; mi_row += mib_size) {
for (mi_col = col_start; mi_col < col_end; mi_col += mib_size) {
av1_setup_dst_planes(pd, frame_buffer, mi_row, mi_col, plane,
plane + 1, NULL);
av1_filter_block_plane_horz(cm, xd, plane, &pd[plane], mi_row,
mi_col);
}
}
}
}
}
void av1_loop_filter_frame(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
MACROBLOCKD *xd,
#if CONFIG_LPF_MASK
int is_decoding,
#endif
int plane_start, int plane_end, int partial_frame) {
int start_mi_row, end_mi_row, mi_rows_to_filter;
start_mi_row = 0;
mi_rows_to_filter = cm->mi_params.mi_rows;
if (partial_frame && cm->mi_params.mi_rows > 8) {
start_mi_row = cm->mi_params.mi_rows >> 1;
start_mi_row &= 0xfffffff8;
mi_rows_to_filter = AOMMAX(cm->mi_params.mi_rows / 8, 8);
}
end_mi_row = start_mi_row + mi_rows_to_filter;
av1_loop_filter_frame_init(cm, plane_start, plane_end);
loop_filter_rows(frame, cm, xd, start_mi_row, end_mi_row,
#if CONFIG_LPF_MASK
is_decoding,
#endif
plane_start, plane_end);
}
#if CONFIG_LF_SUB_PU
// Apply loop filtering on TIP plane
AOM_INLINE void loop_filter_tip_plane(AV1_COMMON *cm, const int plane,
uint16_t *dst, const int dst_stride,
const int bw, const int bh) {
// retrieve filter parameters
loop_filter_info_n *const lfi = &cm->lf_info;
const uint16_t q_horz = lfi->tip_q_thr[plane][HORZ_EDGE];
const uint16_t side_horz = lfi->tip_side_thr[plane][HORZ_EDGE];
const uint16_t q_vert = lfi->tip_q_thr[plane][VERT_EDGE];
const uint16_t side_vert = lfi->tip_side_thr[plane][VERT_EDGE];
const int bit_depth = cm->seq_params.bit_depth;
int n = 8;
if (plane > 0) {
const int subsampling_x = cm->seq_params.subsampling_x;
const int subsampling_y = cm->seq_params.subsampling_y;
if (subsampling_x || subsampling_y) n = 4;
}
const int filter_length = n;
// start filtering
const int h = bh - n;
const int w = bw - n;
const int rw = bw - (bw % n);
for (int j = 0; j <= h; j += n) {
for (int i = 0; i <= w; i += n) {
// filter vertical boundary
if (i > 0) {
aom_highbd_lpf_vertical_generic_c(dst, dst_stride, filter_length,
&q_vert, &side_vert, bit_depth, n);
}
// filter horizontal boundary
if (j > 0) {
aom_highbd_lpf_horizontal_generic_c(dst, dst_stride, filter_length,
&q_horz, &side_horz, bit_depth, n);
}
dst += n;
}
dst -= rw;
dst += n * dst_stride;
}
}
// setup dst buffer for each color component
static AOM_INLINE void setup_tip_dst_plane(struct buf_2d *dst, uint16_t *src,
int width, int height, int stride,
int tpl_row, int tpl_col,
const struct scale_factors *scale,
int subsampling_x,
int subsampling_y) {
const int x = tpl_col >> subsampling_x;
const int y = tpl_row >> subsampling_y;
dst->buf = src + scaled_buffer_offset(x, y, stride, scale);
dst->buf0 = src;
dst->width = width;
dst->height = height;
dst->stride = stride;
}
// setup dst buffer
AOM_INLINE void setup_tip_dst_planes(AV1_COMMON *const cm, const int plane,
const int tpl_row, const int tpl_col) {
const YV12_BUFFER_CONFIG *src = &cm->tip_ref.tip_frame->buf;
TIP_PLANE *const pd = &cm->tip_ref.tip_plane[plane];
int is_uv = 0;
int subsampling_x = 0;
int subsampling_y = 0;
if (plane > 0) {
is_uv = 1;
subsampling_x = cm->seq_params.subsampling_x;
subsampling_y = cm->seq_params.subsampling_y;
}
setup_tip_dst_plane(&pd->dst, src->buffers[plane], src->crop_widths[is_uv],
src->crop_heights[is_uv], src->strides[is_uv], tpl_row,
tpl_col, NULL, subsampling_x, subsampling_y);
}
// Initialize TIP lf parameters
void init_tip_lf_parameter(struct AV1Common *cm, int plane_start,
int plane_end) {
if (!cm->lf.tip_filter_level) return;
int q_ind[MAX_MB_PLANE], side_ind[MAX_MB_PLANE];
loop_filter_info_n *const lfi = &cm->lf_info;
const int tip_delta_scale = DF_DELTA_SCALE;
const int tip_delta_luma = cm->lf.tip_delta;
const int tip_delta_chroma = cm->lf.tip_delta;
const int base_qindex = cm->quant_params.base_qindex;
const int u_ac_delta_q = cm->quant_params.u_ac_delta_q;
const int v_ac_delta_q = cm->quant_params.v_ac_delta_q;
q_ind[0] = side_ind[0] = base_qindex + tip_delta_luma * tip_delta_scale;
q_ind[1] = side_ind[1] =
base_qindex + u_ac_delta_q + tip_delta_chroma * tip_delta_scale;
q_ind[2] = side_ind[2] =
base_qindex + v_ac_delta_q + tip_delta_chroma * tip_delta_scale;
assert(plane_start >= AOM_PLANE_Y);
assert(plane_end <= MAX_MB_PLANE);
int plane;
for (plane = plane_start; plane < plane_end; plane++) {
for (int dir = 0; dir < 2; ++dir) {
const int q_ind_plane = q_ind[plane];
const int side_ind_plane = side_ind[plane];
const int q_thr =
df_quant_from_qindex(q_ind_plane, cm->seq_params.bit_depth);
const int side_thr =
df_side_from_qindex(side_ind_plane, cm->seq_params.bit_depth);
lfi->tip_q_thr[plane][dir] = q_thr;
lfi->tip_side_thr[plane][dir] = side_thr;
}
}
}
// Apply loop filtering on TIP frame
void loop_filter_tip_frame(struct AV1Common *cm, int plane_start,
int plane_end) {
if (!cm->lf.tip_filter_level) return;
for (int plane = plane_start; plane < plane_end; ++plane) {
TIP *tip_ref = &cm->tip_ref;
setup_tip_dst_planes(cm, plane, 0, 0);
TIP_PLANE *const tip = &tip_ref->tip_plane[plane];
struct buf_2d *const dst_buf = &tip->dst;
uint16_t *const dst = dst_buf->buf;
const int dst_stride = dst_buf->stride;
loop_filter_tip_plane(cm, plane, dst, dst_stride, dst_buf->width,
dst_buf->height);
}
}
#endif // CONFIG_LF_SUB_PU