blob: fc1851d5283ecd2b66f00f492679bb66cdd56594 [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include "aom/aom_codec.h"
#include "aom_ports/system_state.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/common_data.h"
#include "av1/common/enums.h"
#include "av1/common/reconintra.h"
#include "av1/encoder/aq_complexity.h"
#include "av1/encoder/aq_variance.h"
#include "av1/encoder/block.h"
#include "av1/encoder/context_tree.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encodeframe_utils.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/motion_search_facade.h"
#include "av1/encoder/partition_search.h"
#include "av1/encoder/partition_strategy.h"
#include "av1/encoder/reconinter_enc.h"
#include "av1/encoder/tokenize.h"
#include "av1/common/reconinter.h"
#if CONFIG_EXT_RECUR_PARTITIONS
#include "av1/encoder/erp_tflite.h"
#endif // CONFIG_EXT_RECUR_PARTITIONS
#include "aom_util/debug_util.h"
#if CONFIG_TUNE_VMAF
#include "av1/encoder/tune_vmaf.h"
#endif
#if CONFIG_NEW_TX_PARTITION
static void update_partition_cdfs_and_counts(MACROBLOCKD *xd, int blk_col,
int blk_row, TX_SIZE max_tx_size,
int allow_update_cdf,
FRAME_COUNTS *counts) {
(void)counts;
MB_MODE_INFO *mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
const int is_inter = is_inter_block(mbmi, xd->tree_type);
const int txb_size_index =
is_inter ? av1_get_txb_size_index(bsize, blk_row, blk_col) : 0;
#if !CONFIG_TX_PARTITION_CTX
const int is_rect = is_rect_tx(max_tx_size);
#endif // !CONFIG_TX_PARTITION_CTX
const TX_PARTITION_TYPE partition = mbmi->tx_partition_type[txb_size_index];
const int allow_horz = allow_tx_horz_split(max_tx_size);
const int allow_vert = allow_tx_vert_split(max_tx_size);
#if CONFIG_IMPROVEIDTX_CTXS
const int plane_type = xd->tree_type == CHROMA_PART;
const int is_fsc = (xd->mi[0]->fsc_mode[xd->tree_type == CHROMA_PART] &&
plane_type == PLANE_TYPE_Y);
#endif // CONFIG_IMPROVEIDTX_CTXS
#if CONFIG_TX_PARTITION_CTX
#if CONFIG_TX_PARTITION_TYPE_EXT
const int bsize_group = size_to_tx_part_group_lookup[bsize];
const int txsize_group = size_to_tx_type_group_lookup[bsize];
int do_partition = 0;
if (allow_horz || allow_vert) {
do_partition = (partition != TX_PARTITION_NONE);
if (allow_update_cdf) {
aom_cdf_prob *do_partition_cdf =
#if CONFIG_IMPROVEIDTX_CTXS
xd->tile_ctx->txfm_do_partition_cdf[is_fsc][is_inter][bsize_group];
#else
xd->tile_ctx->txfm_do_partition_cdf[is_inter][bsize_group];
#endif // CONFIG_IMPROVEIDTX_CTXS
update_cdf(do_partition_cdf, do_partition, 2);
}
#if CONFIG_ENTROPY_STATS
#if CONFIG_IMPROVEIDTX_CTXS
++counts->txfm_do_partition[is_fsc][is_inter][bsize_group][do_partition];
#else
++counts->txfm_do_partition[is_inter][bsize_group][do_partition];
#endif
#endif // CONFIG_ENTROPY_STATS
}
if (do_partition) {
if (allow_horz && allow_vert) {
assert(txsize_group > 0);
const TX_PARTITION_TYPE split4_partition =
get_split4_partition(partition);
if (allow_update_cdf) {
aom_cdf_prob *partition_type_cdf =
#if CONFIG_IMPROVEIDTX_CTXS
xd->tile_ctx->txfm_4way_partition_type_cdf[is_fsc][is_inter]
[txsize_group - 1];
#else
xd->tile_ctx
->txfm_4way_partition_type_cdf[is_inter][txsize_group - 1];
#endif // CONFIG_IMPROVEIDTX_CTXS
update_cdf(partition_type_cdf, split4_partition - 1,
TX_PARTITION_TYPE_NUM);
}
#if CONFIG_ENTROPY_STATS
#if CONFIG_IMPROVEIDTX_CTXS
++counts->txfm_4way_partition_type[is_fsc][is_inter][txsize_group - 1]
[split4_partition - 1];
#else
++counts->txfm_4way_partition_type[is_inter][txsize_group - 1]
[split4_partition - 1];
#endif // CONFIG_IMPROVEIDTX_CTXS
#endif // CONFIG_ENTROPY_STATS
} else if (allow_horz || allow_vert) {
int has_first_split = 0;
if (partition == TX_PARTITION_VERT_M || partition == TX_PARTITION_HORZ_M)
has_first_split = 1;
if (allow_update_cdf && txsize_group) {
aom_cdf_prob *partition_type_cdf =
#if CONFIG_IMPROVEIDTX_CTXS
xd->tile_ctx->txfm_4way_partition_type_cdf[is_fsc][is_inter]
[txsize_group - 1];
#else
xd->tile_ctx
->txfm_4way_partition_type_cdf[is_inter][txsize_group - 1];
#endif // CONFIG_IMPROVEIDTX_CTXS
update_cdf(partition_type_cdf, has_first_split, TX_PARTITION_TYPE_NUM);
}
#if CONFIG_ENTROPY_STATS
if (txsize_group) {
#if CONFIG_IMPROVEIDTX_CTXS
++counts->txfm_4way_partition_type[is_fsc][is_inter][txsize_group - 1]
[has_first_split];
#else
++counts->txfm_4way_partition_type[is_inter][txsize_group - 1]
[has_first_split];
#endif // CONFIG_IMPROVEIDTX_CTXS
}
#endif // CONFIG_ENTROPY_STATS
}
}
#else
const int bsize_group = size_to_tx_part_group_lookup[bsize];
int do_partition = 0;
if (allow_horz || allow_vert) {
do_partition = (partition != TX_PARTITION_NONE);
if (allow_update_cdf) {
aom_cdf_prob *do_partition_cdf =
#if CONFIG_IMPROVEIDTX_CTXS
xd->tile_ctx->txfm_do_partition_cdf[is_fsc][is_inter][bsize_group];
#else
xd->tile_ctx->txfm_do_partition_cdf[is_inter][bsize_group];
#endif // CONFIG_IMPROVEIDTX_CTXS
update_cdf(do_partition_cdf, do_partition, 2);
}
#if CONFIG_ENTROPY_STATS
#if CONFIG_IMPROVEIDTX_CTXS
++counts->txfm_do_partition[is_fsc][is_inter][bsize_group][do_partition];
#else
++counts->txfm_do_partition[is_inter][bsize_group][do_partition];
#endif // CONFIG_IMPROVEIDTX_CTXS
#endif // CONFIG_ENTROPY_STATS
}
if (do_partition) {
if (allow_horz && allow_vert) {
assert(bsize_group > 0);
const TX_PARTITION_TYPE split4_partition =
get_split4_partition(partition);
if (allow_update_cdf) {
aom_cdf_prob *partition_type_cdf =
#if CONFIG_IMPROVEIDTX_CTXS
xd->tile_ctx->txfm_4way_partition_type_cdf[is_fsc][is_inter]
[bsize_group - 1];
#else
xd->tile_ctx
->txfm_4way_partition_type_cdf[is_inter][bsize_group - 1];
#endif // CONFIG_IMPROVEIDTX_CTXS
update_cdf(partition_type_cdf, split4_partition - 1, 3);
}
#if CONFIG_ENTROPY_STATS
#if CONFIG_IMPROVEIDTX_CTXS
++counts->txfm_4way_partition_type[is_fsc][is_inter][bsize_group - 1]
[split4_partition - 1];
#else
++counts->txfm_4way_partition_type[is_inter][bsize_group - 1]
[split4_partition - 1];
#endif // CONFIG_IMPROVEIDTX_CTXS
#endif // CONFIG_ENTROPY_STATS
}
}
#endif // CONFIG_TX_PARTITION_TYPE_EXT
#else
if (allow_horz && allow_vert) {
const TX_PARTITION_TYPE split4_partition = get_split4_partition(partition);
const int split4_ctx =
is_inter ? txfm_partition_split4_inter_context(
xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, bsize, max_tx_size)
: get_tx_size_context(xd);
aom_cdf_prob *split4_cdf =
is_inter
? xd->tile_ctx->inter_4way_txfm_partition_cdf[is_rect][split4_ctx]
: xd->tile_ctx->intra_4way_txfm_partition_cdf[is_rect][split4_ctx];
if (allow_update_cdf) {
update_cdf(split4_cdf, split4_partition, 4);
}
#if CONFIG_ENTROPY_STATS
if (is_inter)
++counts
->inter_4way_txfm_partition[is_rect][split4_ctx][split4_partition];
else
++counts
->intra_4way_txfm_partition[is_rect][split4_ctx][split4_partition];
#endif // CONFIG_ENTROPY_STATS
} else if (allow_horz || allow_vert) {
const int has_first_split = partition != TX_PARTITION_NONE;
if (allow_update_cdf) {
aom_cdf_prob *split2_cdf =
is_inter ? xd->tile_ctx->inter_2way_txfm_partition_cdf
: xd->tile_ctx->intra_2way_txfm_partition_cdf;
update_cdf(split2_cdf, has_first_split, 2);
}
#if CONFIG_ENTROPY_STATS
if (is_inter)
++counts->inter_2way_txfm_partition[has_first_split];
else
++counts->intra_2way_txfm_partition[has_first_split];
#endif // CONFIG_ENTROPY_STATS
} else {
assert(!allow_horz && !allow_vert);
assert(partition == PARTITION_NONE);
}
#endif // CONFIG_TX_PARTITION_CTX
}
#endif // CONFIG_NEW_TX_PARTITION
static void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd,
FRAME_COUNTS *counts, TX_SIZE tx_size, int depth,
int blk_row, int blk_col,
uint8_t allow_update_cdf) {
MB_MODE_INFO *mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
const int max_blocks_high = max_block_high(xd, bsize, 0);
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
assert(tx_size > TX_4X4);
#if CONFIG_NEW_TX_PARTITION
(void)depth;
#if CONFIG_TX_PARTITION_TYPE_EXT
int num_txfm_blocks =
get_tx_partition_sizes(mbmi->tx_partition_type[txb_size_index], tx_size,
&mbmi->txb_pos, mbmi->sub_txs);
TX_SIZE this_size = mbmi->sub_txs[num_txfm_blocks - 1];
#else
TX_SIZE sub_txs[MAX_TX_PARTITIONS] = { 0 };
get_tx_partition_sizes(mbmi->tx_partition_type[txb_size_index], tx_size,
sub_txs);
// TODO(sarahparker) This assumes all of the tx sizes in the partition scheme
// are the same size. This will need to be adjusted to deal with the case
// where they can be different.
TX_SIZE this_size = sub_txs[0];
assert(mbmi->inter_tx_size[txb_size_index] == this_size);
#endif // CONFIG_TX_PARTITION_TYPE_EXT
if (mbmi->tx_partition_type[txb_size_index] != TX_PARTITION_NONE)
++x->txfm_search_info.txb_split_count;
update_partition_cdfs_and_counts(xd, blk_col, blk_row, tx_size,
allow_update_cdf, counts);
mbmi->tx_size = this_size;
#if !CONFIG_TX_PARTITION_CTX
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, this_size, tx_size);
#endif // !CONFIG_TX_PARTITION_CTX
#else // CONFIG_NEW_TX_PARTITION
int ctx = txfm_partition_context(
xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row,
mbmi->sb_type[xd->tree_type == CHROMA_PART], tx_size);
const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index];
if (depth == MAX_VARTX_DEPTH) {
// Don't add to counts in this case
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
return;
}
if (tx_size == plane_tx_size) {
#if CONFIG_ENTROPY_STATS
++counts->txfm_partition[ctx][0];
#endif
if (allow_update_cdf)
update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 0, 2);
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
#if CONFIG_ENTROPY_STATS
++counts->txfm_partition[ctx][1];
#endif
if (allow_update_cdf)
update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 1, 2);
++x->txfm_search_info.txb_split_count;
if (sub_txs == TX_4X4) {
mbmi->inter_tx_size[txb_size_index] = TX_4X4;
mbmi->tx_size = TX_4X4;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, TX_4X4, tx_size);
return;
}
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
int offsetr = row;
int offsetc = col;
update_txfm_count(x, xd, counts, sub_txs, depth + 1, blk_row + offsetr,
blk_col + offsetc, allow_update_cdf);
}
}
}
#endif // CONFIG_NEW_TX_PARTITION
}
static void tx_partition_count_update(
#if !CONFIG_TX_PARTITION_CTX
const AV1_COMMON *const cm,
#endif // !CONFIG_TX_PARTITION_CTX
MACROBLOCK *x, BLOCK_SIZE plane_bsize, FRAME_COUNTS *td_counts,
uint8_t allow_update_cdf) {
MACROBLOCKD *xd = &x->e_mbd;
const int mi_width = mi_size_wide[plane_bsize];
const int mi_height = mi_size_high[plane_bsize];
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0);
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
#if !CONFIG_TX_PARTITION_CTX
xd->above_txfm_context =
cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK);
#endif // !CONFIG_TX_PARTITION_CTX
for (int idy = 0; idy < mi_height; idy += bh) {
for (int idx = 0; idx < mi_width; idx += bw) {
update_txfm_count(x, xd, td_counts, max_tx_size, 0, idy, idx,
allow_update_cdf);
}
}
}
#if !CONFIG_TX_PARTITION_CTX
static void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size, int blk_row,
int blk_col) {
MB_MODE_INFO *mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
const int max_blocks_high = max_block_high(xd, bsize, 0);
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col);
const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index];
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
if (tx_size == plane_tx_size) {
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
} else {
#if CONFIG_NEW_TX_PARTITION
TX_SIZE sub_txs[MAX_TX_PARTITIONS] = { 0 };
const int index = av1_get_txb_size_index(bsize, blk_row, blk_col);
get_tx_partition_sizes(mbmi->tx_partition_type[index], tx_size, sub_txs);
int cur_partition = 0;
int bsw = 0, bsh = 0;
for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) {
for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw) {
const TX_SIZE sub_tx = sub_txs[cur_partition];
bsw = tx_size_wide_unit[sub_tx];
bsh = tx_size_high_unit[sub_tx];
const int offsetr = blk_row + r;
const int offsetc = blk_col + c;
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
mbmi->tx_size = sub_tx;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, sub_tx, sub_tx);
cur_partition++;
}
}
#else
if (tx_size == TX_8X8) {
mbmi->inter_tx_size[txb_size_index] = TX_4X4;
mbmi->tx_size = TX_4X4;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, TX_4X4, tx_size);
return;
}
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
const int offsetr = blk_row + row;
const int offsetc = blk_col + col;
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
set_txfm_context(xd, sub_txs, offsetr, offsetc);
}
}
#endif // CONFIG_NEW_TX_PARTITION
}
}
static void tx_partition_set_contexts(const AV1_COMMON *const cm,
MACROBLOCKD *xd, BLOCK_SIZE plane_bsize) {
const int mi_width = mi_size_wide[plane_bsize];
const int mi_height = mi_size_high[plane_bsize];
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0);
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
xd->above_txfm_context =
cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK);
for (int idy = 0; idy < mi_height; idy += bh) {
for (int idx = 0; idx < mi_width; idx += bw) {
set_txfm_context(xd, max_tx_size, idy, idx);
}
}
}
#endif // !CONFIG_TX_PARTITION_CTX
static void encode_superblock(const AV1_COMP *const cpi, TileDataEnc *tile_data,
ThreadData *td, TokenExtra **t, RUN_TYPE dry_run,
BLOCK_SIZE bsize, int plane_start, int plane_end,
int *rate) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO **mi_4x4 = xd->mi;
MB_MODE_INFO *mbmi = mi_4x4[0];
const int seg_skip =
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP);
const int mis = cm->mi_params.mi_stride;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
const int is_inter = is_inter_block(mbmi, xd->tree_type);
xd->cfl.use_dc_pred_cache = 0;
xd->cfl.dc_pred_is_cached[0] = 0;
xd->cfl.dc_pred_is_cached[1] = 0;
// Initialize tx_mode and tx_size_search_method
TxfmSearchParams *txfm_params = &x->txfm_search_params;
set_tx_size_search_method(
cm, &cpi->winner_mode_params, txfm_params,
cpi->sf.winner_mode_sf.enable_winner_mode_for_tx_size_srch, 1
#if CONFIG_EXT_RECUR_PARTITIONS
,
x, cpi->sf.tx_sf.use_largest_tx_size_for_small_bsize
#endif // CONFIG_EXT_RECUR_PARTITIONS
);
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
if (!is_inter) {
if (xd->tree_type != LUMA_PART) {
xd->cfl.store_y = store_cfl_required(cm, xd);
}
mbmi->skip_txfm[xd->tree_type == CHROMA_PART] = 1;
for (int plane = plane_start; plane < plane_end; ++plane) {
if (plane == AOM_PLANE_Y || !is_cctx_allowed(cm, xd))
av1_encode_intra_block_plane(cpi, x, bsize, plane, dry_run,
cpi->optimize_seg_arr[mbmi->segment_id]);
else if (plane == AOM_PLANE_U)
av1_encode_intra_block_joint_uv(
cpi, x, bsize, dry_run, cpi->optimize_seg_arr[mbmi->segment_id]);
}
// If there is at least one lossless segment, force the skip for intra
// block to be 0, in order to avoid the segment_id to be changed by in
// write_segment_id().
if (!cpi->common.seg.segid_preskip && cpi->common.seg.update_map &&
cpi->enc_seg.has_lossless_segment)
mbmi->skip_txfm[xd->tree_type == CHROMA_PART] = 0;
xd->cfl.store_y = 0;
if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
for (int plane = plane_start; plane < AOMMIN(2, plane_end); ++plane) {
if (mbmi->palette_mode_info.palette_size[plane] > 0) {
if (!dry_run) {
av1_tokenize_color_map(x, plane, t, bsize, mbmi->tx_size,
PALETTE_MAP, tile_data->allow_update_cdf,
td->counts);
} else if (dry_run == DRY_RUN_COSTCOEFFS) {
rate +=
av1_cost_color_map(x, plane, bsize, mbmi->tx_size, PALETTE_MAP);
}
}
}
}
av1_update_intra_mb_txb_context(cpi, td, dry_run, bsize,
tile_data->allow_update_cdf);
} else {
int ref;
const int is_compound = has_second_ref(mbmi);
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
for (ref = 0; ref < 1 + is_compound; ++ref) {
const YV12_BUFFER_CONFIG *cfg =
get_ref_frame_yv12_buf(cm, mbmi->ref_frame[ref]);
assert(IMPLIES(!is_intrabc_block(mbmi, xd->tree_type), cfg));
av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
xd->block_ref_scale_factors[ref], num_planes,
&mbmi->chroma_ref_info);
}
int start_plane = 0;
#if CONFIG_BAWP
struct macroblockd_plane *p = xd->plane;
const BUFFER_SET orig_dst = {
{ p[0].dst.buf, p[1].dst.buf, p[2].dst.buf },
{ p[0].dst.stride, p[1].dst.stride, p[2].dst.stride },
};
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, &orig_dst, bsize,
#else
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
#endif
start_plane, av1_num_planes(cm) - 1);
if (mbmi->motion_mode == OBMC_CAUSAL) {
#if CONFIG_EXTENDED_WARP_PREDICTION
assert(cm->features.enabled_motion_modes & (1 << OBMC_CAUSAL));
#else
assert(cpi->oxcf.motion_mode_cfg.enable_obmc);
#endif
av1_build_obmc_inter_predictors_sb(cm, xd);
}
#if CONFIG_MISMATCH_DEBUG
if (dry_run == OUTPUT_ENABLED) {
for (int plane = plane_start; plane < plane_end; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
int pixel_c, pixel_r;
if (plane && !xd->is_chroma_ref) continue;
if (plane) {
mi_to_pixel_loc(&pixel_c, &pixel_r,
mbmi->chroma_ref_info.mi_col_chroma_base,
mbmi->chroma_ref_info.mi_row_chroma_base, 0, 0,
pd->subsampling_x, pd->subsampling_y);
} else {
mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0,
pd->subsampling_x, pd->subsampling_y);
}
mismatch_record_block_pre(pd->dst.buf, pd->dst.stride,
#if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
cm->current_frame.display_order_hint,
#else
cm->current_frame.order_hint,
#endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
plane, pixel_c, pixel_r, pd->width,
pd->height);
}
}
#else
(void)num_planes;
#endif // CONFIG_MISMATCH_DEBUG
av1_encode_sb(cpi, x, bsize, dry_run, plane_start, plane_end);
av1_tokenize_sb_vartx(cpi, td, dry_run, bsize, rate,
tile_data->allow_update_cdf, plane_start, plane_end);
}
if (!dry_run) {
if (av1_allow_intrabc(cm, xd) && is_intrabc_block(mbmi, xd->tree_type))
td->intrabc_used = 1;
#if CONFIG_MORPH_PRED
if (mbmi->morph_pred) {
assert(av1_allow_intrabc(cm, xd));
}
#endif // CONFIG_MORPH_PRED
if (txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
!xd->lossless[mbmi->segment_id] &&
mbmi->sb_type[xd->tree_type == CHROMA_PART] > BLOCK_4X4 &&
!(is_inter &&
(mbmi->skip_txfm[xd->tree_type == CHROMA_PART] || seg_skip))) {
if (is_inter) {
tx_partition_count_update(
#if !CONFIG_TX_PARTITION_CTX
cm,
#endif // !CONFIG_TX_PARTITION_CTX
x, bsize, td->counts, tile_data->allow_update_cdf);
} else {
#if CONFIG_TX_PARTITION_TYPE_EXT
if (mbmi->tx_partition_type[0] != TX_PARTITION_NONE &&
#else
if (mbmi->tx_size != max_txsize_rect_lookup[bsize] &&
#endif // CONFIG_TX_PARTITION_TYPE_EXT
xd->tree_type != CHROMA_PART)
++x->txfm_search_info.txb_split_count;
if (block_signals_txsize(bsize) && xd->tree_type != CHROMA_PART) {
#if CONFIG_NEW_TX_PARTITION
const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
update_partition_cdfs_and_counts(
xd, 0, 0, max_tx_size, tile_data->allow_update_cdf, td->counts);
#else // CONFIG_NEW_TX_PARTITION
const int tx_size_ctx = get_tx_size_context(xd);
const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
const int depth = tx_size_to_depth(mbmi->tx_size, bsize);
const int max_depths = bsize_to_max_depth(bsize);
if (tile_data->allow_update_cdf)
update_cdf(xd->tile_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx],
depth, max_depths + 1);
#if CONFIG_ENTROPY_STATS
++td->counts->intra_tx_size[tx_size_cat][tx_size_ctx][depth];
#endif
#endif // CONFIG_NEW_TX_PARTITION
}
}
if (xd->tree_type != CHROMA_PART)
assert(
IMPLIES(is_rect_tx(mbmi->tx_size), is_rect_tx_allowed(xd, mbmi)));
} else {
#if CONFIG_TX_PARTITION_TYPE_EXT
if (mbmi->tx_partition_type[0] != TX_PARTITION_NONE)
++x->txfm_search_info.txb_split_count;
#else
int i, j;
TX_SIZE intra_tx_size;
// The new intra coding scheme requires no change of transform size
if (is_inter) {
if (xd->lossless[mbmi->segment_id]) {
intra_tx_size = TX_4X4;
} else {
intra_tx_size =
tx_size_from_tx_mode(bsize, txfm_params->tx_mode_search_type);
}
} else {
intra_tx_size = mbmi->tx_size;
}
#if CONFIG_EXTENDED_SDP
// Since transform partitioning is only allowed for luma component,
// and tx_size variable represents the transform size of the luma
// component in one coded block, so chroma block should not change the
// tx_size.
if (xd->tree_type != CHROMA_PART || frame_is_intra_only(cm)) {
#endif // CONFIG_EXTENDED_SDP
for (j = 0; j < mi_height; j++)
for (i = 0; i < mi_width; i++)
if (mi_col + i < cm->mi_params.mi_cols &&
mi_row + j < cm->mi_params.mi_rows)
mi_4x4[mis * j + i]->tx_size = intra_tx_size;
#if CONFIG_EXTENDED_SDP
}
#endif // CONFIG_EXTENDED_SDP
if (intra_tx_size != max_txsize_rect_lookup[bsize])
++x->txfm_search_info.txb_split_count;
#endif // CONFIG_TX_PARTITION_TYPE_EXT
}
#if !CONFIG_MVP_IMPROVEMENT
#if CONFIG_IBC_SR_EXT && !CONFIG_IBC_BV_IMPROVEMENT
if (cm->seq_params.enable_refmvbank && is_inter &&
!is_intrabc_block(mbmi, xd->tree_type))
#else
if (cm->seq_params.enable_refmvbank && is_inter)
#endif // CONFIG_IBC_SR_EXT && !CONFIG_IBC_BV_IMPROVEMENT
av1_update_ref_mv_bank(cm, xd, mbmi);
#endif // !CONFIG_MVP_IMPROVEMENT
#if CONFIG_EXTENDED_WARP_PREDICTION && !WARP_CU_BANK
if (is_inter) av1_update_warp_param_bank(cm, xd, mbmi);
#endif // CONFIG_EXTENDED_WARP_PREDICTION && !WARP_CU_BANK
}
#if !CONFIG_TX_PARTITION_TYPE_EXT
if (txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
block_signals_txsize(mbmi->sb_type[xd->tree_type == CHROMA_PART]) &&
is_inter &&
!(mbmi->skip_txfm[xd->tree_type == CHROMA_PART] || seg_skip) &&
!xd->lossless[mbmi->segment_id]) {
#if !CONFIG_TX_PARTITION_CTX
if (dry_run) tx_partition_set_contexts(cm, xd, bsize);
#endif // !CONFIG_TX_PARTITION_CTX
} else {
TX_SIZE tx_size = mbmi->tx_size;
// The new intra coding scheme requires no change of transform size
if (is_inter) {
if (xd->lossless[mbmi->segment_id]) {
tx_size = TX_4X4;
} else {
tx_size = tx_size_from_tx_mode(bsize, txfm_params->tx_mode_search_type);
}
} else {
tx_size = (bsize > BLOCK_4X4) ? tx_size : TX_4X4;
}
mbmi->tx_size = tx_size;
#if !CONFIG_TX_PARTITION_CTX
set_txfm_ctxs(tx_size, xd->width, xd->height,
(mbmi->skip_txfm[xd->tree_type == CHROMA_PART] || seg_skip) &&
is_inter_block(mbmi, xd->tree_type),
xd);
#endif // !CONFIG_TX_PARTITION_CTX
}
#endif //! CONFIG_TX_PARTITION_TYPE_EXT
if (is_inter_block(mbmi, xd->tree_type) && !xd->is_chroma_ref &&
is_cfl_allowed(xd)) {
#if CONFIG_IMPROVED_CFL
cfl_store_block(xd, mbmi->sb_type[xd->tree_type == CHROMA_PART],
mbmi->tx_size, cm->seq_params.enable_cfl_ds_filter);
#else
cfl_store_block(xd, mbmi->sb_type[xd->tree_type == CHROMA_PART],
mbmi->tx_size);
#endif // CONFIG_IMPROVED_CFL
}
if (xd->tree_type == LUMA_PART) {
const CommonModeInfoParams *const mi_params = &cm->mi_params;
for (int y = 0; y < mi_height; y++) {
for (int x_idx = 0; x_idx < mi_width; x_idx++) {
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
(xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
if (y == 0 && x_idx == 0) continue;
const int mi_idx =
get_alloc_mi_idx(mi_params, mi_row + y, mi_col + x_idx);
xd->mi[x_idx + y * mis] = &mi_params->mi_alloc[mi_idx];
xd->mi[x_idx + y * mis]->skip_txfm[PLANE_TYPE_Y] =
xd->mi[0]->skip_txfm[PLANE_TYPE_Y];
}
}
}
}
av1_mark_block_as_coded(xd, bsize, cm->sb_size);
}
void setup_block_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
int mi_row, int mi_col, BLOCK_SIZE bsize,
AQ_MODE aq_mode, MB_MODE_INFO *mbmi) {
x->rdmult = cpi->rd.RDMULT;
MACROBLOCKD *const xd = &x->e_mbd;
if (aq_mode != NO_AQ && xd->tree_type == SHARED_PART) {
assert(mbmi != NULL);
if (aq_mode == VARIANCE_AQ) {
if (cpi->vaq_refresh) {
const int energy = bsize <= BLOCK_16X16
? x->mb_energy
: av1_log_block_var(cpi, x, bsize);
mbmi->segment_id = energy;
}
x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
} else if (aq_mode == COMPLEXITY_AQ) {
x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
} else if (aq_mode == CYCLIC_REFRESH_AQ) {
// If segment is boosted, use rdmult for that segment.
if (cyclic_refresh_segment_id_boosted(mbmi->segment_id))
x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
}
}
const AV1_COMMON *const cm = &cpi->common;
if (cm->delta_q_info.delta_q_present_flag) {
x->rdmult =
av1_get_hier_tpl_rdmult(cpi, x, bsize, mi_row, mi_col, x->rdmult);
}
if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIM) {
av1_set_ssim_rdmult(cpi, &x->mv_costs, bsize, mi_row, mi_col, &x->rdmult);
}
#if CONFIG_TUNE_VMAF
if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_WITHOUT_PREPROCESSING ||
cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_MAX_GAIN ||
cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_NEG_MAX_GAIN) {
av1_set_vmaf_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult);
}
#endif
}
void av1_set_offsets_without_segment_id(
const AV1_COMP *const cpi, const TileInfo *const tile, MACROBLOCK *const x,
int mi_row, int mi_col, BLOCK_SIZE bsize,
const CHROMA_REF_INFO *chroma_ref_info) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
assert(bsize < BLOCK_SIZES_ALL);
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd,
mi_row, mi_col
#if CONFIG_C071_SUBBLK_WARPMV
,
mi_width, mi_height
#endif // CONFIG_C071_SUBBLK_WARPMV
);
set_entropy_context(xd, mi_row, mi_col, num_planes, chroma_ref_info);
#if !CONFIG_TX_PARTITION_CTX
xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
#endif // !CONFIG_TX_PARTITION_CTX
// Set up destination pointers.
av1_setup_dst_planes(xd->plane, &cm->cur_frame->buf, mi_row, mi_col, 0,
num_planes, chroma_ref_info);
// Set up limit values for MV components.
// Mv beyond the range do not produce new/different prediction block.
av1_set_mv_limits(&cm->mi_params, &x->mv_limits, mi_row, mi_col, mi_height,
mi_width, cpi->oxcf.border_in_pixels);
set_plane_n4(xd, mi_width, mi_height, num_planes, chroma_ref_info);
// Set up distance of MB to edge of frame in 1/8th pel units.
#if !CONFIG_EXT_RECUR_PARTITIONS
assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
#endif // !CONFIG_EXT_RECUR_PARTITIONS
set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width,
cm->mi_params.mi_rows, cm->mi_params.mi_cols, chroma_ref_info);
// Set up source buffers.
av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes,
chroma_ref_info);
// required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs()
xd->tile = *tile;
}
void av1_set_offsets(const AV1_COMP *const cpi, const TileInfo *const tile,
MACROBLOCK *const x, int mi_row, int mi_col,
BLOCK_SIZE bsize, const CHROMA_REF_INFO *chroma_ref_info) {
const AV1_COMMON *const cm = &cpi->common;
const struct segmentation *const seg = &cm->seg;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize,
chroma_ref_info);
#if CONFIG_EXTENDED_SDP
// Don't set up segment ID for chroma part in SDP of inter frame
if (!frame_is_intra_only(cm) && xd->tree_type == CHROMA_PART) return;
#endif // CONFIG_EXTENDED_SDP
// Setup segment ID.
mbmi = xd->mi[0];
mbmi->segment_id = 0;
if (seg->enabled) {
if (seg->enabled && !cpi->vaq_refresh) {
const uint8_t *const map =
seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map;
mbmi->segment_id =
map ? get_segment_id(&cm->mi_params, map, bsize, mi_row, mi_col) : 0;
}
av1_init_plane_quantizers(cpi, x, mbmi->segment_id);
}
}
/*!\brief Interface for AV1 mode search for an individual coding block
*
* \ingroup partition_search
* \callgraph
* \callergraph
* Searches prediction modes, transform, and coefficient coding modes for an
* individual coding block. This function is the top-level interface that
* directs the encoder to the proper mode search function, among these
* implemented for inter/intra + rd/non-rd + non-skip segment/skip segment.
*
* \param[in] cpi Top-level encoder structure
* \param[in] tile_data Pointer to struct holding adaptive
* data/contexts/models for the tile during
* encoding
* \param[in] x Pointer to structure holding all the data for
* the current macroblock
* \param[in] mi_row Row coordinate of the block in a step size of
* MI_SIZE
* \param[in] mi_col Column coordinate of the block in a step size of
* MI_SIZE
* \param[in] rd_cost Pointer to structure holding rate and distortion
* stats for the current block
* \param[in] partition Partition mode of the parent block
* \param[in] cur_region_type Region type of the current block
* \param[in] bsize Current block size
* \param[in] ctx Pointer to structure holding coding contexts and
* chosen modes for the current block
* \param[in] best_rd Upper bound of rd cost of a valid partition
*
* Nothing is returned. Instead, the chosen modes and contexts necessary
* for reconstruction are stored in ctx, the rate-distortion stats are stored in
* rd_cost. If no valid mode leading to rd_cost <= best_rd, the status will be
* signalled by an INT64_MAX rd_cost->rdcost.
*/
static void pick_sb_modes(AV1_COMP *const cpi, TileDataEnc *tile_data,
MACROBLOCK *const x, int mi_row, int mi_col,
RD_STATS *rd_cost, PARTITION_TYPE partition,
#if CONFIG_EXTENDED_SDP
REGION_TYPE cur_region_type,
#endif // CONFIG_EXTENDED_SDP
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
RD_STATS best_rd) {
if (best_rd.rdcost < 0) {
ctx->rd_stats.rdcost = INT64_MAX;
ctx->rd_stats.skip_txfm = 0;
av1_invalid_rd_stats(rd_cost);
return;
}
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
int plane_type = (xd->tree_type == CHROMA_PART);
assert(is_bsize_geq(bsize, cpi->common.mi_params.mi_alloc_bsize));
av1_set_offsets(cpi, &tile_data->tile_info, x, mi_row, mi_col, bsize,
&ctx->chroma_ref_info);
#if CONFIG_EXTENDED_SDP
xd->mi[0]->region_type = cur_region_type;
#endif // CONFIG_EXTENDED_SDP
if (ctx->rd_mode_is_ready) {
assert(ctx->mic.sb_type[plane_type] == bsize);
assert(ctx->mic.partition == partition);
rd_cost->rate = ctx->rd_stats.rate;
rd_cost->dist = ctx->rd_stats.dist;
rd_cost->rdcost = ctx->rd_stats.rdcost;
#if CONFIG_MVP_IMPROVEMENT
const int is_inter = is_inter_block(&ctx->mic, xd->tree_type);
#if CONFIG_IBC_SR_EXT && !CONFIG_IBC_BV_IMPROVEMENT
if (cm->seq_params.enable_refmvbank && is_inter &&
!is_intrabc_block(&ctx->mic, xd->tree_type))
#else
if (cm->seq_params.enable_refmvbank && is_inter)
#endif // CONFIG_IBC_SR_EXT && !CONFIG_IBC_BV_IMPROVEMENT
av1_update_ref_mv_bank(cm, xd, &ctx->mic);
#endif // CONFIG_MVP_IMPROVEMENT
#if WARP_CU_BANK
if (is_inter) av1_update_warp_param_bank(cm, xd, &ctx->mic);
#endif // WARP_CU_BANK
return;
}
MB_MODE_INFO *mbmi;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
const AQ_MODE aq_mode = cpi->oxcf.q_cfg.aq_mode;
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
int i;
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, rd_pick_sb_modes_time);
#endif
aom_clear_system_state();
mbmi = xd->mi[0];
mbmi->sb_type[plane_type] = bsize;
if (xd->tree_type == SHARED_PART) mbmi->sb_type[PLANE_TYPE_UV] = bsize;
mbmi->partition = partition;
mbmi->chroma_ref_info = ctx->chroma_ref_info;
#if CONFIG_RD_DEBUG
mbmi->mi_row = mi_row;
mbmi->mi_col = mi_col;
#endif
// Sets up the tx_type_map buffer in MACROBLOCKD.
xd->tx_type_map = txfm_info->tx_type_map_;
xd->tx_type_map_stride = mi_size_wide[bsize];
const BLOCK_SIZE chroma_bsize = get_bsize_base(xd, &ctx->mic, AOM_PLANE_U);
xd->cctx_type_map = txfm_info->cctx_type_map_;
xd->cctx_type_map_stride = mi_size_wide[chroma_bsize];
for (i = 0; i < num_planes; ++i) {
p[i].coeff = ctx->coeff[i];
p[i].qcoeff = ctx->qcoeff[i];
p[i].dqcoeff = ctx->dqcoeff[i];
p[i].eobs = ctx->eobs[i];
p[i].bobs = ctx->bobs[i];
p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
}
for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
ctx->skippable = 0;
// Set to zero to make sure we do not use the previous encoded frame stats
mbmi->skip_txfm[xd->tree_type == CHROMA_PART] = 0;
// Reset skip mode flag.
mbmi->skip_mode = 0;
x->source_variance =
av1_high_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize, xd->bd);
// Initialize default mode evaluation params
set_mode_eval_params(cpi, x, DEFAULT_EVAL);
// Save rdmult before it might be changed, so it can be restored later.
const int orig_rdmult = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode, mbmi);
// Set error per bit for current rdmult
av1_set_error_per_bit(&x->mv_costs, x->rdmult);
av1_rd_cost_update(x->rdmult, &best_rd);
// Find best coding mode & reconstruct the MB so it is available
// as a predictor for MBs that follow in the SB
if (frame_is_intra_only(cm)
#if CONFIG_EXTENDED_SDP
|| mbmi->region_type == INTRA_REGION
#endif // CONFIG_EXTENDED_SDP
) {
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, av1_rd_pick_intra_mode_sb_time);
#endif
av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd.rdcost);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, av1_rd_pick_intra_mode_sb_time);
#endif
} else {
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, av1_rd_pick_inter_mode_sb_time);
#endif
if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col,
rd_cost, bsize, ctx, best_rd.rdcost);
} else {
av1_rd_pick_inter_mode_sb(cpi, tile_data, x, rd_cost, bsize, ctx,
best_rd.rdcost);
}
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, av1_rd_pick_inter_mode_sb_time);
#endif
}
#if CONFIG_MVP_IMPROVEMENT
const int is_inter = is_inter_block(mbmi, xd->tree_type);
#if CONFIG_IBC_SR_EXT && !CONFIG_IBC_BV_IMPROVEMENT
if (cm->seq_params.enable_refmvbank && is_inter &&
!is_intrabc_block(mbmi, xd->tree_type))
#else
if (cm->seq_params.enable_refmvbank && is_inter)
#endif // CONFIG_IBC_SR_EXT && !CONFIG_IBC_BV_IMPROVEMENT
av1_update_ref_mv_bank(cm, xd, mbmi);
#endif // CONFIG_MVP_IMPROVEMENT
#if WARP_CU_BANK
if (is_inter) av1_update_warp_param_bank(cm, xd, mbmi);
#endif // WARP_CU_BANK
// Examine the resulting rate and for AQ mode 2 make a segment choice.
if (rd_cost->rate != INT_MAX && aq_mode == COMPLEXITY_AQ &&
bsize >= BLOCK_16X16) {
av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
}
x->rdmult = orig_rdmult;
// TODO(jingning) The rate-distortion optimization flow needs to be
// refactored to provide proper exit/return handle.
if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX;
ctx->rd_stats.rate = rd_cost->rate;
ctx->rd_stats.dist = rd_cost->dist;
ctx->rd_stats.rdcost = rd_cost->rdcost;
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, rd_pick_sb_modes_time);
#endif
}
static void update_drl_index_stats(int max_drl_bits, const int16_t mode_ctx,
FRAME_CONTEXT *fc, FRAME_COUNTS *counts,
const MB_MODE_INFO *mbmi,
const MB_MODE_INFO_EXT *mbmi_ext) {
#if !CONFIG_ENTROPY_STATS
(void)counts;
#endif // !CONFIG_ENTROPY_STATS
assert(have_drl_index(mbmi->mode));
#if CONFIG_EXTENDED_WARP_PREDICTION
assert(IMPLIES(mbmi->mode == WARPMV, 0));
#endif // CONFIG_EXTENDED_WARP_PREDICTION
if (mbmi->mode == AMVDNEWMV) max_drl_bits = AOMMIN(max_drl_bits, 1);
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
#if CONFIG_SEP_COMP_DRL
assert(mbmi->ref_mv_idx[0] < max_drl_bits + 1);
assert(mbmi->ref_mv_idx[1] < max_drl_bits + 1);
for (int ref = 0; ref < 1 + has_second_drl(mbmi); ++ref) {
for (int idx = 0; idx < max_drl_bits; ++idx) {
const uint16_t *weight = has_second_drl(mbmi)
? mbmi_ext->weight[mbmi->ref_frame[ref]]
: mbmi_ext->weight[ref_frame_type];
aom_cdf_prob *drl_cdf = av1_get_drl_cdf(fc, weight, mode_ctx, idx);
#if CONFIG_IMPROVED_SAME_REF_COMPOUND
if (ref && mbmi->ref_frame[0] == mbmi->ref_frame[1] &&
mbmi->mode == NEAR_NEARMV && idx <= mbmi->ref_mv_idx[0])
continue;
#endif // CONFIG_IMPROVED_SAME_REF_COMPOUND
#if CONFIG_ENTROPY_STATS
int drl_ctx = av1_drl_ctx(mode_ctx);
switch (idx) {
case 0:
counts->drl_mode[0][drl_ctx][mbmi->ref_mv_idx[ref] != idx]++;
break;
case 1:
counts->drl_mode[1][drl_ctx][mbmi->ref_mv_idx[ref] != idx]++;
break;
default:
counts->drl_mode[2][drl_ctx][mbmi->ref_mv_idx[ref] != idx]++;
break;
}
#endif // CONFIG_ENTROPY_STATS
update_cdf(drl_cdf, mbmi->ref_mv_idx[ref] != idx, 2);
if (mbmi->ref_mv_idx[ref] == idx) break;
}
}
#else
assert(mbmi->ref_mv_idx < max_drl_bits + 1);
for (int idx = 0; idx < max_drl_bits; ++idx) {
aom_cdf_prob *drl_cdf =
av1_get_drl_cdf(fc, mbmi_ext->weight[ref_frame_type], mode_ctx, idx);
#if CONFIG_ENTROPY_STATS
int drl_ctx = av1_drl_ctx(mode_ctx);
switch (idx) {
case 0: counts->drl_mode[0][drl_ctx][mbmi->ref_mv_idx != idx]++; break;
case 1: counts->drl_mode[1][drl_ctx][mbmi->ref_mv_idx != idx]++; break;
default: counts->drl_mode[2][drl_ctx][mbmi->ref_mv_idx != idx]++; break;
}
#endif // CONFIG_ENTROPY_STATS
update_cdf(drl_cdf, mbmi->ref_mv_idx != idx, 2);
if (mbmi->ref_mv_idx == idx) break;
}
#endif // CONFIG_SEP_COMP_DRL
}
#if CONFIG_IBC_BV_IMPROVEMENT
static void update_intrabc_drl_idx_stats(int max_ref_bv_num, FRAME_CONTEXT *fc,
FRAME_COUNTS *counts,
const MB_MODE_INFO *mbmi) {
#if !CONFIG_ENTROPY_STATS
(void)counts;
#endif // !CONFIG_ENTROPY_STATS
assert(mbmi->intrabc_drl_idx < max_ref_bv_num);
int bit_cnt = 0;
for (int idx = 0; idx < max_ref_bv_num - 1; ++idx) {
#if CONFIG_ENTROPY_STATS
counts->intrabc_drl_idx[bit_cnt][mbmi->intrabc_drl_idx != idx]++;
#endif // CONFIG_ENTROPY_STATS
update_cdf(fc->intrabc_drl_idx_cdf[bit_cnt], mbmi->intrabc_drl_idx != idx,
2);
if (mbmi->intrabc_drl_idx == idx) break;
++bit_cnt;
}
}
#endif // CONFIG_IBC_BV_IMPROVEMENT
// Update the stats for compound weighted prediction
static void update_cwp_idx_stats(FRAME_CONTEXT *fc, FRAME_COUNTS *counts,
const AV1_COMMON *const cm, MACROBLOCKD *xd) {
#if !CONFIG_ENTROPY_STATS
(void)counts;
#endif // !CONFIG_ENTROPY_STATS
const MB_MODE_INFO *mbmi = xd->mi[0];
assert(mbmi->cwp_idx >= CWP_MIN && mbmi->cwp_idx <= CWP_MAX);
int bit_cnt = 0;
const int ctx = 0;
int8_t final_idx = get_cwp_coding_idx(mbmi->cwp_idx, 1, cm, mbmi);
for (int idx = 0; idx < MAX_CWP_NUM - 1; ++idx) {
#if CONFIG_ENTROPY_STATS
counts->cwp_idx[bit_cnt][final_idx != idx]++;
#endif // CONFIG_ENTROPY_STATS
update_cdf(fc->cwp_idx_cdf[ctx][bit_cnt], final_idx != idx, 2);
if (final_idx == idx) break;
++bit_cnt;
}
}
#if CONFIG_EXTENDED_WARP_PREDICTION
static void update_warp_delta_param_stats(int index, int value,
#if CONFIG_ENTROPY_STATS
FRAME_COUNTS *counts,
#endif // CONFIG_ENTROPY_STATS
FRAME_CONTEXT *fc) {
assert(2 <= index && index <= 5);
int index_type = (index == 2 || index == 5) ? 0 : 1;
int coded_value = (value / WARP_DELTA_STEP) + WARP_DELTA_CODED_MAX;
assert(0 <= coded_value && coded_value < WARP_DELTA_NUM_SYMBOLS);
update_cdf(fc->warp_delta_param_cdf[index_type], coded_value,
WARP_DELTA_NUM_SYMBOLS);
#if CONFIG_ENTROPY_STATS
counts->warp_delta_param[index_type][coded_value]++;
#endif // CONFIG_ENTROPY_STATS
}
static void update_warp_delta_stats(const AV1_COMMON *cm,
const MB_MODE_INFO *mbmi,
const MB_MODE_INFO_EXT *mbmi_ext,
#if CONFIG_ENTROPY_STATS
FRAME_COUNTS *counts,
#endif // CONFIG_ENTROPY_STATS
FRAME_CONTEXT *fc) {
if (mbmi->max_num_warp_candidates > 1) {
assert(mbmi->warp_ref_idx < mbmi->max_num_warp_candidates);
int max_idx_bits = mbmi->max_num_warp_candidates - 1;
for (int bit_idx = 0; bit_idx < max_idx_bits; ++bit_idx) {
aom_cdf_prob *warp_ref_idx_cdf = av1_get_warp_ref_idx_cdf(fc, bit_idx);
update_cdf(warp_ref_idx_cdf, mbmi->warp_ref_idx != bit_idx, 2);
if (mbmi->warp_ref_idx == bit_idx) break;
}
}
if (allow_warp_parameter_signaling(cm, mbmi)) {
const WarpedMotionParams *params = &mbmi->wm_params[0];
WarpedMotionParams base_params;
av1_get_warp_base_params(
cm, mbmi, &base_params, NULL,
mbmi_ext->warp_param_stack[av1_ref_frame_type(mbmi->ref_frame)]);
// The RDO stage should not give us a model which is not warpable.
// Such models can still be signalled, but are effectively useless
// as we'll just fall back to translational motion
assert(!params->invalid);
// TODO(rachelbarker): Allow signaling warp type?
update_warp_delta_param_stats(2, params->wmmat[2] - base_params.wmmat[2],
#if CONFIG_ENTROPY_STATS
counts,
#endif // CONFIG_ENTROPY_STATS
fc);
update_warp_delta_param_stats(3, params->wmmat[3] - base_params.wmmat[3],
#if CONFIG_ENTROPY_STATS
counts,
#endif // CONFIG_ENTROPY_STATS
fc);
}
}
#endif // CONFIG_EXTENDED_WARP_PREDICTION
#if CONFIG_SKIP_MODE_ENHANCEMENT
static void update_skip_drl_index_stats(int max_drl_bits, FRAME_CONTEXT *fc,
FRAME_COUNTS *counts,
const MB_MODE_INFO *mbmi) {
#if !CONFIG_ENTROPY_STATS
(void)counts;
#endif // !CONFIG_ENTROPY_STATS
assert(have_drl_index(mbmi->mode));
#if CONFIG_SEP_COMP_DRL
assert(get_ref_mv_idx(mbmi, 0) < max_drl_bits + 1);
assert(get_ref_mv_idx(mbmi, 1) < max_drl_bits + 1);
#else
assert(mbmi->ref_mv_idx < max_drl_bits + 1);
#endif // CONFIG_SEP_COMP_DRL
for (int idx = 0; idx < max_drl_bits; ++idx) {
aom_cdf_prob *drl_cdf = fc->skip_drl_cdf[AOMMIN(idx, 2)];
#if CONFIG_SEP_COMP_DRL
update_cdf(drl_cdf, mbmi->ref_mv_idx[0] != idx, 2);
#if CONFIG_ENTROPY_STATS
switch (idx) {
case 0: counts->skip_drl_mode[idx][mbmi->ref_mv_idx[0] != idx]++; break;
case 1: counts->skip_drl_mode[idx][mbmi->ref_mv_idx[0] != idx]++; break;
default: counts->skip_drl_mode[2][mbmi->ref_mv_idx[0] != idx]++; break;
}
#endif // CONFIG_ENTROPY_STATS
if (mbmi->ref_mv_idx[0] == idx) break;
#else
update_cdf(drl_cdf, mbmi->ref_mv_idx != idx, 2);
#if CONFIG_ENTROPY_STATS
switch (idx) {
case 0: counts->skip_drl_mode[idx][mbmi->ref_mv_idx != idx]++; break;
case 1: counts->skip_drl_mode[idx][mbmi->ref_mv_idx != idx]++; break;
default: counts->skip_drl_mode[2][mbmi->ref_mv_idx != idx]++; break;
}
#endif // CONFIG_ENTROPY_STATS
if (mbmi->ref_mv_idx == idx) break;
#endif // CONFIG_SEP_COMP_DRL
}
}
#endif // CONFIG_SKIP_MODE_ENHANCEMENT
static void update_stats(const AV1_COMMON *const cm, ThreadData *td) {
MACROBLOCK *x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const MB_MODE_INFO *const mbmi = xd->mi[0];
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const CurrentFrame *const current_frame = &cm->current_frame;
const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
FRAME_CONTEXT *fc = xd->tile_ctx;
const int inter_block = mbmi->ref_frame[0] != INTRA_FRAME;
const int seg_ref_active = 0;
if (current_frame->skip_mode_info.skip_mode_flag && !seg_ref_active &&
#if CONFIG_EXTENDED_SDP
mbmi->region_type != INTRA_REGION &&
#endif // CONFIG_EXTENDED_SDP
is_comp_ref_allowed(bsize)) {
const int skip_mode_ctx = av1_get_skip_mode_context(xd);
#if CONFIG_ENTROPY_STATS
td->counts->skip_mode[skip_mode_ctx][mbmi->skip_mode]++;
#endif
update_cdf(fc->skip_mode_cdfs[skip_mode_ctx], mbmi->skip_mode, 2);
}
#if CONFIG_SKIP_TXFM_OPT
const int use_intrabc = is_intrabc_block(mbmi, xd->tree_type);
if (!seg_ref_active) {
if (!mbmi->skip_mode && !frame_is_intra_only(cm)
#if CONFIG_EXTENDED_SDP
&& mbmi->region_type != INTRA_REGION
#endif // CONFIG_EXTENDED_SDP
) {
const int intra_inter_ctx = av1_get_intra_inter_context(xd);
#if CONFIG_ENTROPY_STATS
td->counts->intra_inter[intra_inter_ctx][inter_block]++;
#endif // CONFIG_ENTROPY_STATS
update_cdf(fc->intra_inter_cdf[intra_inter_ctx], inter_block, 2);
}
if (!inter_block && av1_allow_intrabc(cm, xd) &&
xd->tree_type != CHROMA_PART) {
#if CONFIG_NEW_CONTEXT_MODELING
const int intrabc_ctx = get_intrabc_ctx(xd);
update_cdf(fc->intrabc_cdf[intrabc_ctx], use_intrabc, 2);
#if CONFIG_ENTROPY_STATS
++td->counts->intrabc[intrabc_ctx][use_intrabc];
#endif // CONFIG_ENTROPY_STATS
#else
update_cdf(fc->intrabc_cdf, use_intrabc, 2);
#if CONFIG_ENTROPY_STATS
++td->counts->intrabc[use_intrabc];
#endif // CONFIG_ENTROPY_STATS
#endif // CONFIG_NEW_CONTEXT_MODELING
}
if (inter_block || (!inter_block && use_intrabc)) {
#if !CONFIG_SKIP_MODE_ENHANCEMENT
if (!mbmi->skip_mode) {
#endif // !CONFIG_SKIP_MODE_ENHANCEMENT
const int skip_ctx = av1_get_skip_txfm_context(xd);
#if CONFIG_ENTROPY_STATS
td->counts->skip_txfm[skip_ctx]
[mbmi->skip_txfm[xd->tree_type == CHROMA_PART]]++;
#endif
update_cdf(fc->skip_txfm_cdfs[skip_ctx],
mbmi->skip_txfm[xd->tree_type == CHROMA_PART], 2);
#if !CONFIG_SKIP_MODE_ENHANCEMENT
}
#endif // !CONFIG_SKIP_MODE_ENHANCEMENT
}
}
#else
#if CONFIG_SKIP_MODE_ENHANCEMENT
if (!seg_ref_active) {
#else
if (!mbmi->skip_mode && !seg_ref_active) {
#endif // CONFIG_SKIP_MODE_ENHANCEMENT
const int skip_ctx = av1_get_skip_txfm_context(xd);
#if CONFIG_ENTROPY_STATS
td->counts
->skip_txfm[skip_ctx][mbmi->skip_txfm[xd->tree_type == CHROMA_PART]]++;
#endif
update_cdf(fc->skip_txfm_cdfs[skip_ctx],
mbmi->skip_txfm[xd->tree_type == CHROMA_PART], 2);
}
#endif // CONFIG_SKIP_TXFM_OPT
#if CONFIG_ENTROPY_STATS
// delta quant applies to both intra and inter
const int super_block_upper_left = ((xd->mi_row & (cm->mib_size - 1)) == 0) &&
((xd->mi_col & (cm->mib_size - 1)) == 0);
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
if (delta_q_info->delta_q_present_flag &&
(bsize != cm->sb_size ||
!mbmi->skip_txfm[xd->tree_type == CHROMA_PART]) &&
super_block_upper_left) {
const int dq = (mbmi->current_qindex - xd->current_base_qindex) /
delta_q_info->delta_q_res;
const int absdq = abs(dq);
for (int i = 0; i < AOMMIN(absdq, DELTA_Q_SMALL); ++i) {
td->counts->delta_q[i][1]++;
}
if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++;
if (delta_q_info->delta_lf_present_flag) {
if (delta_q_info->delta_lf_multi) {
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
const int delta_lf = (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) /
delta_q_info->delta_lf_res;
const int abs_delta_lf = abs(delta_lf);
for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) {
td->counts->delta_lf_multi[lf_id][i][1]++;
}
if (abs_delta_lf < DELTA_LF_SMALL)
td->counts->delta_lf_multi[lf_id][abs_delta_lf][0]++;
}
} else {
const int delta_lf =
(mbmi->delta_lf_from_base - xd->delta_lf_from_base) /
delta_q_info->delta_lf_res;
const int abs_delta_lf = abs(delta_lf);
for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) {
td->counts->delta_lf[i][1]++;
}
if (abs_delta_lf < DELTA_LF_SMALL)
td->counts->delta_lf[abs_delta_lf][0]++;
}
}
}
#endif
if (!is_inter_block(mbmi, xd->tree_type)) {
av1_sum_intra_stats(cm, td->counts, xd, mbmi);
}
if (av1_allow_intrabc(cm, xd) && xd->tree_type != CHROMA_PART) {
#if !CONFIG_SKIP_TXFM_OPT
const int use_intrabc = is_intrabc_block(mbmi, xd->tree_type);
#if CONFIG_NEW_CONTEXT_MODELING
const int intrabc_ctx = get_intrabc_ctx(xd);
update_cdf(fc->intrabc_cdf[intrabc_ctx], use_intrabc, 2);
#if CONFIG_ENTROPY_STATS
++td->counts->intrabc[intrabc_ctx][use_intrabc];
#endif // CONFIG_ENTROPY_STATS
#else
update_cdf(fc->intrabc_cdf, use_intrabc, 2);
#if CONFIG_ENTROPY_STATS
++td->counts->intrabc[use_intrabc];
#endif // CONFIG_ENTROPY_STATS
#endif // CONFIG_NEW_CONTEXT_MODELING
#endif // !CONFIG_SKIP_TXFM_OPT
#if CONFIG_IBC_BV_IMPROVEMENT
if (use_intrabc) {
const int_mv ref_mv = mbmi_ext->ref_mv_stack[INTRA_FRAME][0].this_mv;
#if CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING
MV mv_diff;
mv_diff.row = mbmi->mv[0].as_mv.row - ref_mv.as_mv.row;
mv_diff.col = mbmi->mv[0].as_mv.col - ref_mv.as_mv.col;
#endif // CONFIG_DERIVED_MVD_SIGN
#if CONFIG_VQ_MVD_CODING
av1_update_mv_stats(&fc->ndvc, mv_diff, MV_PRECISION_ONE_PEL, 0);
#if CONFIG_DERIVED_MVD_SIGN
if (mv_diff.row) {
update_cdf(fc->ndvc.comps[0].sign_cdf, mv_diff.row < 0, 2);
}
if (mv_diff.col) {
update_cdf(fc->ndvc.comps[1].sign_cdf, mv_diff.col < 0, 2);
}
#endif
#else
av1_update_mv_stats(
#if CONFIG_DERIVED_MVD_SIGN
mv_diff, 0,
#else
mbmi->mv[0].as_mv, ref_mv.as_mv,
#endif // CONFIG_DERIVED_MVD_SIGN
&fc->ndvc, 0, MV_PRECISION_ONE_PEL);
#endif // CONFIG_VQ_MVD_CODING
}
#endif // CONFIG_IBC_BV_IMPROVEMENT
#if CONFIG_IBC_BV_IMPROVEMENT
if (use_intrabc) {
update_cdf(fc->intrabc_mode_cdf, mbmi->intrabc_mode, 2);
#if CONFIG_ENTROPY_STATS
++td->counts->intrabc_mode[mbmi->intrabc_mode];
#endif // CONFIG_ENTROPY_STATS
#if CONFIG_IBC_MAX_DRL
update_intrabc_drl_idx_stats(cm->features.max_bvp_drl_bits + 1, fc,
td->counts, mbmi);
#else
update_intrabc_drl_idx_stats(MAX_REF_BV_STACK_SIZE, fc, td->counts, mbmi);
#endif // CONFIG_IBC_MAX_DRL
#if CONFIG_MORPH_PRED
const int morph_pred_ctx = get_morph_pred_ctx(xd);
update_cdf(fc->morph_pred_cdf[morph_pred_ctx], mbmi->morph_pred, 2);
#if CONFIG_ENTROPY_STATS
++td->counts->morph_pred_count[morph_pred_ctx][mbmi->morph_pred];
#endif // CONFIG_ENTROPY_STATS
#endif // CONFIG_MORPH_PRED
}
#endif // CONFIG_IBC_BV_IMPROVEMENT
}
#if CONFIG_SKIP_MODE_ENHANCEMENT
if (mbmi->skip_mode && have_drl_index(mbmi->mode)) {
FRAME_COUNTS *const counts = td->counts;
#if CONFIG_SKIP_MODE_ENHANCEMENT
update_skip_drl_index_stats(cm->features.max_drl_bits, fc, counts, mbmi);
#else
const int16_t mode_ctx_pristine =
av1_mode_context_pristine(mbmi_ext->mode_context, mbmi->ref_frame);
update_drl_index_stats(cm->features.max_drl_bits, mode_ctx_pristine, fc,
counts, mbmi, mbmi_ext);
#endif // CONFIG_SKIP_MODE_ENHANCEMENT
}
#endif // CONFIG_SKIP_MODE_ENHANCEMENT
#if CONFIG_REFINEMV
if (mbmi->skip_mode && switchable_refinemv_flag(cm, mbmi)) {
const int refinemv_ctx = av1_get_refinemv_context(cm, xd, bsize);
update_cdf(fc->refinemv_flag_cdf[refinemv_ctx], mbmi->refinemv_flag,
REFINEMV_NUM_MODES);
}
#endif // CONFIG_REFINEMV
if (frame_is_intra_only(cm) || mbmi->skip_mode) return;
FRAME_COUNTS *const counts = td->counts;
if (!seg_ref_active) {
#if !CONFIG_SKIP_TXFM_OPT
#if CONFIG_ENTROPY_STATS && !CONFIG_CONTEXT_DERIVATION
counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++;
#endif // CONFIG_ENTROPY_STATS && !CONFIG_CONTEXT_DERIVATION
#if CONFIG_CONTEXT_DERIVATION
const int skip_txfm = mbmi->skip_txfm[xd->tree_type == CHROMA_PART];
#if CONFIG_ENTROPY_STATS
counts->intra_inter[skip_txfm][av1_get_intra_inter_context(xd)]
[inter_block]++;
#endif // CONFIG_ENTROPY_STATS
update_cdf(fc->intra_inter_cdf[skip_txfm][av1_get_intra_inter_context(xd)],
inter_block, 2);
#else
update_cdf(fc->intra_inter_cdf[av1_get_intra_inter_context(xd)],
inter_block, 2);
#endif // CONFIG_CONTEXT_DERIVATION
#endif // !CONFIG_SKIP_TXFM_OPT
// If the segment reference feature is enabled we have only a single
// reference frame allowed for the segment so exclude it from
// the reference frame counts used to work out probabilities.
if (inter_block) {
const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0];
const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1];
if (cm->features.tip_frame_mode &&
#if CONFIG_EXT_RECUR_PARTITIONS
is_tip_allowed_bsize(mbmi)) {
#else // CONFIG_EXT_RECUR_PARTITIONS
is_tip_allowed_bsize(bsize)) {
#endif // CONFIG_EXT_RECUR_PARTITIONS
const int tip_ctx = get_tip_ctx(xd);
update_cdf(fc->tip_cdf[tip_ctx], is_tip_ref_frame(ref0), 2);
#if CONFIG_ENTROPY_STATS
++counts->tip_ref[tip_ctx][is_tip_ref_frame(ref0)];
#endif
}
if (current_frame->reference_mode == REFERENCE_MODE_SELECT &&
!is_tip_ref_frame(ref0)) {
if (is_comp_ref_allowed(bsize)) {
#if CONFIG_ENTROPY_STATS
counts->comp_inter[av1_get_reference_mode_context(cm, xd)]
[has_second_ref(mbmi)]++;
#endif // CONFIG_ENTROPY_STATS
update_cdf(av1_get_reference_mode_cdf(cm, xd), has_second_ref(mbmi),
2);
}
}
if (has_second_ref(mbmi)) {
const int n_refs = cm->ref_frames_info.num_total_refs;
int n_bits = 0;
#if CONFIG_IMPROVED_SAME_REF_COMPOUND
int may_have_same_ref_comp =
cm->ref_frames_info.num_same_ref_compound > 0;
assert(ref0 < ref1 + may_have_same_ref_comp);
for (int i = 0;
(i < n_refs + n_bits - 2 || may_have_same_ref_comp) && n_bits < 2;
i++) {
const int bit =
((n_bits == 0) && (ref0 == i)) || ((n_bits == 1) && (ref1 == i));
#elif CONFIG_ALLOW_SAME_REF_COMPOUND
assert(ref0 <= ref1);
for (int i = 0; i < n_refs - 1 && n_bits < 2; i++) {
const int bit =
((n_bits == 0) && (ref0 == i)) || ((n_bits == 1) && (ref1 == i));
#else
assert(ref0 < ref1);
for (int i = 0; i < n_refs + n_bits - 2 && n_bits < 2; i++) {
const int bit = ref0 == i || ref1 == i;
#endif // CONFIG_IMPROVED_SAME_REF_COMPOUND
const int bit_type = n_bits == 0 ? -1
: av1_get_compound_ref_bit_type(
&cm->ref_frames_info, ref0, i);
int implicit_ref_bit = n_bits == 0 && i >= RANKED_REF0_TO_PRUNE - 1;
#if CONFIG_IMPROVED_SAME_REF_COMPOUND
implicit_ref_bit |=
n_bits == 0 && i >= n_refs - 2 &&
i + 1 >= cm->ref_frames_info.num_same_ref_compound;
#endif // CONFIG_IMPROVED_SAME_REF_COMPOUND
if (!implicit_ref_bit) {
update_cdf(
av1_get_pred_cdf_compound_ref(xd, i, n_bits, bit_type, n_refs),
bit, 2);
#if CONFIG_ENTROPY_STATS
if (n_bits == 0) {
counts->comp_ref0[av1_get_ref_pred_context(xd, i, n_refs)][i]
[bit]++;
} else {
#if CONFIG_ALLOW_SAME_REF_COMPOUND
counts->comp_ref1[av1_get_ref_pred_context(xd, i, n_refs)]
[bit_type][i][bit]++;
#else
counts->comp_ref1[av1_get_ref_pred_context(xd, i, n_refs)]
[bit_type][i - 1][bit]++;
#endif // CONFIG_ALLOW_SAME_REF_COMPOUND
}
#endif // CONFIG_ENTROPY_STATS
}
n_bits += bit;
#if CONFIG_IMPROVED_SAME_REF_COMPOUND
if (i < cm->ref_frames_info.num_same_ref_compound &&
may_have_same_ref_comp) {
may_have_same_ref_comp =
!bit && i + 1 < cm->ref_frames_info.num_same_ref_compound;
i -= bit;
} else {
may_have_same_ref_comp = 0;
}
#elif CONFIG_ALLOW_SAME_REF_COMPOUND
if (i < cm->ref_frames_info.num_same_ref_compound) i -= bit;
#endif // CONFIG_IMPROVED_SAME_REF_COMPOUND
}
} else if (!is_tip_ref_frame(ref0)) {
const int n_refs = cm->ref_frames_info.num_total_refs;
const MV_REFERENCE_FRAME ref0_nrs = mbmi->ref_frame[0];
for (int i = 0; i < n_refs - 1; i++) {
const int bit = ref0_nrs == i;
update_cdf(av1_get_pred_cdf_single_ref(xd, i, n_refs), bit, 2);
#if CONFIG_ENTROPY_STATS
counts->single_ref[av1_get_ref_pred_context(xd, i, n_refs)][i][bit]++;
#endif // CONFIG_ENTROPY_STATS
if (bit) break;
}
}
#if CONFIG_BAWP
#if CONFIG_BAWP_CHROMA
if (cm->features.enable_bawp &&
av1_allow_bawp(mbmi, xd->mi_row, xd->mi_col)) {
#if CONFIG_EXPLICIT_BAWP
update_cdf(fc->bawp_cdf[0], mbmi->bawp_flag[0] > 0, 2);
if (mbmi->bawp_flag[0] > 0 && av1_allow_explicit_bawp(mbmi)) {
const int ctx_index =
(mbmi->mode == NEARMV) ? 0 : (mbmi->mode == AMVDNEWMV ? 1 : 2);
update_cdf(fc->explicit_bawp_cdf[ctx_index], mbmi->bawp_flag[0] > 1,
2);
if (mbmi->bawp_flag[0] > 1) {
update_cdf(fc->explicit_bawp_scale_cdf, mbmi->bawp_flag[0] - 2,
EXPLICIT_BAWP_SCALE_CNT);
}
}
#else
update_cdf(fc->bawp_cdf[0], mbmi->bawp_flag[0] == 1, 2);
#endif // CONFIG_EXPLICIT_BAWP
if (mbmi->bawp_flag[0]) {
update_cdf(fc->bawp_cdf[1], mbmi->bawp_flag[1] == 1, 2);
}
#if CONFIG_ENTROPY_STATS
counts->bawp[mbmi->bawp_flag[0] == 1]++;
#endif // CONFIG_ENTROPY_STATS
}
#else
if (cm->features.enable_bawp &&
av1_allow_bawp(mbmi, xd->mi_row, xd->mi_col)) {
#if CONFIG_EXPLICIT_BAWP
update_cdf(fc->bawp_cdf, mbmi->bawp_flag > 0, 2);
if (mbmi->bawp_flag > 0 && av1_allow_explicit_bawp(mbmi)) {
const int ctx_index =
(mbmi->mode == NEARMV) ? 0 : (mbmi->mode == AMVDNEWMV ? 1 : 2);
update_cdf(fc->explicit_bawp_cdf[ctx_index], mbmi->bawp_flag > 1, 2);
if (mbmi->bawp_flag > 1) {
update_cdf(fc->explicit_bawp_scale_cdf, mbmi->bawp_flag - 2,
EXPLICIT_BAWP_SCALE_CNT);
}
}
#else
update_cdf(fc->bawp_cdf, mbmi->bawp_flag == 1, 2);
#endif // CONFIG_EXPLICIT_BAWP
#if CONFIG_ENTROPY_STATS
counts->bawp[mbmi->bawp_flag == 1]++;
#endif // CONFIG_ENTROPY_STATS
}
#endif // CONFIG_BAWP_CHROMA
#endif // CONFIG_BAWP
#if CONFIG_EXTENDED_WARP_PREDICTION
const int allowed_motion_modes = motion_mode_allowed(
cm, xd, mbmi_ext->ref_mv_stack[mbmi->ref_frame[0]], mbmi);
MOTION_MODE motion_mode = mbmi->motion_mode;
if (mbmi->mode == WARPMV) {
if (allowed_motion_modes & (1 << WARPED_CAUSAL)) {
#if CONFIG_D149_CTX_MODELING_OPT
#if CONFIG_ENTROPY_STATS
counts->warped_causal_warpmv[motion_mode == WARPED_CAUSAL]++;
#endif
update_cdf(fc->warped_causal_warpmv_cdf, motion_mode == WARPED_CAUSAL,
2);
#else
#if CONFIG_ENTROPY_STATS
counts->warped_causal_warpmv[bsize][motion_mode == WARPED_CAUSAL]++;
#endif
update_cdf(fc->warped_causal_warpmv_cdf[bsize],
motion_mode == WARPED_CAUSAL, 2);
#endif // CONFIG_D149_CTX_MODELING_OPT
}
}
bool continue_motion_mode_signaling =
(mbmi->mode == WARPMV) ? false : true;
assert(IMPLIES(mbmi->mode == WARPMV,
mbmi->motion_mode == WARP_DELTA ||
mbmi->motion_mode == WARPED_CAUSAL));
if (continue_motion_mode_signaling &&
(allowed_motion_modes & (1 << INTERINTRA))) {
const int bsize_group = size_group_lookup[bsize];
#if CONFIG_ENTROPY_STATS
counts->interintra[bsize_group][motion_mode == INTERINTRA]++;
#endif
update_cdf(fc->interintra_cdf[bsize_group], motion_mode == INTERINTRA,
2);
if (motion_mode == INTERINTRA) {
#if CONFIG_ENTROPY_STATS
counts->interintra_mode[bsize_group][mbmi->interintra_mode]++;
#endif
update_cdf(fc->interintra_mode_cdf[bsize_group],
mbmi->interintra_mode, INTERINTRA_MODES);
if (av1_is_wedge_used(bsize)) {
#if CONFIG_D149_CTX_MODELING_OPT
#if CONFIG_ENTROPY_STATS
counts->wedge_interintra[mbmi->use_wedge_interintra]++;
#endif
update_cdf(fc->wedge_interintra_cdf, mbmi->use_wedge_interintra, 2);
#else
#if CONFIG_ENTROPY_STATS
counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++;
#endif
update_cdf(fc->wedge_interintra_cdf[bsize],
mbmi->use_wedge_interintra, 2);
#endif // CONFIG_D149_CTX_MODELING_OPT
if (mbmi->use_wedge_interintra) {
#if CONFIG_WEDGE_MOD_EXT
update_wedge_mode_cdf(fc, bsize, mbmi->interintra_wedge_index
#if CONFIG_ENTROPY_STATS
,
counts
#endif // CONFIG_ENTROPY_STATS
);
#else
#if CONFIG_ENTROPY_STATS
counts->wedge_idx[bsize][mbmi->interintra_wedge_index]++;
#endif
update_cdf(fc->wedge_idx_cdf[bsize], mbmi->interintra_wedge_index,
16);
#endif // CONFIG_WEDGE_MOD_EXT
}
}
continue_motion_mode_signaling = false;
}
}
if (continue_motion_mode_signaling &&
(allowed_motion_modes & (1 << OBMC_CAUSAL))) {
#if CONFIG_D149_CTX_MODELING_OPT
#if CONFIG_ENTROPY_STATS
counts->obmc[motion_mode == OBMC_CAUSAL]++;
#endif
update_cdf(fc->obmc_cdf, motion_mode == OBMC_CAUSAL, 2);
#else
#if CONFIG_ENTROPY_STATS
counts->obmc[bsize][motion_mode == OBMC_CAUSAL]++;
#endif
update_cdf(fc->obmc_cdf[bsize], motion_mode == OBMC_CAUSAL, 2);
#endif // CONFIG_D149_CTX_MODELING_OPT
if (motion_mode == OBMC_CAUSAL) {
continue_motion_mode_signaling = false;
}
}
if (continue_motion_mode_signaling &&
allowed_motion_modes & (1 << WARP_EXTEND)) {
const int ctx1 = av1_get_warp_extend_ctx1(xd, mbmi);
const int ctx2 = av1_get_warp_extend_ctx2(xd, mbmi);
#if CONFIG_ENTROPY_STATS
counts->warp_extend[ctx1][ctx2][mbmi->motion_mode == WARP_EXTEND]++;
#endif
update_cdf(fc->warp_extend_cdf[ctx1][ctx2],
mbmi->motion_mode == WARP_EXTEND, 2);
if (motion_mode == WARP_EXTEND) {
continue_motion_mode_signaling = false;
}
}
if (continue_motion_mode_signaling &&
(allowed_motion_modes & (1 << WARPED_CAUSAL))) {
#if CONFIG_D149_CTX_MODELING_OPT && !NO_D149_FOR_WARPED_CAUSAL
#if CONFIG_ENTROPY_STATS
counts->warped_causal[motion_mode == WARPED_CAUSAL]++;
#endif
update_cdf(fc->warped_causal_cdf, motion_mode == WARPED_CAUSAL, 2);
#else
#if CONFIG_ENTROPY_STATS
counts->warped_causal[bsize][motion_mode == WARPED_CAUSAL]++;
#endif
update_cdf(fc->warped_causal_cdf[bsize], motion_mode == WARPED_CAUSAL,
2);
#endif // CONFIG_D149_CTX_MODELING_OPT && !NO_D149_FOR_WARPED_CAUSAL
if (motion_mode == WARPED_CAUSAL) {
continue_motion_mode_signaling = false;
}
}
if (continue_motion_mode_signaling &&
(allowed_motion_modes & (1 << WARP_DELTA))) {
#if CONFIG_D149_CTX_MODELING_OPT
#if CONFIG_ENTROPY_STATS
counts->warp_delta[motion_mode == WARP_DELTA]++;
#endif
update_cdf(fc->warp_delta_cdf, motion_mode == WARP_DELTA, 2);
#else
#if CONFIG_ENTROPY_STATS
counts->warp_delta[bsize][motion_mode == WARP_DELTA]++;
#endif
update_cdf(fc->warp_delta_cdf[bsize], motion_mode == WARP_DELTA, 2);
#endif // CONFIG_D149_CTX_MODELING_OPT
}
if (motion_mode == WARP_DELTA ||
(motion_mode == WARPED_CAUSAL && mbmi->mode == WARPMV)) {
update_warp_delta_stats(cm, mbmi, mbmi_ext,
#if CONFIG_ENTROPY_STATS
counts,
#endif // CONFIG_ENTROPY_STATS
fc);
// The following line is commented out to remove a spurious
// static analysis warning. Uncomment when adding a new motion mode
// continue_motion_mode_signaling = false;
}
if (allow_warpmv_with_mvd_coding(cm, mbmi)) {
#if CONFIG_D149_CTX_MODELING_OPT
#if CONFIG_ENTROPY_STATS
counts->warpmv_with_mvd_flag[mbmi->warpmv_with_mvd_flag]++;
#endif
update_cdf(fc->warpmv_with_mvd_flag_cdf, mbmi->warpmv_with_mvd_flag, 2);
#else
#if CONFIG_ENTROPY_STATS
counts->warpmv_with_mvd_flag[bsize][mbmi->warpmv_with_mvd_flag]++;
#endif
update_cdf(fc->warpmv_with_mvd_flag_cdf[bsize],
mbmi->warpmv_with_mvd_flag, 2);
#endif // CONFIG_D149_CTX_MODELING_OPT
} else {
assert(mbmi->warpmv_with_mvd_flag == 0);
}
#else
if (cm->seq_params.enable_interintra_compound &&
is_interintra_allowed(mbmi)) {
const int bsize_group = size_group_lookup[bsize];
if (mbmi->ref_frame[1] == INTRA_FRAME) {
#if CONFIG_ENTROPY_STATS
counts->interintra[bsize_group][1]++;
#endif
update_cdf(fc->interintra_cdf[bsize_group], 1, 2);
#if CONFIG_ENTROPY_STATS
counts->interintra_mode[bsize_group][mbmi->interintra_mode]++;
#endif
update_cdf(fc->interintra_mode_cdf[bsize_group],
mbmi->interintra_mode, INTERINTRA_MODES);
if (av1_is_wedge_used(bsize)) {
#if CONFIG_D149_CTX_MODELING_OPT
#if CONFIG_ENTROPY_STATS
counts->wedge_interintra[mbmi->use_wedge_interintra]++;
#endif
update_cdf(fc->wedge_interintra_cdf, mbmi->use_wedge_interintra, 2);
#else
#if CONFIG_ENTROPY_STATS
counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++;
#endif
update_cdf(fc->wedge_interintra_cdf[bsize],
mbmi->use_wedge_interintra, 2);
#endif // CONFIG_D149_CTX_MODELING_OPT
if (mbmi->use_wedge_interintra) {
#if CONFIG_WEDGE_MOD_EXT
update_wedge_mode_cdf(fc, bsize, mbmi->interintra_wedge_index
#if CONFIG_ENTROPY_STATS
,
counts
#endif // CONFIG_ENTROPY_STATS
);
#else
#if CONFIG_ENTROPY_STATS
counts->wedge_idx[bsize][mbmi->interintra_wedge_index]++;
#endif
update_cdf(fc->wedge_idx_cdf[bsize], mbmi->interintra_wedge_index,
16);
#endif // CONFIG_WEDGE_MOD_EXT
}
}
} else {
#if CONFIG_ENTROPY_STATS
counts->interintra[bsize_group][0]++;
#endif
update_cdf(fc->interintra_cdf[bsize_group], 0, 2);
}
}
const MOTION_MODE motion_allowed = motion_mode_allowed(cm, xd, mbmi);
if (mbmi->ref_frame[1] != INTRA_FRAME) {
if (motion_allowed == WARPED_CAUSAL) {
#if CONFIG_ENTROPY_STATS
counts->motion_mode[bsize][mbmi->motion_mode]++;
#endif
update_cdf(fc->motion_mode_cdf[bsize], mbmi->motion_mode,
MOTION_MODES);
} else if (motion_allowed == OBMC_CAUSAL) {
#if CONFIG_D149_CTX_MODELING_OPT
#if CONFIG_ENTROPY_STATS
counts->obmc[mbmi->motion_mode == OBMC_CAUSAL]++;
#endif
update_cdf(fc->obmc_cdf, mbmi->motion_mode == OBMC_CAUSAL, 2);
#else
#if CONFIG_ENTROPY_STATS
counts->obmc[bsize][mbmi->motion_mode == OBMC_CAUSAL]++;
#endif
update_cdf(fc->obmc_cdf[bsize], mbmi->motion_mode == OBMC_CAUSAL, 2);
#endif // CONFIG_D149_CTX_MODELING_OPT
}
}
#endif // CONFIG_EXTENDED_WARP_PREDICTION
#if CONFIG_REFINEMV
int is_refinemv_signaled = switchable_refinemv_flag(cm, mbmi);
if (!mbmi->skip_mode && is_refinemv_signaled) {
const int refinemv_ctx = av1_get_refinemv_context(cm, xd, bsize);
update_cdf(fc->refinemv_flag_cdf[refinemv_ctx], mbmi->refinemv_flag,
REFINEMV_NUM_MODES);
}
assert(IMPLIES(mbmi->refinemv_flag && is_refinemv_signaled,
mbmi->comp_group_idx == 0 &&
mbmi->interinter_comp.type == COMPOUND_AVERAGE));
#endif // CONFIG_REFINEMV
if (has_second_ref(mbmi)
#if CONFIG_OPTFLOW_REFINEMENT
&& mbmi->mode < NEAR_NEARMV_OPTFLOW
#endif // CONFIG_OPTFLOW_REFINEMENT
#if CONFIG_REFINEMV
&& (!mbmi->refinemv_flag || !is_refinemv_signaled)
#endif // CONFIG_REFINEMV
&& !is_joint_amvd_coding_mode(mbmi->mode)) {
#if CONFIG_COMPOUND_WARP_CAUSAL
assert(current_frame->reference_mode != SINGLE_REFERENCE &&
is_inter_compound_mode(mbmi->mode) &&
(mbmi->motion_mode == SIMPLE_TRANSLATION ||
is_compound_warp_causal_allowed(mbmi)));
#else
assert(current_frame->reference_mode != SINGLE_REFERENCE &&
is_inter_compound_mode(mbmi->mode) &&
mbmi->motion_mode == SIMPLE_TRANSLATION);
#endif // CONFIG_COMPOUND_WARP_CAUSAL
const int masked_compound_used = is_any_masked_compound_used(bsize) &&
cm->seq_params.enable_masked_compound;
if (masked_compound_used) {
const int comp_group_idx_ctx = get_comp_group_idx_context(cm, xd);
#if CONFIG_ENTROPY_STATS
++counts->comp_group_idx[comp_group_idx_ctx][mbmi->comp_group_idx];
#endif
update_cdf(fc->comp_group_idx_cdf[comp_group_idx_ctx],
mbmi->comp_group_idx, 2);
}
if (mbmi->comp_group_idx == 1) {
assert(masked_compound_used);
if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) {
#if CONFIG_D149_CTX_MODELING_OPT
#if CONFIG_ENTROPY_STATS
++counts
->compound_type[mbmi->interinter_comp.type - COMPOUND_WEDGE];
#endif
update_cdf(fc->compound_type_cdf,
mbmi->interinter_comp.type - COMPOUND_WEDGE,
MASKED_COMPOUND_TYPES);
#else
#if CONFIG_ENTROPY_STATS
++counts->compound_type[bsize][mbmi->interinter_comp.type -
COMPOUND_WEDGE];
#endif
update_cdf(fc->compound_type_cdf[bsize],
mbmi->interinter_comp.type - COMPOUND_WEDGE,
MASKED_COMPOUND_TYPES);
#endif // CONFIG_D149_CTX_MODELING_OPT
}
}
}
if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) {
#if CONFIG_WEDGE_MOD_EXT
update_wedge_mode_cdf(fc, bsize, mbmi->interinter_comp.wedge_index
#if CONFIG_ENTROPY_STATS
,
counts
#endif // CONFIG_ENTROPY_STATS
);
#else
#if CONFIG_ENTROPY_STATS
counts->wedge_idx[bsize][mbmi->interinter_comp.wedge_index]++;
#endif
update_cdf(fc->wedge_idx_cdf[bsize],
mbmi->interinter_comp.wedge_index, 16);
#endif // CONFIG_WEDGE_MOD_EXT
}
}
if (cm->features.enable_cwp && is_cwp_allowed(mbmi) && !mbmi->skip_mode) {
update_cwp_idx_stats(fc, td->counts, cm, xd);
}
}
}
if (inter_block && cm->features.interp_filter == SWITCHABLE &&
!is_warp_mode(mbmi->motion_mode) && !is_nontrans_global_motion(xd, mbmi)
#if CONFIG_REFINEMV
&& !(mbmi->refinemv_flag || mbmi->mode >= NEAR_NEARMV_OPTFLOW)
#endif // CONFIG_REFINEMV
) {
update_filter_type_cdf(xd, mbmi);
}
if (inter_block &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
const PREDICTION_MODE mode = mbmi->mode;
const int16_t mode_ctx =
av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame);
if (has_second_ref(mbmi)) {
#if CONFIG_OPTFLOW_REFINEMENT
if (cm->features.opfl_refine_type == REFINE_SWITCHABLE &&
opfl_allowed_for_cur_refs(cm, mbmi)) {
#if CONFIG_AFFINE_REFINEMENT
const int allow_translational = is_translational_refinement_allowed(
cm, comp_idx_to_opfl_mode[opfl_get_comp_idx(mode)]);
const int allow_affine = is_affine_refinement_allowed(
cm, xd, comp_idx_to_opfl_mode[opfl_get_comp_idx(mode)]);
if (allow_affine || allow_translational) {
#endif // CONFIG_AFFINE_REFINEMENT
const int use_optical_flow = mode >= NEAR_NEARMV_OPTFLOW;
#if CONFIG_ENTROPY_STATS
++counts->use_optflow[mode_ctx][use_optical_flow];
#endif
update_cdf(fc->use_optflow_cdf[mode_ctx], use_optical_flow, 2);
#if CONFIG_AFFINE_REFINEMENT
}
#endif // CONFIG_AFFINE_REFINEMENT
}
const int comp_mode_idx = opfl_get_comp_idx(mode);
#if CONFIG_ENTROPY_STATS
++counts->inter_compound_mode[mode_ctx][comp_mode_idx];
#endif
update_cdf(fc->inter_compound_mode_cdf[mode_ctx], comp_mode_idx,
INTER_COMPOUND_REF_TYPES);
#else
#if CONFIG_ENTROPY_STATS
++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)];
#endif
update_cdf(fc->inter_compound_mode_cdf[mode_ctx],
INTER_COMPOUND_OFFSET(mode), INTER_COMPOUND_MODES);
#endif // CONFIG_OPTFLOW_REFINEMENT
if (is_joint_mvd_coding_mode(mbmi->mode)) {
const int is_joint_amvd_mode = is_joint_amvd_coding_mode(mbmi->mode);
aom_cdf_prob *jmvd_scale_mode_cdf = is_joint_amvd_mode
? fc->jmvd_amvd_scale_mode_cdf
: fc->jmvd_scale_mode_cdf;
const int jmvd_scale_cnt = is_joint_amvd_mode
? JOINT_AMVD_SCALE_FACTOR_CNT
: JOINT_NEWMV_SCALE_FACTOR_CNT;
update_cdf(jmvd_scale_mode_cdf, mbmi->jmvd_scale_mode, jmvd_scale_cnt);
}
} else {
av1_update_inter_mode_stats(fc, counts, mode, mode_ctx
#if CONFIG_EXTENDED_WARP_PREDICTION
,
cm, xd, mbmi, bsize
#endif // CONFIG_EXTENDED_WARP_PREDICTION
);
}
const int new_mv = have_newmv_in_each_reference(mbmi->mode);
const int jmvd_base_ref_list = is_joint_mvd_coding_mode(mbmi->mode)
? get_joint_mvd_base_ref_list(cm, mbmi)
: 0;
const int is_adaptive_mvd = enable_adaptive_mvd_resolution(cm, mbmi);
if (have_drl_index(mbmi->mode)) {
const int16_t mode_ctx_pristine =
av1_mode_context_pristine(mbmi_ext->mode_context, mbmi->ref_frame);
update_drl_index_stats(cm->features.max_drl_bits, mode_ctx_pristine, fc,
counts, mbmi, mbmi_ext);
}
#if CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING
MV mv_diff[2] = { kZeroMv, kZeroMv };
#if CONFIG_DERIVED_MVD_SIGN
int num_signaled_mvd = 0;
int start_signaled_mvd_idx = 0;
#endif
#endif // CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING
#if CONFIG_EXTENDED_WARP_PREDICTION
if (xd->tree_type != CHROMA_PART && mbmi->mode == WARPMV) {
if (mbmi->warpmv_with_mvd_flag) {
WarpedMotionParams ref_warp_model =
mbmi_ext
->warp_param_stack[av1_ref_frame_type(mbmi->ref_frame)]
[mbmi->warp_ref_idx]
.wm_params;
int_mv ref_mv =
get_mv_from_wrl(xd, &ref_warp_model, mbmi->pb_mv_precision, bsize,
xd->mi_col, xd->mi_row);
assert(is_adaptive_mvd == 0);
#if CONFIG_DERIVED_MVD_SIGN
num_signaled_mvd = 1;
start_signaled_mvd_idx = 0;
#endif
#if CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING
get_mvd_from_ref_mv(mbmi->mv[0].as_mv, ref_mv.as_mv, is_adaptive_mvd,
mbmi->pb_mv_precision, &mv_diff[0]);
#endif // CONFIG_DERIVED_MVD_SIGN
#if CONFIG_VQ_MVD_CODING
av1_update_mv_stats(&fc->nmvc, mv_diff[0], mbmi->pb_mv_precision,
is_adaptive_mvd);
#else
av1_update_mv_stats(
#if CONFIG_DERIVED_MVD_SIGN
mv_diff[0], 1,
#else
mbmi->mv[0].as_mv, ref_mv.as_mv,
#endif // CONFIG_DERIVED_MVD_SIGN
&fc->nmvc, is_adaptive_mvd, mbmi->pb_mv_precision);
#endif // CONFIG_VQ_MVD_CODING
}
} else {
#endif // CONFIG_EXTENDED_WARP_PREDICTION
if (have_newmv_in_inter_mode(mbmi->mode) &&
xd->tree_type != CHROMA_PART) {
const int pb_mv_precision = mbmi->pb_mv_precision;
assert(IMPLIES(cm->features.cur_frame_force_integer_mv,
pb_mv_precision == MV_PRECISION_ONE_PEL));
if (is_pb_mv_precision_active(cm, mbmi, bsize)) {
assert(!is_adaptive_mvd);
assert(mbmi->most_probable_pb_mv_precision <= mbmi->max_mv_precision);
const int mpp_flag_context = av1_get_mpp_flag_context(cm, xd);
const int mpp_flag =
(mbmi->pb_mv_precision == mbmi->most_probable_pb_mv_precision);
update_cdf(fc->pb_mv_mpp_flag_cdf[mpp_flag_context], mpp_flag, 2);
if (!mpp_flag) {
const PRECISION_SET *precision_def =
&av1_mv_precision_sets[mbmi->mb_precision_set];
int down = av1_get_pb_mv_precision_index(mbmi);
int nsymbs = precision_def->num_precisions - 1;
const int down_ctx = av1_get_pb_mv_precision_down_context(cm, xd);
update_cdf(
fc->pb_mv_precision_cdf[down_ctx][mbmi->max_mv_precision -
MV_PRECISION_HALF_PEL],
down, nsymbs);
}
}
if (new_mv) {
#if CONFIG_DERIVED_MVD_SIGN
num_signaled_mvd = 1 + has_second_ref(mbmi);
start_signaled_mvd_idx = 0;
#endif // CONFIG_DERIVED_MVD_SIGN
for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
const int_mv ref_mv = av1_get_ref_mv(x, ref);
#if CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING
get_mvd_from_ref_mv(mbmi->mv[ref].as_mv, ref_mv.as_mv,
is_adaptive_mvd, pb_mv_precision,
&mv_diff[ref]);
#endif // CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING
#if CONFIG_VQ_MVD_CODING
av1_update_mv_stats(&fc->nmvc, mv_diff[ref], pb_mv_precision,
is_adaptive_mvd);
#else
av1_update_mv_stats(
#if CONFIG_DERIVED_MVD_SIGN
mv_diff[ref], 1,
#else
mbmi->mv[ref].as_mv, ref_mv.as_mv,
#endif // CONFIG_DERIVED_MVD_SIGN
&fc->nmvc, is_adaptive_mvd, pb_mv_precision);
#endif // CONFIG_VQ_MVD_CODING
}
} else if (have_nearmv_newmv_in_inter_mode(mbmi->mode)) {
const int ref =
#if CONFIG_OPTFLOW_REFINEMENT
mbmi->mode == NEAR_NEWMV_OPTFLOW ||
#endif // CONFIG_OPTFLOW_REFINEMENT
jmvd_base_ref_list || mbmi->mode == NEAR_NEWMV;
const int_mv ref_mv = av1_get_ref_mv(x, ref);
#if CONFIG_DERIVED_MVD_SIGN
num_signaled_mvd = 1;
start_signaled_mvd_idx = ref;
#endif
#if CONFIG_VQ_MVD_CODING || CONFIG_DERIVED_MVD_SIGN
get_mvd_from_ref_mv(mbmi->mv[ref].as_mv, ref_mv.as_mv,
is_adaptive_mvd, pb_mv_precision, &mv_diff[ref]);
#endif // CONFIG_DERIVED_MVD_SIGN
#if CONFIG_VQ_MVD_CODING
av1_update_mv_stats(&fc->nmvc, mv_diff[ref], pb_mv_precision,
is_adaptive_mvd);
#else
av1_update_mv_stats(
#if CONFIG_DERIVED_MVD_SIGN
mv_diff[ref], 1,
#else
mbmi->mv[ref].as_mv, ref_mv.as_mv,
#endif // CONFIG_DERIVED_MVD_SIGN
&fc->nmvc, is_adaptive_mvd, pb_mv_precision);
#endif // CONFIG_VQ_MVD_CODING
}
}
#if CONFIG_EXTENDED_WARP_PREDICTION
}
#endif // CONFIG_EXTENDED_WARP_PREDICTION
#if CONFIG_DERIVED_MVD_SIGN
// Update stats of the sign in the second pass
if (num_signaled_mvd > 0) {
int last_ref = -1;
int last_comp = -1;
uint16_t sum_mvd = 0;
int precision_shift = MV_PRECISION_ONE_EIGHTH_PEL - mbmi->pb_mv_precision;
int th_for_num_nonzero = get_derive_sign_nzero_th(mbmi);
uint8_t num_nonzero_mvd_comp = 0;
uint8_t enable_sign_derive = 0;
if (is_mvd_sign_derive_allowed(cm, xd, mbmi)) {
for (int ref = start_signaled_mvd_idx;
ref < start_signaled_mvd_idx + num_signaled_mvd; ++ref) {
assert(ref == 0 || ref == 1);
for (int comp = 0; comp < 2; comp++) {
int this_mvd_comp = comp == 0 ? mv_diff[ref].row : mv_diff[ref].col;
if (this_mvd_comp) {
last_ref = ref;
last_comp = comp;
sum_mvd = sum_mvd + (abs(this_mvd_comp) >> precision_shift);
num_nonzero_mvd_comp++;
}
}
}
if (num_nonzero_mvd_comp >= th_for_num_nonzero) enable_sign_derive = 1;
}
for (int ref = start_signaled_mvd_idx;
ref < start_signaled_mvd_idx + num_signaled_mvd; ++ref) {
assert(ref == 0 || ref == 1);
for (int comp = 0; comp < 2; comp++) {
if (enable_sign_derive && (ref == last_ref && comp == last_comp))
continue;
int this_mvd_comp = comp == 0 ? mv_diff[ref].row : mv_diff[ref].col;
if (this_mvd_comp) {
const int sign = this_mvd_comp < 0;
update_cdf(fc->nmvc.comps[comp].sign_cdf, sign, 2);
}
}
}
}
#endif // CONFIG_DERIVED_MVD_SIGN
}
}
/*!\brief Reconstructs an individual coding block
*
* \ingroup partition_search
* Reconstructs an individual coding block by applying the chosen modes stored
* in ctx, also updates mode counts and entropy models.
*
* This function works on planes determined by get_partition_plane_start() and
* get_partition_plane_end() based on xd->tree_type.
*
* \param[in] cpi Top-level encoder structure
* \param[in] tile_data Pointer to struct holding adaptive
* data/contexts/models for the tile during encoding
* \param[in] td Pointer to thread data
* \param[in] tp Pointer to the starting token
* \param[in] mi_row Row coordinate of the block in a step size of MI_SIZE
* \param[in] mi_col Column coordinate of the block in a step size of
* MI_SIZE
* \param[in] dry_run A code indicating whether it is part of the final
* pass for reconstructing the superblock
* \param[in] bsize Current block size
* \param[in] partition Partition mode of the parent block
* \param[in] ctx Pointer to structure holding coding contexts and the
* chosen modes for the current block
* \param[in] rate Pointer to the total rate for the current block
*
* Nothing is returned. Instead, reconstructions (w/o in-loop filters)
* will be updated in the pixel buffers in td->mb.e_mbd. Also, the chosen modes
* will be stored in the MB_MODE_INFO buffer td->mb.e_mbd.mi[0].
*/
static void encode_b(const AV1_COMP *const cpi, TileDataEnc *tile_data,
ThreadData *td, TokenExtra **tp, int mi_row, int mi_col,
RUN_TYPE dry_run, BLOCK_SIZE bsize,
PARTITION_TYPE partition,
const PICK_MODE_CONTEXT *const ctx, int *rate) {
const AV1_COMMON *const cm = &cpi->common;
TileInfo *const tile = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *xd = &x->e_mbd;
av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize,
&ctx->chroma_ref_info);
const int origin_mult = x->rdmult;
setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL);
MB_MODE_INFO *mbmi = xd->mi[0];
mbmi->partition = partition;
av1_update_state(cpi, td, ctx, mi_row, mi_col, bsize, dry_run);
const int num_planes = av1_num_planes(cm);
const int plane_start = (xd->tree_type == CHROMA_PART);
const int plane_end = (xd->tree_type == LUMA_PART) ? 1 : num_planes;
if (!dry_run) {
for (int plane = plane_start; plane < plane_end; plane++) {
x->mbmi_ext_frame->cb_offset[plane] = x->cb_offset[plane];
assert(x->cb_offset[plane] <
(1 << num_pels_log2_lookup[cpi->common.sb_size]));
}
#if CONFIG_LR_IMPROVEMENTS
av1_init_txk_skip_array(&cpi->common, mi_row, mi_col, bsize, 0,
xd->tree_type, &mbmi->chroma_ref_info, plane_start,
plane_end);
#endif // CONFIG_LR_IMPROVEMENTS
}
encode_superblock(cpi, tile_data, td, tp, dry_run, bsize, plane_start,
plane_end, rate);
#if CONFIG_REFINED_MVS_IN_TMVP
if (!dry_run && cm->seq_params.order_hint_info.enable_ref_frame_mvs) {
const MB_MODE_INFO *const mi = &ctx->mic;
if (opfl_allowed_for_cur_block(cm, mi)
#if CONFIG_REFINEMV
|| (mi->refinemv_flag && mi->interinter_comp.type == COMPOUND_AVERAGE)
#endif // CONFIG_REFINEMV
) {
const int bw = mi_size_wide[mi->sb_type[xd->tree_type == CHROMA_PART]];
const int bh = mi_size_high[mi->sb_type[xd->tree_type == CHROMA_PART]];
const int x_inside_boundary = AOMMIN(bw, cm->mi_params.mi_cols - mi_col);
const int y_inside_boundary = AOMMIN(bh, cm->mi_params.mi_rows - mi_row);
av1_copy_frame_refined_mvs(cm, xd, mi, mi_row, mi_col, x_inside_boundary,
y_inside_boundary);
}
}
#endif // CONFIG_REFINED_MVS_IN_TMVP
if (!dry_run) {
for (int plane = plane_start; plane < plane_end; ++plane) {
if (plane == 0) {
x->cb_offset[plane] += block_size_wide[bsize] * block_size_high[bsize];
} else if (xd->is_chroma_ref) {
const BLOCK_SIZE bsize_base = mbmi->chroma_ref_info.bsize_base;
x->cb_offset[plane] +=
block_size_wide[bsize_base] * block_size_high[bsize_base];
}
}
if (bsize == cpi->common.sb_size &&
mbmi->skip_txfm[xd->tree_type == CHROMA_PART] == 1 &&
cm->delta_q_info.delta_lf_present_flag) {
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id];
mbmi->delta_lf_from_base = xd->delta_lf_from_base;
}
if (has_second_ref(mbmi)) {
if (mbmi->interinter_comp.type == COMPOUND_AVERAGE)
mbmi->comp_group_idx = 0;
else
mbmi->comp_group_idx = 1;
}
// delta quant applies to both intra and inter
const int super_block_upper_left = ((mi_row & (cm->mib_size - 1)) == 0) &&
((mi_col & (cm->mib_size - 1)) == 0);
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
if (delta_q_info->delta_q_present_flag &&
(bsize != cm->sb_size ||
!mbmi->skip_txfm[xd->tree_type == CHROMA_PART]) &&
super_block_upper_left) {
xd->current_base_qindex = mbmi->current_qindex;
if (delta_q_info->delta_lf_present_flag) {
if (delta_q_info->delta_lf_multi) {
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
}
} else {
xd->delta_lf_from_base = mbmi->delta_lf_from_base;
}
}
}
RD_COUNTS *rdc = &td->rd_counts;
if (mbmi->skip_mode) {
assert(!frame_is_intra_only(cm));
rdc->skip_mode_used_flag = 1;
if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
#if !CONFIG_SKIP_MODE_ENHANCEMENT
assert(has_second_ref(mbmi));
#endif // !CONFIG_SKIP_MODE_ENHANCEMENT
#if CONFIG_D072_SKIP_MODE_IMPROVE
if (has_second_ref(mbmi)) {
#endif // CONFIG_D072_SKIP_MODE_IMPROVE
rdc->compound_ref_used_flag = 1;
#if CONFIG_D072_SKIP_MODE_IMPROVE
}
#endif // CONFIG_D072_SKIP_MODE_IMPROVE
}
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
} else {
const int seg_ref_active = 0;
if (!seg_ref_active) {
// If the segment reference feature is enabled we have only a single
// reference frame allowed for the segment so exclude it from
// the reference frame counts used to work out probabilities.
if (is_inter_block(mbmi, xd->tree_type)) {
av1_collect_neighbors_ref_counts(xd);
if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
if (has_second_ref(mbmi)) {
// This flag is also updated for 4x4 blocks
rdc->compound_ref_used_flag = 1;
}
}
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
}
}
}
if (tile_data->allow_update_cdf) update_stats(&cpi->common, td);
// Gather obmc and warped motion count to update the probability.
if ((!cpi->sf.inter_sf.disable_obmc &&
cpi->sf.inter_sf.prune_obmc_prob_thresh > 0) ||
#if CONFIG_EXTENDED_WARP_PREDICTION
cpi->sf.inter_sf.prune_warped_prob_thresh > 0 ||
cpi->sf.inter_sf.prune_warpmv_prob_thresh > 0) {
#else
(cm->features.allow_warped_motion &&
cpi->sf.inter_sf.prune_warped_prob_thresh > 0)) {
#endif // CONFIG_EXTENDED_WARP_PREDICTION
const int inter_block = is_inter_block(mbmi, xd->tree_type);
const int seg_ref_active = 0;
if (!seg_ref_active && inter_block) {
#if CONFIG_EXTENDED_WARP_PREDICTION
const int allowed_motion_modes = motion_mode_allowed(
cm, xd, x->mbmi_ext->ref_mv_stack[mbmi->ref_frame[0]], mbmi);
if (mbmi->motion_mode != INTERINTRA) {
if (allowed_motion_modes & (1 << OBMC_CAUSAL)) {
td->rd_counts.obmc_used[bsize][mbmi->motion_mode == OBMC_CAUSAL]++;
}
int is_warp_allowed = (allowed_motion_modes & (1 << WARPED_CAUSAL)) ||
(allowed_motion_modes & (1 << WARP_DELTA)) ||
(allowed_motion_modes & (1 << WARP_EXTEND));
if (is_warp_allowed) {
td->rd_counts.warped_used[mbmi->motion_mode >= WARPED_CAUSAL]++;
}
// TODO(rachelbarker): Add counts and pruning for WARP_DELTA and
// WARP_EXTEND
}
#else
const MOTION_MODE motion_allowed = motion_mode_allowed(cm, xd, mbmi);
if (mbmi->ref_frame[1] != INTRA_FRAME) {
if (motion_allowed >= OBMC_CAUSAL) {
td->rd_counts.obmc_used[bsize][mbmi->motion_mode == OBMC_CAUSAL]++;
}
if (motion_allowed == WARPED_CAUSAL) {
td->rd_counts.warped_used[mbmi->motion_mode == WARPED_CAUSAL]++;
}
}
#endif // CONFIG_EXTENDED_WARP_PREDICTION
}
}
}
// TODO(Ravi/Remya): Move this copy function to a better logical place
// This function will copy the best mode information from block
// level (x->mbmi_ext) to frame level (cpi->mbmi_ext_info.frame_base). This
// frame level buffer (cpi->mbmi_ext_info.frame_base) will be used during
// bitstream preparation.
if (xd->tree_type != CHROMA_PART)
#if CONFIG_SKIP_MODE_ENHANCEMENT
{
if (mbmi->skip_mode) {
MV_REFERENCE_FRAME rf[2];
const SkipModeInfo *const skip_mode_info =
&cpi->common.current_frame.skip_mode_info;
rf[0] = skip_mode_info->ref_frame_idx_0;
rf[1] = skip_mode_info->ref_frame_idx_1;
MV_REFERENCE_FRAME ref_frame_type = av1_ref_frame_type(rf);
av1_find_mv_refs(&cpi->common, xd, mbmi, ref_frame_type,
x->mbmi_ext->ref_mv_count, xd->ref_mv_stack, xd->weight,
NULL, NULL
#if !CONFIG_C076_INTER_MOD_CTX
,
NULL
#endif //! CONFIG_C076_INTER_MOD_CTX
#if CONFIG_EXTENDED_WARP_PREDICTION
,
NULL, 0, NULL
#endif // CONFIG_EXTENDED_WARP_PREDICTION
);
// TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and
// mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs.
av1_copy_usable_ref_mv_stack_and_weight(xd, x->mbmi_ext, ref_frame_type);
}
#endif // CONFIG_SKIP_MODE_ENHANCEMENT
av1_copy_mbmi_ext_to_mbmi_ext_frame(
x->mbmi_ext_frame, x->mbmi_ext,
#if CONFIG_SEP_COMP_DRL
mbmi,
#endif // CONFIG_SEP_COMP_DRL
#if CONFIG_SKIP_MODE_ENHANCEMENT
mbmi->skip_mode,
#endif // CONFIG_SKIP_MODE_ENHANCEMENT
av1_ref_frame_type(xd->mi[0]->ref_frame));
#if CONFIG_SKIP_MODE_ENHANCEMENT
}
#endif // CONFIG_SKIP_MODE_ENHANCEMENT
x->rdmult = origin_mult;
}
static void update_partition_stats(MACROBLOCKD *const xd,
#if CONFIG_ENTROPY_STATS
FRAME_COUNTS *counts,
#endif // CONFIG_ENTROPY_STATS
int allow_update_cdf,
const CommonModeInfoParams *const mi_params,
#if CONFIG_EXT_RECUR_PARTITIONS
int disable_ext_part,
PARTITION_TREE const *ptree_luma,
const CHROMA_REF_INFO *chroma_ref_info,
#endif // CONFIG_EXT_RECUR_PARTITIONS
PARTITION_TYPE partition, const int mi_row,
const int mi_col, BLOCK_SIZE bsize,
const int ctx, BLOCK_SIZE sb_size) {
#if !CONFIG_BLOCK_256
(void)sb_size;
#endif // !CONFIG_BLOCK_256
const TREE_TYPE tree_type = xd->tree_type;
const int plane_index = tree_type == CHROMA_PART;
FRAME_CONTEXT *fc = xd->tile_ctx;
assert(ctx >= 0); // is_partition_point() is true.
#if CONFIG_EXT_RECUR_PARTITIONS
const bool ss_x = xd->plane[1].subsampling_x;
const bool ss_y = xd->plane[1].subsampling_y;
const PARTITION_TYPE derived_partition =
av1_get_normative_forced_partition_type(
mi_params, tree_type, ss_x, ss_y, mi_row, mi_col, bsize,
#if CONFIG_CB1TO4_SPLIT
BLOCK_INVALID, // as it is a partition point
#endif // CONFIG_CB1TO4_SPLIT
ptree_luma, chroma_ref_info);
if (derived_partition != PARTITION_INVALID) {
assert(partition == derived_partition &&
"Partition does not match normatively derived partition.");
return;
}
const bool do_split = partition != PARTITION_NONE;
if (allow_update_cdf) {
#if CONFIG_ENTROPY_STATS
counts->do_split[plane_index][ctx][do_split]++;
#endif // CONFIG_ENTROPY_STATS
update_cdf(fc->do_split_cdf[plane_index][ctx], do_split, 2);
}
if (!do_split) {
return;
}
#if CONFIG_BLOCK_256
const bool do_square_split = partition == PARTITION_SPLIT;
if (is_square_split_eligible(bsize, sb_size)) {
const int square_split_ctx =
square_split_context(xd, mi_row, mi_col, bsize);
#if CONFIG_ENTROPY_STATS
counts->do_square_split[plane_index][square_split_ctx][do_square_split]++;
#endif // CONFIG_ENTROPY_STATS
update_cdf(fc->do_square_split_cdf[plane_index][square_split_ctx],
do_square_split, 2);
}
if (do_square_split) {
return;
}
#endif // CONFIG_BLOCK_256
RECT_PART_TYPE rect_type = get_rect_part_type(partition);
if (rect_type_implied_by_bsize(bsize, tree_type) == RECT_INVALID) {
#if CONFIG_ENTROPY_STATS
counts->rect_type[plane_index][ctx][rect_type]++;
#endif // CONFIG_ENTROPY_STATS
update_cdf(fc->rect_type_cdf[plane_index][ctx], rect_type, 2);
}
const bool ext_partition_allowed =
!disable_ext_part &&
is_ext_partition_allowed(bsize, rect_type, tree_type);
if (ext_partition_allowed) {
const bool do_ext_partition = (partition >= PARTITION_HORZ_3);
#if CONFIG_ENTROPY_STATS
counts->do_ext_partition[plane_index][rect_type][ctx][do_ext_partition]++;
#endif // CONFIG_ENTROPY_STATS
update_cdf(fc->do_ext_partition_cdf[plane_index][rect_type][ctx],
do_ext_partition, 2);
if (do_ext_partition) {
const bool uneven_4way_partition_allowed =
is_uneven_4way_partition_allowed(bsize, rect_type, tree_type);
if (uneven_4way_partition_allowed) {
const bool do_uneven_4way_partition = (partition >= PARTITION_HORZ_4A);
#if CONFIG_ENTROPY_STATS
counts->do_uneven_4way_partition[plane_index][rect_type][ctx]
[do_uneven_4way_partition]++;
#endif // CONFIG_ENTROPY_STATS
update_cdf(
fc->do_uneven_4way_partition_cdf[plane_index][rect_type][ctx],
do_uneven_4way_partition, 2);
if (do_uneven_4way_partition) {
const UNEVEN_4WAY_PART_TYPE uneven_4way_type =
(partition == PARTITION_HORZ_4A || partition == PARTITION_VERT_4A)
? UNEVEN_4A
: UNEVEN_4B;
#if CONFIG_ENTROPY_STATS
counts->uneven_4way_partition_type[plane_index][rect_type][ctx]
[uneven_4way_type]++;
#endif // CONFIG_ENTROPY_STATS
update_cdf(
fc->uneven_4way_partition_type_cdf[plane_index][rect_type][ctx],
uneven_4way_type, NUM_UNEVEN_4WAY_PARTS);
}
}
}
}