| /* | 
 |  * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include <assert.h> | 
 | #include <limits.h> | 
 | #include <stdio.h> | 
 |  | 
 | #include "aom/aom_encoder.h" | 
 | #include "aom_dsp/aom_dsp_common.h" | 
 | #include "aom_dsp/binary_codes_writer.h" | 
 | #include "aom_dsp/bitwriter_buffer.h" | 
 | #include "aom_mem/aom_mem.h" | 
 | #include "aom_ports/mem_ops.h" | 
 | #include "aom_ports/system_state.h" | 
 | #if CONFIG_BITSTREAM_DEBUG | 
 | #include "aom_util/debug_util.h" | 
 | #endif  // CONFIG_BITSTREAM_DEBUG | 
 |  | 
 | #include "av1/common/cdef.h" | 
 | #if CONFIG_CFL | 
 | #include "av1/common/cfl.h" | 
 | #endif | 
 | #include "av1/common/entropy.h" | 
 | #include "av1/common/entropymode.h" | 
 | #include "av1/common/entropymv.h" | 
 | #include "av1/common/mvref_common.h" | 
 | #include "av1/common/odintrin.h" | 
 | #include "av1/common/pred_common.h" | 
 | #include "av1/common/reconinter.h" | 
 | #include "av1/common/reconintra.h" | 
 | #include "av1/common/seg_common.h" | 
 | #include "av1/common/tile_common.h" | 
 |  | 
 | #include "av1/encoder/bitstream.h" | 
 | #include "av1/encoder/cost.h" | 
 | #include "av1/encoder/encodemv.h" | 
 | #if CONFIG_LV_MAP | 
 | #include "av1/encoder/encodetxb.h" | 
 | #endif  // CONFIG_LV_MAP | 
 | #include "av1/encoder/mcomp.h" | 
 | #include "av1/encoder/palette.h" | 
 | #include "av1/encoder/segmentation.h" | 
 | #include "av1/encoder/tokenize.h" | 
 |  | 
 | #define ENC_MISMATCH_DEBUG 0 | 
 |  | 
 | static INLINE void write_uniform(aom_writer *w, int n, int v) { | 
 |   const int l = get_unsigned_bits(n); | 
 |   const int m = (1 << l) - n; | 
 |   if (l == 0) return; | 
 |   if (v < m) { | 
 |     aom_write_literal(w, v, l - 1); | 
 |   } else { | 
 |     aom_write_literal(w, m + ((v - m) >> 1), l - 1); | 
 |     aom_write_literal(w, (v - m) & 1, 1); | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_LOOP_RESTORATION | 
 | static void loop_restoration_write_sb_coeffs(const AV1_COMMON *const cm, | 
 |                                              MACROBLOCKD *xd, | 
 |                                              const RestorationUnitInfo *rui, | 
 |                                              aom_writer *const w, int plane); | 
 | #endif  // CONFIG_LOOP_RESTORATION | 
 | #if CONFIG_OBU | 
 | static void write_uncompressed_header_obu(AV1_COMP *cpi, | 
 | #if CONFIG_EXT_TILE | 
 |                                           struct aom_write_bit_buffer *saved_wb, | 
 | #endif | 
 |                                           struct aom_write_bit_buffer *wb); | 
 | #else | 
 | static void write_uncompressed_header_frame(AV1_COMP *cpi, | 
 |                                             struct aom_write_bit_buffer *wb); | 
 | #endif | 
 |  | 
 | #if !CONFIG_OBU || CONFIG_EXT_TILE | 
 | static int remux_tiles(const AV1_COMMON *const cm, uint8_t *dst, | 
 |                        const uint32_t data_size, const uint32_t max_tile_size, | 
 |                        const uint32_t max_tile_col_size, | 
 |                        int *const tile_size_bytes, | 
 |                        int *const tile_col_size_bytes); | 
 | #endif | 
 |  | 
 | static void write_intra_mode_kf(FRAME_CONTEXT *frame_ctx, const MODE_INFO *mi, | 
 |                                 const MODE_INFO *above_mi, | 
 |                                 const MODE_INFO *left_mi, PREDICTION_MODE mode, | 
 |                                 aom_writer *w) { | 
 | #if CONFIG_INTRABC | 
 |   assert(!is_intrabc_block(&mi->mbmi)); | 
 | #endif  // CONFIG_INTRABC | 
 |   (void)mi; | 
 |   aom_write_symbol(w, mode, get_y_mode_cdf(frame_ctx, above_mi, left_mi), | 
 |                    INTRA_MODES); | 
 | } | 
 |  | 
 | static void write_inter_mode(aom_writer *w, PREDICTION_MODE mode, | 
 |                              FRAME_CONTEXT *ec_ctx, const int16_t mode_ctx) { | 
 |   const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK; | 
 |  | 
 |   aom_write_symbol(w, mode != NEWMV, ec_ctx->newmv_cdf[newmv_ctx], 2); | 
 |  | 
 |   if (mode != NEWMV) { | 
 |     const int16_t zeromv_ctx = | 
 |         (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; | 
 |     aom_write_symbol(w, mode != GLOBALMV, ec_ctx->zeromv_cdf[zeromv_ctx], 2); | 
 |  | 
 |     if (mode != GLOBALMV) { | 
 |       int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; | 
 |       aom_write_symbol(w, mode != NEARESTMV, ec_ctx->refmv_cdf[refmv_ctx], 2); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void write_drl_idx(FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi, | 
 |                           const MB_MODE_INFO_EXT *mbmi_ext, aom_writer *w) { | 
 |   uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); | 
 |  | 
 |   assert(mbmi->ref_mv_idx < 3); | 
 |  | 
 |   const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV; | 
 |   if (new_mv) { | 
 |     int idx; | 
 |     for (idx = 0; idx < 2; ++idx) { | 
 |       if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { | 
 |         uint8_t drl_ctx = | 
 |             av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); | 
 |  | 
 |         aom_write_symbol(w, mbmi->ref_mv_idx != idx, ec_ctx->drl_cdf[drl_ctx], | 
 |                          2); | 
 |         if (mbmi->ref_mv_idx == idx) return; | 
 |       } | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   if (have_nearmv_in_inter_mode(mbmi->mode)) { | 
 |     int idx; | 
 |     // TODO(jingning): Temporary solution to compensate the NEARESTMV offset. | 
 |     for (idx = 1; idx < 3; ++idx) { | 
 |       if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { | 
 |         uint8_t drl_ctx = | 
 |             av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); | 
 |         aom_write_symbol(w, mbmi->ref_mv_idx != (idx - 1), | 
 |                          ec_ctx->drl_cdf[drl_ctx], 2); | 
 |         if (mbmi->ref_mv_idx == (idx - 1)) return; | 
 |       } | 
 |     } | 
 |     return; | 
 |   } | 
 | } | 
 |  | 
 | static void write_inter_compound_mode(AV1_COMMON *cm, MACROBLOCKD *xd, | 
 |                                       aom_writer *w, PREDICTION_MODE mode, | 
 |                                       const int16_t mode_ctx) { | 
 |   assert(is_inter_compound_mode(mode)); | 
 |   (void)cm; | 
 |   aom_write_symbol(w, INTER_COMPOUND_OFFSET(mode), | 
 |                    xd->tile_ctx->inter_compound_mode_cdf[mode_ctx], | 
 |                    INTER_COMPOUND_MODES); | 
 | } | 
 |  | 
 | static void write_tx_size_vartx(const AV1_COMMON *cm, MACROBLOCKD *xd, | 
 |                                 const MB_MODE_INFO *mbmi, TX_SIZE tx_size, | 
 |                                 int depth, int blk_row, int blk_col, | 
 |                                 aom_writer *w) { | 
 |   FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
 |   (void)cm; | 
 |   const int max_blocks_high = max_block_high(xd, mbmi->sb_type, 0); | 
 |   const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type, 0); | 
 |  | 
 |   if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; | 
 |  | 
 |   if (depth == MAX_VARTX_DEPTH) { | 
 |     txfm_partition_update(xd->above_txfm_context + blk_col, | 
 |                           xd->left_txfm_context + blk_row, tx_size, tx_size); | 
 |     return; | 
 |   } | 
 |  | 
 |   const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, | 
 |                                          xd->left_txfm_context + blk_row, | 
 |                                          mbmi->sb_type, tx_size); | 
 |   const int txb_size_index = | 
 |       av1_get_txb_size_index(mbmi->sb_type, blk_row, blk_col); | 
 |   const int write_txfm_partition = | 
 |       tx_size == mbmi->inter_tx_size[txb_size_index]; | 
 |   if (write_txfm_partition) { | 
 |     aom_write_symbol(w, 0, ec_ctx->txfm_partition_cdf[ctx], 2); | 
 |  | 
 |     txfm_partition_update(xd->above_txfm_context + blk_col, | 
 |                           xd->left_txfm_context + blk_row, tx_size, tx_size); | 
 |     // TODO(yuec): set correct txfm partition update for qttx | 
 |   } else { | 
 |     const TX_SIZE sub_txs = sub_tx_size_map[1][tx_size]; | 
 |     const int bsw = tx_size_wide_unit[sub_txs]; | 
 |     const int bsh = tx_size_high_unit[sub_txs]; | 
 |  | 
 |     aom_write_symbol(w, 1, ec_ctx->txfm_partition_cdf[ctx], 2); | 
 |  | 
 |     if (sub_txs == TX_4X4) { | 
 |       txfm_partition_update(xd->above_txfm_context + blk_col, | 
 |                             xd->left_txfm_context + blk_row, sub_txs, tx_size); | 
 |       return; | 
 |     } | 
 |  | 
 |     assert(bsw > 0 && bsh > 0); | 
 |     for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) | 
 |       for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { | 
 |         int offsetr = blk_row + row; | 
 |         int offsetc = blk_col + col; | 
 |         write_tx_size_vartx(cm, xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, | 
 |                             w); | 
 |       } | 
 |   } | 
 | } | 
 |  | 
 | static void write_selected_tx_size(const AV1_COMMON *cm, const MACROBLOCKD *xd, | 
 |                                    aom_writer *w) { | 
 |   const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   const BLOCK_SIZE bsize = mbmi->sb_type; | 
 |   FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
 |   (void)cm; | 
 |   if (block_signals_txsize(bsize)) { | 
 |     const TX_SIZE tx_size = mbmi->tx_size; | 
 |     const int tx_size_ctx = get_tx_size_context(xd, 0); | 
 |     const int depth = tx_size_to_depth(tx_size, bsize, 0); | 
 |     const int max_depths = bsize_to_max_depth(bsize, 0); | 
 |     const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize, 0); | 
 |  | 
 |     assert(depth >= 0 && depth <= max_depths); | 
 |     assert(!is_inter_block(mbmi)); | 
 |     assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi))); | 
 |  | 
 |     aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx], | 
 |                      max_depths + 1); | 
 |   } | 
 | } | 
 |  | 
 | static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd, | 
 |                       int segment_id, const MODE_INFO *mi, aom_writer *w) { | 
 |   if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { | 
 |     return 1; | 
 |   } else { | 
 |     const int skip = mi->mbmi.skip; | 
 |     const int ctx = av1_get_skip_context(xd); | 
 |     FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
 |     aom_write_symbol(w, skip, ec_ctx->skip_cdfs[ctx], 2); | 
 |     return skip; | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_EXT_SKIP | 
 | static int write_skip_mode(const AV1_COMMON *cm, const MACROBLOCKD *xd, | 
 |                            int segment_id, const MODE_INFO *mi, aom_writer *w) { | 
 |   if (!cm->skip_mode_flag) return 0; | 
 |   if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { | 
 |     return 0; | 
 |   } | 
 |   const int skip_mode = mi->mbmi.skip_mode; | 
 |   if (!is_comp_ref_allowed(mi->mbmi.sb_type)) { | 
 |     assert(!skip_mode); | 
 |     return 0; | 
 |   } | 
 |   const int ctx = av1_get_skip_mode_context(xd); | 
 |   aom_write_symbol(w, skip_mode, xd->tile_ctx->skip_mode_cdfs[ctx], 2); | 
 |   return skip_mode; | 
 | } | 
 | #endif  // CONFIG_EXT_SKIP | 
 |  | 
 | static void write_is_inter(const AV1_COMMON *cm, const MACROBLOCKD *xd, | 
 |                            int segment_id, aom_writer *w, const int is_inter) { | 
 |   if (!segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { | 
 |     if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) | 
 | #if CONFIG_SEGMENT_GLOBALMV | 
 |         || segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV) | 
 | #endif | 
 |     ) | 
 |       if (!av1_is_valid_scale(&cm->frame_refs[0].sf)) | 
 |         return;  // LAST_FRAME not valid for reference | 
 |  | 
 |     const int ctx = av1_get_intra_inter_context(xd); | 
 |     FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
 |     aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2); | 
 |   } | 
 | } | 
 |  | 
 | static void write_motion_mode(const AV1_COMMON *cm, MACROBLOCKD *xd, | 
 |                               const MODE_INFO *mi, aom_writer *w) { | 
 |   const MB_MODE_INFO *mbmi = &mi->mbmi; | 
 |  | 
 |   MOTION_MODE last_motion_mode_allowed = | 
 |       motion_mode_allowed(cm->global_motion, xd, mi); | 
 |   switch (last_motion_mode_allowed) { | 
 |     case SIMPLE_TRANSLATION: break; | 
 |     case OBMC_CAUSAL: | 
 |       aom_write_symbol(w, mbmi->motion_mode == OBMC_CAUSAL, | 
 |                        xd->tile_ctx->obmc_cdf[mbmi->sb_type], 2); | 
 |       break; | 
 |     default: | 
 |       aom_write_symbol(w, mbmi->motion_mode, | 
 |                        xd->tile_ctx->motion_mode_cdf[mbmi->sb_type], | 
 |                        MOTION_MODES); | 
 |   } | 
 | } | 
 |  | 
 | static void write_delta_qindex(const AV1_COMMON *cm, const MACROBLOCKD *xd, | 
 |                                int delta_qindex, aom_writer *w) { | 
 |   int sign = delta_qindex < 0; | 
 |   int abs = sign ? -delta_qindex : delta_qindex; | 
 |   int rem_bits, thr; | 
 |   int smallval = abs < DELTA_Q_SMALL ? 1 : 0; | 
 |   FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
 |   (void)cm; | 
 |  | 
 |   aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf, | 
 |                    DELTA_Q_PROBS + 1); | 
 |  | 
 |   if (!smallval) { | 
 |     rem_bits = OD_ILOG_NZ(abs - 1) - 1; | 
 |     thr = (1 << rem_bits) + 1; | 
 |     aom_write_literal(w, rem_bits - 1, 3); | 
 |     aom_write_literal(w, abs - thr, rem_bits); | 
 |   } | 
 |   if (abs > 0) { | 
 |     aom_write_bit(w, sign); | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_EXT_DELTA_Q | 
 | static void write_delta_lflevel(const AV1_COMMON *cm, const MACROBLOCKD *xd, | 
 | #if CONFIG_LOOPFILTER_LEVEL | 
 |                                 int lf_id, | 
 | #endif | 
 |                                 int delta_lflevel, aom_writer *w) { | 
 |   int sign = delta_lflevel < 0; | 
 |   int abs = sign ? -delta_lflevel : delta_lflevel; | 
 |   int rem_bits, thr; | 
 |   int smallval = abs < DELTA_LF_SMALL ? 1 : 0; | 
 |   FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
 |   (void)cm; | 
 |  | 
 | #if CONFIG_LOOPFILTER_LEVEL | 
 |   if (cm->delta_lf_multi) { | 
 |     assert(lf_id >= 0 && lf_id < FRAME_LF_COUNT); | 
 |     aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), | 
 |                      ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1); | 
 |   } else { | 
 |     aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf, | 
 |                      DELTA_LF_PROBS + 1); | 
 |   } | 
 | #else | 
 |   aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf, | 
 |                    DELTA_LF_PROBS + 1); | 
 | #endif  // CONFIG_LOOPFILTER_LEVEL | 
 |  | 
 |   if (!smallval) { | 
 |     rem_bits = OD_ILOG_NZ(abs - 1) - 1; | 
 |     thr = (1 << rem_bits) + 1; | 
 |     aom_write_literal(w, rem_bits - 1, 3); | 
 |     aom_write_literal(w, abs - thr, rem_bits); | 
 |   } | 
 |   if (abs > 0) { | 
 |     aom_write_bit(w, sign); | 
 |   } | 
 | } | 
 | #endif  // CONFIG_EXT_DELTA_Q | 
 |  | 
 | static void pack_map_tokens(aom_writer *w, const TOKENEXTRA **tp, int n, | 
 |                             int num) { | 
 |   const TOKENEXTRA *p = *tp; | 
 |   write_uniform(w, n, p->token);  // The first color index. | 
 |   ++p; | 
 |   --num; | 
 |   for (int i = 0; i < num; ++i) { | 
 |     aom_write_symbol(w, p->token, p->color_map_cdf, n); | 
 |     ++p; | 
 |   } | 
 |   *tp = p; | 
 | } | 
 |  | 
 | #if !CONFIG_LV_MAP | 
 | static INLINE void write_coeff_extra(const aom_cdf_prob *const *cdf, int val, | 
 |                                      int n, aom_writer *w) { | 
 |   // Code the extra bits from LSB to MSB in groups of 4 | 
 |   int i = 0; | 
 |   int count = 0; | 
 |   while (count < n) { | 
 |     const int size = AOMMIN(n - count, 4); | 
 |     const int mask = (1 << size) - 1; | 
 |     aom_write_cdf(w, val & mask, cdf[i++], 1 << size); | 
 |     val >>= size; | 
 |     count += size; | 
 |   } | 
 | } | 
 |  | 
 | static void pack_mb_tokens(aom_writer *w, const TOKENEXTRA **tp, | 
 |                            const TOKENEXTRA *const stop, | 
 |                            aom_bit_depth_t bit_depth, const TX_SIZE tx_size, | 
 |                            TOKEN_STATS *token_stats) { | 
 |   const TOKENEXTRA *p = *tp; | 
 |   int count = 0; | 
 |   const int seg_eob = av1_get_max_eob(tx_size); | 
 |  | 
 |   while (p < stop && p->token != EOSB_TOKEN) { | 
 |     const int token = p->token; | 
 |     const int8_t eob_val = p->eob_val; | 
 |     if (token == BLOCK_Z_TOKEN) { | 
 |       aom_write_symbol(w, 0, *p->head_cdf, HEAD_TOKENS + 1); | 
 |       p++; | 
 |       break; | 
 |       continue; | 
 |     } | 
 |  | 
 |     const av1_extra_bit *const extra_bits = &av1_extra_bits[token]; | 
 |     if (eob_val == LAST_EOB) { | 
 |       // Just code a flag indicating whether the value is >1 or 1. | 
 |       aom_write_bit(w, token != ONE_TOKEN); | 
 |     } else { | 
 |       int comb_symb = 2 * AOMMIN(token, TWO_TOKEN) - eob_val + p->first_val; | 
 |       aom_write_symbol(w, comb_symb, *p->head_cdf, HEAD_TOKENS + p->first_val); | 
 |     } | 
 |     if (token > ONE_TOKEN) { | 
 |       aom_write_symbol(w, token - TWO_TOKEN, *p->tail_cdf, TAIL_TOKENS); | 
 |     } | 
 |  | 
 |     if (extra_bits->base_val) { | 
 |       const int bit_string = p->extra; | 
 |       const int bit_string_length = extra_bits->len;  // Length of extra bits to | 
 |       const int is_cat6 = (extra_bits->base_val == CAT6_MIN_VAL); | 
 |       // be written excluding | 
 |       // the sign bit. | 
 |       int skip_bits = is_cat6 ? CAT6_BIT_SIZE - av1_get_cat6_extrabits_size( | 
 |                                                     tx_size, bit_depth) | 
 |                               : 0; | 
 |  | 
 |       assert(!(bit_string >> (bit_string_length - skip_bits + 1))); | 
 |       if (bit_string_length > 0) | 
 |         write_coeff_extra(extra_bits->cdf, bit_string >> 1, | 
 |                           bit_string_length - skip_bits, w); | 
 |  | 
 |       aom_write_bit_record(w, bit_string & 1, token_stats); | 
 |     } | 
 |     ++p; | 
 |  | 
 |     ++count; | 
 |     if (eob_val == EARLY_EOB || count == seg_eob) break; | 
 |   } | 
 |  | 
 |   *tp = p; | 
 | } | 
 | #endif  // !CONFIG_LV_MAP | 
 |  | 
 | #if CONFIG_LV_MAP | 
 | static void pack_txb_tokens(aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, | 
 |                             const TOKENEXTRA **tp, | 
 |                             const TOKENEXTRA *const tok_end, MACROBLOCKD *xd, | 
 |                             MB_MODE_INFO *mbmi, int plane, | 
 |                             BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth, | 
 |                             int block, int blk_row, int blk_col, | 
 |                             TX_SIZE tx_size, TOKEN_STATS *token_stats) { | 
 |   const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |   const int max_blocks_high = max_block_high(xd, plane_bsize, plane); | 
 |   const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); | 
 |  | 
 |   if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; | 
 |  | 
 |   const TX_SIZE plane_tx_size = | 
 |       plane ? av1_get_uv_tx_size(mbmi, pd->subsampling_x, pd->subsampling_y) | 
 |             : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, | 
 |                                                          blk_col)]; | 
 |  | 
 |   if (tx_size == plane_tx_size || plane) { | 
 |     TOKEN_STATS tmp_token_stats; | 
 |     init_token_stats(&tmp_token_stats); | 
 |  | 
 |     tran_low_t *tcoeff = BLOCK_OFFSET(x->mbmi_ext->tcoeff[plane], block); | 
 |     uint16_t eob = x->mbmi_ext->eobs[plane][block]; | 
 |     TXB_CTX txb_ctx = { x->mbmi_ext->txb_skip_ctx[plane][block], | 
 |                         x->mbmi_ext->dc_sign_ctx[plane][block] }; | 
 |     av1_write_coeffs_txb(cm, xd, w, blk_row, blk_col, plane, tx_size, tcoeff, | 
 |                          eob, &txb_ctx); | 
 | #if CONFIG_RD_DEBUG | 
 |     token_stats->txb_coeff_cost_map[blk_row][blk_col] = tmp_token_stats.cost; | 
 |     token_stats->cost += tmp_token_stats.cost; | 
 | #endif | 
 |   } else { | 
 |     const TX_SIZE sub_txs = sub_tx_size_map[1][tx_size]; | 
 |     const int bsw = tx_size_wide_unit[sub_txs]; | 
 |     const int bsh = tx_size_high_unit[sub_txs]; | 
 |  | 
 |     assert(bsw > 0 && bsh > 0); | 
 |  | 
 |     for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) { | 
 |       for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw) { | 
 |         const int offsetr = blk_row + r; | 
 |         const int offsetc = blk_col + c; | 
 |         const int step = bsh * bsw; | 
 |  | 
 |         if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; | 
 |  | 
 |         pack_txb_tokens(w, cm, x, tp, tok_end, xd, mbmi, plane, plane_bsize, | 
 |                         bit_depth, block, offsetr, offsetc, sub_txs, | 
 |                         token_stats); | 
 |         block += step; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 | #else  // CONFIG_LV_MAP | 
 | static void pack_txb_tokens(aom_writer *w, const TOKENEXTRA **tp, | 
 |                             const TOKENEXTRA *const tok_end, MACROBLOCKD *xd, | 
 |                             MB_MODE_INFO *mbmi, int plane, | 
 |                             BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth, | 
 |                             int block, int blk_row, int blk_col, | 
 |                             TX_SIZE tx_size, TOKEN_STATS *token_stats) { | 
 |   const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |   const int tx_row = blk_row >> (1 - pd->subsampling_y); | 
 |   const int tx_col = blk_col >> (1 - pd->subsampling_x); | 
 |   const int max_blocks_high = max_block_high(xd, plane_bsize, plane); | 
 |   const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); | 
 |  | 
 |   if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; | 
 |  | 
 |   const TX_SIZE plane_tx_size = | 
 |       plane ? av1_get_uv_tx_size(mbmi, pd->subsampling_x, pd->subsampling_y) | 
 |             : mbmi->inter_tx_size[tx_row][tx_col]; | 
 |  | 
 |   if (tx_size == plane_tx_size || plane) { | 
 |     TOKEN_STATS tmp_token_stats; | 
 |     init_token_stats(&tmp_token_stats); | 
 |     pack_mb_tokens(w, tp, tok_end, bit_depth, tx_size, &tmp_token_stats); | 
 | #if CONFIG_RD_DEBUG | 
 |     token_stats->txb_coeff_cost_map[blk_row][blk_col] = tmp_token_stats.cost; | 
 |     token_stats->cost += tmp_token_stats.cost; | 
 | #endif | 
 |   } else { | 
 |     const TX_SIZE sub_txs = sub_tx_size_map[1][tx_size]; | 
 |     const int bsw = tx_size_wide_unit[sub_txs]; | 
 |     const int bsh = tx_size_high_unit[sub_txs]; | 
 |  | 
 |     assert(bsw > 0 && bsh > 0); | 
 |  | 
 |     for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) { | 
 |       for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw) { | 
 |         const int offsetr = blk_row + r; | 
 |         const int offsetc = blk_col + c; | 
 |         const int step = bsh * bsw; | 
 |  | 
 |         if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; | 
 |  | 
 |         pack_txb_tokens(w, tp, tok_end, xd, mbmi, plane, plane_bsize, bit_depth, | 
 |                         block, offsetr, offsetc, sub_txs, token_stats); | 
 |         block += step; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 | #endif  // CONFIG_LV_MAP | 
 |  | 
 | #if CONFIG_SPATIAL_SEGMENTATION | 
 | static int neg_interleave(int x, int ref, int max) { | 
 |   const int diff = x - ref; | 
 |   if (!ref) return x; | 
 |   if (ref >= (max - 1)) return -diff; | 
 |   if (2 * ref < max) { | 
 |     if (abs(diff) <= ref) { | 
 |       if (diff > 0) | 
 |         return (diff << 1) - 1; | 
 |       else | 
 |         return ((-diff) << 1); | 
 |     } | 
 |     return x; | 
 |   } else { | 
 |     if (abs(diff) < (max - ref)) { | 
 |       if (diff > 0) | 
 |         return (diff << 1) - 1; | 
 |       else | 
 |         return ((-diff) << 1); | 
 |     } | 
 |     return (max - x) - 1; | 
 |   } | 
 | } | 
 |  | 
 | static void write_segment_id(AV1_COMP *cpi, const MB_MODE_INFO *const mbmi, | 
 |                              aom_writer *w, const struct segmentation *seg, | 
 |                              struct segmentation_probs *segp, int mi_row, | 
 |                              int mi_col, int skip) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
 |   int prev_ul = -1; /* Top left segment_id */ | 
 |   int prev_l = -1;  /* Current left segment_id */ | 
 |   int prev_u = -1;  /* Current top segment_id */ | 
 |  | 
 |   if (!seg->enabled || !seg->update_map) return; | 
 |  | 
 |   if ((xd->up_available) && (xd->left_available)) | 
 |     prev_ul = get_segment_id(cm, cm->current_frame_seg_map, BLOCK_4X4, | 
 |                              mi_row - 1, mi_col - 1); | 
 |  | 
 |   if (xd->up_available) | 
 |     prev_u = get_segment_id(cm, cm->current_frame_seg_map, BLOCK_4X4, | 
 |                             mi_row - 1, mi_col - 0); | 
 |  | 
 |   if (xd->left_available) | 
 |     prev_l = get_segment_id(cm, cm->current_frame_seg_map, BLOCK_4X4, | 
 |                             mi_row - 0, mi_col - 1); | 
 |  | 
 |   int cdf_num = pick_spatial_seg_cdf(prev_ul, prev_u, prev_l); | 
 |   int pred = pick_spatial_seg_pred(prev_ul, prev_u, prev_l); | 
 |  | 
 |   if (skip) { | 
 |     set_spatial_segment_id(cm, cm->current_frame_seg_map, mbmi->sb_type, mi_row, | 
 |                            mi_col, pred); | 
 |     set_spatial_segment_id(cm, cpi->segmentation_map, mbmi->sb_type, mi_row, | 
 |                            mi_col, pred); | 
 |     /* mbmi is read only but we need to update segment_id */ | 
 |     ((MB_MODE_INFO *)mbmi)->segment_id = pred; | 
 |     return; | 
 |   } | 
 |  | 
 |   int coded_id = | 
 |       neg_interleave(mbmi->segment_id, pred, cm->last_active_segid + 1); | 
 |  | 
 |   aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num]; | 
 |   aom_write_symbol(w, coded_id, pred_cdf, 8); | 
 |  | 
 |   set_spatial_segment_id(cm, cm->current_frame_seg_map, mbmi->sb_type, mi_row, | 
 |                          mi_col, mbmi->segment_id); | 
 | } | 
 | #else | 
 | static void write_segment_id(aom_writer *w, const struct segmentation *seg, | 
 |                              struct segmentation_probs *segp, int segment_id) { | 
 |   if (seg->enabled && seg->update_map) { | 
 |     aom_write_symbol(w, segment_id, segp->tree_cdf, MAX_SEGMENTS); | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 | #define WRITE_REF_BIT(bname, pname) \ | 
 |   aom_write_symbol(w, bname, av1_get_pred_cdf_##pname(xd), 2) | 
 |  | 
 | // This function encodes the reference frame | 
 | static void write_ref_frames(const AV1_COMMON *cm, const MACROBLOCKD *xd, | 
 |                              aom_writer *w) { | 
 |   const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   const int is_compound = has_second_ref(mbmi); | 
 |   const int segment_id = mbmi->segment_id; | 
 |  | 
 |   // If segment level coding of this signal is disabled... | 
 |   // or the segment allows multiple reference frame options | 
 |   if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { | 
 |     assert(!is_compound); | 
 |     assert(mbmi->ref_frame[0] == | 
 |            get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME)); | 
 |   } | 
 | #if CONFIG_SEGMENT_GLOBALMV | 
 |   else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) || | 
 |            segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) | 
 | #else | 
 |   else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) | 
 | #endif | 
 |   { | 
 |     assert(!is_compound); | 
 |     assert(mbmi->ref_frame[0] == LAST_FRAME); | 
 |   } else { | 
 |     // does the feature use compound prediction or not | 
 |     // (if not specified at the frame/segment level) | 
 |     if (cm->reference_mode == REFERENCE_MODE_SELECT) { | 
 |       if (is_comp_ref_allowed(mbmi->sb_type)) | 
 |         aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(cm, xd), 2); | 
 |     } else { | 
 |       assert((!is_compound) == (cm->reference_mode == SINGLE_REFERENCE)); | 
 |     } | 
 |  | 
 |     if (is_compound) { | 
 | #if CONFIG_EXT_COMP_REFS | 
 |       const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi) | 
 |                                                     ? UNIDIR_COMP_REFERENCE | 
 |                                                     : BIDIR_COMP_REFERENCE; | 
 |       aom_write_symbol(w, comp_ref_type, av1_get_comp_reference_type_cdf(xd), | 
 |                        2); | 
 |  | 
 |       if (comp_ref_type == UNIDIR_COMP_REFERENCE) { | 
 |         const int bit = mbmi->ref_frame[0] == BWDREF_FRAME; | 
 |         WRITE_REF_BIT(bit, uni_comp_ref_p); | 
 |  | 
 |         if (!bit) { | 
 |           assert(mbmi->ref_frame[0] == LAST_FRAME); | 
 |           const int bit1 = mbmi->ref_frame[1] == LAST3_FRAME || | 
 |                            mbmi->ref_frame[1] == GOLDEN_FRAME; | 
 |           WRITE_REF_BIT(bit1, uni_comp_ref_p1); | 
 |           if (bit1) { | 
 |             const int bit2 = mbmi->ref_frame[1] == GOLDEN_FRAME; | 
 |             WRITE_REF_BIT(bit2, uni_comp_ref_p2); | 
 |           } | 
 |         } else { | 
 |           assert(mbmi->ref_frame[1] == ALTREF_FRAME); | 
 |         } | 
 |  | 
 |         return; | 
 |       } | 
 |  | 
 |       assert(comp_ref_type == BIDIR_COMP_REFERENCE); | 
 | #endif  // CONFIG_EXT_COMP_REFS | 
 |  | 
 |       const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME || | 
 |                        mbmi->ref_frame[0] == LAST3_FRAME); | 
 |       WRITE_REF_BIT(bit, comp_ref_p); | 
 |  | 
 |       if (!bit) { | 
 |         const int bit1 = mbmi->ref_frame[0] == LAST2_FRAME; | 
 |         WRITE_REF_BIT(bit1, comp_ref_p1); | 
 |       } else { | 
 |         const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME; | 
 |         WRITE_REF_BIT(bit2, comp_ref_p2); | 
 |       } | 
 |  | 
 |       const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME; | 
 |       WRITE_REF_BIT(bit_bwd, comp_bwdref_p); | 
 |  | 
 |       if (!bit_bwd) { | 
 |         WRITE_REF_BIT(mbmi->ref_frame[1] == ALTREF2_FRAME, comp_bwdref_p1); | 
 |       } | 
 |  | 
 |     } else { | 
 |       const int bit0 = (mbmi->ref_frame[0] <= ALTREF_FRAME && | 
 |                         mbmi->ref_frame[0] >= BWDREF_FRAME); | 
 |       WRITE_REF_BIT(bit0, single_ref_p1); | 
 |  | 
 |       if (bit0) { | 
 |         const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME; | 
 |         WRITE_REF_BIT(bit1, single_ref_p2); | 
 |  | 
 |         if (!bit1) { | 
 |           WRITE_REF_BIT(mbmi->ref_frame[0] == ALTREF2_FRAME, single_ref_p6); | 
 |         } | 
 |       } else { | 
 |         const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME || | 
 |                           mbmi->ref_frame[0] == GOLDEN_FRAME); | 
 |         WRITE_REF_BIT(bit2, single_ref_p3); | 
 |  | 
 |         if (!bit2) { | 
 |           const int bit3 = mbmi->ref_frame[0] != LAST_FRAME; | 
 |           WRITE_REF_BIT(bit3, single_ref_p4); | 
 |         } else { | 
 |           const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME; | 
 |           WRITE_REF_BIT(bit4, single_ref_p5); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_FILTER_INTRA | 
 | static void write_filter_intra_mode_info(const MACROBLOCKD *xd, | 
 |                                          const MB_MODE_INFO *const mbmi, | 
 |                                          aom_writer *w) { | 
 |   if (mbmi->mode == DC_PRED && mbmi->palette_mode_info.palette_size[0] == 0 && | 
 |       av1_filter_intra_allowed_txsize(mbmi->tx_size)) { | 
 |     aom_write_symbol(w, mbmi->filter_intra_mode_info.use_filter_intra, | 
 |                      xd->tile_ctx->filter_intra_cdfs[mbmi->tx_size], 2); | 
 |     if (mbmi->filter_intra_mode_info.use_filter_intra) { | 
 |       const FILTER_INTRA_MODE mode = | 
 |           mbmi->filter_intra_mode_info.filter_intra_mode; | 
 |       aom_write_symbol(w, mode, xd->tile_ctx->filter_intra_mode_cdf, | 
 |                        FILTER_INTRA_MODES); | 
 |     } | 
 |   } | 
 | } | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |  | 
 | static void write_angle_delta(aom_writer *w, int angle_delta, | 
 |                               aom_cdf_prob *cdf) { | 
 | #if CONFIG_EXT_INTRA_MOD | 
 |   aom_write_symbol(w, angle_delta + MAX_ANGLE_DELTA, cdf, | 
 |                    2 * MAX_ANGLE_DELTA + 1); | 
 | #else | 
 |   (void)cdf; | 
 |   write_uniform(w, 2 * MAX_ANGLE_DELTA + 1, MAX_ANGLE_DELTA + angle_delta); | 
 | #endif  // CONFIG_EXT_INTRA_MOD | 
 | } | 
 |  | 
 | static void write_mb_interp_filter(AV1_COMP *cpi, const MACROBLOCKD *xd, | 
 |                                    aom_writer *w) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
 |  | 
 |   if (!av1_is_interp_needed(xd)) { | 
 |     assert(mbmi->interp_filters == | 
 |            av1_broadcast_interp_filter( | 
 |                av1_unswitchable_filter(cm->interp_filter))); | 
 |     return; | 
 |   } | 
 |   if (cm->interp_filter == SWITCHABLE) { | 
 | #if CONFIG_DUAL_FILTER | 
 |     int dir; | 
 |     for (dir = 0; dir < 2; ++dir) { | 
 |       if (has_subpel_mv_component(xd->mi[0], xd, dir) || | 
 |           (mbmi->ref_frame[1] > INTRA_FRAME && | 
 |            has_subpel_mv_component(xd->mi[0], xd, dir + 2))) { | 
 |         const int ctx = av1_get_pred_context_switchable_interp(xd, dir); | 
 |         InterpFilter filter = | 
 |             av1_extract_interp_filter(mbmi->interp_filters, dir); | 
 |         aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx], | 
 |                          SWITCHABLE_FILTERS); | 
 |         ++cpi->interp_filter_selected[0][filter]; | 
 |       } else { | 
 |         assert(av1_extract_interp_filter(mbmi->interp_filters, dir) == | 
 |                EIGHTTAP_REGULAR); | 
 |       } | 
 |     } | 
 | #else | 
 |     { | 
 |       const int ctx = av1_get_pred_context_switchable_interp(xd); | 
 |       InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, 0); | 
 |       aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx], | 
 |                        SWITCHABLE_FILTERS); | 
 |       ++cpi->interp_filter_selected[0][filter]; | 
 |     } | 
 | #endif  // CONFIG_DUAL_FILTER | 
 |   } | 
 | } | 
 |  | 
 | // Transmit color values with delta encoding. Write the first value as | 
 | // literal, and the deltas between each value and the previous one. "min_val" is | 
 | // the smallest possible value of the deltas. | 
 | static void delta_encode_palette_colors(const int *colors, int num, | 
 |                                         int bit_depth, int min_val, | 
 |                                         aom_writer *w) { | 
 |   if (num <= 0) return; | 
 |   assert(colors[0] < (1 << bit_depth)); | 
 |   aom_write_literal(w, colors[0], bit_depth); | 
 |   if (num == 1) return; | 
 |   int max_delta = 0; | 
 |   int deltas[PALETTE_MAX_SIZE]; | 
 |   memset(deltas, 0, sizeof(deltas)); | 
 |   for (int i = 1; i < num; ++i) { | 
 |     assert(colors[i] < (1 << bit_depth)); | 
 |     const int delta = colors[i] - colors[i - 1]; | 
 |     deltas[i - 1] = delta; | 
 |     assert(delta >= min_val); | 
 |     if (delta > max_delta) max_delta = delta; | 
 |   } | 
 |   const int min_bits = bit_depth - 3; | 
 |   int bits = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits); | 
 |   assert(bits <= bit_depth); | 
 |   int range = (1 << bit_depth) - colors[0] - min_val; | 
 |   aom_write_literal(w, bits - min_bits, 2); | 
 |   for (int i = 0; i < num - 1; ++i) { | 
 |     aom_write_literal(w, deltas[i] - min_val, bits); | 
 |     range -= deltas[i]; | 
 |     bits = AOMMIN(bits, av1_ceil_log2(range)); | 
 |   } | 
 | } | 
 |  | 
 | // Transmit luma palette color values. First signal if each color in the color | 
 | // cache is used. Those colors that are not in the cache are transmitted with | 
 | // delta encoding. | 
 | static void write_palette_colors_y(const MACROBLOCKD *const xd, | 
 |                                    const PALETTE_MODE_INFO *const pmi, | 
 |                                    int bit_depth, aom_writer *w) { | 
 |   const int n = pmi->palette_size[0]; | 
 |   uint16_t color_cache[2 * PALETTE_MAX_SIZE]; | 
 |   const int n_cache = av1_get_palette_cache(xd, 0, color_cache); | 
 |   int out_cache_colors[PALETTE_MAX_SIZE]; | 
 |   uint8_t cache_color_found[2 * PALETTE_MAX_SIZE]; | 
 |   const int n_out_cache = | 
 |       av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n, | 
 |                             cache_color_found, out_cache_colors); | 
 |   int n_in_cache = 0; | 
 |   for (int i = 0; i < n_cache && n_in_cache < n; ++i) { | 
 |     const int found = cache_color_found[i]; | 
 |     aom_write_bit(w, found); | 
 |     n_in_cache += found; | 
 |   } | 
 |   assert(n_in_cache + n_out_cache == n); | 
 |   delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w); | 
 | } | 
 |  | 
 | // Write chroma palette color values. U channel is handled similarly to the luma | 
 | // channel. For v channel, either use delta encoding or transmit raw values | 
 | // directly, whichever costs less. | 
 | static void write_palette_colors_uv(const MACROBLOCKD *const xd, | 
 |                                     const PALETTE_MODE_INFO *const pmi, | 
 |                                     int bit_depth, aom_writer *w) { | 
 |   const int n = pmi->palette_size[1]; | 
 |   const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE; | 
 |   const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE; | 
 |   // U channel colors. | 
 |   uint16_t color_cache[2 * PALETTE_MAX_SIZE]; | 
 |   const int n_cache = av1_get_palette_cache(xd, 1, color_cache); | 
 |   int out_cache_colors[PALETTE_MAX_SIZE]; | 
 |   uint8_t cache_color_found[2 * PALETTE_MAX_SIZE]; | 
 |   const int n_out_cache = av1_index_color_cache( | 
 |       color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors); | 
 |   int n_in_cache = 0; | 
 |   for (int i = 0; i < n_cache && n_in_cache < n; ++i) { | 
 |     const int found = cache_color_found[i]; | 
 |     aom_write_bit(w, found); | 
 |     n_in_cache += found; | 
 |   } | 
 |   delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w); | 
 |  | 
 |   // V channel colors. Don't use color cache as the colors are not sorted. | 
 |   const int max_val = 1 << bit_depth; | 
 |   int zero_count = 0, min_bits_v = 0; | 
 |   int bits_v = | 
 |       av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v); | 
 |   const int rate_using_delta = | 
 |       2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count; | 
 |   const int rate_using_raw = bit_depth * n; | 
 |   if (rate_using_delta < rate_using_raw) {  // delta encoding | 
 |     assert(colors_v[0] < (1 << bit_depth)); | 
 |     aom_write_bit(w, 1); | 
 |     aom_write_literal(w, bits_v - min_bits_v, 2); | 
 |     aom_write_literal(w, colors_v[0], bit_depth); | 
 |     for (int i = 1; i < n; ++i) { | 
 |       assert(colors_v[i] < (1 << bit_depth)); | 
 |       if (colors_v[i] == colors_v[i - 1]) {  // No need to signal sign bit. | 
 |         aom_write_literal(w, 0, bits_v); | 
 |         continue; | 
 |       } | 
 |       const int delta = abs((int)colors_v[i] - colors_v[i - 1]); | 
 |       const int sign_bit = colors_v[i] < colors_v[i - 1]; | 
 |       if (delta <= max_val - delta) { | 
 |         aom_write_literal(w, delta, bits_v); | 
 |         aom_write_bit(w, sign_bit); | 
 |       } else { | 
 |         aom_write_literal(w, max_val - delta, bits_v); | 
 |         aom_write_bit(w, !sign_bit); | 
 |       } | 
 |     } | 
 |   } else {  // Transmit raw values. | 
 |     aom_write_bit(w, 0); | 
 |     for (int i = 0; i < n; ++i) { | 
 |       assert(colors_v[i] < (1 << bit_depth)); | 
 |       aom_write_literal(w, colors_v[i], bit_depth); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void write_palette_mode_info(const AV1_COMMON *cm, const MACROBLOCKD *xd, | 
 |                                     const MODE_INFO *const mi, int mi_row, | 
 |                                     int mi_col, aom_writer *w) { | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   const MB_MODE_INFO *const mbmi = &mi->mbmi; | 
 |   const BLOCK_SIZE bsize = mbmi->sb_type; | 
 |   assert(av1_allow_palette(cm->allow_screen_content_tools, bsize)); | 
 |   const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
 |   const int bsize_ctx = av1_get_palette_bsize_ctx(bsize); | 
 |  | 
 |   if (mbmi->mode == DC_PRED) { | 
 |     const int n = pmi->palette_size[0]; | 
 |     const int palette_y_mode_ctx = av1_get_palette_mode_ctx(xd); | 
 |     aom_write_symbol( | 
 |         w, n > 0, | 
 |         xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_y_mode_ctx], 2); | 
 |     if (n > 0) { | 
 |       aom_write_symbol(w, n - PALETTE_MIN_SIZE, | 
 |                        xd->tile_ctx->palette_y_size_cdf[bsize_ctx], | 
 |                        PALETTE_SIZES); | 
 |       write_palette_colors_y(xd, pmi, cm->bit_depth, w); | 
 |     } | 
 |   } | 
 |  | 
 |   const int uv_dc_pred = | 
 |       num_planes > 1 && mbmi->uv_mode == UV_DC_PRED && | 
 |       is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, | 
 |                           xd->plane[1].subsampling_y); | 
 |   if (uv_dc_pred) { | 
 |     const int n = pmi->palette_size[1]; | 
 |     const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0); | 
 |     aom_write_symbol(w, n > 0, | 
 |                      xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2); | 
 |     if (n > 0) { | 
 |       aom_write_symbol(w, n - PALETTE_MIN_SIZE, | 
 |                        xd->tile_ctx->palette_uv_size_cdf[bsize_ctx], | 
 |                        PALETTE_SIZES); | 
 |       write_palette_colors_uv(xd, pmi, cm->bit_depth, w); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd, | 
 | #if CONFIG_TXK_SEL | 
 |                        int blk_row, int blk_col, int plane, TX_SIZE tx_size, | 
 | #endif | 
 |                        aom_writer *w) { | 
 |   MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; | 
 |   const int is_inter = is_inter_block(mbmi); | 
 | #if !CONFIG_TXK_SEL | 
 |   const TX_SIZE mtx_size = | 
 |       get_max_rect_tx_size(xd->mi[0]->mbmi.sb_type, is_inter); | 
 |   const TX_SIZE tx_size = | 
 |       is_inter ? TXSIZEMAX(sub_tx_size_map[1][mtx_size], mbmi->min_tx_size) | 
 |                : mbmi->tx_size; | 
 | #endif  // !CONFIG_TXK_SEL | 
 |   FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
 |  | 
 | #if !CONFIG_TXK_SEL | 
 |   TX_TYPE tx_type = mbmi->tx_type; | 
 | #else | 
 |   // Only y plane's tx_type is transmitted | 
 |   if (plane > 0) return; | 
 |   PLANE_TYPE plane_type = get_plane_type(plane); | 
 |   TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size, | 
 |                                     cm->reduced_tx_set_used); | 
 | #endif | 
 |  | 
 |   const TX_SIZE square_tx_size = txsize_sqr_map[tx_size]; | 
 |   const BLOCK_SIZE bsize = mbmi->sb_type; | 
 |   if (get_ext_tx_types(tx_size, bsize, is_inter, cm->reduced_tx_set_used) > 1 && | 
 |       ((!cm->seg.enabled && cm->base_qindex > 0) || | 
 |        (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) && | 
 |       !mbmi->skip && | 
 |       !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { | 
 |     const TxSetType tx_set_type = | 
 |         get_ext_tx_set_type(tx_size, bsize, is_inter, cm->reduced_tx_set_used); | 
 |     const int eset = | 
 |         get_ext_tx_set(tx_size, bsize, is_inter, cm->reduced_tx_set_used); | 
 |     // eset == 0 should correspond to a set with only DCT_DCT and there | 
 |     // is no need to send the tx_type | 
 |     assert(eset > 0); | 
 |     assert(av1_ext_tx_used[tx_set_type][tx_type]); | 
 |     if (is_inter) { | 
 |       aom_write_symbol(w, av1_ext_tx_ind[tx_set_type][tx_type], | 
 |                        ec_ctx->inter_ext_tx_cdf[eset][square_tx_size], | 
 |                        av1_num_ext_tx_set[tx_set_type]); | 
 |     } else { | 
 | #if CONFIG_FILTER_INTRA | 
 |       PREDICTION_MODE intra_dir; | 
 |       if (mbmi->filter_intra_mode_info.use_filter_intra) | 
 |         intra_dir = | 
 |             fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode]; | 
 |       else | 
 |         intra_dir = mbmi->mode; | 
 |       aom_write_symbol( | 
 |           w, av1_ext_tx_ind[tx_set_type][tx_type], | 
 |           ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir], | 
 |           av1_num_ext_tx_set[tx_set_type]); | 
 | #else | 
 |       aom_write_symbol( | 
 |           w, av1_ext_tx_ind[tx_set_type][tx_type], | 
 |           ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][mbmi->mode], | 
 |           av1_num_ext_tx_set[tx_set_type]); | 
 | #endif | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void write_intra_mode(FRAME_CONTEXT *frame_ctx, BLOCK_SIZE bsize, | 
 |                              PREDICTION_MODE mode, aom_writer *w) { | 
 |   aom_write_symbol(w, mode, frame_ctx->y_mode_cdf[size_group_lookup[bsize]], | 
 |                    INTRA_MODES); | 
 | } | 
 |  | 
 | static void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx, | 
 |                                 UV_PREDICTION_MODE uv_mode, | 
 |                                 PREDICTION_MODE y_mode, | 
 | #if CONFIG_CFL | 
 |                                 CFL_ALLOWED_TYPE cfl_allowed, | 
 | #endif | 
 |                                 aom_writer *w) { | 
 | #if CONFIG_CFL | 
 |   aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[cfl_allowed][y_mode], | 
 |                    UV_INTRA_MODES - !cfl_allowed); | 
 | #else | 
 |   uv_mode = get_uv_mode(uv_mode); | 
 |   aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[y_mode], UV_INTRA_MODES); | 
 | #endif | 
 | } | 
 |  | 
 | #if CONFIG_CFL | 
 | static void write_cfl_alphas(FRAME_CONTEXT *const ec_ctx, int idx, | 
 |                              int joint_sign, aom_writer *w) { | 
 |   aom_write_symbol(w, joint_sign, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS); | 
 |   // Magnitudes are only signaled for nonzero codes. | 
 |   if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) { | 
 |     aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; | 
 |     aom_write_symbol(w, CFL_IDX_U(idx), cdf_u, CFL_ALPHABET_SIZE); | 
 |   } | 
 |   if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) { | 
 |     aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; | 
 |     aom_write_symbol(w, CFL_IDX_V(idx), cdf_v, CFL_ALPHABET_SIZE); | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 | static void write_cdef(AV1_COMMON *cm, aom_writer *w, int skip, int mi_col, | 
 |                        int mi_row) { | 
 |   if (cm->all_lossless) return; | 
 |  | 
 |   const int m = ~((1 << (6 - MI_SIZE_LOG2)) - 1); | 
 |   const MB_MODE_INFO *mbmi = | 
 |       &cm->mi_grid_visible[(mi_row & m) * cm->mi_stride + (mi_col & m)]->mbmi; | 
 |   // Initialise when at top left part of the superblock | 
 |   if (!(mi_row & (cm->seq_params.mib_size - 1)) && | 
 |       !(mi_col & (cm->seq_params.mib_size - 1))) {  // Top left? | 
 | #if CONFIG_EXT_PARTITION | 
 |     cm->cdef_preset[0] = cm->cdef_preset[1] = cm->cdef_preset[2] = | 
 |         cm->cdef_preset[3] = -1; | 
 | #else | 
 |     cm->cdef_preset = -1; | 
 | #endif | 
 |   } | 
 |  | 
 | // Emit CDEF param at first non-skip coding block | 
 | #if CONFIG_EXT_PARTITION | 
 |   const int mask = 1 << (6 - MI_SIZE_LOG2); | 
 |   const int index = cm->seq_params.sb_size == BLOCK_128X128 | 
 |                         ? !!(mi_col & mask) + 2 * !!(mi_row & mask) | 
 |                         : 0; | 
 |   if (cm->cdef_preset[index] == -1 && !skip) { | 
 |     aom_write_literal(w, mbmi->cdef_strength, cm->cdef_bits); | 
 |     cm->cdef_preset[index] = mbmi->cdef_strength; | 
 |   } | 
 | #else | 
 |   if (cm->cdef_preset == -1 && !skip) { | 
 |     aom_write_literal(w, mbmi->cdef_strength, cm->cdef_bits); | 
 |     cm->cdef_preset = mbmi->cdef_strength; | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | static void write_inter_segment_id(AV1_COMP *cpi, aom_writer *w, | 
 |                                    const struct segmentation *const seg, | 
 |                                    struct segmentation_probs *const segp, | 
 |                                    int mi_row, int mi_col, int skip, | 
 |                                    int preskip) { | 
 |   MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
 |   const MODE_INFO *mi = xd->mi[0]; | 
 |   const MB_MODE_INFO *const mbmi = &mi->mbmi; | 
 | #if CONFIG_SPATIAL_SEGMENTATION | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 | #else | 
 |   (void)mi_row; | 
 |   (void)mi_col; | 
 |   (void)skip; | 
 |   (void)preskip; | 
 | #endif | 
 |  | 
 |   if (seg->update_map) { | 
 | #if CONFIG_SPATIAL_SEGMENTATION | 
 |     if (preskip) { | 
 |       if (!cm->preskip_segid) return; | 
 |     } else { | 
 |       if (cm->preskip_segid) return; | 
 |       if (skip) { | 
 |         write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 1); | 
 |         if (seg->temporal_update) ((MB_MODE_INFO *)mbmi)->seg_id_predicted = 0; | 
 |         return; | 
 |       } | 
 |     } | 
 | #endif | 
 |     if (seg->temporal_update) { | 
 |       const int pred_flag = mbmi->seg_id_predicted; | 
 |       aom_cdf_prob *pred_cdf = av1_get_pred_cdf_seg_id(segp, xd); | 
 |       aom_write_symbol(w, pred_flag, pred_cdf, 2); | 
 |       if (!pred_flag) { | 
 | #if CONFIG_SPATIAL_SEGMENTATION | 
 |         write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 0); | 
 | #else | 
 |         write_segment_id(w, seg, segp, mbmi->segment_id); | 
 | #endif | 
 |       } | 
 | #if CONFIG_SPATIAL_SEGMENTATION | 
 |       if (pred_flag) { | 
 |         set_spatial_segment_id(cm, cm->current_frame_seg_map, mbmi->sb_type, | 
 |                                mi_row, mi_col, mbmi->segment_id); | 
 |       } | 
 | #endif | 
 |     } else { | 
 | #if CONFIG_SPATIAL_SEGMENTATION | 
 |       write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 0); | 
 | #else | 
 |       write_segment_id(w, seg, segp, mbmi->segment_id); | 
 | #endif | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void pack_inter_mode_mvs(AV1_COMP *cpi, const int mi_row, | 
 |                                 const int mi_col, aom_writer *w) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCK *const x = &cpi->td.mb; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
 |   const MODE_INFO *mi = xd->mi[0]; | 
 |  | 
 |   const struct segmentation *const seg = &cm->seg; | 
 |   struct segmentation_probs *const segp = &ec_ctx->seg; | 
 |   const MB_MODE_INFO *const mbmi = &mi->mbmi; | 
 |   const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; | 
 |   const PREDICTION_MODE mode = mbmi->mode; | 
 |   const int segment_id = mbmi->segment_id; | 
 |   const BLOCK_SIZE bsize = mbmi->sb_type; | 
 |   const int allow_hp = cm->allow_high_precision_mv; | 
 |   const int is_inter = is_inter_block(mbmi); | 
 |   const int is_compound = has_second_ref(mbmi); | 
 |   int skip, ref; | 
 |   (void)mi_row; | 
 |   (void)mi_col; | 
 |  | 
 |   write_inter_segment_id(cpi, w, seg, segp, mi_row, mi_col, 0, 1); | 
 |  | 
 | #if CONFIG_EXT_SKIP | 
 |   write_skip_mode(cm, xd, segment_id, mi, w); | 
 |  | 
 |   if (mbmi->skip_mode) { | 
 |     skip = mbmi->skip; | 
 |     assert(skip); | 
 |   } else { | 
 | #endif  // CONFIG_EXT_SKIP | 
 |     skip = write_skip(cm, xd, segment_id, mi, w); | 
 | #if CONFIG_EXT_SKIP | 
 |   } | 
 | #endif  // CONFIG_EXT_SKIP | 
 |  | 
 | #if CONFIG_SPATIAL_SEGMENTATION | 
 |   write_inter_segment_id(cpi, w, seg, segp, mi_row, mi_col, skip, 0); | 
 | #endif | 
 |  | 
 |   write_cdef(cm, w, skip, mi_col, mi_row); | 
 |  | 
 |   if (cm->delta_q_present_flag) { | 
 |     int super_block_upper_left = | 
 |         ((mi_row & (cm->seq_params.mib_size - 1)) == 0) && | 
 |         ((mi_col & (cm->seq_params.mib_size - 1)) == 0); | 
 |     if ((bsize != cm->seq_params.sb_size || skip == 0) && | 
 |         super_block_upper_left) { | 
 |       assert(mbmi->current_q_index > 0); | 
 |       int reduced_delta_qindex = | 
 |           (mbmi->current_q_index - xd->prev_qindex) / cm->delta_q_res; | 
 |       write_delta_qindex(cm, xd, reduced_delta_qindex, w); | 
 |       xd->prev_qindex = mbmi->current_q_index; | 
 | #if CONFIG_EXT_DELTA_Q | 
 | #if CONFIG_LOOPFILTER_LEVEL | 
 |       if (cm->delta_lf_present_flag) { | 
 |         if (cm->delta_lf_multi) { | 
 |           for (int lf_id = 0; lf_id < FRAME_LF_COUNT; ++lf_id) { | 
 |             int reduced_delta_lflevel = | 
 |                 (mbmi->curr_delta_lf[lf_id] - xd->prev_delta_lf[lf_id]) / | 
 |                 cm->delta_lf_res; | 
 |             write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, w); | 
 |             xd->prev_delta_lf[lf_id] = mbmi->curr_delta_lf[lf_id]; | 
 |           } | 
 |         } else { | 
 |           int reduced_delta_lflevel = | 
 |               (mbmi->current_delta_lf_from_base - xd->prev_delta_lf_from_base) / | 
 |               cm->delta_lf_res; | 
 |           write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, w); | 
 |           xd->prev_delta_lf_from_base = mbmi->current_delta_lf_from_base; | 
 |         } | 
 |       } | 
 | #else | 
 |       if (cm->delta_lf_present_flag) { | 
 |         int reduced_delta_lflevel = | 
 |             (mbmi->current_delta_lf_from_base - xd->prev_delta_lf_from_base) / | 
 |             cm->delta_lf_res; | 
 |         write_delta_lflevel(cm, xd, reduced_delta_lflevel, w); | 
 |         xd->prev_delta_lf_from_base = mbmi->current_delta_lf_from_base; | 
 |       } | 
 | #endif  // CONFIG_LOOPFILTER_LEVEL | 
 | #endif  // CONFIG_EXT_DELTA_Q | 
 |     } | 
 |   } | 
 |  | 
 | #if CONFIG_EXT_SKIP | 
 |   if (!mbmi->skip_mode) | 
 | #endif  // CONFIG_EXT_SKIP | 
 |     write_is_inter(cm, xd, mbmi->segment_id, w, is_inter); | 
 |  | 
 |   if (cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) && | 
 |       !(is_inter && skip) && !xd->lossless[segment_id]) { | 
 |     if (is_inter) {  // This implies skip flag is 0. | 
 |       const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0); | 
 |       const int bh = tx_size_high_unit[max_tx_size]; | 
 |       const int bw = tx_size_wide_unit[max_tx_size]; | 
 |       const int width = block_size_wide[bsize] >> tx_size_wide_log2[0]; | 
 |       const int height = block_size_high[bsize] >> tx_size_wide_log2[0]; | 
 |       int idx, idy; | 
 |       for (idy = 0; idy < height; idy += bh) | 
 |         for (idx = 0; idx < width; idx += bw) | 
 |           write_tx_size_vartx(cm, xd, mbmi, max_tx_size, 0, idy, idx, w); | 
 |     } else { | 
 |       set_txfm_ctxs(mbmi->tx_size, xd->n8_w, xd->n8_h, skip, xd); | 
 |       write_selected_tx_size(cm, xd, w); | 
 |     } | 
 |   } else { | 
 |     set_txfm_ctxs(mbmi->tx_size, xd->n8_w, xd->n8_h, skip, xd); | 
 |   } | 
 |  | 
 | #if CONFIG_EXT_SKIP | 
 |   if (mbmi->skip_mode) return; | 
 | #endif  // CONFIG_EXT_SKIP | 
 |  | 
 |   if (!is_inter) { | 
 |     write_intra_mode(ec_ctx, bsize, mode, w); | 
 |     const int use_angle_delta = av1_use_angle_delta(bsize); | 
 |  | 
 |     if (use_angle_delta && av1_is_directional_mode(mode, bsize)) { | 
 |       write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y], | 
 |                         ec_ctx->angle_delta_cdf[mode - V_PRED]); | 
 |     } | 
 |  | 
 | #if CONFIG_MONO_VIDEO | 
 |     if (!cm->seq_params.monochrome && | 
 |         is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, | 
 |                             xd->plane[1].subsampling_y)) | 
 | #else | 
 |     if (is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, | 
 |                             xd->plane[1].subsampling_y)) | 
 | #endif  // CONFIG_MONO_VIDEO | 
 |     { | 
 |       const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; | 
 | #if !CONFIG_CFL | 
 |       write_intra_uv_mode(ec_ctx, uv_mode, mode, w); | 
 | #else | 
 |       write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(mbmi), w); | 
 |       if (uv_mode == UV_CFL_PRED) | 
 |         write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w); | 
 | #endif | 
 |       if (use_angle_delta && | 
 |           av1_is_directional_mode(get_uv_mode(uv_mode), bsize)) { | 
 |         write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_UV], | 
 |                           ec_ctx->angle_delta_cdf[uv_mode - V_PRED]); | 
 |       } | 
 |     } | 
 |  | 
 |     if (av1_allow_palette(cm->allow_screen_content_tools, bsize)) | 
 |       write_palette_mode_info(cm, xd, mi, mi_row, mi_col, w); | 
 | #if CONFIG_FILTER_INTRA | 
 |     write_filter_intra_mode_info(xd, mbmi, w); | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |   } else { | 
 |     int16_t mode_ctx; | 
 |  | 
 |     av1_collect_neighbors_ref_counts(xd); | 
 |  | 
 |     write_ref_frames(cm, xd, w); | 
 |  | 
 | #if CONFIG_OPT_REF_MV | 
 |     mode_ctx = | 
 |         av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); | 
 | #else | 
 |     if (is_compound) | 
 |       mode_ctx = mbmi_ext->compound_mode_context[mbmi->ref_frame[0]]; | 
 |     else | 
 |       mode_ctx = | 
 |           av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); | 
 | #endif | 
 |  | 
 |     // If segment skip is not enabled code the mode. | 
 |     if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) { | 
 |       if (is_inter_compound_mode(mode)) | 
 |         write_inter_compound_mode(cm, xd, w, mode, mode_ctx); | 
 |       else if (is_inter_singleref_mode(mode)) | 
 |         write_inter_mode(w, mode, ec_ctx, mode_ctx); | 
 |  | 
 |       if (mode == NEWMV || mode == NEW_NEWMV || have_nearmv_in_inter_mode(mode)) | 
 |         write_drl_idx(ec_ctx, mbmi, mbmi_ext, w); | 
 |       else | 
 |         assert(mbmi->ref_mv_idx == 0); | 
 |     } | 
 |  | 
 |     if (mode == NEWMV || mode == NEW_NEWMV) { | 
 |       int_mv ref_mv; | 
 |       for (ref = 0; ref < 1 + is_compound; ++ref) { | 
 |         int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame); | 
 |         int nmv_ctx = | 
 |             av1_nmv_ctx(mbmi_ext->ref_mv_count[rf_type], | 
 |                         mbmi_ext->ref_mv_stack[rf_type], ref, mbmi->ref_mv_idx); | 
 |         nmv_context *nmvc = &ec_ctx->nmvc[nmv_ctx]; | 
 |         ref_mv = mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0]; | 
 |         av1_encode_mv(cpi, w, &mbmi->mv[ref].as_mv, &ref_mv.as_mv, nmvc, | 
 |                       allow_hp); | 
 |       } | 
 |     } else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) { | 
 |       int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame); | 
 |       int nmv_ctx = av1_nmv_ctx( | 
 |           mbmi_ext->ref_mv_count[rf_type], mbmi_ext->ref_mv_stack[rf_type], 1, | 
 |           mbmi->ref_mv_idx + (mode == NEAR_NEWMV ? 1 : 0)); | 
 |       nmv_context *nmvc = &ec_ctx->nmvc[nmv_ctx]; | 
 |       av1_encode_mv(cpi, w, &mbmi->mv[1].as_mv, | 
 |                     &mbmi_ext->ref_mvs[mbmi->ref_frame[1]][0].as_mv, nmvc, | 
 |                     allow_hp); | 
 |     } else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) { | 
 |       int8_t rf_type = av1_ref_frame_type(mbmi->ref_frame); | 
 |       int nmv_ctx = av1_nmv_ctx( | 
 |           mbmi_ext->ref_mv_count[rf_type], mbmi_ext->ref_mv_stack[rf_type], 0, | 
 |           mbmi->ref_mv_idx + (mode == NEW_NEARMV ? 1 : 0)); | 
 |       nmv_context *nmvc = &ec_ctx->nmvc[nmv_ctx]; | 
 |       av1_encode_mv(cpi, w, &mbmi->mv[0].as_mv, | 
 |                     &mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0].as_mv, nmvc, | 
 |                     allow_hp); | 
 |     } | 
 |  | 
 |     if (cpi->common.reference_mode != COMPOUND_REFERENCE && | 
 |         cpi->common.allow_interintra_compound && is_interintra_allowed(mbmi)) { | 
 |       const int interintra = mbmi->ref_frame[1] == INTRA_FRAME; | 
 |       const int bsize_group = size_group_lookup[bsize]; | 
 |       aom_write_symbol(w, interintra, ec_ctx->interintra_cdf[bsize_group], 2); | 
 |       if (interintra) { | 
 |         aom_write_symbol(w, mbmi->interintra_mode, | 
 |                          ec_ctx->interintra_mode_cdf[bsize_group], | 
 |                          INTERINTRA_MODES); | 
 |         if (is_interintra_wedge_used(bsize)) { | 
 |           aom_write_symbol(w, mbmi->use_wedge_interintra, | 
 |                            ec_ctx->wedge_interintra_cdf[bsize], 2); | 
 |           if (mbmi->use_wedge_interintra) { | 
 |             aom_write_literal(w, mbmi->interintra_wedge_index, | 
 |                               get_wedge_bits_lookup(bsize)); | 
 |             assert(mbmi->interintra_wedge_sign == 0); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     if (mbmi->ref_frame[1] != INTRA_FRAME) write_motion_mode(cm, xd, mi, w); | 
 |  | 
 | #if CONFIG_JNT_COMP | 
 |     // First write idx to indicate current compound inter prediction mode group | 
 |     // Group A (0): jnt_comp, compound_average | 
 |     // Group B (1): interintra, compound_segment, wedge | 
 |     if (has_second_ref(mbmi)) { | 
 |       const int masked_compound_used = | 
 |           is_any_masked_compound_used(bsize) && cm->allow_masked_compound; | 
 |  | 
 |       if (masked_compound_used) { | 
 |         const int ctx_comp_group_idx = get_comp_group_idx_context(xd); | 
 |         aom_write_symbol(w, mbmi->comp_group_idx, | 
 |                          ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2); | 
 |       } else { | 
 |         assert(mbmi->comp_group_idx == 0); | 
 |       } | 
 |  | 
 |       if (mbmi->comp_group_idx == 0) { | 
 |         if (mbmi->compound_idx) | 
 |           assert(mbmi->interinter_compound_type == COMPOUND_AVERAGE); | 
 |  | 
 |         const int comp_index_ctx = get_comp_index_context(cm, xd); | 
 |         aom_write_symbol(w, mbmi->compound_idx, | 
 |                          ec_ctx->compound_index_cdf[comp_index_ctx], 2); | 
 |       } else { | 
 |         assert(cpi->common.reference_mode != SINGLE_REFERENCE && | 
 |                is_inter_compound_mode(mbmi->mode) && | 
 |                mbmi->motion_mode == SIMPLE_TRANSLATION); | 
 |         assert(masked_compound_used); | 
 |         // compound_segment, wedge | 
 |         assert(mbmi->interinter_compound_type == COMPOUND_WEDGE || | 
 |                mbmi->interinter_compound_type == COMPOUND_SEG); | 
 |  | 
 |         if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) | 
 |           aom_write_symbol(w, mbmi->interinter_compound_type - 1, | 
 |                            ec_ctx->compound_type_cdf[bsize], | 
 |                            COMPOUND_TYPES - 1); | 
 |  | 
 |         if (mbmi->interinter_compound_type == COMPOUND_WEDGE) { | 
 |           assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize)); | 
 |           aom_write_literal(w, mbmi->wedge_index, get_wedge_bits_lookup(bsize)); | 
 |           aom_write_bit(w, mbmi->wedge_sign); | 
 |         } else { | 
 |           assert(mbmi->interinter_compound_type == COMPOUND_SEG); | 
 |           aom_write_literal(w, mbmi->mask_type, MAX_SEG_MASK_BITS); | 
 |         } | 
 |       } | 
 |     } | 
 | #else   // CONFIG_JNT_COMP | 
 |     if (cpi->common.reference_mode != SINGLE_REFERENCE && | 
 |         is_inter_compound_mode(mbmi->mode) && | 
 |         mbmi->motion_mode == SIMPLE_TRANSLATION && | 
 |         is_any_masked_compound_used(bsize)) { | 
 |       if (cm->allow_masked_compound) { | 
 |         if (!is_interinter_compound_used(COMPOUND_WEDGE, bsize)) | 
 |           aom_write_bit(w, mbmi->interinter_compound_type == COMPOUND_AVERAGE); | 
 |         else | 
 |           aom_write_symbol(w, mbmi->interinter_compound_type, | 
 |                            ec_ctx->compound_type_cdf[bsize], COMPOUND_TYPES); | 
 |         if (is_interinter_compound_used(COMPOUND_WEDGE, bsize) && | 
 |             mbmi->interinter_compound_type == COMPOUND_WEDGE) { | 
 |           aom_write_literal(w, mbmi->wedge_index, get_wedge_bits_lookup(bsize)); | 
 |           aom_write_bit(w, mbmi->wedge_sign); | 
 |         } | 
 |         if (mbmi->interinter_compound_type == COMPOUND_SEG) { | 
 |           aom_write_literal(w, mbmi->mask_type, MAX_SEG_MASK_BITS); | 
 |         } | 
 |       } | 
 |     } | 
 | #endif  // CONFIG_JNT_COMP | 
 |  | 
 |     write_mb_interp_filter(cpi, xd, w); | 
 |   } | 
 |  | 
 | #if !CONFIG_TXK_SEL | 
 |   av1_write_tx_type(cm, xd, w); | 
 | #endif  // !CONFIG_TXK_SEL | 
 | } | 
 |  | 
 | #if CONFIG_INTRABC | 
 | static void write_intrabc_info(AV1_COMMON *cm, MACROBLOCKD *xd, | 
 |                                const MB_MODE_INFO_EXT *mbmi_ext, | 
 |                                int enable_tx_size, aom_writer *w) { | 
 |   const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
 |   int use_intrabc = is_intrabc_block(mbmi); | 
 |   FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
 |   aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2); | 
 |   if (use_intrabc) { | 
 |     assert(mbmi->mode == DC_PRED); | 
 |     assert(mbmi->uv_mode == UV_DC_PRED); | 
 |     if ((enable_tx_size && !mbmi->skip)) { | 
 |       const BLOCK_SIZE bsize = mbmi->sb_type; | 
 |       const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0); | 
 |       const int bh = tx_size_high_unit[max_tx_size]; | 
 |       const int bw = tx_size_wide_unit[max_tx_size]; | 
 |       const int width = block_size_wide[bsize] >> tx_size_wide_log2[0]; | 
 |       const int height = block_size_high[bsize] >> tx_size_wide_log2[0]; | 
 |       int idx, idy; | 
 |       for (idy = 0; idy < height; idy += bh) { | 
 |         for (idx = 0; idx < width; idx += bw) { | 
 |           write_tx_size_vartx(cm, xd, mbmi, max_tx_size, 0, idy, idx, w); | 
 |         } | 
 |       } | 
 |     } else { | 
 |       set_txfm_ctxs(mbmi->tx_size, xd->n8_w, xd->n8_h, mbmi->skip, xd); | 
 |     } | 
 |     int_mv dv_ref = mbmi_ext->ref_mvs[INTRA_FRAME][0]; | 
 |     av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc); | 
 | #if !CONFIG_TXK_SEL | 
 |     av1_write_tx_type(cm, xd, w); | 
 | #endif  // !CONFIG_TXK_SEL | 
 |   } | 
 | } | 
 | #endif  // CONFIG_INTRABC | 
 |  | 
 | static void write_mb_modes_kf(AV1_COMP *cpi, MACROBLOCKD *xd, | 
 | #if CONFIG_INTRABC | 
 |                               const MB_MODE_INFO_EXT *mbmi_ext, | 
 | #endif  // CONFIG_INTRABC | 
 |                               const int mi_row, const int mi_col, | 
 |                               aom_writer *w) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
 |   const struct segmentation *const seg = &cm->seg; | 
 |   struct segmentation_probs *const segp = &ec_ctx->seg; | 
 |   const MODE_INFO *const mi = xd->mi[0]; | 
 |   const MODE_INFO *const above_mi = xd->above_mi; | 
 |   const MODE_INFO *const left_mi = xd->left_mi; | 
 |   const MB_MODE_INFO *const mbmi = &mi->mbmi; | 
 |   const BLOCK_SIZE bsize = mbmi->sb_type; | 
 |   const PREDICTION_MODE mode = mbmi->mode; | 
 |  | 
 | #if CONFIG_SPATIAL_SEGMENTATION | 
 |   if (cm->preskip_segid && seg->update_map) | 
 |     write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 0); | 
 | #else | 
 |   if (seg->update_map) write_segment_id(w, seg, segp, mbmi->segment_id); | 
 | #endif | 
 |  | 
 |   const int skip = write_skip(cm, xd, mbmi->segment_id, mi, w); | 
 |  | 
 | #if CONFIG_SPATIAL_SEGMENTATION | 
 |   if (!cm->preskip_segid && seg->update_map) | 
 |     write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, skip); | 
 | #endif | 
 |  | 
 |   write_cdef(cm, w, skip, mi_col, mi_row); | 
 |  | 
 |   if (cm->delta_q_present_flag) { | 
 |     int super_block_upper_left = | 
 |         ((mi_row & (cm->seq_params.mib_size - 1)) == 0) && | 
 |         ((mi_col & (cm->seq_params.mib_size - 1)) == 0); | 
 |     if ((bsize != cm->seq_params.sb_size || skip == 0) && | 
 |         super_block_upper_left) { | 
 |       assert(mbmi->current_q_index > 0); | 
 |       int reduced_delta_qindex = | 
 |           (mbmi->current_q_index - xd->prev_qindex) / cm->delta_q_res; | 
 |       write_delta_qindex(cm, xd, reduced_delta_qindex, w); | 
 |       xd->prev_qindex = mbmi->current_q_index; | 
 | #if CONFIG_EXT_DELTA_Q | 
 | #if CONFIG_LOOPFILTER_LEVEL | 
 |       if (cm->delta_lf_present_flag) { | 
 |         if (cm->delta_lf_multi) { | 
 |           for (int lf_id = 0; lf_id < FRAME_LF_COUNT; ++lf_id) { | 
 |             int reduced_delta_lflevel = | 
 |                 (mbmi->curr_delta_lf[lf_id] - xd->prev_delta_lf[lf_id]) / | 
 |                 cm->delta_lf_res; | 
 |             write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, w); | 
 |             xd->prev_delta_lf[lf_id] = mbmi->curr_delta_lf[lf_id]; | 
 |           } | 
 |         } else { | 
 |           int reduced_delta_lflevel = | 
 |               (mbmi->current_delta_lf_from_base - xd->prev_delta_lf_from_base) / | 
 |               cm->delta_lf_res; | 
 |           write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, w); | 
 |           xd->prev_delta_lf_from_base = mbmi->current_delta_lf_from_base; | 
 |         } | 
 |       } | 
 | #else | 
 |       if (cm->delta_lf_present_flag) { | 
 |         int reduced_delta_lflevel = | 
 |             (mbmi->current_delta_lf_from_base - xd->prev_delta_lf_from_base) / | 
 |             cm->delta_lf_res; | 
 |         write_delta_lflevel(cm, xd, reduced_delta_lflevel, w); | 
 |         xd->prev_delta_lf_from_base = mbmi->current_delta_lf_from_base; | 
 |       } | 
 | #endif  // CONFIG_LOOPFILTER_LEVEL | 
 | #endif  // CONFIG_EXT_DELTA_Q | 
 |     } | 
 |   } | 
 |  | 
 |   int enable_tx_size = cm->tx_mode == TX_MODE_SELECT && | 
 |                        block_signals_txsize(bsize) && | 
 |                        !xd->lossless[mbmi->segment_id]; | 
 |  | 
 | #if CONFIG_INTRABC | 
 |   if (av1_allow_intrabc(cm)) { | 
 |     write_intrabc_info(cm, xd, mbmi_ext, enable_tx_size, w); | 
 |     if (is_intrabc_block(mbmi)) return; | 
 |   } | 
 | #endif  // CONFIG_INTRABC | 
 |  | 
 |   if (enable_tx_size) write_selected_tx_size(cm, xd, w); | 
 | #if CONFIG_INTRABC | 
 |   if (cm->allow_screen_content_tools) | 
 |     set_txfm_ctxs(mbmi->tx_size, xd->n8_w, xd->n8_h, mbmi->skip, xd); | 
 | #endif  // CONFIG_INTRABC | 
 |  | 
 |   write_intra_mode_kf(ec_ctx, mi, above_mi, left_mi, mode, w); | 
 |  | 
 |   const int use_angle_delta = av1_use_angle_delta(bsize); | 
 |   if (use_angle_delta && av1_is_directional_mode(mode, bsize)) { | 
 |     write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y], | 
 |                       ec_ctx->angle_delta_cdf[mode - V_PRED]); | 
 |   } | 
 |  | 
 | #if CONFIG_MONO_VIDEO | 
 |   if (!cm->seq_params.monochrome && | 
 |       is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, | 
 |                           xd->plane[1].subsampling_y)) | 
 | #else | 
 |   if (is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, | 
 |                           xd->plane[1].subsampling_y)) | 
 | #endif  // CONFIG_MONO_VIDEO | 
 |   { | 
 |     const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; | 
 | #if !CONFIG_CFL | 
 |     write_intra_uv_mode(ec_ctx, uv_mode, mode, w); | 
 | #else | 
 |     write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(mbmi), w); | 
 |     if (uv_mode == UV_CFL_PRED) | 
 |       write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w); | 
 | #endif | 
 |     if (use_angle_delta && | 
 |         av1_is_directional_mode(get_uv_mode(uv_mode), bsize)) { | 
 |       write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_UV], | 
 |                         ec_ctx->angle_delta_cdf[uv_mode - V_PRED]); | 
 |     } | 
 |   } | 
 |  | 
 |   if (av1_allow_palette(cm->allow_screen_content_tools, bsize)) | 
 |     write_palette_mode_info(cm, xd, mi, mi_row, mi_col, w); | 
 | #if CONFIG_FILTER_INTRA | 
 |   write_filter_intra_mode_info(xd, mbmi, w); | 
 | #endif  // CONFIG_FILTER_INTRA | 
 |  | 
 | #if !CONFIG_TXK_SEL | 
 |   av1_write_tx_type(cm, xd, w); | 
 | #endif  // !CONFIG_TXK_SEL | 
 | } | 
 |  | 
 | #if CONFIG_RD_DEBUG | 
 | static void dump_mode_info(MODE_INFO *mi) { | 
 |   printf("\nmi->mbmi.mi_row == %d\n", mi->mbmi.mi_row); | 
 |   printf("&& mi->mbmi.mi_col == %d\n", mi->mbmi.mi_col); | 
 |   printf("&& mi->mbmi.sb_type == %d\n", mi->mbmi.sb_type); | 
 |   printf("&& mi->mbmi.tx_size == %d\n", mi->mbmi.tx_size); | 
 |   printf("&& mi->mbmi.mode == %d\n", mi->mbmi.mode); | 
 | } | 
 | static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats, | 
 |                                    int plane) { | 
 |   if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) { | 
 |     int r, c; | 
 |     printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n", | 
 |            plane, rd_stats->txb_coeff_cost[plane], token_stats->cost); | 
 |     printf("rd txb_coeff_cost_map\n"); | 
 |     for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) { | 
 |       for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) { | 
 |         printf("%d ", rd_stats->txb_coeff_cost_map[plane][r][c]); | 
 |       } | 
 |       printf("\n"); | 
 |     } | 
 |  | 
 |     printf("pack txb_coeff_cost_map\n"); | 
 |     for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) { | 
 |       for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) { | 
 |         printf("%d ", token_stats->txb_coeff_cost_map[r][c]); | 
 |       } | 
 |       printf("\n"); | 
 |     } | 
 |     return 1; | 
 |   } | 
 |   return 0; | 
 | } | 
 | #endif | 
 |  | 
 | #if ENC_MISMATCH_DEBUG | 
 | static void enc_dump_logs(AV1_COMP *cpi, int mi_row, int mi_col) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
 |   MODE_INFO *m; | 
 |   xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col); | 
 |   m = xd->mi[0]; | 
 |   if (is_inter_block(&m->mbmi)) { | 
 | #define FRAME_TO_CHECK 11 | 
 |     if (cm->current_video_frame == FRAME_TO_CHECK && cm->show_frame == 1) { | 
 |       const MB_MODE_INFO *const mbmi = &m->mbmi; | 
 |       const BLOCK_SIZE bsize = mbmi->sb_type; | 
 |  | 
 |       int_mv mv[2]; | 
 |       int is_comp_ref = has_second_ref(&m->mbmi); | 
 |       int ref; | 
 |  | 
 |       for (ref = 0; ref < 1 + is_comp_ref; ++ref) | 
 |         mv[ref].as_mv = m->mbmi.mv[ref].as_mv; | 
 |  | 
 |       if (!is_comp_ref) { | 
 |         mv[1].as_int = 0; | 
 |       } | 
 |  | 
 |       MACROBLOCK *const x = &cpi->td.mb; | 
 |       const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; | 
 |       const int16_t mode_ctx = | 
 |           is_comp_ref ? mbmi_ext->compound_mode_context[mbmi->ref_frame[0]] | 
 |                       : av1_mode_context_analyzer(mbmi_ext->mode_context, | 
 |                                                   mbmi->ref_frame); | 
 |  | 
 |       const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK; | 
 |       int16_t zeromv_ctx = -1; | 
 |       int16_t refmv_ctx = -1; | 
 |  | 
 |       if (mbmi->mode != NEWMV) { | 
 |         zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; | 
 |         if (mbmi->mode != GLOBALMV) | 
 |           refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; | 
 |       } | 
 |  | 
 | #if CONFIG_EXT_SKIP | 
 |       printf( | 
 |           "=== ENCODER ===: " | 
 |           "Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, " | 
 |           "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, " | 
 |           "ref[1]=%d, motion_mode=%d, mode_ctx=%d, " | 
 |           "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n", | 
 |           cm->current_video_frame, mi_row, mi_col, mbmi->skip_mode, mbmi->mode, | 
 |           bsize, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col, | 
 |           mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0], | 
 |           mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx, | 
 |           zeromv_ctx, refmv_ctx, mbmi->tx_size); | 
 | #else | 
 |       printf( | 
 |           "=== ENCODER ===: " | 
 |           "Frame=%d, (mi_row,mi_col)=(%d,%d), mode=%d, bsize=%d, " | 
 |           "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, " | 
 |           "ref[1]=%d, motion_mode=%d, mode_ctx=%d, " | 
 |           "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n", | 
 |           cm->current_video_frame, mi_row, mi_col, mbmi->mode, bsize, | 
 |           cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col, mv[1].as_mv.row, | 
 |           mv[1].as_mv.col, mbmi->ref_frame[0], mbmi->ref_frame[1], | 
 |           mbmi->motion_mode, mode_ctx, newmv_ctx, zeromv_ctx, refmv_ctx, | 
 |           mbmi->tx_size); | 
 | #endif  // CONFIG_EXT_SKIP | 
 |     } | 
 |   } | 
 | } | 
 | #endif  // ENC_MISMATCH_DEBUG | 
 |  | 
 | static void write_mbmi_b(AV1_COMP *cpi, const TileInfo *const tile, | 
 |                          aom_writer *w, int mi_row, int mi_col) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
 |   MODE_INFO *m; | 
 |   int bh, bw; | 
 |   xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col); | 
 |   m = xd->mi[0]; | 
 |  | 
 |   assert(m->mbmi.sb_type <= cm->seq_params.sb_size || | 
 |          (m->mbmi.sb_type >= BLOCK_SIZES && m->mbmi.sb_type < BLOCK_SIZES_ALL)); | 
 |  | 
 |   bh = mi_size_high[m->mbmi.sb_type]; | 
 |   bw = mi_size_wide[m->mbmi.sb_type]; | 
 |  | 
 |   cpi->td.mb.mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); | 
 |  | 
 |   set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, | 
 | #if CONFIG_DEPENDENT_HORZTILES | 
 |                  cm->dependent_horz_tiles, | 
 | #endif  // CONFIG_DEPENDENT_HORZTILES | 
 |                  cm->mi_rows, cm->mi_cols); | 
 |  | 
 |   if (frame_is_intra_only(cm)) { | 
 | #if CONFIG_INTRABC | 
 |     if (cm->allow_screen_content_tools) { | 
 |       xd->above_txfm_context = | 
 |           cm->above_txfm_context + (mi_col << TX_UNIT_WIDE_LOG2); | 
 |       xd->left_txfm_context = xd->left_txfm_context_buffer + | 
 |                               ((mi_row & MAX_MIB_MASK) << TX_UNIT_HIGH_LOG2); | 
 |     } | 
 | #endif  // CONFIG_INTRABC | 
 |     write_mb_modes_kf(cpi, xd, | 
 | #if CONFIG_INTRABC | 
 |                       cpi->td.mb.mbmi_ext, | 
 | #endif  // CONFIG_INTRABC | 
 |                       mi_row, mi_col, w); | 
 |   } else { | 
 |     xd->above_txfm_context = | 
 |         cm->above_txfm_context + (mi_col << TX_UNIT_WIDE_LOG2); | 
 |     xd->left_txfm_context = xd->left_txfm_context_buffer + | 
 |                             ((mi_row & MAX_MIB_MASK) << TX_UNIT_HIGH_LOG2); | 
 |     // has_subpel_mv_component needs the ref frame buffers set up to look | 
 |     // up if they are scaled. has_subpel_mv_component is in turn needed by | 
 |     // write_switchable_interp_filter, which is called by pack_inter_mode_mvs. | 
 |     set_ref_ptrs(cm, xd, m->mbmi.ref_frame[0], m->mbmi.ref_frame[1]); | 
 |  | 
 | #if ENC_MISMATCH_DEBUG | 
 |     enc_dump_logs(cpi, mi_row, mi_col); | 
 | #endif  // ENC_MISMATCH_DEBUG | 
 |  | 
 |     pack_inter_mode_mvs(cpi, mi_row, mi_col, w); | 
 |   } | 
 | } | 
 |  | 
 | static void write_inter_txb_coeff(AV1_COMMON *const cm, MACROBLOCK *const x, | 
 |                                   MB_MODE_INFO *const mbmi, aom_writer *w, | 
 |                                   const TOKENEXTRA **tok, | 
 |                                   const TOKENEXTRA *const tok_end, | 
 |                                   TOKEN_STATS *token_stats, const int row, | 
 |                                   const int col, int *block, const int plane) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |   const BLOCK_SIZE bsize = mbmi->sb_type; | 
 |   const BLOCK_SIZE bsizec = | 
 |       scale_chroma_bsize(bsize, pd->subsampling_x, pd->subsampling_y); | 
 |  | 
 |   const BLOCK_SIZE plane_bsize = get_plane_block_size(bsizec, pd); | 
 |  | 
 |   TX_SIZE max_tx_size = get_vartx_max_txsize( | 
 |       xd, plane_bsize, pd->subsampling_x || pd->subsampling_y); | 
 |   const int step = | 
 |       tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; | 
 |   const int bkw = tx_size_wide_unit[max_tx_size]; | 
 |   const int bkh = tx_size_high_unit[max_tx_size]; | 
 |  | 
 |   const BLOCK_SIZE max_unit_bsize = get_plane_block_size(BLOCK_64X64, pd); | 
 |   int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; | 
 |   int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; | 
 |  | 
 |   int blk_row, blk_col; | 
 |  | 
 |   const int num_4x4_w = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; | 
 |   const int num_4x4_h = block_size_high[plane_bsize] >> tx_size_wide_log2[0]; | 
 |  | 
 |   const int unit_height = | 
 |       AOMMIN(mu_blocks_high + (row >> pd->subsampling_y), num_4x4_h); | 
 |   const int unit_width = | 
 |       AOMMIN(mu_blocks_wide + (col >> pd->subsampling_x), num_4x4_w); | 
 |   for (blk_row = row >> pd->subsampling_y; blk_row < unit_height; | 
 |        blk_row += bkh) { | 
 |     for (blk_col = col >> pd->subsampling_x; blk_col < unit_width; | 
 |          blk_col += bkw) { | 
 |       pack_txb_tokens(w, | 
 | #if CONFIG_LV_MAP | 
 |                       cm, x, | 
 | #endif | 
 |                       tok, tok_end, xd, mbmi, plane, plane_bsize, cm->bit_depth, | 
 |                       *block, blk_row, blk_col, max_tx_size, token_stats); | 
 |       *block += step; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void write_tokens_b(AV1_COMP *cpi, const TileInfo *const tile, | 
 |                            aom_writer *w, const TOKENEXTRA **tok, | 
 |                            const TOKENEXTRA *const tok_end, int mi_row, | 
 |                            int mi_col) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
 |   const int mi_offset = mi_row * cm->mi_stride + mi_col; | 
 |   MODE_INFO *const m = *(cm->mi_grid_visible + mi_offset); | 
 |   MB_MODE_INFO *const mbmi = &m->mbmi; | 
 |   int plane; | 
 |   int bh, bw; | 
 |   MACROBLOCK *const x = &cpi->td.mb; | 
 | #if CONFIG_LV_MAP | 
 |   (void)tok; | 
 |   (void)tok_end; | 
 | #endif | 
 |   xd->mi = cm->mi_grid_visible + mi_offset; | 
 |  | 
 |   assert(mbmi->sb_type <= cm->seq_params.sb_size || | 
 |          (mbmi->sb_type >= BLOCK_SIZES && mbmi->sb_type < BLOCK_SIZES_ALL)); | 
 |  | 
 |   bh = mi_size_high[mbmi->sb_type]; | 
 |   bw = mi_size_wide[mbmi->sb_type]; | 
 |   cpi->td.mb.mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); | 
 |  | 
 |   set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, | 
 | #if CONFIG_DEPENDENT_HORZTILES | 
 |                  cm->dependent_horz_tiles, | 
 | #endif  // CONFIG_DEPENDENT_HORZTILES | 
 |                  cm->mi_rows, cm->mi_cols); | 
 |  | 
 |   for (plane = 0; plane < AOMMIN(2, num_planes); ++plane) { | 
 |     const uint8_t palette_size_plane = | 
 |         mbmi->palette_mode_info.palette_size[plane]; | 
 | #if CONFIG_EXT_SKIP | 
 |     assert(!mbmi->skip_mode || !palette_size_plane); | 
 | #endif  // CONFIG_EXT_SKIP | 
 |     if (palette_size_plane > 0) { | 
 | #if CONFIG_INTRABC | 
 |       assert(mbmi->use_intrabc == 0); | 
 | #endif | 
 |       assert(av1_allow_palette(cm->allow_screen_content_tools, mbmi->sb_type)); | 
 |       int rows, cols; | 
 |       av1_get_block_dimensions(mbmi->sb_type, plane, xd, NULL, NULL, &rows, | 
 |                                &cols); | 
 |       assert(*tok < tok_end); | 
 |       pack_map_tokens(w, tok, palette_size_plane, rows * cols); | 
 | #if !CONFIG_LV_MAP | 
 |       assert(*tok < tok_end + mbmi->skip); | 
 | #endif  // !CONFIG_LV_MAP | 
 |     } | 
 |   } | 
 |  | 
 |   if (!mbmi->skip) { | 
 | #if !CONFIG_LV_MAP | 
 |     assert(*tok < tok_end); | 
 | #endif | 
 |  | 
 |     if (!is_inter_block(mbmi)) | 
 |       av1_write_coeffs_mb(cm, x, mi_row, mi_col, w, mbmi->sb_type); | 
 |  | 
 |     if (is_inter_block(mbmi)) { | 
 |       int block[MAX_MB_PLANE] = { 0 }; | 
 |       const struct macroblockd_plane *const y_pd = &xd->plane[0]; | 
 |       const BLOCK_SIZE plane_bsize = get_plane_block_size(mbmi->sb_type, y_pd); | 
 |       const int num_4x4_w = | 
 |           block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; | 
 |       const int num_4x4_h = | 
 |           block_size_high[plane_bsize] >> tx_size_wide_log2[0]; | 
 |       int row, col; | 
 |       TOKEN_STATS token_stats; | 
 |       init_token_stats(&token_stats); | 
 |  | 
 |       const BLOCK_SIZE max_unit_bsize = get_plane_block_size(BLOCK_64X64, y_pd); | 
 |       int mu_blocks_wide = | 
 |           block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; | 
 |       int mu_blocks_high = | 
 |           block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; | 
 |  | 
 |       mu_blocks_wide = AOMMIN(num_4x4_w, mu_blocks_wide); | 
 |       mu_blocks_high = AOMMIN(num_4x4_h, mu_blocks_high); | 
 |  | 
 |       for (row = 0; row < num_4x4_h; row += mu_blocks_high) { | 
 |         for (col = 0; col < num_4x4_w; col += mu_blocks_wide) { | 
 |           for (plane = 0; plane < num_planes && is_inter_block(mbmi); ++plane) { | 
 |             const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |             if (!is_chroma_reference(mi_row, mi_col, mbmi->sb_type, | 
 |                                      pd->subsampling_x, pd->subsampling_y)) { | 
 | #if !CONFIG_LV_MAP | 
 |               (*tok)++; | 
 | #endif  // !CONFIG_LV_MAP | 
 |               continue; | 
 |             } | 
 |             write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats, | 
 |                                   row, col, &block[plane], plane); | 
 |           } | 
 |         } | 
 | #if CONFIG_RD_DEBUG | 
 |         if (mbmi->sb_type >= BLOCK_8X8 && | 
 |             rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) { | 
 |           dump_mode_info(m); | 
 |           assert(0); | 
 |         } | 
 | #endif  // CONFIG_RD_DEBUG | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void write_modes_b(AV1_COMP *cpi, const TileInfo *const tile, | 
 |                           aom_writer *w, const TOKENEXTRA **tok, | 
 |                           const TOKENEXTRA *const tok_end, int mi_row, | 
 |                           int mi_col) { | 
 |   write_mbmi_b(cpi, tile, w, mi_row, mi_col); | 
 |  | 
 |   write_tokens_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
 | } | 
 |  | 
 | static void write_partition(const AV1_COMMON *const cm, | 
 |                             const MACROBLOCKD *const xd, int hbs, int mi_row, | 
 |                             int mi_col, PARTITION_TYPE p, BLOCK_SIZE bsize, | 
 |                             aom_writer *w) { | 
 |   const int is_partition_point = bsize >= BLOCK_8X8; | 
 |  | 
 |   if (!is_partition_point) return; | 
 |  | 
 |   const int has_rows = (mi_row + hbs) < cm->mi_rows; | 
 |   const int has_cols = (mi_col + hbs) < cm->mi_cols; | 
 |   const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); | 
 |   FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
 |  | 
 |   if (!has_rows && !has_cols) { | 
 |     assert(p == PARTITION_SPLIT); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (has_rows && has_cols) { | 
 |     aom_write_symbol(w, p, ec_ctx->partition_cdf[ctx], | 
 |                      partition_cdf_length(bsize)); | 
 |   } else if (!has_rows && has_cols) { | 
 |     assert(p == PARTITION_SPLIT || p == PARTITION_HORZ); | 
 |     assert(bsize > BLOCK_8X8); | 
 |     aom_cdf_prob cdf[2]; | 
 |     partition_gather_vert_alike(cdf, ec_ctx->partition_cdf[ctx], bsize); | 
 |     aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2); | 
 |   } else { | 
 |     assert(has_rows && !has_cols); | 
 |     assert(p == PARTITION_SPLIT || p == PARTITION_VERT); | 
 |     assert(bsize > BLOCK_8X8); | 
 |     aom_cdf_prob cdf[2]; | 
 |     partition_gather_horz_alike(cdf, ec_ctx->partition_cdf[ctx], bsize); | 
 |     aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2); | 
 |   } | 
 | } | 
 |  | 
 | static void write_modes_sb(AV1_COMP *const cpi, const TileInfo *const tile, | 
 |                            aom_writer *const w, const TOKENEXTRA **tok, | 
 |                            const TOKENEXTRA *const tok_end, int mi_row, | 
 |                            int mi_col, BLOCK_SIZE bsize) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
 |   const int hbs = mi_size_wide[bsize] / 2; | 
 | #if CONFIG_EXT_PARTITION_TYPES | 
 |   const int quarter_step = mi_size_wide[bsize] / 4; | 
 |   int i; | 
 | #endif  // CONFIG_EXT_PARTITION_TYPES | 
 |   const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize); | 
 |   const BLOCK_SIZE subsize = get_subsize(bsize, partition); | 
 |  | 
 |   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; | 
 |  | 
 | #if CONFIG_LOOP_RESTORATION | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   for (int plane = 0; plane < num_planes; ++plane) { | 
 |     int rcol0, rcol1, rrow0, rrow1, tile_tl_idx; | 
 |     if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize, | 
 |                                            &rcol0, &rcol1, &rrow0, &rrow1, | 
 |                                            &tile_tl_idx)) { | 
 |       const int rstride = cm->rst_info[plane].horz_units_per_tile; | 
 |       for (int rrow = rrow0; rrow < rrow1; ++rrow) { | 
 |         for (int rcol = rcol0; rcol < rcol1; ++rcol) { | 
 |           const int rtile_idx = tile_tl_idx + rcol + rrow * rstride; | 
 |           const RestorationUnitInfo *rui = | 
 |               &cm->rst_info[plane].unit_info[rtile_idx]; | 
 |           loop_restoration_write_sb_coeffs(cm, xd, rui, w, plane); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | #endif | 
 |  | 
 |   write_partition(cm, xd, hbs, mi_row, mi_col, partition, bsize, w); | 
 |   switch (partition) { | 
 |     case PARTITION_NONE: | 
 |       write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
 |       break; | 
 |     case PARTITION_HORZ: | 
 |       write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
 |       if (mi_row + hbs < cm->mi_rows) | 
 |         write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); | 
 |       break; | 
 |     case PARTITION_VERT: | 
 |       write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
 |       if (mi_col + hbs < cm->mi_cols) | 
 |         write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); | 
 |       break; | 
 |     case PARTITION_SPLIT: | 
 |       write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize); | 
 |       write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs, subsize); | 
 |       write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col, subsize); | 
 |       write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs, | 
 |                      subsize); | 
 |       break; | 
 | #if CONFIG_EXT_PARTITION_TYPES | 
 |     case PARTITION_HORZ_A: | 
 |       write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
 |       write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); | 
 |       write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); | 
 |       break; | 
 |     case PARTITION_HORZ_B: | 
 |       write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
 |       write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); | 
 |       write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs); | 
 |       break; | 
 |     case PARTITION_VERT_A: | 
 |       write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
 |       write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); | 
 |       write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); | 
 |       break; | 
 |     case PARTITION_VERT_B: | 
 |       write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
 |       write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); | 
 |       write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs); | 
 |       break; | 
 |     case PARTITION_HORZ_4: | 
 |       for (i = 0; i < 4; ++i) { | 
 |         int this_mi_row = mi_row + i * quarter_step; | 
 |         if (i > 0 && this_mi_row >= cm->mi_rows) break; | 
 |  | 
 |         write_modes_b(cpi, tile, w, tok, tok_end, this_mi_row, mi_col); | 
 |       } | 
 |       break; | 
 |     case PARTITION_VERT_4: | 
 |       for (i = 0; i < 4; ++i) { | 
 |         int this_mi_col = mi_col + i * quarter_step; | 
 |         if (i > 0 && this_mi_col >= cm->mi_cols) break; | 
 |  | 
 |         write_modes_b(cpi, tile, w, tok, tok_end, mi_row, this_mi_col); | 
 |       } | 
 |       break; | 
 | #endif  // CONFIG_EXT_PARTITION_TYPES | 
 |     default: assert(0); | 
 |   } | 
 |  | 
 | // update partition context | 
 | #if CONFIG_EXT_PARTITION_TYPES | 
 |   update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); | 
 | #else | 
 |   if (bsize >= BLOCK_8X8 && | 
 |       (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) | 
 |     update_partition_context(xd, mi_row, mi_col, subsize, bsize); | 
 | #endif  // CONFIG_EXT_PARTITION_TYPES | 
 | } | 
 |  | 
 | static void write_modes(AV1_COMP *const cpi, const TileInfo *const tile, | 
 |                         aom_writer *const w, const TOKENEXTRA **tok, | 
 |                         const TOKENEXTRA *const tok_end) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
 |   const int mi_row_start = tile->mi_row_start; | 
 |   const int mi_row_end = tile->mi_row_end; | 
 |   const int mi_col_start = tile->mi_col_start; | 
 |   const int mi_col_end = tile->mi_col_end; | 
 |   int mi_row, mi_col; | 
 |  | 
 | #if CONFIG_DEPENDENT_HORZTILES | 
 |   if (!cm->dependent_horz_tiles || mi_row_start == 0 || | 
 |       tile->tg_horz_boundary) { | 
 |     av1_zero_above_context(cm, mi_col_start, mi_col_end); | 
 |   } | 
 | #else | 
 |   av1_zero_above_context(cm, mi_col_start, mi_col_end); | 
 | #endif | 
 |   if (cpi->common.delta_q_present_flag) { | 
 |     xd->prev_qindex = cpi->common.base_qindex; | 
 | #if CONFIG_EXT_DELTA_Q | 
 |     if (cpi->common.delta_lf_present_flag) { | 
 | #if CONFIG_LOOPFILTER_LEVEL | 
 |       for (int lf_id = 0; lf_id < FRAME_LF_COUNT; ++lf_id) | 
 |         xd->prev_delta_lf[lf_id] = 0; | 
 | #endif  // CONFIG_LOOPFILTER_LEVEL | 
 |       xd->prev_delta_lf_from_base = 0; | 
 |     } | 
 | #endif  // CONFIG_EXT_DELTA_Q | 
 |   } | 
 |  | 
 |   for (mi_row = mi_row_start; mi_row < mi_row_end; | 
 |        mi_row += cm->seq_params.mib_size) { | 
 |     av1_zero_left_context(xd); | 
 |  | 
 |     for (mi_col = mi_col_start; mi_col < mi_col_end; | 
 |          mi_col += cm->seq_params.mib_size) { | 
 |       write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, | 
 |                      cm->seq_params.sb_size); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_LOOP_RESTORATION | 
 | static void encode_restoration_mode(AV1_COMMON *cm, | 
 |                                     struct aom_write_bit_buffer *wb) { | 
 |   const int num_planes = av1_num_planes(cm); | 
 | #if CONFIG_INTRABC | 
 |  | 
 |   if (cm->allow_intrabc && NO_FILTER_FOR_IBC) return; | 
 | #endif  // CONFIG_INTRABC | 
 |   int all_none = 1, chroma_none = 1; | 
 |   for (int p = 0; p < num_planes; ++p) { | 
 |     RestorationInfo *rsi = &cm->rst_info[p]; | 
 |     if (rsi->frame_restoration_type != RESTORE_NONE) { | 
 |       all_none = 0; | 
 |       chroma_none &= p == 0; | 
 |     } | 
 |     switch (rsi->frame_restoration_type) { | 
 |       case RESTORE_NONE: | 
 |         aom_wb_write_bit(wb, 0); | 
 |         aom_wb_write_bit(wb, 0); | 
 |         break; | 
 |       case RESTORE_WIENER: | 
 |         aom_wb_write_bit(wb, 1); | 
 |         aom_wb_write_bit(wb, 0); | 
 |         break; | 
 |       case RESTORE_SGRPROJ: | 
 |         aom_wb_write_bit(wb, 1); | 
 |         aom_wb_write_bit(wb, 1); | 
 |         break; | 
 |       case RESTORE_SWITCHABLE: | 
 |         aom_wb_write_bit(wb, 0); | 
 |         aom_wb_write_bit(wb, 1); | 
 |         break; | 
 |       default: assert(0); | 
 |     } | 
 |   } | 
 |   if (!all_none) { | 
 | #if CONFIG_EXT_PARTITION | 
 |     assert(cm->seq_params.sb_size == BLOCK_64X64 || | 
 |            cm->seq_params.sb_size == BLOCK_128X128); | 
 |     const int sb_size = cm->seq_params.sb_size == BLOCK_128X128 ? 128 : 64; | 
 | #else | 
 |     assert(cm->seq_params.sb_size == BLOCK_64X64); | 
 |     const int sb_size = 64; | 
 | #endif | 
 |  | 
 |     RestorationInfo *rsi = &cm->rst_info[0]; | 
 |  | 
 |     assert(rsi->restoration_unit_size >= sb_size); | 
 |     assert(RESTORATION_TILESIZE_MAX == 256); | 
 |  | 
 |     if (sb_size == 64) { | 
 |       aom_wb_write_bit(wb, rsi->restoration_unit_size > 64); | 
 |     } | 
 |     if (rsi->restoration_unit_size > 64) { | 
 |       aom_wb_write_bit(wb, rsi->restoration_unit_size > 128); | 
 |     } | 
 |   } | 
 |  | 
 |   if (num_planes > 1) { | 
 |     int s = AOMMIN(cm->subsampling_x, cm->subsampling_y); | 
 |     if (s && !chroma_none) { | 
 |       aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size != | 
 |                                cm->rst_info[0].restoration_unit_size); | 
 |       assert(cm->rst_info[1].restoration_unit_size == | 
 |                  cm->rst_info[0].restoration_unit_size || | 
 |              cm->rst_info[1].restoration_unit_size == | 
 |                  (cm->rst_info[0].restoration_unit_size >> s)); | 
 |       assert(cm->rst_info[2].restoration_unit_size == | 
 |              cm->rst_info[1].restoration_unit_size); | 
 |     } else if (!s) { | 
 |       assert(cm->rst_info[1].restoration_unit_size == | 
 |              cm->rst_info[0].restoration_unit_size); | 
 |       assert(cm->rst_info[2].restoration_unit_size == | 
 |              cm->rst_info[1].restoration_unit_size); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void write_wiener_filter(int wiener_win, const WienerInfo *wiener_info, | 
 |                                 WienerInfo *ref_wiener_info, aom_writer *wb) { | 
 |   if (wiener_win == WIENER_WIN) | 
 |     aom_write_primitive_refsubexpfin( | 
 |         wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, | 
 |         WIENER_FILT_TAP0_SUBEXP_K, | 
 |         ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, | 
 |         wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV); | 
 |   else | 
 |     assert(wiener_info->vfilter[0] == 0 && | 
 |            wiener_info->vfilter[WIENER_WIN - 1] == 0); | 
 |   aom_write_primitive_refsubexpfin( | 
 |       wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, | 
 |       WIENER_FILT_TAP1_SUBEXP_K, | 
 |       ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, | 
 |       wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV); | 
 |   aom_write_primitive_refsubexpfin( | 
 |       wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, | 
 |       WIENER_FILT_TAP2_SUBEXP_K, | 
 |       ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, | 
 |       wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV); | 
 |   if (wiener_win == WIENER_WIN) | 
 |     aom_write_primitive_refsubexpfin( | 
 |         wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, | 
 |         WIENER_FILT_TAP0_SUBEXP_K, | 
 |         ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, | 
 |         wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV); | 
 |   else | 
 |     assert(wiener_info->hfilter[0] == 0 && | 
 |            wiener_info->hfilter[WIENER_WIN - 1] == 0); | 
 |   aom_write_primitive_refsubexpfin( | 
 |       wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, | 
 |       WIENER_FILT_TAP1_SUBEXP_K, | 
 |       ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, | 
 |       wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV); | 
 |   aom_write_primitive_refsubexpfin( | 
 |       wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, | 
 |       WIENER_FILT_TAP2_SUBEXP_K, | 
 |       ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, | 
 |       wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV); | 
 |   memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info)); | 
 | } | 
 |  | 
 | static void write_sgrproj_filter(const SgrprojInfo *sgrproj_info, | 
 |                                  SgrprojInfo *ref_sgrproj_info, | 
 |                                  aom_writer *wb) { | 
 |   aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS); | 
 |   aom_write_primitive_refsubexpfin(wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, | 
 |                                    SGRPROJ_PRJ_SUBEXP_K, | 
 |                                    ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, | 
 |                                    sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0); | 
 |   aom_write_primitive_refsubexpfin(wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, | 
 |                                    SGRPROJ_PRJ_SUBEXP_K, | 
 |                                    ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, | 
 |                                    sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1); | 
 |   memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info)); | 
 | } | 
 |  | 
 | static void loop_restoration_write_sb_coeffs(const AV1_COMMON *const cm, | 
 |                                              MACROBLOCKD *xd, | 
 |                                              const RestorationUnitInfo *rui, | 
 |                                              aom_writer *const w, int plane) { | 
 |   const RestorationInfo *rsi = cm->rst_info + plane; | 
 |   RestorationType frame_rtype = rsi->frame_restoration_type; | 
 |   if (frame_rtype == RESTORE_NONE) return; | 
 |  | 
 |   const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN; | 
 |   WienerInfo *wiener_info = xd->wiener_info + plane; | 
 |   SgrprojInfo *sgrproj_info = xd->sgrproj_info + plane; | 
 |   RestorationType unit_rtype = rui->restoration_type; | 
 |  | 
 |   if (frame_rtype == RESTORE_SWITCHABLE) { | 
 |     aom_write_symbol(w, unit_rtype, xd->tile_ctx->switchable_restore_cdf, | 
 |                      RESTORE_SWITCHABLE_TYPES); | 
 |     switch (unit_rtype) { | 
 |       case RESTORE_WIENER: | 
 |         write_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, w); | 
 |         break; | 
 |       case RESTORE_SGRPROJ: | 
 |         write_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, w); | 
 |         break; | 
 |       default: assert(unit_rtype == RESTORE_NONE); break; | 
 |     } | 
 |   } else if (frame_rtype == RESTORE_WIENER) { | 
 |     aom_write_symbol(w, unit_rtype != RESTORE_NONE, | 
 |                      xd->tile_ctx->wiener_restore_cdf, 2); | 
 |     if (unit_rtype != RESTORE_NONE) { | 
 |       write_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, w); | 
 |     } | 
 |   } else if (frame_rtype == RESTORE_SGRPROJ) { | 
 |     aom_write_symbol(w, unit_rtype != RESTORE_NONE, | 
 |                      xd->tile_ctx->sgrproj_restore_cdf, 2); | 
 |     if (unit_rtype != RESTORE_NONE) { | 
 |       write_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, w); | 
 |     } | 
 |   } | 
 | } | 
 | #endif  // CONFIG_LOOP_RESTORATION | 
 |  | 
 | static void encode_loopfilter(AV1_COMMON *cm, struct aom_write_bit_buffer *wb) { | 
 |   const int num_planes = av1_num_planes(cm); | 
 | #if CONFIG_INTRABC | 
 |   if (cm->allow_intrabc && NO_FILTER_FOR_IBC) return; | 
 | #endif  // CONFIG_INTRABC | 
 |   int i; | 
 |   struct loopfilter *lf = &cm->lf; | 
 |  | 
 | // Encode the loop filter level and type | 
 | #if CONFIG_LOOPFILTER_LEVEL | 
 |   aom_wb_write_literal(wb, lf->filter_level[0], 6); | 
 |   aom_wb_write_literal(wb, lf->filter_level[1], 6); | 
 |   if (num_planes > 1) { | 
 |     if (lf->filter_level[0] || lf->filter_level[1]) { | 
 |       aom_wb_write_literal(wb, lf->filter_level_u, 6); | 
 |       aom_wb_write_literal(wb, lf->filter_level_v, 6); | 
 |     } | 
 |   } | 
 | #else | 
 |   aom_wb_write_literal(wb, lf->filter_level, 6); | 
 | #endif  // CONFIG_LOOPFILTER_LEVEL | 
 |   aom_wb_write_literal(wb, lf->sharpness_level, 3); | 
 |  | 
 |   // Write out loop filter deltas applied at the MB level based on mode or | 
 |   // ref frame (if they are enabled). | 
 |   aom_wb_write_bit(wb, lf->mode_ref_delta_enabled); | 
 |  | 
 |   if (lf->mode_ref_delta_enabled) { | 
 |     aom_wb_write_bit(wb, lf->mode_ref_delta_update); | 
 |     if (lf->mode_ref_delta_update) { | 
 |       for (i = 0; i < TOTAL_REFS_PER_FRAME; i++) { | 
 |         const int delta = lf->ref_deltas[i]; | 
 |         const int changed = delta != lf->last_ref_deltas[i]; | 
 |         aom_wb_write_bit(wb, changed); | 
 |         if (changed) { | 
 |           lf->last_ref_deltas[i] = delta; | 
 |           aom_wb_write_inv_signed_literal(wb, delta, 6); | 
 |         } | 
 |       } | 
 |  | 
 |       for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { | 
 |         const int delta = lf->mode_deltas[i]; | 
 |         const int changed = delta != lf->last_mode_deltas[i]; | 
 |         aom_wb_write_bit(wb, changed); | 
 |         if (changed) { | 
 |           lf->last_mode_deltas[i] = delta; | 
 |           aom_wb_write_inv_signed_literal(wb, delta, 6); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void encode_cdef(const AV1_COMMON *cm, struct aom_write_bit_buffer *wb) { | 
 |   const int num_planes = av1_num_planes(cm); | 
 | #if CONFIG_INTRABC | 
 |   if (cm->allow_intrabc && NO_FILTER_FOR_IBC) return; | 
 | #endif  // CONFIG_INTRABC | 
 |   int i; | 
 |   aom_wb_write_literal(wb, cm->cdef_pri_damping - 3, 2); | 
 |   assert(cm->cdef_pri_damping == cm->cdef_sec_damping); | 
 |   aom_wb_write_literal(wb, cm->cdef_bits, 2); | 
 |   for (i = 0; i < cm->nb_cdef_strengths; i++) { | 
 |     aom_wb_write_literal(wb, cm->cdef_strengths[i], CDEF_STRENGTH_BITS); | 
 |     if (num_planes > 1) | 
 |       aom_wb_write_literal(wb, cm->cdef_uv_strengths[i], CDEF_STRENGTH_BITS); | 
 |   } | 
 | } | 
 |  | 
 | static void write_delta_q(struct aom_write_bit_buffer *wb, int delta_q) { | 
 |   if (delta_q != 0) { | 
 |     aom_wb_write_bit(wb, 1); | 
 |     aom_wb_write_inv_signed_literal(wb, delta_q, 6); | 
 |   } else { | 
 |     aom_wb_write_bit(wb, 0); | 
 |   } | 
 | } | 
 |  | 
 | static void encode_quantization(const AV1_COMMON *const cm, | 
 |                                 struct aom_write_bit_buffer *wb) { | 
 |   const int num_planes = av1_num_planes(cm); | 
 |  | 
 |   aom_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS); | 
 |   write_delta_q(wb, cm->y_dc_delta_q); | 
 |   if (num_planes > 1) { | 
 |     int diff_uv_delta = (cm->u_dc_delta_q != cm->v_dc_delta_q) || | 
 |                         (cm->u_ac_delta_q != cm->v_ac_delta_q); | 
 | #if CONFIG_EXT_QM | 
 |     if (cm->separate_uv_delta_q) aom_wb_write_bit(wb, diff_uv_delta); | 
 | #else | 
 |     assert(!diff_uv_delta); | 
 | #endif | 
 |     write_delta_q(wb, cm->u_dc_delta_q); | 
 |     write_delta_q(wb, cm->u_ac_delta_q); | 
 |     if (diff_uv_delta) { | 
 |       write_delta_q(wb, cm->v_dc_delta_q); | 
 |       write_delta_q(wb, cm->v_ac_delta_q); | 
 |     } | 
 |   } | 
 | #if CONFIG_AOM_QM | 
 |   aom_wb_write_bit(wb, cm->using_qmatrix); | 
 |   if (cm->using_qmatrix) { | 
 | #if CONFIG_AOM_QM_EXT | 
 |     aom_wb_write_literal(wb, cm->qm_y, QM_LEVEL_BITS); | 
 |     aom_wb_write_literal(wb, cm->qm_u, QM_LEVEL_BITS); | 
 | #if CONFIG_EXT_QM | 
 |     if (!cm->separate_uv_delta_q) | 
 |       assert(cm->qm_u == cm->qm_v); | 
 |     else | 
 | #endif | 
 |       aom_wb_write_literal(wb, cm->qm_v, QM_LEVEL_BITS); | 
 | #else | 
 |     aom_wb_write_literal(wb, cm->min_qmlevel, QM_LEVEL_BITS); | 
 |     aom_wb_write_literal(wb, cm->max_qmlevel, QM_LEVEL_BITS); | 
 | #endif | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | static void encode_segmentation(AV1_COMMON *cm, MACROBLOCKD *xd, | 
 |                                 struct aom_write_bit_buffer *wb) { | 
 |   int i, j; | 
 |   const struct segmentation *seg = &cm->seg; | 
 |  | 
 |   aom_wb_write_bit(wb, seg->enabled); | 
 |   if (!seg->enabled) return; | 
 |  | 
 |   // Segmentation map | 
 |   if (!frame_is_intra_only(cm) && !cm->error_resilient_mode) { | 
 |     aom_wb_write_bit(wb, seg->update_map); | 
 |   } else { | 
 |     assert(seg->update_map == 1); | 
 |   } | 
 |   if (seg->update_map) { | 
 |     // Select the coding strategy (temporal or spatial) | 
 |     if (!cm->error_resilient_mode) av1_choose_segmap_coding_method(cm, xd); | 
 |  | 
 |     // Write out the chosen coding method. | 
 |     if (!frame_is_intra_only(cm) && !cm->error_resilient_mode) { | 
 |       aom_wb_write_bit(wb, seg->temporal_update); | 
 |     } else { | 
 |       assert(seg->temporal_update == 0); | 
 |     } | 
 |   } | 
 |  | 
 | #if CONFIG_SPATIAL_SEGMENTATION | 
 |   cm->preskip_segid = 0; | 
 | #endif | 
 |  | 
 |   // Segmentation data | 
 |   aom_wb_write_bit(wb, seg->update_data); | 
 |   if (seg->update_data) { | 
 |     for (i = 0; i < MAX_SEGMENTS; i++) { | 
 |       for (j = 0; j < SEG_LVL_MAX; j++) { | 
 |         const int active = segfeature_active(seg, i, j); | 
 |         aom_wb_write_bit(wb, active); | 
 |         if (active) { | 
 | #if CONFIG_SPATIAL_SEGMENTATION | 
 |           cm->preskip_segid |= j >= SEG_LVL_REF_FRAME; | 
 |           cm->last_active_segid = i; | 
 | #endif | 
 |           const int data_max = av1_seg_feature_data_max(j); | 
 |           const int data_min = -data_max; | 
 |           const int ubits = get_unsigned_bits(data_max); | 
 |           const int data = clamp(get_segdata(seg, i, j), data_min, data_max); | 
 |  | 
 |           if (av1_is_segfeature_signed(j)) { | 
 |             aom_wb_write_inv_signed_literal(wb, data, ubits); | 
 |           } else { | 
 |             aom_wb_write_literal(wb, data, ubits); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void write_tx_mode(AV1_COMMON *cm, TX_MODE *mode, | 
 |                           struct aom_write_bit_buffer *wb) { | 
 |   if (cm->all_lossless) { | 
 |     *mode = ONLY_4X4; | 
 |     return; | 
 |   } | 
 |   aom_wb_write_bit(wb, *mode == TX_MODE_SELECT); | 
 | } | 
 |  | 
 | static void write_frame_interp_filter(InterpFilter filter, | 
 |                                       struct aom_write_bit_buffer *wb) { | 
 |   aom_wb_write_bit(wb, filter == SWITCHABLE); | 
 |   if (filter != SWITCHABLE) | 
 |     aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS); | 
 | } | 
 |  | 
 | static void fix_interp_filter(AV1_COMMON *cm, FRAME_COUNTS *counts) { | 
 |   if (cm->interp_filter == SWITCHABLE) { | 
 |     // Check to see if only one of the filters is actually used | 
 |     int count[SWITCHABLE_FILTERS]; | 
 |     int i, j, c = 0; | 
 |     for (i = 0; i < SWITCHABLE_FILTERS; ++i) { | 
 |       count[i] = 0; | 
 |       for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) | 
 |         count[i] += counts->switchable_interp[j][i]; | 
 |       c += (count[i] > 0); | 
 |     } | 
 |     if (c == 1) { | 
 |       // Only one filter is used. So set the filter at frame level | 
 |       for (i = 0; i < SWITCHABLE_FILTERS; ++i) { | 
 |         if (count[i]) { | 
 |           if (i == EIGHTTAP_REGULAR || WARP_WM_NEIGHBORS_WITH_OBMC) | 
 |             cm->interp_filter = i; | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_MAX_TILE | 
 |  | 
 | // Same function as write_uniform but writing to uncompresses header wb | 
 | static void wb_write_uniform(struct aom_write_bit_buffer *wb, int n, int v) { | 
 |   const int l = get_unsigned_bits(n); | 
 |   const int m = (1 << l) - n; | 
 |   if (l == 0) return; | 
 |   if (v < m) { | 
 |     aom_wb_write_literal(wb, v, l - 1); | 
 |   } else { | 
 |     aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1); | 
 |     aom_wb_write_literal(wb, (v - m) & 1, 1); | 
 |   } | 
 | } | 
 |  | 
 | static void write_tile_info_max_tile(const AV1_COMMON *const cm, | 
 |                                      struct aom_write_bit_buffer *wb) { | 
 |   int width_mi = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2); | 
 |   int height_mi = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2); | 
 |   int width_sb = width_mi >> cm->seq_params.mib_size_log2; | 
 |   int height_sb = height_mi >> cm->seq_params.mib_size_log2; | 
 |   int size_sb, i; | 
 |  | 
 |   aom_wb_write_bit(wb, cm->uniform_tile_spacing_flag); | 
 |  | 
 |   if (cm->uniform_tile_spacing_flag) { | 
 |     // Uniform spaced tiles with power-of-two number of rows and columns | 
 |     // tile columns | 
 |     int ones = cm->log2_tile_cols - cm->min_log2_tile_cols; | 
 |     while (ones--) { | 
 |       aom_wb_write_bit(wb, 1); | 
 |     } | 
 |     if (cm->log2_tile_cols < cm->max_log2_tile_cols) { | 
 |       aom_wb_write_bit(wb, 0); | 
 |     } | 
 |  | 
 |     // rows | 
 |     ones = cm->log2_tile_rows - cm->min_log2_tile_rows; | 
 |     while (ones--) { | 
 |       aom_wb_write_bit(wb, 1); | 
 |     } | 
 |     if (cm->log2_tile_rows < cm->max_log2_tile_rows) { | 
 |       aom_wb_write_bit(wb, 0); | 
 |     } | 
 |   } else { | 
 |     // Explicit tiles with configurable tile widths and heights | 
 |     // columns | 
 |     for (i = 0; i < cm->tile_cols; i++) { | 
 |       size_sb = cm->tile_col_start_sb[i + 1] - cm->tile_col_start_sb[i]; | 
 |       wb_write_uniform(wb, AOMMIN(width_sb, MAX_TILE_WIDTH_SB), size_sb - 1); | 
 |       width_sb -= size_sb; | 
 |     } | 
 |     assert(width_sb == 0); | 
 |  | 
 |     // rows | 
 |     for (i = 0; i < cm->tile_rows; i++) { | 
 |       size_sb = cm->tile_row_start_sb[i + 1] - cm->tile_row_start_sb[i]; | 
 |       wb_write_uniform(wb, AOMMIN(height_sb, cm->max_tile_height_sb), | 
 |                        size_sb - 1); | 
 |       height_sb -= size_sb; | 
 |     } | 
 |     assert(height_sb == 0); | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 | static void write_tile_info(const AV1_COMMON *const cm, | 
 |                             struct aom_write_bit_buffer *wb) { | 
 | #if CONFIG_EXT_TILE | 
 |   if (cm->large_scale_tile) { | 
 |     const int tile_width = | 
 |         ALIGN_POWER_OF_TWO(cm->tile_width, cm->seq_params.mib_size_log2) >> | 
 |         cm->seq_params.mib_size_log2; | 
 |     const int tile_height = | 
 |         ALIGN_POWER_OF_TWO(cm->tile_height, cm->seq_params.mib_size_log2) >> | 
 |         cm->seq_params.mib_size_log2; | 
 |  | 
 |     assert(tile_width > 0); | 
 |     assert(tile_height > 0); | 
 |  | 
 | // Write the tile sizes | 
 | #if CONFIG_EXT_PARTITION | 
 |     if (cm->seq_params.sb_size == BLOCK_128X128) { | 
 |       assert(tile_width <= 32); | 
 |       assert(tile_height <= 32); | 
 |       aom_wb_write_literal(wb, tile_width - 1, 5); | 
 |       aom_wb_write_literal(wb, tile_height - 1, 5); | 
 |     } else { | 
 | #endif  // CONFIG_EXT_PARTITION | 
 |       assert(tile_width <= 64); | 
 |       assert(tile_height <= 64); | 
 |       aom_wb_write_literal(wb, tile_width - 1, 6); | 
 |       aom_wb_write_literal(wb, tile_height - 1, 6); | 
 | #if CONFIG_EXT_PARTITION | 
 |     } | 
 | #endif  // CONFIG_EXT_PARTITION | 
 |   } else { | 
 | #endif  // CONFIG_EXT_TILE | 
 |  | 
 | #if CONFIG_MAX_TILE | 
 |     write_tile_info_max_tile(cm, wb); | 
 | #else | 
 |   int min_log2_tile_cols, max_log2_tile_cols, ones; | 
 |   av1_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); | 
 |  | 
 |   // columns | 
 |   ones = cm->log2_tile_cols - min_log2_tile_cols; | 
 |   while (ones--) aom_wb_write_bit(wb, 1); | 
 |  | 
 |   if (cm->log2_tile_cols < max_log2_tile_cols) aom_wb_write_bit(wb, 0); | 
 |  | 
 |   // rows | 
 |   aom_wb_write_bit(wb, cm->log2_tile_rows != 0); | 
 |   if (cm->log2_tile_rows != 0) aom_wb_write_bit(wb, cm->log2_tile_rows != 1); | 
 | #endif | 
 | #if CONFIG_DEPENDENT_HORZTILES | 
 |     if (cm->tile_rows > 1) aom_wb_write_bit(wb, cm->dependent_horz_tiles); | 
 | #endif | 
 | #if CONFIG_EXT_TILE | 
 |   } | 
 | #endif  // CONFIG_EXT_TILE | 
 |  | 
 | #if CONFIG_LOOPFILTERING_ACROSS_TILES | 
 | #if CONFIG_LOOPFILTERING_ACROSS_TILES_EXT | 
 |   if (cm->tile_cols > 1) { | 
 |     aom_wb_write_bit(wb, cm->loop_filter_across_tiles_v_enabled); | 
 |   } | 
 |   if (cm->tile_rows > 1) { | 
 |     aom_wb_write_bit(wb, cm->loop_filter_across_tiles_h_enabled); | 
 |   } | 
 | #else | 
 |   if (cm->tile_cols * cm->tile_rows > 1) | 
 |     aom_wb_write_bit(wb, cm->loop_filter_across_tiles_enabled); | 
 | #endif  // CONFIG_LOOPFILTERING_ACROSS_TILES_EXT | 
 | #endif  // CONFIG_LOOPFILTERING_ACROSS_TILES | 
 |  | 
 | #if CONFIG_TILE_INFO_FIRST | 
 |   // write the tile length code  (Always 4 bytes for now) | 
 |   aom_wb_write_literal(wb, 3, 2); | 
 | #endif | 
 | } | 
 |  | 
 | #if USE_GF16_MULTI_LAYER | 
 | static int get_refresh_mask_gf16(AV1_COMP *cpi) { | 
 |   int refresh_mask = 0; | 
 |  | 
 |   if (cpi->refresh_last_frame || cpi->refresh_golden_frame || | 
 |       cpi->refresh_bwd_ref_frame || cpi->refresh_alt2_ref_frame || | 
 |       cpi->refresh_alt_ref_frame) { | 
 |     assert(cpi->refresh_fb_idx >= 0 && cpi->refresh_fb_idx < REF_FRAMES); | 
 |     refresh_mask |= (1 << cpi->refresh_fb_idx); | 
 |   } | 
 |  | 
 |   return refresh_mask; | 
 | } | 
 | #endif  // USE_GF16_MULTI_LAYER | 
 |  | 
 | static int get_refresh_mask(AV1_COMP *cpi) { | 
 |   int refresh_mask = 0; | 
 | #if USE_GF16_MULTI_LAYER | 
 |   if (cpi->rc.baseline_gf_interval == 16) return get_refresh_mask_gf16(cpi); | 
 | #endif  // USE_GF16_MULTI_LAYER | 
 |  | 
 |   // NOTE(zoeliu): When LAST_FRAME is to get refreshed, the decoder will be | 
 |   // notified to get LAST3_FRAME refreshed and then the virtual indexes for all | 
 |   // the 3 LAST reference frames will be updated accordingly, i.e.: | 
 |   // (1) The original virtual index for LAST3_FRAME will become the new virtual | 
 |   //     index for LAST_FRAME; and | 
 |   // (2) The original virtual indexes for LAST_FRAME and LAST2_FRAME will be | 
 |   //     shifted and become the new virtual indexes for LAST2_FRAME and | 
 |   //     LAST3_FRAME. | 
 |   refresh_mask |= | 
 |       (cpi->refresh_last_frame << cpi->lst_fb_idxes[LAST_REF_FRAMES - 1]); | 
 |  | 
 |   refresh_mask |= (cpi->refresh_bwd_ref_frame << cpi->bwd_fb_idx); | 
 |   refresh_mask |= (cpi->refresh_alt2_ref_frame << cpi->alt2_fb_idx); | 
 |  | 
 |   if (av1_preserve_existing_gf(cpi)) { | 
 |     // We have decided to preserve the previously existing golden frame as our | 
 |     // new ARF frame. However, in the short term we leave it in the GF slot and, | 
 |     // if we're updating the GF with the current decoded frame, we save it | 
 |     // instead to the ARF slot. | 
 |     // Later, in the function av1_encoder.c:av1_update_reference_frames() we | 
 |     // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it | 
 |     // there so that it can be done outside of the recode loop. | 
 |     // Note: This is highly specific to the use of ARF as a forward reference, | 
 |     // and this needs to be generalized as other uses are implemented | 
 |     // (like RTC/temporal scalability). | 
 |     return refresh_mask | (cpi->refresh_golden_frame << cpi->alt_fb_idx); | 
 |   } else { | 
 |     const int arf_idx = cpi->alt_fb_idx; | 
 |     return refresh_mask | (cpi->refresh_golden_frame << cpi->gld_fb_idx) | | 
 |            (cpi->refresh_alt_ref_frame << arf_idx); | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_EXT_TILE | 
 | static INLINE int find_identical_tile( | 
 |     const int tile_row, const int tile_col, | 
 |     TileBufferEnc (*const tile_buffers)[1024]) { | 
 |   const MV32 candidate_offset[1] = { { 1, 0 } }; | 
 |   const uint8_t *const cur_tile_data = | 
 |       tile_buffers[tile_row][tile_col].data + 4; | 
 |   const size_t cur_tile_size = tile_buffers[tile_row][tile_col].size; | 
 |  | 
 |   int i; | 
 |  | 
 |   if (tile_row == 0) return 0; | 
 |  | 
 |   // (TODO: yunqingwang) For now, only above tile is checked and used. | 
 |   // More candidates such as left tile can be added later. | 
 |   for (i = 0; i < 1; i++) { | 
 |     int row_offset = candidate_offset[0].row; | 
 |     int col_offset = candidate_offset[0].col; | 
 |     int row = tile_row - row_offset; | 
 |     int col = tile_col - col_offset; | 
 |     uint8_t tile_hdr; | 
 |     const uint8_t *tile_data; | 
 |     TileBufferEnc *candidate; | 
 |  | 
 |     if (row < 0 || col < 0) continue; | 
 |  | 
 |     tile_hdr = *(tile_buffers[row][col].data); | 
 |  | 
 |     // Read out tcm bit | 
 |     if ((tile_hdr >> 7) == 1) { | 
 |       // The candidate is a copy tile itself | 
 |       row_offset += tile_hdr & 0x7f; | 
 |       row = tile_row - row_offset; | 
 |     } | 
 |  | 
 |     candidate = &tile_buffers[row][col]; | 
 |  | 
 |     if (row_offset >= 128 || candidate->size != cur_tile_size) continue; | 
 |  | 
 |     tile_data = candidate->data + 4; | 
 |  | 
 |     if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue; | 
 |  | 
 |     // Identical tile found | 
 |     assert(row_offset > 0); | 
 |     return row_offset; | 
 |   } | 
 |  | 
 |   // No identical tile found | 
 |   return 0; | 
 | } | 
 | #endif  // CONFIG_EXT_TILE | 
 |  | 
 | #if !CONFIG_OBU | 
 | static uint32_t write_tiles(AV1_COMP *const cpi, uint8_t *const dst, | 
 |                             unsigned int *max_tile_size, | 
 |                             unsigned int *max_tile_col_size) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   aom_writer mode_bc; | 
 |   int tile_row, tile_col; | 
 |   TOKENEXTRA *(*const tok_buffers)[MAX_TILE_COLS] = cpi->tile_tok; | 
 |   TileBufferEnc(*const tile_buffers)[MAX_TILE_COLS] = cpi->tile_buffers; | 
 |   uint32_t total_size = 0; | 
 |   const int tile_cols = cm->tile_cols; | 
 |   const int tile_rows = cm->tile_rows; | 
 |   unsigned int tile_size = 0; | 
 |   const int have_tiles = tile_cols * tile_rows > 1; | 
 |   struct aom_write_bit_buffer wb = { dst, 0 }; | 
 |   const int n_log2_tiles = cm->log2_tile_rows + cm->log2_tile_cols; | 
 |   // Fixed size tile groups for the moment | 
 |   const int num_tg_hdrs = cm->num_tg; | 
 |   const int tg_size = | 
 | #if CONFIG_EXT_TILE | 
 |       (cm->large_scale_tile) | 
 |           ? 1 | 
 |           : | 
 | #endif  // CONFIG_EXT_TILE | 
 |           (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs; | 
 |   int tile_count = 0; | 
 |   int tg_count = 1; | 
 |   int tile_size_bytes = 4; | 
 |   int tile_col_size_bytes; | 
 |   uint32_t uncompressed_hdr_size = 0; | 
 |   struct aom_write_bit_buffer tg_params_wb; | 
 |   struct aom_write_bit_buffer tile_size_bytes_wb; | 
 |   uint32_t saved_offset; | 
 |   int mtu_size = cpi->oxcf.mtu; | 
 |   int curr_tg_data_size = 0; | 
 |   int hdr_size; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |  | 
 |   *max_tile_size = 0; | 
 |   *max_tile_col_size = 0; | 
 |  | 
 |   // All tile size fields are output on 4 bytes. A call to remux_tiles will | 
 |   // later compact the data if smaller headers are adequate. | 
 |  | 
 |   cm->largest_tile_id = 0; | 
 |  | 
 | #if CONFIG_EXT_TILE | 
 |   if (cm->large_scale_tile) { | 
 |     for (tile_col = 0; tile_col < tile_cols; tile_col++) { | 
 |       TileInfo tile_info; | 
 |       const int is_last_col = (tile_col == tile_cols - 1); | 
 |       const uint32_t col_offset = total_size; | 
 |  | 
 |       av1_tile_set_col(&tile_info, cm, tile_col); | 
 |  | 
 |       // The last column does not have a column header | 
 |       if (!is_last_col) total_size += 4; | 
 |  | 
 |       for (tile_row = 0; tile_row < tile_rows; tile_row++) { | 
 |         TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col]; | 
 |         const TOKENEXTRA *tok = tok_buffers[tile_row][tile_col]; | 
 |         const TOKENEXTRA *tok_end = tok + cpi->tok_count[tile_row][tile_col]; | 
 |         const int data_offset = have_tiles ? 4 : 0; | 
 |         const int tile_idx = tile_row * tile_cols + tile_col; | 
 |         TileDataEnc *this_tile = &cpi->tile_data[tile_idx]; | 
 |         av1_tile_set_row(&tile_info, cm, tile_row); | 
 |  | 
 |         buf->data = dst + total_size; | 
 |  | 
 |         // Is CONFIG_EXT_TILE = 1, every tile in the row has a header, | 
 |         // even for the last one, unless no tiling is used at all. | 
 |         total_size += data_offset; | 
 |         // Initialise tile context from the frame context | 
 |         this_tile->tctx = *cm->fc; | 
 |         cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx; | 
 |         mode_bc.allow_update_cdf = !cm->large_scale_tile; | 
 | #if CONFIG_LOOP_RESTORATION | 
 |         av1_reset_loop_restoration(&cpi->td.mb.e_mbd, num_planes); | 
 | #endif  // CONFIG_LOOP_RESTORATION | 
 |  | 
 |         aom_start_encode(&mode_bc, buf->data + data_offset); | 
 |         write_modes(cpi, &tile_info, &mode_bc, &tok, tok_end); | 
 |         assert(tok == tok_end); | 
 |         aom_stop_encode(&mode_bc); | 
 |         tile_size = mode_bc.pos; | 
 |         buf->size = tile_size; | 
 |  | 
 |         if (tile_size > *max_tile_size) { | 
 |           cm->largest_tile_id = tile_cols * tile_row + tile_col; | 
 |         } | 
 |         // Record the maximum tile size we see, so we can compact headers later. | 
 |         *max_tile_size = AOMMAX(*max_tile_size, tile_size); | 
 |  | 
 |         if (have_tiles) { | 
 |           // tile header: size of this tile, or copy offset | 
 |           uint32_t tile_header = tile_size; | 
 |           const int tile_copy_mode = | 
 |               ((AOMMAX(cm->tile_width, cm->tile_height) << MI_SIZE_LOG2) <= 256) | 
 |                   ? 1 | 
 |                   : 0; | 
 |  | 
 |           // If tile_copy_mode = 1, check if this tile is a copy tile. | 
 |           // Very low chances to have copy tiles on the key frames, so don't | 
 |           // search on key frames to reduce unnecessary search. | 
 |           if (cm->frame_type != KEY_FRAME && tile_copy_mode) { | 
 |             const int idendical_tile_offset = | 
 |                 find_identical_tile(tile_row, tile_col, tile_buffers); | 
 |  | 
 |             if (idendical_tile_offset > 0) { | 
 |               tile_size = 0; | 
 |               tile_header = idendical_tile_offset | 0x80; | 
 |               tile_header <<= 24; | 
 |             } | 
 |           } | 
 |  | 
 |           mem_put_le32(buf->data, tile_header); | 
 |         } | 
 |  | 
 |         total_size += tile_size; | 
 |       } | 
 |  | 
 |       if (!is_last_col) { | 
 |         uint32_t col_size = total_size - col_offset - 4; | 
 |         mem_put_le32(dst + col_offset, col_size); | 
 |  | 
 |         // If it is not final packing, record the maximum tile column size we | 
 |         // see, otherwise, check if the tile size is out of the range. | 
 |         *max_tile_col_size = AOMMAX(*max_tile_col_size, col_size); | 
 |       } | 
 |     } | 
 |   } else { | 
 | #endif  // CONFIG_EXT_TILE | 
 |  | 
 | #if !CONFIG_OBU | 
 |     write_uncompressed_header_frame(cpi, &wb); | 
 | #else | 
 |   write_uncompressed_header_obu(cpi, &wb); | 
 | #endif | 
 |  | 
 |     if (cm->show_existing_frame) { | 
 |       total_size = aom_wb_bytes_written(&wb); | 
 |       return (uint32_t)total_size; | 
 |     } | 
 |  | 
 |     // Write the tile length code | 
 |     tile_size_bytes_wb = wb; | 
 |     aom_wb_write_literal(&wb, 3, 2); | 
 |  | 
 |     /* Write a placeholder for the number of tiles in each tile group */ | 
 |     tg_params_wb = wb; | 
 |     saved_offset = wb.bit_offset; | 
 |     if (have_tiles) { | 
 |       aom_wb_write_literal(&wb, 3, n_log2_tiles); | 
 |       aom_wb_write_literal(&wb, (1 << n_log2_tiles) - 1, n_log2_tiles); | 
 |     } | 
 |  | 
 |     uncompressed_hdr_size = aom_wb_bytes_written(&wb); | 
 |     hdr_size = uncompressed_hdr_size; | 
 |     total_size += hdr_size; | 
 |  | 
 |     for (tile_row = 0; tile_row < tile_rows; tile_row++) { | 
 |       TileInfo tile_info; | 
 |       const int is_last_row = (tile_row == tile_rows - 1); | 
 |       av1_tile_set_row(&tile_info, cm, tile_row); | 
 |  | 
 |       for (tile_col = 0; tile_col < tile_cols; tile_col++) { | 
 |         const int tile_idx = tile_row * tile_cols + tile_col; | 
 |         TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col]; | 
 |         TileDataEnc *this_tile = &cpi->tile_data[tile_idx]; | 
 |         const TOKENEXTRA *tok = tok_buffers[tile_row][tile_col]; | 
 |         const TOKENEXTRA *tok_end = tok + cpi->tok_count[tile_row][tile_col]; | 
 |         const int is_last_col = (tile_col == tile_cols - 1); | 
 |         const int is_last_tile = is_last_col && is_last_row; | 
 |  | 
 |         if ((!mtu_size && tile_count > tg_size) || | 
 |             (mtu_size && tile_count && curr_tg_data_size >= mtu_size)) { | 
 |           // New tile group | 
 |           tg_count++; | 
 |           // We've exceeded the packet size | 
 |           if (tile_count > 1) { | 
 |             /* The last tile exceeded the packet size. The tile group size | 
 |                should therefore be tile_count-1. | 
 |                Move the last tile and insert headers before it | 
 |              */ | 
 |             uint32_t old_total_size = total_size - tile_size - 4; | 
 |             memmove(dst + old_total_size + hdr_size, dst + old_total_size, | 
 |                     (tile_size + 4) * sizeof(uint8_t)); | 
 |             // Copy uncompressed header | 
 |             memmove(dst + old_total_size, dst, | 
 |                     uncompressed_hdr_size * sizeof(uint8_t)); | 
 |             // Write the number of tiles in the group into the last uncompressed | 
 |             // header before the one we've just inserted | 
 |             aom_wb_overwrite_literal(&tg_params_wb, tile_idx - tile_count, | 
 |                                      n_log2_tiles); | 
 |             aom_wb_overwrite_literal(&tg_params_wb, tile_count - 2, | 
 |                                      n_log2_tiles); | 
 |             // Update the pointer to the last TG params | 
 |             tg_params_wb.bit_offset = saved_offset + 8 * old_total_size; | 
 |             total_size += hdr_size; | 
 |             tile_count = 1; | 
 |             curr_tg_data_size = hdr_size + tile_size + 4; | 
 |           } else { | 
 |             // We exceeded the packet size in just one tile | 
 |             // Copy uncompressed header | 
 |             memmove(dst + total_size, dst, | 
 |                     uncompressed_hdr_size * sizeof(uint8_t)); | 
 |             // Write the number of tiles in the group into the last uncompressed | 
 |             // header | 
 |             aom_wb_overwrite_literal(&tg_params_wb, tile_idx - tile_count, | 
 |                                      n_log2_tiles); | 
 |             aom_wb_overwrite_literal(&tg_params_wb, tile_count - 1, | 
 |                                      n_log2_tiles); | 
 |             tg_params_wb.bit_offset = saved_offset + 8 * total_size; | 
 |             total_size += hdr_size; | 
 |             tile_count = 0; | 
 |             curr_tg_data_size = hdr_size; | 
 |           } | 
 |         } | 
 |         tile_count++; | 
 |         av1_tile_set_col(&tile_info, cm, tile_col); | 
 |  | 
 | #if CONFIG_DEPENDENT_HORZTILES | 
 |         av1_tile_set_tg_boundary(&tile_info, cm, tile_row, tile_col); | 
 | #endif | 
 |         buf->data = dst + total_size; | 
 |  | 
 |         // The last tile does not have a header. | 
 |         if (!is_last_tile) total_size += 4; | 
 |  | 
 |         // Initialise tile context from the frame context | 
 |         this_tile->tctx = *cm->fc; | 
 |         cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx; | 
 |         mode_bc.allow_update_cdf = 1; | 
 | #if CONFIG_LOOP_RESTORATION | 
 |         av1_reset_loop_restoration(&cpi->td.mb.e_mbd, num_planes); | 
 | #endif  // CONFIG_LOOP_RESTORATION | 
 |  | 
 |         aom_start_encode(&mode_bc, dst + total_size); | 
 |         write_modes(cpi, &tile_info, &mode_bc, &tok, tok_end); | 
 | #if !CONFIG_LV_MAP | 
 |         assert(tok == tok_end); | 
 | #endif  // !CONFIG_LV_MAP | 
 |         aom_stop_encode(&mode_bc); | 
 |         tile_size = mode_bc.pos; | 
 |         assert(tile_size > 0); | 
 |  | 
 |         curr_tg_data_size += tile_size + 4; | 
 |         buf->size = tile_size; | 
 |  | 
 |         if (tile_size > *max_tile_size) { | 
 |           cm->largest_tile_id = tile_cols * tile_row + tile_col; | 
 |         } | 
 |         if (!is_last_tile) { | 
 |           *max_tile_size = AOMMAX(*max_tile_size, tile_size); | 
 |           // size of this tile | 
 |           mem_put_le32(buf->data, tile_size); | 
 |         } | 
 |  | 
 |         total_size += tile_size; | 
 |       } | 
 |     } | 
 |     // Write the final tile group size | 
 |     if (n_log2_tiles) { | 
 |       aom_wb_overwrite_literal( | 
 |           &tg_params_wb, (tile_cols * tile_rows) - tile_count, n_log2_tiles); | 
 |       aom_wb_overwrite_literal(&tg_params_wb, tile_count - 1, n_log2_tiles); | 
 |     } | 
 |     // Remux if possible. TODO (Thomas Davies): do this for more than one tile | 
 |     // group | 
 |     if (have_tiles && tg_count == 1) { | 
 |       int data_size = total_size - uncompressed_hdr_size; | 
 |       data_size = remux_tiles(cm, dst + uncompressed_hdr_size, data_size, | 
 |                               *max_tile_size, *max_tile_col_size, | 
 |                               &tile_size_bytes, &tile_col_size_bytes); | 
 |       total_size = data_size + uncompressed_hdr_size; | 
 |       aom_wb_overwrite_literal(&tile_size_bytes_wb, tile_size_bytes - 1, 2); | 
 |     } | 
 |  | 
 | #if CONFIG_EXT_TILE | 
 |   } | 
 | #endif  // CONFIG_EXT_TILE | 
 |   return (uint32_t)total_size; | 
 | } | 
 | #endif | 
 |  | 
 | static void write_render_size(const AV1_COMMON *cm, | 
 |                               struct aom_write_bit_buffer *wb) { | 
 |   const int scaling_active = !av1_resize_unscaled(cm); | 
 |   aom_wb_write_bit(wb, scaling_active); | 
 |   if (scaling_active) { | 
 |     aom_wb_write_literal(wb, cm->render_width - 1, 16); | 
 |     aom_wb_write_literal(wb, cm->render_height - 1, 16); | 
 |   } | 
 | } | 
 |  | 
 | #if CONFIG_HORZONLY_FRAME_SUPERRES | 
 | static void write_superres_scale(const AV1_COMMON *const cm, | 
 |                                  struct aom_write_bit_buffer *wb) { | 
 |   // First bit is whether to to scale or not | 
 |   if (cm->superres_scale_denominator == SCALE_NUMERATOR) { | 
 |     aom_wb_write_bit(wb, 0);  // no scaling | 
 |   } else { | 
 |     aom_wb_write_bit(wb, 1);  // scaling, write scale factor | 
 |     assert(cm->superres_scale_denominator >= SUPERRES_SCALE_DENOMINATOR_MIN); | 
 |     assert(cm->superres_scale_denominator < | 
 |            SUPERRES_SCALE_DENOMINATOR_MIN + (1 << SUPERRES_SCALE_BITS)); | 
 |     aom_wb_write_literal( | 
 |         wb, cm->superres_scale_denominator - SUPERRES_SCALE_DENOMINATOR_MIN, | 
 |         SUPERRES_SCALE_BITS); | 
 |   } | 
 | } | 
 | #endif  // CONFIG_HORZONLY_FRAME_SUPERRES | 
 |  | 
 | #if CONFIG_FRAME_SIZE | 
 | static void write_frame_size(const AV1_COMMON *cm, int frame_size_override, | 
 |                              struct aom_write_bit_buffer *wb) | 
 | #else | 
 | static void write_frame_size(const AV1_COMMON *cm, | 
 |                              struct aom_write_bit_buffer *wb) | 
 | #endif | 
 | { | 
 | #if CONFIG_HORZONLY_FRAME_SUPERRES | 
 |   const int coded_width = cm->superres_upscaled_width - 1; | 
 |   const int coded_height = cm->superres_upscaled_height - 1; | 
 | #else | 
 |   const int coded_width = cm->width - 1; | 
 |   const int coded_height = cm->height - 1; | 
 | #endif  // CONFIG_HORZONLY_FRAME_SUPERRES | 
 |  | 
 | #if CONFIG_FRAME_SIZE | 
 |   if (frame_size_override) { | 
 |     const SequenceHeader *seq_params = &cm->seq_params; | 
 |     int num_bits_width = seq_params->num_bits_width; | 
 |     int num_bits_height = seq_params->num_bits_height; | 
 |     aom_wb_write_literal(wb, coded_width, num_bits_width); | 
 |     aom_wb_write_literal(wb, coded_height, num_bits_height); | 
 |   } | 
 | #else | 
 |   aom_wb_write_literal(wb, coded_width, 16); | 
 |   aom_wb_write_literal(wb, coded_height, 16); | 
 | #endif | 
 |  | 
 | #if CONFIG_HORZONLY_FRAME_SUPERRES | 
 |   write_superres_scale(cm, wb); | 
 | #endif  // CONFIG_HORZONLY_FRAME_SUPERRES | 
 |   write_render_size(cm, wb); | 
 | } | 
 |  | 
 | static void write_frame_size_with_refs(AV1_COMP *cpi, | 
 |                                        struct aom_write_bit_buffer *wb) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   int found = 0; | 
 |  | 
 |   MV_REFERENCE_FRAME ref_frame; | 
 |   for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { | 
 |     YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame); | 
 |  | 
 |     if (cfg != NULL) { | 
 | #if CONFIG_HORZONLY_FRAME_SUPERRES | 
 |       found = cm->superres_upscaled_width == cfg->y_crop_width && | 
 |               cm->superres_upscaled_height == cfg->y_crop_height; | 
 | #else | 
 |       found = | 
 |           cm->width == cfg->y_crop_width && cm->height == cfg->y_crop_height; | 
 | #endif  // CONFIG_HORZONLY_FRAME_SUPERRES | 
 |       found &= cm->render_width == cfg->render_width && | 
 |                cm->render_height == cfg->render_height; | 
 |     } | 
 |     aom_wb_write_bit(wb, found); | 
 |     if (found) { | 
 | #if CONFIG_HORZONLY_FRAME_SUPERRES | 
 |       write_superres_scale(cm, wb); | 
 | #endif  // CONFIG_HORZONLY_FRAME_SUPERRES | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 | #if CONFIG_FRAME_SIZE | 
 |   if (!found) { | 
 |     int frame_size_override = 1;  // Allways equal to 1 in this function | 
 |     write_frame_size(cm, frame_size_override, wb); | 
 |   } | 
 | #else | 
 |   if (!found) write_frame_size(cm, wb); | 
 | #endif | 
 | } | 
 |  | 
 | static void write_profile(BITSTREAM_PROFILE profile, | 
 |                           struct aom_write_bit_buffer *wb) { | 
 |   assert(profile >= PROFILE_0 && profile < MAX_PROFILES); | 
 |   aom_wb_write_literal(wb, profile, 2); | 
 | } | 
 |  | 
 | static void write_bitdepth(AV1_COMMON *const cm, | 
 |                            struct aom_write_bit_buffer *wb) { | 
 |   // Profile 0/1: [0] for 8 bit, [1]  10-bit | 
 |   // Profile   2: [0] for 8 bit, [10] 10-bit, [11] - 12-bit | 
 |   aom_wb_write_bit(wb, cm->bit_depth == AOM_BITS_8 ? 0 : 1); | 
 |   if (cm->profile == PROFILE_2 && cm->bit_depth != AOM_BITS_8) { | 
 |     aom_wb_write_bit(wb, cm->bit_depth == AOM_BITS_10 ? 0 : 1); | 
 |   } | 
 | } | 
 |  | 
 | static void write_bitdepth_colorspace_sampling( | 
 |     AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) { | 
 |   write_bitdepth(cm, wb); | 
 | #if CONFIG_MONO_VIDEO | 
 |   const int is_monochrome = cm->seq_params.monochrome; | 
 |   // monochrome bit | 
 |   if (cm->profile != PROFILE_1) | 
 |     aom_wb_write_bit(wb, is_monochrome); | 
 |   else | 
 |     assert(!is_monochrome); | 
 | #elif !CONFIG_CICP | 
 |   const int is_monochrome = 0; | 
 | #endif  // CONFIG_MONO_VIDEO | 
 | #if CONFIG_CICP | 
 |   if (cm->color_primaries == AOM_CICP_CP_UNSPECIFIED && | 
 |       cm->transfer_characteristics == AOM_CICP_TC_UNSPECIFIED && | 
 |       cm->matrix_coefficients == AOM_CICP_MC_UNSPECIFIED) { | 
 |     aom_wb_write_bit(wb, 0);  // No color description present | 
 |   } else { | 
 |     aom_wb_write_bit(wb, 1);  // Color description present | 
 |     aom_wb_write_literal(wb, cm->color_primaries, 8); | 
 |     aom_wb_write_literal(wb, cm->transfer_characteristics, 8); | 
 |     aom_wb_write_literal(wb, cm->matrix_coefficients, 8); | 
 |   } | 
 | #else | 
 | #if CONFIG_COLORSPACE_HEADERS | 
 |   if (!is_monochrome) aom_wb_write_literal(wb, cm->color_space, 5); | 
 |   aom_wb_write_literal(wb, cm->transfer_function, 5); | 
 | #else | 
 |   if (!is_monochrome) aom_wb_write_literal(wb, cm->color_space, 4); | 
 | #endif  // CONFIG_COLORSPACE_HEADERS | 
 | #endif  // CONFIG_CICP | 
 | #if CONFIG_MONO_VIDEO | 
 |   if (is_monochrome) return; | 
 | #endif  // CONFIG_MONO_VIDEO | 
 | #if CONFIG_CICP | 
 |   if (cm->color_primaries == AOM_CICP_CP_BT_709 && | 
 |       cm->transfer_characteristics == AOM_CICP_TC_SRGB && | 
 |       cm->matrix_coefficients == | 
 |           AOM_CICP_MC_IDENTITY) {  // it would be better to remove this | 
 |                                    // dependency too | 
 | #else | 
 |   if (cm->color_space == AOM_CS_SRGB) { | 
 | #endif  // CONFIG_CICP | 
 |     assert(cm->subsampling_x == 0 && cm->subsampling_y == 0); | 
 |     assert(cm->profile == PROFILE_1 || | 
 |            (cm->profile == PROFILE_2 && cm->bit_depth == AOM_BITS_12)); | 
 |   } else { | 
 |     // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] | 
 |     aom_wb_write_bit(wb, cm->color_range); | 
 |     if (cm->profile == PROFILE_0) { | 
 |       // 420 only | 
 |       assert(cm->subsampling_x == 1 && cm->subsampling_y == 1); | 
 |     } else if (cm->profile == PROFILE_1) { | 
 |       // 444 only | 
 |       assert(cm->subsampling_x == 0 && cm->subsampling_y == 0); | 
 |     } else if (cm->profile == PROFILE_2) { | 
 |       if (cm->bit_depth == AOM_BITS_12) { | 
 |         // 420, 444 or 422 | 
 |         aom_wb_write_bit(wb, cm->subsampling_x); | 
 |         if (cm->subsampling_x == 0) { | 
 |           assert(cm->subsampling_y == 0 && | 
 |                  "4:4:0 subsampling not allowed in AV1"); | 
 |         } else { | 
 |           aom_wb_write_bit(wb, cm->subsampling_y); | 
 |         } | 
 |       } else { | 
 |         // 422 only | 
 |         assert(cm->subsampling_x == 1 && cm->subsampling_y == 0); | 
 |       } | 
 |     } | 
 | #if CONFIG_COLORSPACE_HEADERS | 
 |     if (cm->subsampling_x == 1 && cm->subsampling_y == 1) { | 
 |       aom_wb_write_literal(wb, cm->chroma_sample_position, 2); | 
 |     } | 
 | #endif | 
 |   } | 
 |  | 
 | #if CONFIG_EXT_QM | 
 |   aom_wb_write_bit(wb, cm->separate_uv_delta_q); | 
 | #endif | 
 | } | 
 |  | 
 | #if CONFIG_TIMING_INFO_IN_SEQ_HEADERS | 
 | static void write_timing_info_header(AV1_COMMON *const cm, | 
 |                                      struct aom_write_bit_buffer *wb) { | 
 |   aom_wb_write_bit(wb, cm->timing_info_present);  // timing info present flag | 
 |  | 
 |   if (cm->timing_info_present) { | 
 |     aom_wb_write_unsigned_literal(wb, cm->num_units_in_tick, | 
 |                                   32);  // Number of units in tick | 
 |     aom_wb_write_unsigned_literal(wb, cm->time_scale, 32);  // Time scale | 
 |     aom_wb_write_bit(wb, | 
 |                      cm->equal_picture_interval);  // Equal picture interval bit | 
 |     if (cm->equal_picture_interval) { | 
 |       aom_wb_write_uvlc(wb, | 
 |                         cm->num_ticks_per_picture - 1);  // ticks per picture | 
 |     } | 
 |   } | 
 | } | 
 | #endif  // CONFIG_TIMING_INFO_IN_SEQ_HEADERS | 
 |  | 
 | #if CONFIG_FILM_GRAIN | 
 | static void write_film_grain_params(AV1_COMMON *const cm, | 
 |                                     struct aom_write_bit_buffer *wb) { | 
 |   aom_film_grain_t *pars = &cm->film_grain_params; | 
 |  | 
 |   aom_wb_write_bit(wb, pars->apply_grain); | 
 |   if (!pars->apply_grain) return; | 
 |  | 
 |   aom_wb_write_literal(wb, pars->random_seed, 16); | 
 |  | 
 |   pars->random_seed += 3245;  // For film grain test vectors purposes | 
 |   if (!pars->random_seed)     // Random seed should not be zero | 
 |     pars->random_seed += 1735; | 
 |  | 
 |   aom_wb_write_bit(wb, pars->update_parameters); | 
 |   if (!pars->update_parameters) return; | 
 |  | 
 |   // Scaling functions parameters | 
 |  | 
 |   aom_wb_write_literal(wb, pars->num_y_points, 4);  // max 14 | 
 |   for (int i = 0; i < pars->num_y_points; i++) { | 
 |     aom_wb_write_literal(wb, pars->scaling_points_y[i][0], 8); | 
 |     aom_wb_write_literal(wb, pars->scaling_points_y[i][1], 8); | 
 |   } | 
 |  | 
 |   aom_wb_write_bit(wb, pars->chroma_scaling_from_luma); | 
 |  | 
 |   if (!pars->chroma_scaling_from_luma) { | 
 |     aom_wb_write_literal(wb, pars->num_cb_points, 4);  // max 10 | 
 |     for (int i = 0; i < pars->num_cb_points; i++) { | 
 |       aom_wb_write_literal(wb, pars->scaling_points_cb[i][0], 8); | 
 |       aom_wb_write_literal(wb, pars->scaling_points_cb[i][1], 8); | 
 |     } | 
 |  | 
 |     aom_wb_write_literal(wb, pars->num_cr_points, 4);  // max 10 | 
 |     for (int i = 0; i < pars->num_cr_points; i++) { | 
 |       aom_wb_write_literal(wb, pars->scaling_points_cr[i][0], 8); | 
 |       aom_wb_write_literal(wb, pars->scaling_points_cr[i][1], 8); | 
 |     } | 
 |   } | 
 |  | 
 |   aom_wb_write_literal(wb, pars->scaling_shift - 8, 2);  // 8 + value | 
 |  | 
 |   // AR coefficients | 
 |   // Only sent if the corresponsing scaling function has | 
 |   // more than 0 points | 
 |  | 
 |   aom_wb_write_literal(wb, pars->ar_coeff_lag, 2); | 
 |  | 
 |   int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1); | 
 |   int num_pos_chroma = num_pos_luma + 1; | 
 |  | 
 |   if (pars->num_y_points) | 
 |     for (int i = 0; i < num_pos_luma; i++) | 
 |       aom_wb_write_literal(wb, pars->ar_coeffs_y[i] + 128, 8); | 
 |  | 
 |   if (pars->num_cb_points || pars->chroma_scaling_from_luma) | 
 |     for (int i = 0; i < num_pos_chroma; i++) | 
 |       aom_wb_write_literal(wb, pars->ar_coeffs_cb[i] + 128, 8); | 
 |  | 
 |   if (pars->num_cr_points || pars->chroma_scaling_from_luma) | 
 |     for (int i = 0; i < num_pos_chroma; i++) | 
 |       aom_wb_write_literal(wb, pars->ar_coeffs_cr[i] + 128, 8); | 
 |  | 
 |   aom_wb_write_literal(wb, pars->ar_coeff_shift - 6, 2);  // 8 + value | 
 |  | 
 |   if (pars->num_cb_points) { | 
 |     aom_wb_write_literal(wb, pars->cb_mult, 8); | 
 |     aom_wb_write_literal(wb, pars->cb_luma_mult, 8); | 
 |     aom_wb_write_literal(wb, pars->cb_offset, 9); | 
 |   } | 
 |  | 
 |   if (pars->num_cr_points) { | 
 |     aom_wb_write_literal(wb, pars->cr_mult, 8); | 
 |     aom_wb_write_literal(wb, pars->cr_luma_mult, 8); | 
 |     aom_wb_write_literal(wb, pars->cr_offset, 9); | 
 |   } | 
 |  | 
 |   aom_wb_write_bit(wb, pars->overlap_flag); | 
 |  | 
 |   aom_wb_write_bit(wb, pars->clip_to_restricted_range); | 
 | } | 
 | #endif  // CONFIG_FILM_GRAIN | 
 |  | 
 | static void write_sb_size(SequenceHeader *seq_params, | 
 |                           struct aom_write_bit_buffer *wb) { | 
 |   (void)seq_params; | 
 |   (void)wb; | 
 |   assert(seq_params->mib_size == mi_size_wide[seq_params->sb_size]); | 
 |   assert(seq_params->mib_size == 1 << seq_params->mib_size_log2); | 
 | #if CONFIG_EXT_PARTITION | 
 |   assert(seq_params->sb_size == BLOCK_128X128 || | 
 |          seq_params->sb_size == BLOCK_64X64); | 
 |   aom_wb_write_bit(wb, seq_params->sb_size == BLOCK_128X128 ? 1 : 0); | 
 | #else | 
 |   assert(seq_params->sb_size == BLOCK_64X64); | 
 | #endif  // CONFIG_EXT_PARTITION | 
 | } | 
 |  | 
 | #if CONFIG_REFERENCE_BUFFER || CONFIG_OBU | 
 | void write_sequence_header(AV1_COMP *cpi, struct aom_write_bit_buffer *wb) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   SequenceHeader *seq_params = &cm->seq_params; | 
 |  | 
 | #if CONFIG_FRAME_SIZE | 
 |   int num_bits_width = 16; | 
 |   int num_bits_height = 16; | 
 |   int max_frame_width = cpi->oxcf.width; | 
 |   int max_frame_height = cpi->oxcf.height; | 
 |  | 
 |   seq_params->num_bits_width = num_bits_width; | 
 |   seq_params->num_bits_height = num_bits_height; | 
 |   seq_params->max_frame_width = max_frame_width; | 
 |   seq_params->max_frame_height = max_frame_height; | 
 |  | 
 |   aom_wb_write_literal(wb, num_bits_width - 1, 4); | 
 |   aom_wb_write_literal(wb, num_bits_height - 1, 4); | 
 |   aom_wb_write_literal(wb, max_frame_width - 1, num_bits_width); | 
 |   aom_wb_write_literal(wb, max_frame_height - 1, num_bits_height); | 
 | #endif | 
 |  | 
 |   /* Placeholder for actually writing to the bitstream */ | 
 |   seq_params->frame_id_numbers_present_flag = | 
 | #if CONFIG_EXT_TILE | 
 |       cm->large_scale_tile ? 0 : | 
 | #endif  // CONFIG_EXT_TILE | 
 |                            cm->error_resilient_mode; | 
 |   seq_params->frame_id_length = FRAME_ID_LENGTH; | 
 |   seq_params->delta_frame_id_length = DELTA_FRAME_ID_LENGTH; | 
 |  | 
 |   aom_wb_write_bit(wb, seq_params->frame_id_numbers_present_flag); | 
 |   if (seq_params->frame_id_numbers_present_flag) { | 
 |     // We must always have delta_frame_id_length < frame_id_length, | 
 |     // in order for a frame to be referenced with a unique delta. | 
 |     // Avoid wasting bits by using a coding that enforces this restriction. | 
 |     aom_wb_write_literal(wb, seq_params->delta_frame_id_length - 2, 4); | 
 |     aom_wb_write_literal( | 
 |         wb, seq_params->frame_id_length - seq_params->delta_frame_id_length - 1, | 
 |         3); | 
 |   } | 
 |  | 
 |   write_sb_size(seq_params, wb); | 
 |  | 
 |   if (seq_params->force_screen_content_tools == 2) { | 
 |     aom_wb_write_bit(wb, 1); | 
 |   } else { | 
 |     aom_wb_write_bit(wb, 0); | 
 |     aom_wb_write_bit(wb, seq_params->force_screen_content_tools); | 
 |   } | 
 |  | 
 | #if CONFIG_AMVR | 
 |   if (seq_params->force_screen_content_tools > 0) { | 
 |     if (seq_params->force_integer_mv == 2) { | 
 |       aom_wb_write_bit(wb, 1); | 
 |     } else { | 
 |       aom_wb_write_bit(wb, 0); | 
 |       aom_wb_write_bit(wb, seq_params->force_integer_mv); | 
 |     } | 
 |   } else { | 
 |     assert(seq_params->force_integer_mv == 2); | 
 |   } | 
 | #endif | 
 | } | 
 | #endif  // CONFIG_REFERENCE_BUFFER || CONFIG_OBU | 
 |  | 
 | static void write_compound_tools(const AV1_COMMON *cm, | 
 |                                  struct aom_write_bit_buffer *wb) { | 
 |   if (!frame_is_intra_only(cm) && cm->reference_mode != COMPOUND_REFERENCE) { | 
 |     aom_wb_write_bit(wb, cm->allow_interintra_compound); | 
 |   } else { | 
 |     assert(cm->allow_interintra_compound == 0); | 
 |   } | 
 |   if (!frame_is_intra_only(cm) && cm->reference_mode != SINGLE_REFERENCE) { | 
 |     aom_wb_write_bit(wb, cm->allow_masked_compound); | 
 |   } else { | 
 |     assert(cm->allow_masked_compound == 0); | 
 |   } | 
 | } | 
 |  | 
 | static void write_global_motion_params(const WarpedMotionParams *params, | 
 |                                        const WarpedMotionParams *ref_params, | 
 |                                        struct aom_write_bit_buffer *wb, | 
 |                                        int allow_hp) { | 
 |   const TransformationType type = params->wmtype; | 
 |  | 
 |   aom_wb_write_bit(wb, type != IDENTITY); | 
 |   if (type != IDENTITY) { | 
 | #if GLOBAL_TRANS_TYPES > 4 | 
 |     aom_wb_write_literal(wb, type - 1, GLOBAL_TYPE_BITS); | 
 | #else | 
 |     aom_wb_write_bit(wb, type == ROTZOOM); | 
 |     if (type != ROTZOOM) aom_wb_write_bit(wb, type == TRANSLATION); | 
 | #endif  // GLOBAL_TRANS_TYPES > 4 | 
 |   } | 
 |  | 
 |   if (type >= ROTZOOM) { | 
 |     aom_wb_write_signed_primitive_refsubexpfin( | 
 |         wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, | 
 |         (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - | 
 |             (1 << GM_ALPHA_PREC_BITS), | 
 |         (params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); | 
 |     aom_wb_write_signed_primitive_refsubexpfin( | 
 |         wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, | 
 |         (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF), | 
 |         (params->wmmat[3] >> GM_ALPHA_PREC_DIFF)); | 
 |   } | 
 |  | 
 |   if (type >= AFFINE) { | 
 |     aom_wb_write_signed_primitive_refsubexpfin( | 
 |         wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, | 
 |         (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF), | 
 |         (params->wmmat[4] >> GM_ALPHA_PREC_DIFF)); | 
 |     aom_wb_write_signed_primitive_refsubexpfin( | 
 |         wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, | 
 |         (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - | 
 |             (1 << GM_ALPHA_PREC_BITS), | 
 |         (params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); | 
 |   } | 
 |  | 
 |   if (type >= TRANSLATION) { | 
 |     const int trans_bits = (type == TRANSLATION) | 
 |                                ? GM_ABS_TRANS_ONLY_BITS - !allow_hp | 
 |                                : GM_ABS_TRANS_BITS; | 
 |     const int trans_prec_diff = (type == TRANSLATION) | 
 |                                     ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp | 
 |                                     : GM_TRANS_PREC_DIFF; | 
 |     aom_wb_write_signed_primitive_refsubexpfin( | 
 |         wb, (1 << trans_bits) + 1, SUBEXPFIN_K, | 
 |         (ref_params->wmmat[0] >> trans_prec_diff), | 
 |         (params->wmmat[0] >> trans_prec_diff)); | 
 |     aom_wb_write_signed_primitive_refsubexpfin( | 
 |         wb, (1 << trans_bits) + 1, SUBEXPFIN_K, | 
 |         (ref_params->wmmat[1] >> trans_prec_diff), | 
 |         (params->wmmat[1] >> trans_prec_diff)); | 
 |   } | 
 | } | 
 |  | 
 | static void write_global_motion(AV1_COMP *cpi, | 
 |                                 struct aom_write_bit_buffer *wb) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   int frame; | 
 |   for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) { | 
 |     const WarpedMotionParams *ref_params = | 
 |         cm->error_resilient_mode ? &default_warp_params | 
 |                                  : &cm->prev_frame->global_motion[frame]; | 
 |     write_global_motion_params(&cm->global_motion[frame], ref_params, wb, | 
 |                                cm->allow_high_precision_mv); | 
 |     // TODO(sarahparker, debargha): The logic in the commented out code below | 
 |     // does not work currently and causes mismatches when resize is on. | 
 |     // Fix it before turning the optimization back on. | 
 |     /* | 
 |     YV12_BUFFER_CONFIG *ref_buf = get_ref_frame_buffer(cpi, frame); | 
 |     if (cpi->source->y_crop_width == ref_buf->y_crop_width && | 
 |         cpi->source->y_crop_height == ref_buf->y_crop_height) { | 
 |       write_global_motion_params(&cm->global_motion[frame], | 
 |                                  &cm->prev_frame->global_motion[frame], wb, | 
 |                                  cm->allow_high_precision_mv); | 
 |     } else { | 
 |       assert(cm->global_motion[frame].wmtype == IDENTITY && | 
 |              "Invalid warp type for frames of different resolutions"); | 
 |     } | 
 |     */ | 
 |     /* | 
 |     printf("Frame %d/%d: Enc Ref %d: %d %d %d %d\n", | 
 |            cm->current_video_frame, cm->show_frame, frame, | 
 |            cm->global_motion[frame].wmmat[0], | 
 |            cm->global_motion[frame].wmmat[1], cm->global_motion[frame].wmmat[2], | 
 |            cm->global_motion[frame].wmmat[3]); | 
 |            */ | 
 |   } | 
 | } | 
 |  | 
 | #if !CONFIG_OBU | 
 | static void write_uncompressed_header_frame(AV1_COMP *cpi, | 
 |                                             struct aom_write_bit_buffer *wb) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
 |  | 
 |   aom_wb_write_literal(wb, AOM_FRAME_MARKER, 2); | 
 |  | 
 |   write_profile(cm->profile, wb); | 
 |  | 
 |   // NOTE: By default all coded frames to be used as a reference | 
 |   cm->is_reference_frame = 1; | 
 |  | 
 |   if (cm->show_existing_frame) { | 
 |     RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; | 
 |     const int frame_to_show = cm->ref_frame_map[cpi->existing_fb_idx_to_show]; | 
 |  | 
 |     if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) { | 
 |       aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                          "Buffer %d does not contain a reconstructed frame", | 
 |                          frame_to_show); | 
 |     } | 
 |     ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show); | 
 |  | 
 |     aom_wb_write_bit(wb, 1);  // show_existing_frame | 
 |     aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3); | 
 |  | 
 | #if CONFIG_REFERENCE_BUFFER | 
 |     if (cm->seq_params.frame_id_numbers_present_flag) { | 
 |       int frame_id_len = cm->seq_params.frame_id_length; | 
 |       int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show]; | 
 |       aom_wb_write_literal(wb, display_frame_id, frame_id_len); | 
 |       /* Add a zero byte to prevent emulation of superframe marker */ | 
 |       /* Same logic as when when terminating the entropy coder */ | 
 |       /* Consider to have this logic only one place */ | 
 |       aom_wb_write_literal(wb, 0, 8); | 
 |     } | 
 | #endif  // CONFIG_REFERENCE_BUFFER | 
 |  | 
 | #if CONFIG_FILM_GRAIN | 
 |     if (cm->film_grain_params_present) write_film_grain_params(cm, wb); | 
 | #endif | 
 |  | 
 | #if CONFIG_FWD_KF | 
 |     if (cm->reset_decoder_state && !frame_bufs[frame_to_show].intra_only) { | 
 |       aom_internal_error( | 
 |           &cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |           "show_existing_frame to reset state on non-intra_only"); | 
 |     } | 
 |     aom_wb_write_bit(wb, cm->reset_decoder_state); | 
 | #endif  // CONFIG_FWD_KF | 
 |  | 
 |     return; | 
 |   } else { | 
 |     aom_wb_write_bit(wb, 0);  // show_existing_frame | 
 |   } | 
 |  | 
 |   aom_wb_write_bit(wb, cm->frame_type); | 
 |   aom_wb_write_bit(wb, cm->show_frame); | 
 |   if (cm->frame_type != KEY_FRAME) | 
 |     if (!cm->show_frame) aom_wb_write_bit(wb, cm->intra_only); | 
 |   aom_wb_write_bit(wb, cm->error_resilient_mode); | 
 |  | 
 |   if (frame_is_intra_only(cm)) { | 
 | #if CONFIG_REFERENCE_BUFFER | 
 |     write_sequence_header(cpi, wb); | 
 | #endif  // CONFIG_REFERENCE_BUFFER | 
 |   } | 
 |  | 
 |   if (cm->seq_params.force_screen_content_tools == 2) { | 
 |     aom_wb_write_bit(wb, cm->allow_screen_content_tools); | 
 |   } else { | 
 |     assert(cm->allow_screen_content_tools == | 
 |            cm->seq_params.force_screen_content_tools); | 
 |   } | 
 |  | 
 | #if CONFIG_AMVR | 
 |   if (cm->allow_screen_content_tools) { | 
 |     if (cm->seq_params.force_integer_mv == 2) { | 
 |       aom_wb_write_bit(wb, cm->cur_frame_force_integer_mv); | 
 |     } else { | 
 |       assert(cm->cur_frame_force_integer_mv == cm->seq_params.force_integer_mv); | 
 |     } | 
 |   } else { | 
 |     assert(cm->cur_frame_force_integer_mv == 0); | 
 |   } | 
 | #endif  // CONFIG_AMVR | 
 |  | 
 | #if CONFIG_REFERENCE_BUFFER | 
 |   cm->invalid_delta_frame_id_minus1 = 0; | 
 |   if (cm->seq_params.frame_id_numbers_present_flag) { | 
 |     int frame_id_len = cm->seq_params.frame_id_length; | 
 |     aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len); | 
 |   } | 
 | #endif  // CONFIG_REFERENCE_BUFFER | 
 |  | 
 | #if CONFIG_FRAME_SIZE | 
 |   if (cm->width > cm->seq_params.max_frame_width || | 
 |       cm->height > cm->seq_params.max_frame_height) { | 
 |     aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                        "Frame dimensions are larger than the maximum values"); | 
 |   } | 
 | #if CONFIG_HORZONLY_FRAME_SUPERRES | 
 |   const int coded_width = cm->superres_upscaled_width; | 
 |   const int coded_height = cm->superres_upscaled_height; | 
 | #else | 
 |   const int coded_width = cm->width; | 
 |   const int coded_height = cm->height; | 
 | #endif  // CONFIG_HORZONLY_FRAME_SUPERRES | 
 |   int frame_size_override_flag = | 
 |       (coded_width != cm->seq_params.max_frame_width || | 
 |        coded_height != cm->seq_params.max_frame_height); | 
 |   aom_wb_write_bit(wb, frame_size_override_flag); | 
 | #endif | 
 |  | 
 |   if (cm->frame_type == KEY_FRAME) { | 
 |     write_bitdepth_colorspace_sampling(cm, wb); | 
 | #if CONFIG_TIMING_INFO_IN_SEQ_HEADERS | 
 |     // timing_info | 
 |     write_timing_info_header(cm, wb); | 
 | #endif | 
 | #if CONFIG_FILM_GRAIN | 
 |     aom_wb_write_bit(wb, cm->film_grain_params_present); | 
 | #endif | 
 | #if CONFIG_FRAME_SIZE | 
 |     write_frame_size(cm, frame_size_override_flag, wb); | 
 | #else | 
 |     write_frame_size(cm, wb); | 
 | #endif | 
 | #if CONFIG_INTRABC | 
 | #if CONFIG_HORZONLY_FRAME_SUPERRES | 
 |     assert(av1_superres_unscaled(cm) || | 
 |            !(cm->allow_intrabc && NO_FILTER_FOR_IBC)); | 
 |     if (cm->allow_screen_content_tools && | 
 |         (av1_superres_unscaled(cm) || !NO_FILTER_FOR_IBC)) | 
 | #else | 
 |     if (cm->allow_screen_content_tools) | 
 | #endif | 
 |       aom_wb_write_bit(wb, cm->allow_intrabc); | 
 | #endif  // CONFIG_INTRABC | 
 |   } else { | 
 | #if !CONFIG_NO_FRAME_CONTEXT_SIGNALING | 
 |     if (!cm->error_resilient_mode) { | 
 |       if (cm->intra_only) { | 
 |         aom_wb_write_bit(wb, | 
 |                          cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL); | 
 |       } else { | 
 |         aom_wb_write_bit(wb, | 
 |                          cm->reset_frame_context != RESET_FRAME_CONTEXT_NONE); | 
 |         if (cm->reset_frame_context != RESET_FRAME_CONTEXT_NONE) | 
 |           aom_wb_write_bit(wb, | 
 |                            cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL); | 
 |       } | 
 |     } | 
 | #endif | 
 |     cpi->refresh_frame_mask = get_refresh_mask(cpi); | 
 |  | 
 |     if (cm->intra_only) { | 
 |       write_bitdepth_colorspace_sampling(cm, wb); | 
 | #if CONFIG_TIMING_INFO_IN_SEQ_HEADERS | 
 |       write_timing_info_header(cm, wb); | 
 | #endif | 
 |  | 
 | #if CONFIG_FILM_GRAIN | 
 |       aom_wb_write_bit(wb, cm->film_grain_params_present); | 
 | #endif | 
 |       aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES); | 
 | #if CONFIG_FRAME_SIZE | 
 |       write_frame_size(cm, frame_size_override_flag, wb); | 
 | #else | 
 |       write_frame_size(cm, wb); | 
 | #endif | 
 | #if CONFIG_INTRABC | 
 | #if CONFIG_HORZONLY_FRAME_SUPERRES | 
 |       assert(av1_superres_unscaled(cm) || | 
 |              !(cm->allow_intrabc && NO_FILTER_FOR_IBC)); | 
 |       if (cm->allow_screen_content_tools && | 
 |           (av1_superres_unscaled(cm) || !NO_FILTER_FOR_IBC)) | 
 | #else | 
 |       if (cm->allow_screen_content_tools) | 
 | #endif | 
 |         aom_wb_write_bit(wb, cm->allow_intrabc); | 
 | #endif  // CONFIG_INTRABC | 
 |     } else { | 
 |       aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES); | 
 |  | 
 |       if (!cpi->refresh_frame_mask) { | 
 |         // NOTE: "cpi->refresh_frame_mask == 0" indicates that the coded frame | 
 |         //       will not be used as a reference | 
 |         cm->is_reference_frame = 0; | 
 |       } | 
 |  | 
 |       for (MV_REFERENCE_FRAME ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; | 
 |            ++ref_frame) { | 
 |         assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX); | 
 |         aom_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame), | 
 |                              REF_FRAMES_LOG2); | 
 | #if CONFIG_REFERENCE_BUFFER | 
 |         if (cm->seq_params.frame_id_numbers_present_flag) { | 
 |           int i = get_ref_frame_map_idx(cpi, ref_frame); | 
 |           int frame_id_len = cm->seq_params.frame_id_length; | 
 |           int diff_len = cm->seq_params.delta_frame_id_length; | 
 |           int delta_frame_id_minus1 = | 
 |               ((cm->current_frame_id - cm->ref_frame_id[i] + | 
 |                 (1 << frame_id_len)) % | 
 |                (1 << frame_id_len)) - | 
 |               1; | 
 |           if (delta_frame_id_minus1 < 0 || | 
 |               delta_frame_id_minus1 >= (1 << diff_len)) | 
 |             cm->invalid_delta_frame_id_minus1 = 1; | 
 |           aom_wb_write_literal(wb, delta_frame_id_minus1, diff_len); | 
 |         } | 
 | #endif  // CONFIG_REFERENCE_BUFFER | 
 |       } | 
 |  | 
 | #if CONFIG_FRAME_SIZE | 
 |       if (cm->error_resilient_mode == 0 && frame_size_override_flag) { | 
 |         write_frame_size_with_refs(cpi, wb); | 
 |       } else { | 
 |         write_frame_size(cm, frame_size_override_flag, wb); | 
 |       } | 
 | #else | 
 |       write_frame_size_with_refs(cpi, wb); | 
 | #endif | 
 |  | 
 | #if CONFIG_AMVR | 
 |       if (cm->cur_frame_force_integer_mv) { | 
 |         cm->allow_high_precision_mv = 0; | 
 |       } else { | 
 | #if !CONFIG_EIGHTH_PEL_MV_ONLY | 
 |         aom_wb_write_bit(wb, cm->allow_high_precision_mv); | 
 | #endif  // !CONFIG_EIGHTH_PEL_MV_ONLY | 
 |       } | 
 | #else | 
 | #if !CONFIG_EIGHTH_PEL_MV_ONLY | 
 |       aom_wb_write_bit(wb, cm->allow_high_precision_mv); | 
 | #endif  // !CONFIG_EIGHTH_PEL_MV_ONLY | 
 | #endif | 
 |       fix_interp_filter(cm, cpi->td.counts); | 
 |       write_frame_interp_filter(cm->interp_filter, wb); | 
 |       if (frame_might_use_prev_frame_mvs(cm)) | 
 |         aom_wb_write_bit(wb, cm->use_ref_frame_mvs); | 
 |     } | 
 |   } | 
 |  | 
 |   if (cm->show_frame == 0) { | 
 |     int arf_offset = AOMMIN( | 
 |         (MAX_GF_INTERVAL - 1), | 
 |         cpi->twopass.gf_group.arf_src_offset[cpi->twopass.gf_group.index]); | 
 |     int brf_offset = | 
 |         cpi->twopass.gf_group.brf_src_offset[cpi->twopass.gf_group.index]; | 
 |  | 
 |     arf_offset = AOMMIN((MAX_GF_INTERVAL - 1), arf_offset + brf_offset); | 
 |     aom_wb_write_literal(wb, arf_offset, FRAME_OFFSET_BITS); | 
 |   } | 
 |  | 
 | #if CONFIG_REFERENCE_BUFFER | 
 |   if (cm->seq_params.frame_id_numbers_present_flag) { | 
 |     cm->refresh_mask = | 
 |         cm->frame_type == KEY_FRAME ? 0xFF : get_refresh_mask(cpi); | 
 |   } | 
 | #endif  // CONFIG_REFERENCE_BUFFER | 
 |  | 
 | #if CONFIG_EXT_TILE | 
 |   const int might_bwd_adapt = | 
 |       !(cm->error_resilient_mode || cm->large_scale_tile); | 
 | #else | 
 |   const int might_bwd_adapt = !cm->error_resilient_mode; | 
 | #endif  // CONFIG_EXT_TILE | 
 |   if (might_bwd_adapt) { | 
 |     aom_wb_write_bit( | 
 |         wb, cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_FORWARD); | 
 |   } | 
 | #if !CONFIG_NO_FRAME_CONTEXT_SIGNALING | 
 |   aom_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2); | 
 | #endif | 
 |  | 
 | #if CONFIG_TILE_INFO_FIRST | 
 |   write_tile_info(cm, wb); | 
 | #endif | 
 |  | 
 |   encode_loopfilter(cm, wb); | 
 |   encode_quantization(cm, wb); | 
 |   encode_segmentation(cm, xd, wb); | 
 |   { | 
 |     int delta_q_allowed = 1; | 
 | #if !CONFIG_EXT_DELTA_Q | 
 |     int i; | 
 |     struct segmentation *const seg = &cm->seg; | 
 |     int segment_quantizer_active = 0; | 
 |     for (i = 0; i < MAX_SEGMENTS; i++) { | 
 |       if (segfeature_active(seg, i, SEG_LVL_ALT_Q)) { | 
 |         segment_quantizer_active = 1; | 
 |       } | 
 |     } | 
 |     delta_q_allowed = !segment_quantizer_active; | 
 | #endif | 
 |  | 
 |     if (cm->delta_q_present_flag) assert(cm->base_qindex > 0); | 
 |     // Segment quantizer and delta_q both allowed if CONFIG_EXT_DELTA_Q | 
 |     if (delta_q_allowed == 1 && cm->base_qindex > 0) { | 
 |       aom_wb_write_bit(wb, cm->delta_q_present_flag); | 
 |       if (cm->delta_q_present_flag) { | 
 |         aom_wb_write_literal(wb, OD_ILOG_NZ(cm->delta_q_res) - 1, 2); | 
 |         xd->prev_qindex = cm->base_qindex; | 
 | #if CONFIG_EXT_DELTA_Q | 
 |         aom_wb_write_bit(wb, cm->delta_lf_present_flag); | 
 |         if (cm->delta_lf_present_flag) { | 
 |           aom_wb_write_literal(wb, OD_ILOG_NZ(cm->delta_lf_res) - 1, 2); | 
 |           xd->prev_delta_lf_from_base = 0; | 
 | #if CONFIG_LOOPFILTER_LEVEL | 
 |           aom_wb_write_bit(wb, cm->delta_lf_multi); | 
 |           for (int lf_id = 0; lf_id < FRAME_LF_COUNT; ++lf_id) | 
 |             xd->prev_delta_lf[lf_id] = 0; | 
 | #endif  // CONFIG_LOOPFILTER_LEVEL | 
 |         } | 
 | #endif  // CONFIG_EXT_DELTA_Q | 
 |       } | 
 |     } | 
 |   } | 
 | #if CONFIG_NEW_QUANT | 
 |   if (!cm->all_lossless) { | 
 |     aom_wb_write_literal(wb, cm->dq_type, DQ_TYPE_BITS); | 
 |   } | 
 | #endif  // CONFIG_NEW_QUANT | 
 |   if (!cm->all_lossless) { | 
 |     encode_cdef(cm, wb); | 
 |   } | 
 | #if CONFIG_LOOP_RESTORATION | 
 |   encode_restoration_mode(cm, wb); | 
 | #endif  // CONFIG_LOOP_RESTORATION | 
 |   write_tx_mode(cm, &cm->tx_mode, wb); | 
 |  | 
 |   if (cpi->allow_comp_inter_inter) { | 
 |     const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT; | 
 |  | 
 |     aom_wb_write_bit(wb, use_hybrid_pred); | 
 |   } | 
 |  | 
 | #if CONFIG_EXT_SKIP | 
 |   if (cm->is_skip_mode_allowed) aom_wb_write_bit(wb, cm->skip_mode_flag); | 
 | #endif  // CONFIG_EXT_SKIP | 
 |  | 
 |   write_compound_tools(cm, wb); | 
 |  | 
 |   aom_wb_write_bit(wb, cm->reduced_tx_set_used); | 
 |  | 
 |   if (!frame_is_intra_only(cm)) write_global_motion(cpi, wb); | 
 |  | 
 | #if CONFIG_FILM_GRAIN | 
 |   if (cm->film_grain_params_present && cm->show_frame) | 
 |     write_film_grain_params(cm, wb); | 
 | #endif | 
 |  | 
 | #if !CONFIG_TILE_INFO_FIRST | 
 |   write_tile_info(cm, wb); | 
 | #endif | 
 | } | 
 |  | 
 | #else | 
 | // New function based on HLS R18 | 
 | static void write_uncompressed_header_obu(AV1_COMP *cpi, | 
 | #if CONFIG_EXT_TILE | 
 |                                           struct aom_write_bit_buffer *saved_wb, | 
 | #endif | 
 |                                           struct aom_write_bit_buffer *wb) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
 |  | 
 |   // NOTE: By default all coded frames to be used as a reference | 
 |   cm->is_reference_frame = 1; | 
 |  | 
 |   if (cm->show_existing_frame) { | 
 |     RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; | 
 |     const int frame_to_show = cm->ref_frame_map[cpi->existing_fb_idx_to_show]; | 
 |  | 
 |     if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) { | 
 |       aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                          "Buffer %d does not contain a reconstructed frame", | 
 |                          frame_to_show); | 
 |     } | 
 |     ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show); | 
 |  | 
 |     aom_wb_write_bit(wb, 1);  // show_existing_frame | 
 |     aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3); | 
 |  | 
 | #if CONFIG_REFERENCE_BUFFER | 
 |     if (cm->seq_params.frame_id_numbers_present_flag) { | 
 |       int frame_id_len = cm->seq_params.frame_id_length; | 
 |       int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show]; | 
 |       aom_wb_write_literal(wb, display_frame_id, frame_id_len); | 
 |       /* Add a zero byte to prevent emulation of superframe marker */ | 
 |       /* Same logic as when when terminating the entropy coder */ | 
 |       /* Consider to have this logic only one place */ | 
 |       aom_wb_write_literal(wb, 0, 8); | 
 |     } | 
 | #endif  // CONFIG_REFERENCE_BUFFER | 
 |  | 
 | #if CONFIG_FILM_GRAIN | 
 |     if (cm->film_grain_params_present && cm->show_frame) { | 
 |       int flip_back_update_parameters_flag = 0; | 
 |       if (cm->frame_type == KEY_FRAME && | 
 |           cm->film_grain_params.update_parameters == 0) { | 
 |         cm->film_grain_params.update_parameters = 1; | 
 |         flip_back_update_parameters_flag = 1; | 
 |       } | 
 |       write_film_grain_params(cm, wb); | 
 |  | 
 |       if (flip_back_update_parameters_flag) | 
 |         cm->film_grain_params.update_parameters = 0; | 
 |     } | 
 | #endif | 
 |  | 
 | #if CONFIG_FWD_KF | 
 |     if (cm->reset_decoder_state && !frame_bufs[frame_to_show].intra_only) { | 
 |       aom_internal_error( | 
 |           &cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |           "show_existing_frame to reset state on non-intra_only"); | 
 |     } | 
 |     aom_wb_write_bit(wb, cm->reset_decoder_state); | 
 | #endif  // CONFIG_FWD_KF | 
 |  | 
 |     return; | 
 |   } else { | 
 |     aom_wb_write_bit(wb, 0);  // show_existing_frame | 
 |   } | 
 |  | 
 |   cm->frame_type = cm->intra_only ? INTRA_ONLY_FRAME : cm->frame_type; | 
 |   aom_wb_write_literal(wb, cm->frame_type, 2); | 
 |  | 
 |   if (cm->intra_only) cm->frame_type = INTRA_ONLY_FRAME; | 
 |  | 
 |   aom_wb_write_bit(wb, cm->show_frame); | 
 |   aom_wb_write_bit(wb, cm->error_resilient_mode); | 
 |  | 
 |   if (cm->seq_params.force_screen_content_tools == 2) { | 
 |     aom_wb_write_bit(wb, cm->allow_screen_content_tools); | 
 |   } else { | 
 |     assert(cm->allow_screen_content_tools == | 
 |            cm->seq_params.force_screen_content_tools); | 
 |   } | 
 |  | 
 | #if CONFIG_AMVR | 
 |   if (cm->allow_screen_content_tools) { | 
 |     if (cm->seq_params.force_integer_mv == 2) { | 
 |       aom_wb_write_bit(wb, cm->cur_frame_force_integer_mv); | 
 |     } else { | 
 |       assert(cm->cur_frame_force_integer_mv == cm->seq_params.force_integer_mv); | 
 |     } | 
 |   } else { | 
 |     assert(cm->cur_frame_force_integer_mv == 0); | 
 |   } | 
 | #endif  // CONFIG_AMVR | 
 |  | 
 | #if CONFIG_REFERENCE_BUFFER | 
 |   cm->invalid_delta_frame_id_minus1 = 0; | 
 |   if (cm->seq_params.frame_id_numbers_present_flag) { | 
 |     int frame_id_len = cm->seq_params.frame_id_length; | 
 |     aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len); | 
 |   } | 
 | #endif  // CONFIG_REFERENCE_BUFFER | 
 |  | 
 | #if CONFIG_FRAME_SIZE | 
 |   if (cm->width > cm->seq_params.max_frame_width || | 
 |       cm->height > cm->seq_params.max_frame_height) { | 
 |     aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                        "Frame dimensions are larger than the maximum values"); | 
 |   } | 
 |   int frame_size_override_flag = | 
 |       (cm->width != cm->seq_params.max_frame_width || | 
 |        cm->height != cm->seq_params.max_frame_height); | 
 |   aom_wb_write_bit(wb, frame_size_override_flag); | 
 | #endif | 
 |  | 
 |   if (cm->frame_type == KEY_FRAME) { | 
 | #if CONFIG_FRAME_SIZE | 
 |     write_frame_size(cm, frame_size_override_flag, wb); | 
 | #else | 
 |     write_frame_size(cm, wb); | 
 | #endif | 
 | #if CONFIG_INTRABC | 
 | #if CONFIG_HORZONLY_FRAME_SUPERRES | 
 |     assert(av1_superres_unscaled(cm) || | 
 |            !(cm->allow_intrabc && NO_FILTER_FOR_IBC)); | 
 |     if (cm->allow_screen_content_tools && | 
 |         (av1_superres_unscaled(cm) || !NO_FILTER_FOR_IBC)) | 
 | #else | 
 |     if (cm->allow_screen_content_tools) | 
 | #endif | 
 |       aom_wb_write_bit(wb, cm->allow_intrabc); | 
 | #endif  // CONFIG_INTRABC | 
 |   } else if (cm->frame_type == INTRA_ONLY_FRAME) { | 
 | #if !CONFIG_NO_FRAME_CONTEXT_SIGNALING | 
 |     if (!cm->error_resilient_mode) { | 
 |       if (cm->intra_only) { | 
 |         aom_wb_write_bit(wb, | 
 |                          cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL); | 
 |       } | 
 |     } | 
 | #endif | 
 |     cpi->refresh_frame_mask = get_refresh_mask(cpi); | 
 |  | 
 |     if (cm->intra_only) { | 
 |       aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES); | 
 | #if CONFIG_FRAME_SIZE | 
 |       write_frame_size(cm, frame_size_override_flag, wb); | 
 | #else | 
 |       write_frame_size(cm, wb); | 
 | #endif | 
 | #if CONFIG_INTRABC | 
 | #if CONFIG_HORZONLY_FRAME_SUPERRES | 
 |       assert(av1_superres_unscaled(cm) || | 
 |              !(cm->allow_intrabc && NO_FILTER_FOR_IBC)); | 
 |       if (cm->allow_screen_content_tools && | 
 |           (av1_superres_unscaled(cm) || !NO_FILTER_FOR_IBC)) | 
 | #else | 
 |       if (cm->allow_screen_content_tools) | 
 | #endif | 
 |         aom_wb_write_bit(wb, cm->allow_intrabc); | 
 | #endif  // CONFIG_INTRABC | 
 |     } | 
 |   } else if (cm->frame_type == INTER_FRAME) { | 
 |     MV_REFERENCE_FRAME ref_frame; | 
 | #if !CONFIG_NO_FRAME_CONTEXT_SIGNALING | 
 |     if (!cm->error_resilient_mode) { | 
 |       aom_wb_write_bit(wb, cm->reset_frame_context != RESET_FRAME_CONTEXT_NONE); | 
 |       if (cm->reset_frame_context != RESET_FRAME_CONTEXT_NONE) | 
 |         aom_wb_write_bit(wb, | 
 |                          cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL); | 
 |     } | 
 | #endif | 
 |  | 
 |     cpi->refresh_frame_mask = get_refresh_mask(cpi); | 
 |     aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES); | 
 |  | 
 |     if (!cpi->refresh_frame_mask) { | 
 |       // NOTE: "cpi->refresh_frame_mask == 0" indicates that the coded frame | 
 |       //       will not be used as a reference | 
 |       cm->is_reference_frame = 0; | 
 |     } | 
 |  | 
 |     for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { | 
 |       assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX); | 
 |       aom_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame), | 
 |                            REF_FRAMES_LOG2); | 
 | #if CONFIG_REFERENCE_BUFFER | 
 |       if (cm->seq_params.frame_id_numbers_present_flag) { | 
 |         int i = get_ref_frame_map_idx(cpi, ref_frame); | 
 |         int frame_id_len = cm->seq_params.frame_id_length; | 
 |         int diff_len = cm->seq_params.delta_frame_id_length; | 
 |         int delta_frame_id_minus1 = | 
 |             ((cm->current_frame_id - cm->ref_frame_id[i] + | 
 |               (1 << frame_id_len)) % | 
 |              (1 << frame_id_len)) - | 
 |             1; | 
 |         if (delta_frame_id_minus1 < 0 || | 
 |             delta_frame_id_minus1 >= (1 << diff_len)) | 
 |           cm->invalid_delta_frame_id_minus1 = 1; | 
 |         aom_wb_write_literal(wb, delta_frame_id_minus1, diff_len); | 
 |       } | 
 | #endif  // CONFIG_REFERENCE_BUFFER | 
 |     } | 
 |  | 
 | #if CONFIG_FRAME_SIZE | 
 |     if (cm->error_resilient_mode == 0 && frame_size_override_flag) { | 
 |       write_frame_size_with_refs(cpi, wb); | 
 |     } else { | 
 |       write_frame_size(cm, frame_size_override_flag, wb); | 
 |     } | 
 | #else | 
 |     write_frame_size_with_refs(cpi, wb); | 
 | #endif | 
 |  | 
 | #if CONFIG_AMVR | 
 |     if (cm->cur_frame_force_integer_mv) { | 
 |       cm->allow_high_precision_mv = 0; | 
 |     } else { | 
 |       aom_wb_write_bit(wb, cm->allow_high_precision_mv); | 
 |     } | 
 | #else | 
 |     aom_wb_write_bit(wb, cm->allow_high_precision_mv); | 
 | #endif | 
 |     fix_interp_filter(cm, cpi->td.counts); | 
 |     write_frame_interp_filter(cm->interp_filter, wb); | 
 |     if (frame_might_use_prev_frame_mvs(cm)) { | 
 |       aom_wb_write_bit(wb, cm->use_ref_frame_mvs); | 
 |     } | 
 |   } else if (cm->frame_type == S_FRAME) { | 
 |     MV_REFERENCE_FRAME ref_frame; | 
 |  | 
 | #if !CONFIG_NO_FRAME_CONTEXT_SIGNALING | 
 |     if (!cm->error_resilient_mode) { | 
 |       aom_wb_write_bit(wb, cm->reset_frame_context != RESET_FRAME_CONTEXT_NONE); | 
 |       if (cm->reset_frame_context != RESET_FRAME_CONTEXT_NONE) | 
 |         aom_wb_write_bit(wb, | 
 |                          cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL); | 
 |     } | 
 | #endif | 
 |  | 
 |     if (!cpi->refresh_frame_mask) { | 
 |       // NOTE: "cpi->refresh_frame_mask == 0" indicates that the coded frame | 
 |       //       will not be used as a reference | 
 |       cm->is_reference_frame = 0; | 
 |     } | 
 |  | 
 |     for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { | 
 |       assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX); | 
 |       aom_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame), | 
 |                            REF_FRAMES_LOG2); | 
 |       assert(cm->ref_frame_sign_bias[ref_frame] == 0); | 
 | #if CONFIG_REFERENCE_BUFFER | 
 |       if (cm->seq_params.frame_id_numbers_present_flag) { | 
 |         int i = get_ref_frame_map_idx(cpi, ref_frame); | 
 |         int frame_id_len = cm->seq_params.frame_id_length; | 
 |         int diff_len = cm->seq_params.delta_frame_id_length; | 
 |         int delta_frame_id_minus1 = | 
 |             ((cm->current_frame_id - cm->ref_frame_id[i] + | 
 |               (1 << frame_id_len)) % | 
 |              (1 << frame_id_len)) - | 
 |             1; | 
 |         if (delta_frame_id_minus1 < 0 || | 
 |             delta_frame_id_minus1 >= (1 << diff_len)) | 
 |           cm->invalid_delta_frame_id_minus1 = 1; | 
 |         aom_wb_write_literal(wb, delta_frame_id_minus1, diff_len); | 
 |       } | 
 | #endif  // CONFIG_REFERENCE_BUFFER | 
 |     } | 
 |  | 
 | #if CONFIG_FRAME_SIZE | 
 |     if (cm->error_resilient_mode == 0 && frame_size_override_flag) { | 
 |       write_frame_size_with_refs(cpi, wb); | 
 |     } else { | 
 |       write_frame_size(cm, frame_size_override_flag, wb); | 
 |     } | 
 | #else | 
 |     write_frame_size_with_refs(cpi, wb); | 
 | #endif | 
 |  | 
 |     aom_wb_write_bit(wb, cm->allow_high_precision_mv); | 
 |  | 
 |     fix_interp_filter(cm, cpi->td.counts); | 
 |     write_frame_interp_filter(cm->interp_filter, wb); | 
 |     if (frame_might_use_prev_frame_mvs(cm)) { | 
 |       aom_wb_write_bit(wb, cm->use_ref_frame_mvs); | 
 |     } | 
 |   } | 
 |  | 
 |   if (cm->show_frame == 0) { | 
 |     int arf_offset = AOMMIN( | 
 |         (MAX_GF_INTERVAL - 1), | 
 |         cpi->twopass.gf_group.arf_src_offset[cpi->twopass.gf_group.index]); | 
 |     int brf_offset = | 
 |         cpi->twopass.gf_group.brf_src_offset[cpi->twopass.gf_group.index]; | 
 |  | 
 |     arf_offset = AOMMIN((MAX_GF_INTERVAL - 1), arf_offset + brf_offset); | 
 |     aom_wb_write_literal(wb, arf_offset, FRAME_OFFSET_BITS); | 
 |   } | 
 |  | 
 | #if CONFIG_REFERENCE_BUFFER | 
 |   if (cm->seq_params.frame_id_numbers_present_flag) { | 
 |     cm->refresh_mask = | 
 |         cm->frame_type == KEY_FRAME ? 0xFF : get_refresh_mask(cpi); | 
 |   } | 
 | #endif  // CONFIG_REFERENCE_BUFFER | 
 |  | 
 | #if CONFIG_EXT_TILE | 
 |   const int might_bwd_adapt = | 
 |       !(cm->error_resilient_mode || cm->large_scale_tile); | 
 | #else | 
 |   const int might_bwd_adapt = !cm->error_resilient_mode; | 
 | #endif  // CONFIG_EXT_TILE | 
 |  | 
 |   if (might_bwd_adapt) { | 
 |     aom_wb_write_bit( | 
 |         wb, cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_FORWARD); | 
 |   } | 
 | #if !CONFIG_NO_FRAME_CONTEXT_SIGNALING | 
 |   aom_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2); | 
 | #endif | 
 | #if CONFIG_TILE_INFO_FIRST | 
 |   write_tile_info(cm, wb); | 
 | #endif | 
 |   encode_loopfilter(cm, wb); | 
 |   encode_quantization(cm, wb); | 
 |   encode_segmentation(cm, xd, wb); | 
 |   { | 
 |     int delta_q_allowed = 1; | 
 | #if !CONFIG_EXT_DELTA_Q | 
 |     int i; | 
 |     struct segmentation *const seg = &cm->seg; | 
 |     int segment_quantizer_active = 0; | 
 |     for (i = 0; i < MAX_SEGMENTS; i++) { | 
 |       if (segfeature_active(seg, i, SEG_LVL_ALT_Q)) { | 
 |         segment_quantizer_active = 1; | 
 |       } | 
 |     } | 
 |     delta_q_allowed = !segment_quantizer_active; | 
 | #endif | 
 |  | 
 |     if (cm->delta_q_present_flag) | 
 |       assert(delta_q_allowed == 1 && cm->base_qindex > 0); | 
 |     if (delta_q_allowed == 1 && cm->base_qindex > 0) { | 
 |       aom_wb_write_bit(wb, cm->delta_q_present_flag); | 
 |       if (cm->delta_q_present_flag) { | 
 |         aom_wb_write_literal(wb, OD_ILOG_NZ(cm->delta_q_res) - 1, 2); | 
 |         xd->prev_qindex = cm->base_qindex; | 
 | #if CONFIG_EXT_DELTA_Q | 
 | #if CONFIG_INTRABC | 
 |         if (cm->allow_intrabc && NO_FILTER_FOR_IBC) | 
 |           assert(cm->delta_lf_present_flag == 0); | 
 |         else | 
 | #endif  // CONFIG_INTRABC | 
 |           aom_wb_write_bit(wb, cm->delta_lf_present_flag); | 
 |         if (cm->delta_lf_present_flag) { | 
 |           aom_wb_write_literal(wb, OD_ILOG_NZ(cm->delta_lf_res) - 1, 2); | 
 |           xd->prev_delta_lf_from_base = 0; | 
 | #if CONFIG_LOOPFILTER_LEVEL | 
 |           aom_wb_write_bit(wb, cm->delta_lf_multi); | 
 |           for (int lf_id = 0; lf_id < FRAME_LF_COUNT; ++lf_id) | 
 |             xd->prev_delta_lf[lf_id] = 0; | 
 | #endif  // CONFIG_LOOPFILTER_LEVEL | 
 |         } | 
 | #endif  // CONFIG_EXT_DELTA_Q | 
 |       } | 
 |     } | 
 |   } | 
 | #if CONFIG_NEW_QUANT | 
 |   if (!cm->all_lossless) { | 
 |     aom_wb_write_literal(wb, cm->dq_type, DQ_TYPE_BITS); | 
 |   } | 
 | #endif  // CONFIG_NEW_QUANT | 
 |   if (!cm->all_lossless) { | 
 |     encode_cdef(cm, wb); | 
 |   } | 
 | #if CONFIG_LOOP_RESTORATION | 
 |   encode_restoration_mode(cm, wb); | 
 | #endif  // CONFIG_LOOP_RESTORATION | 
 |   write_tx_mode(cm, &cm->tx_mode, wb); | 
 |  | 
 |   if (cpi->allow_comp_inter_inter) { | 
 |     const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT; | 
 |  | 
 |     aom_wb_write_bit(wb, use_hybrid_pred); | 
 |   } | 
 |  | 
 | #if CONFIG_EXT_SKIP | 
 | #if 0 | 
 |   printf("\n[ENCODER] Frame=%d, is_skip_mode_allowed=%d, skip_mode_flag=%d\n\n", | 
 |          (int)cm->frame_offset, cm->is_skip_mode_allowed, cm->skip_mode_flag); | 
 | #endif  // 0 | 
 |   if (cm->is_skip_mode_allowed) aom_wb_write_bit(wb, cm->skip_mode_flag); | 
 | #endif  // CONFIG_EXT_SKIP | 
 |  | 
 |   write_compound_tools(cm, wb); | 
 |  | 
 |   aom_wb_write_bit(wb, cm->reduced_tx_set_used); | 
 |  | 
 |   if (!frame_is_intra_only(cm)) write_global_motion(cpi, wb); | 
 |  | 
 | #if CONFIG_FILM_GRAIN | 
 |   if (cm->film_grain_params_present && cm->show_frame) { | 
 |     int flip_back_update_parameters_flag = 0; | 
 |     if (cm->frame_type == KEY_FRAME && | 
 |         cm->film_grain_params.update_parameters == 0) { | 
 |       cm->film_grain_params.update_parameters = 1; | 
 |       flip_back_update_parameters_flag = 1; | 
 |     } | 
 |     write_film_grain_params(cm, wb); | 
 |  | 
 |     if (flip_back_update_parameters_flag) | 
 |       cm->film_grain_params.update_parameters = 0; | 
 |   } | 
 | #endif | 
 |  | 
 | #if !CONFIG_TILE_INFO_FIRST | 
 |   write_tile_info(cm, wb); | 
 |  | 
 | #if CONFIG_EXT_TILE | 
 |   *saved_wb = *wb; | 
 |   // Write tile size magnitudes | 
 |   if (cm->tile_rows * cm->tile_cols > 1 && cm->large_scale_tile) { | 
 |     // Note that the last item in the uncompressed header is the data | 
 |     // describing tile configuration. | 
 |     // Number of bytes in tile column size - 1 | 
 |     aom_wb_write_literal(wb, 0, 2); | 
 |  | 
 |     // Number of bytes in tile size - 1 | 
 |     aom_wb_write_literal(wb, 0, 2); | 
 |   } | 
 | #endif | 
 | #endif  // !CONFIG_TILE_INFO_FIRST | 
 | } | 
 | #endif  // CONFIG_OBU | 
 |  | 
 | #if !CONFIG_OBU || CONFIG_EXT_TILE | 
 | static int choose_size_bytes(uint32_t size, int spare_msbs) { | 
 |   // Choose the number of bytes required to represent size, without | 
 |   // using the 'spare_msbs' number of most significant bits. | 
 |  | 
 |   // Make sure we will fit in 4 bytes to start with.. | 
 |   if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1; | 
 |  | 
 |   // Normalise to 32 bits | 
 |   size <<= spare_msbs; | 
 |  | 
 |   if (size >> 24 != 0) | 
 |     return 4; | 
 |   else if (size >> 16 != 0) | 
 |     return 3; | 
 |   else if (size >> 8 != 0) | 
 |     return 2; | 
 |   else | 
 |     return 1; | 
 | } | 
 |  | 
 | static void mem_put_varsize(uint8_t *const dst, const int sz, const int val) { | 
 |   switch (sz) { | 
 |     case 1: dst[0] = (uint8_t)(val & 0xff); break; | 
 |     case 2: mem_put_le16(dst, val); break; | 
 |     case 3: mem_put_le24(dst, val); break; | 
 |     case 4: mem_put_le32(dst, val); break; | 
 |     default: assert(0 && "Invalid size"); break; | 
 |   } | 
 | } | 
 |  | 
 | static int remux_tiles(const AV1_COMMON *const cm, uint8_t *dst, | 
 |                        const uint32_t data_size, const uint32_t max_tile_size, | 
 |                        const uint32_t max_tile_col_size, | 
 |                        int *const tile_size_bytes, | 
 |                        int *const tile_col_size_bytes) { | 
 |   // Choose the tile size bytes (tsb) and tile column size bytes (tcsb) | 
 |   int tsb; | 
 |   int tcsb; | 
 |  | 
 | #if CONFIG_EXT_TILE | 
 |   if (cm->large_scale_tile) { | 
 |     // The top bit in the tile size field indicates tile copy mode, so we | 
 |     // have 1 less bit to code the tile size | 
 |     tsb = choose_size_bytes(max_tile_size, 1); | 
 |     tcsb = choose_size_bytes(max_tile_col_size, 0); | 
 |   } else { | 
 | #endif  // CONFIG_EXT_TILE | 
 |     tsb = choose_size_bytes(max_tile_size, 0); | 
 |     tcsb = 4;  // This is ignored | 
 |     (void)max_tile_col_size; | 
 | #if CONFIG_EXT_TILE | 
 |   } | 
 | #endif  // CONFIG_EXT_TILE | 
 |  | 
 |   assert(tsb > 0); | 
 |   assert(tcsb > 0); | 
 |  | 
 |   *tile_size_bytes = tsb; | 
 |   *tile_col_size_bytes = tcsb; | 
 |  | 
 |   if (tsb == 4 && tcsb == 4) { | 
 |     return data_size; | 
 |   } else { | 
 |     uint32_t wpos = 0; | 
 |     uint32_t rpos = 0; | 
 |  | 
 | #if CONFIG_EXT_TILE | 
 |     if (cm->large_scale_tile) { | 
 |       int tile_row; | 
 |       int tile_col; | 
 |  | 
 |       for (tile_col = 0; tile_col < cm->tile_cols; tile_col++) { | 
 |         // All but the last column has a column header | 
 |         if (tile_col < cm->tile_cols - 1) { | 
 |           uint32_t tile_col_size = mem_get_le32(dst + rpos); | 
 |           rpos += 4; | 
 |  | 
 |           // Adjust the tile column size by the number of bytes removed | 
 |           // from the tile size fields. | 
 |           tile_col_size -= (4 - tsb) * cm->tile_rows; | 
 |  | 
 |           mem_put_varsize(dst + wpos, tcsb, tile_col_size); | 
 |           wpos += tcsb; | 
 |         } | 
 |  | 
 |         for (tile_row = 0; tile_row < cm->tile_rows; tile_row++) { | 
 |           // All, including the last row has a header | 
 |           uint32_t tile_header = mem_get_le32(dst + rpos); | 
 |           rpos += 4; | 
 |  | 
 |           // If this is a copy tile, we need to shift the MSB to the | 
 |           // top bit of the new width, and there is no data to copy. | 
 |           if (tile_header >> 31 != 0) { | 
 |             if (tsb < 4) tile_header >>= 32 - 8 * tsb; | 
 |             mem_put_varsize(dst + wpos, tsb, tile_header); | 
 |             wpos += tsb; | 
 |           } else { | 
 |             mem_put_varsize(dst + wpos, tsb, tile_header); | 
 |             wpos += tsb; | 
 |  | 
 |             memmove(dst + wpos, dst + rpos, tile_header); | 
 |             rpos += tile_header; | 
 |             wpos += tile_header; | 
 |           } | 
 |         } | 
 |       } | 
 |     } else { | 
 | #endif  // CONFIG_EXT_TILE | 
 |       const int n_tiles = cm->tile_cols * cm->tile_rows; | 
 |       int n; | 
 |  | 
 |       for (n = 0; n < n_tiles; n++) { | 
 |         int tile_size; | 
 |  | 
 |         if (n == n_tiles - 1) { | 
 |           tile_size = data_size - rpos; | 
 |         } else { | 
 |           tile_size = mem_get_le32(dst + rpos); | 
 |           rpos += 4; | 
 |           mem_put_varsize(dst + wpos, tsb, tile_size); | 
 |           wpos += tsb; | 
 |         } | 
 |  | 
 |         memmove(dst + wpos, dst + rpos, tile_size); | 
 |  | 
 |         rpos += tile_size; | 
 |         wpos += tile_size; | 
 |       } | 
 | #if CONFIG_EXT_TILE | 
 |     } | 
 | #endif  // CONFIG_EXT_TILE | 
 |  | 
 |     assert(rpos > wpos); | 
 |     assert(rpos == data_size); | 
 |  | 
 |     return wpos; | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 | #if CONFIG_OBU | 
 |  | 
 | uint32_t write_obu_header(OBU_TYPE obu_type, int obu_extension, | 
 |                           uint8_t *const dst) { | 
 |   struct aom_write_bit_buffer wb = { dst, 0 }; | 
 |   uint32_t size = 0; | 
 |  | 
 |   // first bit is obu_forbidden_bit according to R19 | 
 |   aom_wb_write_literal(&wb, 0, 1); | 
 |   aom_wb_write_literal(&wb, (int)obu_type, 4); | 
 |   aom_wb_write_literal(&wb, 0, 2); | 
 |   aom_wb_write_literal(&wb, obu_extension ? 1 : 0, 1); | 
 |   if (obu_extension) { | 
 |     aom_wb_write_literal(&wb, obu_extension & 0xFF, 8); | 
 |   } | 
 |  | 
 |   size = aom_wb_bytes_written(&wb); | 
 |   return size; | 
 | } | 
 |  | 
 | #if CONFIG_OBU_SIZING | 
 | int write_uleb_obu_size(uint32_t obu_size, uint8_t *dest) { | 
 |   size_t coded_obu_size = 0; | 
 |  | 
 |   if (aom_uleb_encode(obu_size, sizeof(obu_size), dest, &coded_obu_size) != 0) | 
 |     return AOM_CODEC_ERROR; | 
 |  | 
 |   return AOM_CODEC_OK; | 
 | } | 
 | #endif  // CONFIG_OBU_SIZING | 
 |  | 
 | static uint32_t write_sequence_header_obu(AV1_COMP *cpi, uint8_t *const dst | 
 | #if CONFIG_SCALABILITY | 
 |                                           , | 
 |                                           uint8_t enhancement_layers_cnt) { | 
 | #else | 
 | ) { | 
 | #endif | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   struct aom_write_bit_buffer wb = { dst, 0 }; | 
 |   uint32_t size = 0; | 
 |  | 
 |   write_profile(cm->profile, &wb); | 
 |  | 
 |   aom_wb_write_literal(&wb, 0, 4); | 
 | #if CONFIG_SCALABILITY | 
 |   aom_wb_write_literal(&wb, enhancement_layers_cnt, 2); | 
 |   int i; | 
 |   for (i = 1; i <= enhancement_layers_cnt; i++) { | 
 |     aom_wb_write_literal(&wb, 0, 4); | 
 |   } | 
 | #endif | 
 |  | 
 |   write_sequence_header(cpi, &wb); | 
 |  | 
 |   // color_config | 
 |   write_bitdepth_colorspace_sampling(cm, &wb); | 
 |  | 
 | #if CONFIG_TIMING_INFO_IN_SEQ_HEADERS | 
 |   // timing_info | 
 |   write_timing_info_header(cm, &wb); | 
 | #endif | 
 |  | 
 | #if CONFIG_FILM_GRAIN | 
 |   aom_wb_write_bit(&wb, cm->film_grain_params_present); | 
 | #endif | 
 |  | 
 |   size = aom_wb_bytes_written(&wb); | 
 |   return size; | 
 | } | 
 |  | 
 | static uint32_t write_frame_header_obu(AV1_COMP *cpi, | 
 | #if CONFIG_EXT_TILE | 
 |                                        struct aom_write_bit_buffer *saved_wb, | 
 | #endif | 
 |                                        uint8_t *const dst) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   struct aom_write_bit_buffer wb = { dst, 0 }; | 
 |   uint32_t total_size = 0; | 
 |   uint32_t uncompressed_hdr_size; | 
 |  | 
 |   write_uncompressed_header_obu(cpi, | 
 | #if CONFIG_EXT_TILE | 
 |                                 saved_wb, | 
 | #endif | 
 |                                 &wb); | 
 |  | 
 |   if (cm->show_existing_frame) { | 
 |     total_size = aom_wb_bytes_written(&wb); | 
 |     return total_size; | 
 |   } | 
 |  | 
 | #if !CONFIG_TILE_INFO_FIRST | 
 | // write the tile length code  (Always 4 bytes for now) | 
 | #if CONFIG_EXT_TILE | 
 |   if (!cm->large_scale_tile) | 
 | #endif | 
 |     aom_wb_write_literal(&wb, 3, 2); | 
 | #endif | 
 |  | 
 |   uncompressed_hdr_size = aom_wb_bytes_written(&wb); | 
 |   total_size = uncompressed_hdr_size; | 
 |   return total_size; | 
 | } | 
 |  | 
 | static uint32_t write_tile_group_header(uint8_t *const dst, int startTile, | 
 |                                         int endTile, int tiles_log2) { | 
 |   struct aom_write_bit_buffer wb = { dst, 0 }; | 
 |   uint32_t size = 0; | 
 |  | 
 |   aom_wb_write_literal(&wb, startTile, tiles_log2); | 
 |   aom_wb_write_literal(&wb, endTile, tiles_log2); | 
 |  | 
 |   size = aom_wb_bytes_written(&wb); | 
 |   return size; | 
 | } | 
 |  | 
 | static uint32_t write_tiles_in_tg_obus(AV1_COMP *const cpi, uint8_t *const dst, | 
 |                                        unsigned int *max_tile_size, | 
 |                                        unsigned int *max_tile_col_size, | 
 | #if CONFIG_EXT_TILE | 
 |                                        struct aom_write_bit_buffer *saved_wb, | 
 | #endif | 
 |                                        uint8_t obu_extension_header) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   aom_writer mode_bc; | 
 |   int tile_row, tile_col; | 
 |   TOKENEXTRA *(*const tok_buffers)[MAX_TILE_COLS] = cpi->tile_tok; | 
 |   TileBufferEnc(*const tile_buffers)[MAX_TILE_COLS] = cpi->tile_buffers; | 
 |   uint32_t total_size = 0; | 
 |   const int tile_cols = cm->tile_cols; | 
 |   const int tile_rows = cm->tile_rows; | 
 |   unsigned int tile_size = 0; | 
 |   const int n_log2_tiles = cm->log2_tile_rows + cm->log2_tile_cols; | 
 |   // Fixed size tile groups for the moment | 
 |   const int num_tg_hdrs = cm->num_tg; | 
 |   const int tg_size = | 
 | #if CONFIG_EXT_TILE | 
 |       (cm->large_scale_tile) | 
 |           ? 1 | 
 |           : | 
 | #endif  // CONFIG_EXT_TILE | 
 |           (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs; | 
 |   int tile_count = 0; | 
 |   int curr_tg_data_size = 0; | 
 |   uint8_t *data = dst; | 
 |   int new_tg = 1; | 
 | #if CONFIG_EXT_TILE | 
 |   const int have_tiles = tile_cols * tile_rows > 1; | 
 | #endif | 
 |  | 
 |   cm->largest_tile_id = 0; | 
 |   *max_tile_size = 0; | 
 |   *max_tile_col_size = 0; | 
 |  | 
 | #if CONFIG_EXT_TILE | 
 |   if (cm->large_scale_tile) { | 
 |     uint32_t tg_hdr_size = | 
 |         write_obu_header(OBU_TILE_GROUP, 0, data + PRE_OBU_SIZE_BYTES); | 
 |     tg_hdr_size += PRE_OBU_SIZE_BYTES; | 
 |     data += tg_hdr_size; | 
 |  | 
 |     int tile_size_bytes; | 
 |     int tile_col_size_bytes; | 
 |  | 
 |     for (tile_col = 0; tile_col < tile_cols; tile_col++) { | 
 |       TileInfo tile_info; | 
 |       const int is_last_col = (tile_col == tile_cols - 1); | 
 |       const uint32_t col_offset = total_size; | 
 |  | 
 |       av1_tile_set_col(&tile_info, cm, tile_col); | 
 |  | 
 |       // The last column does not have a column header | 
 |       if (!is_last_col) total_size += 4; | 
 |  | 
 |       for (tile_row = 0; tile_row < tile_rows; tile_row++) { | 
 |         TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col]; | 
 |         const TOKENEXTRA *tok = tok_buffers[tile_row][tile_col]; | 
 |         const TOKENEXTRA *tok_end = tok + cpi->tok_count[tile_row][tile_col]; | 
 |         const int data_offset = have_tiles ? 4 : 0; | 
 |         const int tile_idx = tile_row * tile_cols + tile_col; | 
 |         TileDataEnc *this_tile = &cpi->tile_data[tile_idx]; | 
 |         av1_tile_set_row(&tile_info, cm, tile_row); | 
 |  | 
 |         buf->data = dst + total_size + tg_hdr_size; | 
 |  | 
 |         // Is CONFIG_EXT_TILE = 1, every tile in the row has a header, | 
 |         // even for the last one, unless no tiling is used at all. | 
 |         total_size += data_offset; | 
 |         // Initialise tile context from the frame context | 
 |         this_tile->tctx = *cm->fc; | 
 |         cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx; | 
 |         mode_bc.allow_update_cdf = !cm->large_scale_tile; | 
 |         aom_start_encode(&mode_bc, buf->data + data_offset); | 
 |         write_modes(cpi, &tile_info, &mode_bc, &tok, tok_end); | 
 |         assert(tok == tok_end); | 
 |         aom_stop_encode(&mode_bc); | 
 |         tile_size = mode_bc.pos; | 
 |         buf->size = tile_size; | 
 |  | 
 |         // Record the maximum tile size we see, so we can compact headers later. | 
 |         if (tile_size > *max_tile_size) { | 
 |           *max_tile_size = tile_size; | 
 |           cm->largest_tile_id = tile_cols * tile_row + tile_col; | 
 |         } | 
 |  | 
 |         if (have_tiles) { | 
 |           // tile header: size of this tile, or copy offset | 
 |           uint32_t tile_header = tile_size; | 
 |           const int tile_copy_mode = | 
 |               ((AOMMAX(cm->tile_width, cm->tile_height) << MI_SIZE_LOG2) <= 256) | 
 |                   ? 1 | 
 |                   : 0; | 
 |  | 
 |           // If tile_copy_mode = 1, check if this tile is a copy tile. | 
 |           // Very low chances to have copy tiles on the key frames, so don't | 
 |           // search on key frames to reduce unnecessary search. | 
 |           if (cm->frame_type != KEY_FRAME && tile_copy_mode) { | 
 |             const int idendical_tile_offset = | 
 |                 find_identical_tile(tile_row, tile_col, tile_buffers); | 
 |  | 
 |             if (idendical_tile_offset > 0) { | 
 |               tile_size = 0; | 
 |               tile_header = idendical_tile_offset | 0x80; | 
 |               tile_header <<= 24; | 
 |             } | 
 |           } | 
 |  | 
 |           mem_put_le32(buf->data, tile_header); | 
 |         } | 
 |  | 
 |         total_size += tile_size; | 
 |       } | 
 |  | 
 |       if (!is_last_col) { | 
 |         uint32_t col_size = total_size - col_offset - 4; | 
 |         mem_put_le32(dst + col_offset + tg_hdr_size, col_size); | 
 |  | 
 |         // If it is not final packing, record the maximum tile column size we | 
 |         // see, otherwise, check if the tile size is out of the range. | 
 |         *max_tile_col_size = AOMMAX(*max_tile_col_size, col_size); | 
 |       } | 
 |     } | 
 |  | 
 |     if (have_tiles) { | 
 |       total_size = | 
 |           remux_tiles(cm, data, total_size, *max_tile_size, *max_tile_col_size, | 
 |                       &tile_size_bytes, &tile_col_size_bytes); | 
 |     } | 
 |  | 
 |     // Now fill in the gaps in the uncompressed header. | 
 |     if (have_tiles) { | 
 |       assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4); | 
 |       aom_wb_write_literal(saved_wb, tile_col_size_bytes - 1, 2); | 
 |  | 
 |       assert(tile_size_bytes >= 1 && tile_size_bytes <= 4); | 
 |       aom_wb_write_literal(saved_wb, tile_size_bytes - 1, 2); | 
 |     } | 
 |     total_size += tg_hdr_size; | 
 |   } else { | 
 | #endif  // CONFIG_EXT_TILE | 
 |  | 
 |     for (tile_row = 0; tile_row < tile_rows; tile_row++) { | 
 |       TileInfo tile_info; | 
 |       const int is_last_row = (tile_row == tile_rows - 1); | 
 |       av1_tile_set_row(&tile_info, cm, tile_row); | 
 |  | 
 |       for (tile_col = 0; tile_col < tile_cols; tile_col++) { | 
 |         const int tile_idx = tile_row * tile_cols + tile_col; | 
 |         TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col]; | 
 |         TileDataEnc *this_tile = &cpi->tile_data[tile_idx]; | 
 |         const TOKENEXTRA *tok = tok_buffers[tile_row][tile_col]; | 
 |         const TOKENEXTRA *tok_end = tok + cpi->tok_count[tile_row][tile_col]; | 
 |         const int is_last_col = (tile_col == tile_cols - 1); | 
 |         const int is_last_tile = is_last_col && is_last_row; | 
 |         int is_last_tile_in_tg = 0; | 
 |  | 
 |         if (new_tg) { | 
 |           data = dst + total_size; | 
 |           // A new tile group begins at this tile.  Write the obu header and | 
 |           // tile group header | 
 |           curr_tg_data_size = write_obu_header( | 
 |               OBU_TILE_GROUP, obu_extension_header, data + PRE_OBU_SIZE_BYTES); | 
 |           if (n_log2_tiles) | 
 |             curr_tg_data_size += write_tile_group_header( | 
 |                 data + curr_tg_data_size + PRE_OBU_SIZE_BYTES, tile_idx, | 
 |                 AOMMIN(tile_idx + tg_size - 1, tile_cols * tile_rows - 1), | 
 |                 n_log2_tiles); | 
 |           total_size += curr_tg_data_size + PRE_OBU_SIZE_BYTES; | 
 |           new_tg = 0; | 
 |           tile_count = 0; | 
 |         } | 
 |         tile_count++; | 
 |         av1_tile_set_col(&tile_info, cm, tile_col); | 
 |  | 
 |         if (tile_count == tg_size || tile_idx == (tile_cols * tile_rows - 1)) { | 
 |           is_last_tile_in_tg = 1; | 
 |           new_tg = 1; | 
 |         } else { | 
 |           is_last_tile_in_tg = 0; | 
 |         } | 
 |  | 
 | #if CONFIG_DEPENDENT_HORZTILES | 
 |         av1_tile_set_tg_boundary(&tile_info, cm, tile_row, tile_col); | 
 | #endif | 
 |         buf->data = dst + total_size; | 
 |  | 
 |         // The last tile of the tile group does not have a header. | 
 |         if (!is_last_tile_in_tg) total_size += 4; | 
 |  | 
 |         // Initialise tile context from the frame context | 
 |         this_tile->tctx = *cm->fc; | 
 |         cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx; | 
 |         mode_bc.allow_update_cdf = 1; | 
 | #if CONFIG_LOOP_RESTORATION | 
 |         const int num_planes = av1_num_planes(cm); | 
 |         av1_reset_loop_restoration(&cpi->td.mb.e_mbd, num_planes); | 
 | #endif  // CONFIG_LOOP_RESTORATION | 
 |  | 
 |         aom_start_encode(&mode_bc, dst + total_size); | 
 |         write_modes(cpi, &tile_info, &mode_bc, &tok, tok_end); | 
 | #if !CONFIG_LV_MAP | 
 |         assert(tok == tok_end); | 
 | #endif  // !CONFIG_LV_MAP | 
 |         aom_stop_encode(&mode_bc); | 
 |         tile_size = mode_bc.pos; | 
 |         assert(tile_size > 0); | 
 |  | 
 |         curr_tg_data_size += (tile_size + (is_last_tile_in_tg ? 0 : 4)); | 
 |         buf->size = tile_size; | 
 |         if (tile_size > *max_tile_size) { | 
 |           cm->largest_tile_id = tile_cols * tile_row + tile_col; | 
 |         } | 
 |         if (!is_last_tile) { | 
 |           *max_tile_size = AOMMAX(*max_tile_size, tile_size); | 
 |         } | 
 |  | 
 |         if (!is_last_tile_in_tg) { | 
 |           // size of this tile | 
 |           mem_put_le32(buf->data, tile_size); | 
 |         } else { | 
 | // write current tile group size | 
 | #if CONFIG_OBU_SIZING | 
 |           const size_t length_field_size = | 
 |               aom_uleb_size_in_bytes(curr_tg_data_size); | 
 |           memmove(data + length_field_size, data, curr_tg_data_size); | 
 |           if (write_uleb_obu_size(curr_tg_data_size, data) != AOM_CODEC_OK) | 
 |             assert(0); | 
 |           curr_tg_data_size += length_field_size; | 
 |           total_size += length_field_size; | 
 | #else | 
 |         mem_put_le32(data, curr_tg_data_size); | 
 | #endif  // CONFIG_OBU_SIZING | 
 |         } | 
 |  | 
 |         total_size += tile_size; | 
 |       } | 
 |     } | 
 | #if CONFIG_EXT_TILE | 
 |   } | 
 | #endif  // CONFIG_EXT_TILE | 
 |   return (uint32_t)total_size; | 
 | } | 
 |  | 
 | #endif  // CONFIG_OBU | 
 |  | 
 | int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t *size) { | 
 |   uint8_t *data = dst; | 
 |   uint32_t data_size; | 
 |   unsigned int max_tile_size; | 
 |   unsigned int max_tile_col_size; | 
 | #if CONFIG_OBU | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   uint32_t obu_size; | 
 | #if CONFIG_SCALABILITY | 
 |   const uint8_t enhancement_layers_cnt = cm->enhancement_layers_cnt; | 
 |   const uint8_t obu_extension_header = | 
 |       cm->temporal_layer_id << 5 | cm->enhancement_layer_id << 3 | 0; | 
 | #else | 
 |   uint8_t obu_extension_header = 0; | 
 | #endif  // CONFIG_SCALABILITY | 
 | #endif  // CONFIG_OBU | 
 |  | 
 | #if CONFIG_BITSTREAM_DEBUG | 
 |   bitstream_queue_reset_write(); | 
 | #endif | 
 |  | 
 | #if CONFIG_OBU | 
 |   // The TD is now written outside the frame encode loop | 
 |  | 
 |   // write sequence header obu if KEY_FRAME, preceded by 4-byte size | 
 |   if (cm->frame_type == KEY_FRAME) { | 
 |     obu_size = | 
 |         write_obu_header(OBU_SEQUENCE_HEADER, 0, data + PRE_OBU_SIZE_BYTES); | 
 |  | 
 | #if CONFIG_SCALABILITY | 
 |     obu_size += write_sequence_header_obu( | 
 |         cpi, data + PRE_OBU_SIZE_BYTES + obu_size, enhancement_layers_cnt); | 
 | #else | 
 |     obu_size += | 
 |         write_sequence_header_obu(cpi, data + PRE_OBU_SIZE_BYTES + obu_size); | 
 | #endif  // CONFIG_SCALABILITY | 
 |  | 
 | #if CONFIG_OBU_SIZING | 
 |     const size_t length_field_size = aom_uleb_size_in_bytes(obu_size); | 
 |     memmove(data + length_field_size, data, obu_size); | 
 |  | 
 |     if (write_uleb_obu_size(obu_size, data) != AOM_CODEC_OK) | 
 |       return AOM_CODEC_ERROR; | 
 | #else | 
 |     const size_t length_field_size = PRE_OBU_SIZE_BYTES; | 
 |     mem_put_le32(data, obu_size); | 
 | #endif  // CONFIG_OBU_SIZING | 
 |  | 
 |     data += obu_size + length_field_size; | 
 |   } | 
 |  | 
 | #if CONFIG_EXT_TILE | 
 |   struct aom_write_bit_buffer saved_wb; | 
 | #endif | 
 |  | 
 |   // write frame header obu, preceded by 4-byte size | 
 |   obu_size = write_obu_header(OBU_FRAME_HEADER, obu_extension_header, | 
 |                               data + PRE_OBU_SIZE_BYTES); | 
 |   obu_size += write_frame_header_obu(cpi, | 
 | #if CONFIG_EXT_TILE | 
 |                                      &saved_wb, | 
 | #endif | 
 |                                      data + PRE_OBU_SIZE_BYTES + obu_size); | 
 |  | 
 | #if CONFIG_OBU_SIZING | 
 |   const size_t length_field_size = aom_uleb_size_in_bytes(obu_size); | 
 |   memmove(data + length_field_size, data, obu_size); | 
 |   if (write_uleb_obu_size(obu_size, data) != AOM_CODEC_OK) | 
 |     return AOM_CODEC_ERROR; | 
 | #else | 
 |   const size_t length_field_size = PRE_OBU_SIZE_BYTES; | 
 |   mem_put_le32(data, obu_size); | 
 | #endif  // CONFIG_OBU_SIZING | 
 |  | 
 |   data += obu_size + length_field_size; | 
 |  | 
 |   if (cm->show_existing_frame) { | 
 |     data_size = 0; | 
 |   } else { | 
 |     //  Each tile group obu will be preceded by 4-byte size of the tile group | 
 |     //  obu | 
 |     data_size = | 
 |         write_tiles_in_tg_obus(cpi, data, &max_tile_size, &max_tile_col_size, | 
 | #if CONFIG_EXT_TILE | 
 |                                &saved_wb, | 
 | #endif | 
 |                                obu_extension_header); | 
 |   } | 
 |  | 
 | #endif  // CONFIG_OBU | 
 |  | 
 | #if CONFIG_EXT_TILE && !CONFIG_OBU | 
 |   uint32_t uncompressed_hdr_size; | 
 |   struct aom_write_bit_buffer saved_wb; | 
 |   struct aom_write_bit_buffer wb = { data, 0 }; | 
 |   const int have_tiles = cm->tile_cols * cm->tile_rows > 1; | 
 |   int tile_size_bytes; | 
 |   int tile_col_size_bytes; | 
 |  | 
 |   if (cm->large_scale_tile) { | 
 | #if !CONFIG_OBU | 
 |     write_uncompressed_header_frame(cpi, &wb); | 
 | #else | 
 |     write_uncompressed_header_obu(cpi, &wb); | 
 | #endif | 
 |  | 
 |     if (cm->show_existing_frame) { | 
 |       *size = aom_wb_bytes_written(&wb); | 
 |       return AOM_CODEC_OK; | 
 |     } | 
 |  | 
 |     // We do not know these in advance. Output placeholder bit. | 
 |     saved_wb = wb; | 
 |     // Write tile size magnitudes | 
 |     if (have_tiles) { | 
 |       // Note that the last item in the uncompressed header is the data | 
 |       // describing tile configuration. | 
 |       // Number of bytes in tile column size - 1 | 
 |       aom_wb_write_literal(&wb, 0, 2); | 
 |  | 
 |       // Number of bytes in tile size - 1 | 
 |       aom_wb_write_literal(&wb, 0, 2); | 
 |     } | 
 |  | 
 |     uncompressed_hdr_size = (uint32_t)aom_wb_bytes_written(&wb); | 
 |     aom_clear_system_state(); | 
 |     data += uncompressed_hdr_size; | 
 |  | 
 | #define EXT_TILE_DEBUG 0 | 
 | #if EXT_TILE_DEBUG | 
 |     { | 
 |       char fn[20] = "./fh"; | 
 |       fn[4] = cm->current_video_frame / 100 + '0'; | 
 |       fn[5] = (cm->current_video_frame % 100) / 10 + '0'; | 
 |       fn[6] = (cm->current_video_frame % 10) + '0'; | 
 |       fn[7] = '\0'; | 
 |       av1_print_uncompressed_frame_header(data - uncompressed_hdr_size, | 
 |                                           uncompressed_hdr_size, fn); | 
 |     } | 
 | #endif  // EXT_TILE_DEBUG | 
 | #undef EXT_TILE_DEBUG | 
 |  | 
 |     // Write the encoded tile data | 
 |     data_size = write_tiles(cpi, data, &max_tile_size, &max_tile_col_size); | 
 |   } else { | 
 | #endif  // CONFIG_EXT_TILE | 
 | #if !CONFIG_OBU | 
 |     data_size = write_tiles(cpi, data, &max_tile_size, &max_tile_col_size); | 
 | #endif | 
 | #if CONFIG_EXT_TILE && !CONFIG_OBU | 
 |   } | 
 | #endif  // CONFIG_EXT_TILE | 
 | #if CONFIG_EXT_TILE && !CONFIG_OBU | 
 |   if (cm->large_scale_tile) { | 
 |     if (have_tiles) { | 
 |       data_size = | 
 |           remux_tiles(cm, data, data_size, max_tile_size, max_tile_col_size, | 
 |                       &tile_size_bytes, &tile_col_size_bytes); | 
 |     } | 
 |  | 
 |     data += data_size; | 
 |  | 
 |     // Now fill in the gaps in the uncompressed header. | 
 |     if (have_tiles) { | 
 |       assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4); | 
 |       aom_wb_write_literal(&saved_wb, tile_col_size_bytes - 1, 2); | 
 |  | 
 |       assert(tile_size_bytes >= 1 && tile_size_bytes <= 4); | 
 |       aom_wb_write_literal(&saved_wb, tile_size_bytes - 1, 2); | 
 |     } | 
 |  | 
 |     if (compressed_hdr_size > 0xffff) return AOM_CODEC_ERROR; | 
 |   } else { | 
 | #endif  // CONFIG_EXT_TILE | 
 |     data += data_size; | 
 | #if CONFIG_EXT_TILE && !CONFIG_OBU | 
 |   } | 
 | #endif  // CONFIG_EXT_TILE | 
 |   *size = data - dst; | 
 |   return AOM_CODEC_OK; | 
 | } |