| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <stdio.h> |
| #include <math.h> |
| #include <limits.h> |
| #include <assert.h> |
| |
| #include "vp9/common/vp9_pragmas.h" |
| #include "vp9/encoder/vp9_tokenize.h" |
| #include "vp9/encoder/vp9_treewriter.h" |
| #include "vp9/encoder/vp9_onyx_int.h" |
| #include "vp9/encoder/vp9_modecosts.h" |
| #include "vp9/encoder/vp9_encodeintra.h" |
| #include "vp9/common/vp9_entropymode.h" |
| #include "vp9/common/vp9_reconinter.h" |
| #include "vp9/common/vp9_reconintra.h" |
| #include "vp9/common/vp9_findnearmv.h" |
| #include "vp9/common/vp9_quant_common.h" |
| #include "vp9/encoder/vp9_encodemb.h" |
| #include "vp9/encoder/vp9_quantize.h" |
| #include "vp9/encoder/vp9_variance.h" |
| #include "vp9/encoder/vp9_mcomp.h" |
| #include "vp9/encoder/vp9_rdopt.h" |
| #include "vp9/encoder/vp9_ratectrl.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "vp9/common/vp9_systemdependent.h" |
| #include "vp9/encoder/vp9_encodemv.h" |
| #include "vp9/common/vp9_seg_common.h" |
| #include "vp9/common/vp9_pred_common.h" |
| #include "vp9/common/vp9_entropy.h" |
| #include "vp9_rtcd.h" |
| #include "vp9/common/vp9_mvref_common.h" |
| #include "vp9/common/vp9_common.h" |
| |
| #define INVALID_MV 0x80008000 |
| |
| /* Factor to weigh the rate for switchable interp filters */ |
| #define SWITCHABLE_INTERP_RATE_FACTOR 1 |
| |
| DECLARE_ALIGNED(16, extern const uint8_t, |
| vp9_pt_energy_class[MAX_ENTROPY_TOKENS]); |
| |
| #define LAST_FRAME_MODE_MASK 0xFFDADCD60 |
| #define GOLDEN_FRAME_MODE_MASK 0xFFB5A3BB0 |
| #define ALT_REF_MODE_MASK 0xFF8C648D0 |
| |
| const MODE_DEFINITION vp9_mode_order[MAX_MODES] = { |
| {RD_NEARESTMV, LAST_FRAME, NONE}, |
| {RD_NEARESTMV, ALTREF_FRAME, NONE}, |
| {RD_NEARESTMV, GOLDEN_FRAME, NONE}, |
| |
| {RD_DC_PRED, INTRA_FRAME, NONE}, |
| |
| {RD_NEWMV, LAST_FRAME, NONE}, |
| {RD_NEWMV, ALTREF_FRAME, NONE}, |
| {RD_NEWMV, GOLDEN_FRAME, NONE}, |
| |
| {RD_NEARMV, LAST_FRAME, NONE}, |
| {RD_NEARMV, ALTREF_FRAME, NONE}, |
| {RD_NEARESTMV, LAST_FRAME, ALTREF_FRAME}, |
| {RD_NEARESTMV, GOLDEN_FRAME, ALTREF_FRAME}, |
| |
| {RD_TM_PRED, INTRA_FRAME, NONE}, |
| |
| {RD_NEARMV, LAST_FRAME, ALTREF_FRAME}, |
| {RD_NEWMV, LAST_FRAME, ALTREF_FRAME}, |
| {RD_NEARMV, GOLDEN_FRAME, NONE}, |
| {RD_NEARMV, GOLDEN_FRAME, ALTREF_FRAME}, |
| {RD_NEWMV, GOLDEN_FRAME, ALTREF_FRAME}, |
| |
| {RD_SPLITMV, LAST_FRAME, NONE}, |
| {RD_SPLITMV, GOLDEN_FRAME, NONE}, |
| {RD_SPLITMV, ALTREF_FRAME, NONE}, |
| {RD_SPLITMV, LAST_FRAME, ALTREF_FRAME}, |
| {RD_SPLITMV, GOLDEN_FRAME, ALTREF_FRAME}, |
| |
| {RD_ZEROMV, LAST_FRAME, NONE}, |
| {RD_ZEROMV, GOLDEN_FRAME, NONE}, |
| {RD_ZEROMV, ALTREF_FRAME, NONE}, |
| {RD_ZEROMV, LAST_FRAME, ALTREF_FRAME}, |
| {RD_ZEROMV, GOLDEN_FRAME, ALTREF_FRAME}, |
| |
| {RD_I4X4_PRED, INTRA_FRAME, NONE}, |
| {RD_H_PRED, INTRA_FRAME, NONE}, |
| {RD_V_PRED, INTRA_FRAME, NONE}, |
| {RD_D135_PRED, INTRA_FRAME, NONE}, |
| {RD_D207_PRED, INTRA_FRAME, NONE}, |
| {RD_D153_PRED, INTRA_FRAME, NONE}, |
| {RD_D63_PRED, INTRA_FRAME, NONE}, |
| {RD_D117_PRED, INTRA_FRAME, NONE}, |
| {RD_D45_PRED, INTRA_FRAME, NONE}, |
| }; |
| |
| // The baseline rd thresholds for breaking out of the rd loop for |
| // certain modes are assumed to be based on 8x8 blocks. |
| // This table is used to correct for blocks size. |
| // The factors here are << 2 (2 = x0.5, 32 = x8 etc). |
| static int rd_thresh_block_size_factor[BLOCK_SIZES] = |
| {2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32}; |
| |
| #define MAX_RD_THRESH_FACT 64 |
| #define RD_THRESH_INC 1 |
| |
| static void fill_token_costs(vp9_coeff_cost *c, |
| vp9_coeff_probs_model (*p)[BLOCK_TYPES]) { |
| int i, j, k, l; |
| TX_SIZE t; |
| for (t = TX_4X4; t <= TX_32X32; t++) |
| for (i = 0; i < BLOCK_TYPES; i++) |
| for (j = 0; j < REF_TYPES; j++) |
| for (k = 0; k < COEF_BANDS; k++) |
| for (l = 0; l < PREV_COEF_CONTEXTS; l++) { |
| vp9_prob probs[ENTROPY_NODES]; |
| vp9_model_to_full_probs(p[t][i][j][k][l], probs); |
| vp9_cost_tokens((int *)c[t][i][j][k][0][l], probs, |
| vp9_coef_tree); |
| vp9_cost_tokens_skip((int *)c[t][i][j][k][1][l], probs, |
| vp9_coef_tree); |
| assert(c[t][i][j][k][0][l][DCT_EOB_TOKEN] == |
| c[t][i][j][k][1][l][DCT_EOB_TOKEN]); |
| } |
| } |
| |
| static const int rd_iifactor[32] = { |
| 4, 4, 3, 2, 1, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| }; |
| |
| // 3* dc_qlookup[Q]*dc_qlookup[Q]; |
| |
| /* values are now correlated to quantizer */ |
| static int sad_per_bit16lut[QINDEX_RANGE]; |
| static int sad_per_bit4lut[QINDEX_RANGE]; |
| |
| void vp9_init_me_luts() { |
| int i; |
| |
| // Initialize the sad lut tables using a formulaic calculation for now |
| // This is to make it easier to resolve the impact of experimental changes |
| // to the quantizer tables. |
| for (i = 0; i < QINDEX_RANGE; i++) { |
| sad_per_bit16lut[i] = |
| (int)((0.0418 * vp9_convert_qindex_to_q(i)) + 2.4107); |
| sad_per_bit4lut[i] = (int)(0.063 * vp9_convert_qindex_to_q(i) + 2.742); |
| } |
| } |
| |
| static int compute_rd_mult(int qindex) { |
| const int q = vp9_dc_quant(qindex, 0); |
| return (11 * q * q) >> 2; |
| } |
| |
| static MB_PREDICTION_MODE rd_mode_to_mode(RD_PREDICTION_MODE rd_mode) { |
| if (rd_mode == RD_SPLITMV || rd_mode == RD_I4X4_PRED) { |
| assert(!"Invalid rd_mode"); |
| return MB_MODE_COUNT; |
| } |
| assert((int)rd_mode < (int)MB_MODE_COUNT); |
| return (MB_PREDICTION_MODE)rd_mode; |
| } |
| |
| void vp9_initialize_me_consts(VP9_COMP *cpi, int qindex) { |
| cpi->mb.sadperbit16 = sad_per_bit16lut[qindex]; |
| cpi->mb.sadperbit4 = sad_per_bit4lut[qindex]; |
| } |
| |
| |
| void vp9_initialize_rd_consts(VP9_COMP *cpi, int qindex) { |
| int q, i, bsize; |
| |
| vp9_clear_system_state(); // __asm emms; |
| |
| // Further tests required to see if optimum is different |
| // for key frames, golden frames and arf frames. |
| // if (cpi->common.refresh_golden_frame || |
| // cpi->common.refresh_alt_ref_frame) |
| qindex = clamp(qindex, 0, MAXQ); |
| |
| cpi->RDMULT = compute_rd_mult(qindex); |
| if (cpi->pass == 2 && (cpi->common.frame_type != KEY_FRAME)) { |
| if (cpi->twopass.next_iiratio > 31) |
| cpi->RDMULT += (cpi->RDMULT * rd_iifactor[31]) >> 4; |
| else |
| cpi->RDMULT += |
| (cpi->RDMULT * rd_iifactor[cpi->twopass.next_iiratio]) >> 4; |
| } |
| cpi->mb.errorperbit = cpi->RDMULT >> 6; |
| cpi->mb.errorperbit += (cpi->mb.errorperbit == 0); |
| |
| vp9_set_speed_features(cpi); |
| |
| q = (int)pow(vp9_dc_quant(qindex, 0) >> 2, 1.25); |
| q <<= 2; |
| if (q < 8) |
| q = 8; |
| |
| if (cpi->RDMULT > 1000) { |
| cpi->RDDIV = 1; |
| cpi->RDMULT /= 100; |
| |
| for (bsize = 0; bsize < BLOCK_SIZES; ++bsize) { |
| for (i = 0; i < MAX_MODES; ++i) { |
| // Threshold here seem unecessarily harsh but fine given actual |
| // range of values used for cpi->sf.thresh_mult[] |
| int thresh_max = INT_MAX / (q * rd_thresh_block_size_factor[bsize]); |
| |
| // *4 relates to the scaling of rd_thresh_block_size_factor[] |
| if ((int64_t)cpi->sf.thresh_mult[i] < thresh_max) { |
| cpi->rd_threshes[bsize][i] = |
| cpi->sf.thresh_mult[i] * q * |
| rd_thresh_block_size_factor[bsize] / (4 * 100); |
| } else { |
| cpi->rd_threshes[bsize][i] = INT_MAX; |
| } |
| } |
| } |
| } else { |
| cpi->RDDIV = 100; |
| |
| for (bsize = 0; bsize < BLOCK_SIZES; ++bsize) { |
| for (i = 0; i < MAX_MODES; i++) { |
| // Threshold here seem unecessarily harsh but fine given actual |
| // range of values used for cpi->sf.thresh_mult[] |
| int thresh_max = INT_MAX / (q * rd_thresh_block_size_factor[bsize]); |
| |
| if (cpi->sf.thresh_mult[i] < thresh_max) { |
| cpi->rd_threshes[bsize][i] = |
| cpi->sf.thresh_mult[i] * q * |
| rd_thresh_block_size_factor[bsize] / 4; |
| } else { |
| cpi->rd_threshes[bsize][i] = INT_MAX; |
| } |
| } |
| } |
| } |
| |
| fill_token_costs(cpi->mb.token_costs, cpi->common.fc.coef_probs); |
| |
| for (i = 0; i < NUM_PARTITION_CONTEXTS; i++) |
| vp9_cost_tokens(cpi->mb.partition_cost[i], |
| cpi->common.fc.partition_prob[cpi->common.frame_type][i], |
| vp9_partition_tree); |
| |
| /*rough estimate for costing*/ |
| vp9_init_mode_costs(cpi); |
| |
| if (cpi->common.frame_type != KEY_FRAME) { |
| vp9_build_nmv_cost_table( |
| cpi->mb.nmvjointcost, |
| cpi->mb.e_mbd.allow_high_precision_mv ? |
| cpi->mb.nmvcost_hp : cpi->mb.nmvcost, |
| &cpi->common.fc.nmvc, |
| cpi->mb.e_mbd.allow_high_precision_mv, 1, 1); |
| |
| for (i = 0; i < INTER_MODE_CONTEXTS; i++) { |
| MB_PREDICTION_MODE m; |
| |
| for (m = NEARESTMV; m < MB_MODE_COUNT; m++) |
| cpi->mb.inter_mode_cost[i][m - NEARESTMV] = |
| cost_token(vp9_inter_mode_tree, |
| cpi->common.fc.inter_mode_probs[i], |
| vp9_inter_mode_encodings + (m - NEARESTMV)); |
| } |
| } |
| } |
| |
| static INLINE void linear_interpolate2(double x, int ntab, int inv_step, |
| const double *tab1, const double *tab2, |
| double *v1, double *v2) { |
| double y = x * inv_step; |
| int d = (int) y; |
| if (d >= ntab - 1) { |
| *v1 = tab1[ntab - 1]; |
| *v2 = tab2[ntab - 1]; |
| } else { |
| double a = y - d; |
| *v1 = tab1[d] * (1 - a) + tab1[d + 1] * a; |
| *v2 = tab2[d] * (1 - a) + tab2[d + 1] * a; |
| } |
| } |
| |
| static void model_rd_norm(double x, double *R, double *D) { |
| static const int inv_tab_step = 8; |
| static const int tab_size = 120; |
| // NOTE: The tables below must be of the same size |
| // |
| // Normalized rate |
| // This table models the rate for a Laplacian source |
| // source with given variance when quantized with a uniform quantizer |
| // with given stepsize. The closed form expression is: |
| // Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)], |
| // where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance), |
| // and H(x) is the binary entropy function. |
| static const double rate_tab[] = { |
| 64.00, 4.944, 3.949, 3.372, 2.966, 2.655, 2.403, 2.194, |
| 2.014, 1.858, 1.720, 1.596, 1.485, 1.384, 1.291, 1.206, |
| 1.127, 1.054, 0.986, 0.923, 0.863, 0.808, 0.756, 0.708, |
| 0.662, 0.619, 0.579, 0.541, 0.506, 0.473, 0.442, 0.412, |
| 0.385, 0.359, 0.335, 0.313, 0.291, 0.272, 0.253, 0.236, |
| 0.220, 0.204, 0.190, 0.177, 0.165, 0.153, 0.142, 0.132, |
| 0.123, 0.114, 0.106, 0.099, 0.091, 0.085, 0.079, 0.073, |
| 0.068, 0.063, 0.058, 0.054, 0.050, 0.047, 0.043, 0.040, |
| 0.037, 0.034, 0.032, 0.029, 0.027, 0.025, 0.023, 0.022, |
| 0.020, 0.019, 0.017, 0.016, 0.015, 0.014, 0.013, 0.012, |
| 0.011, 0.010, 0.009, 0.008, 0.008, 0.007, 0.007, 0.006, |
| 0.006, 0.005, 0.005, 0.005, 0.004, 0.004, 0.004, 0.003, |
| 0.003, 0.003, 0.003, 0.002, 0.002, 0.002, 0.002, 0.002, |
| 0.002, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, |
| 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.000, |
| }; |
| // Normalized distortion |
| // This table models the normalized distortion for a Laplacian source |
| // source with given variance when quantized with a uniform quantizer |
| // with given stepsize. The closed form expression is: |
| // Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2)) |
| // where x = qpstep / sqrt(variance) |
| // Note the actual distortion is Dn * variance. |
| static const double dist_tab[] = { |
| 0.000, 0.001, 0.005, 0.012, 0.021, 0.032, 0.045, 0.061, |
| 0.079, 0.098, 0.119, 0.142, 0.166, 0.190, 0.216, 0.242, |
| 0.269, 0.296, 0.324, 0.351, 0.378, 0.405, 0.432, 0.458, |
| 0.484, 0.509, 0.534, 0.557, 0.580, 0.603, 0.624, 0.645, |
| 0.664, 0.683, 0.702, 0.719, 0.735, 0.751, 0.766, 0.780, |
| 0.794, 0.807, 0.819, 0.830, 0.841, 0.851, 0.861, 0.870, |
| 0.878, 0.886, 0.894, 0.901, 0.907, 0.913, 0.919, 0.925, |
| 0.930, 0.935, 0.939, 0.943, 0.947, 0.951, 0.954, 0.957, |
| 0.960, 0.963, 0.966, 0.968, 0.971, 0.973, 0.975, 0.976, |
| 0.978, 0.980, 0.981, 0.982, 0.984, 0.985, 0.986, 0.987, |
| 0.988, 0.989, 0.990, 0.990, 0.991, 0.992, 0.992, 0.993, |
| 0.993, 0.994, 0.994, 0.995, 0.995, 0.996, 0.996, 0.996, |
| 0.996, 0.997, 0.997, 0.997, 0.997, 0.998, 0.998, 0.998, |
| 0.998, 0.998, 0.998, 0.999, 0.999, 0.999, 0.999, 0.999, |
| 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 1.000, |
| }; |
| /* |
| assert(sizeof(rate_tab) == tab_size * sizeof(rate_tab[0]); |
| assert(sizeof(dist_tab) == tab_size * sizeof(dist_tab[0]); |
| assert(sizeof(rate_tab) == sizeof(dist_tab)); |
| */ |
| assert(x >= 0.0); |
| linear_interpolate2(x, tab_size, inv_tab_step, |
| rate_tab, dist_tab, R, D); |
| } |
| |
| static void model_rd_from_var_lapndz(int var, int n, int qstep, |
| int *rate, int64_t *dist) { |
| // This function models the rate and distortion for a Laplacian |
| // source with given variance when quantized with a uniform quantizer |
| // with given stepsize. The closed form expressions are in: |
| // Hang and Chen, "Source Model for transform video coder and its |
| // application - Part I: Fundamental Theory", IEEE Trans. Circ. |
| // Sys. for Video Tech., April 1997. |
| vp9_clear_system_state(); |
| if (var == 0 || n == 0) { |
| *rate = 0; |
| *dist = 0; |
| } else { |
| double D, R; |
| double s2 = (double) var / n; |
| double x = qstep / sqrt(s2); |
| model_rd_norm(x, &R, &D); |
| *rate = (int)((n << 8) * R + 0.5); |
| *dist = (int)(var * D + 0.5); |
| } |
| vp9_clear_system_state(); |
| } |
| |
| static void model_rd_for_sb(VP9_COMP *cpi, BLOCK_SIZE bsize, |
| MACROBLOCK *x, MACROBLOCKD *xd, |
| int *out_rate_sum, int64_t *out_dist_sum) { |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| int i, rate_sum = 0, dist_sum = 0; |
| |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| struct macroblock_plane *const p = &x->plane[i]; |
| struct macroblockd_plane *const pd = &xd->plane[i]; |
| const BLOCK_SIZE bs = get_plane_block_size(bsize, pd); |
| unsigned int sse; |
| int rate; |
| int64_t dist; |
| (void) cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, |
| pd->dst.buf, pd->dst.stride, &sse); |
| // sse works better than var, since there is no dc prediction used |
| model_rd_from_var_lapndz(sse, 1 << num_pels_log2_lookup[bs], |
| pd->dequant[1] >> 3, &rate, &dist); |
| |
| rate_sum += rate; |
| dist_sum += (int)dist; |
| } |
| |
| *out_rate_sum = rate_sum; |
| *out_dist_sum = dist_sum << 4; |
| } |
| |
| static void model_rd_for_sb_y_tx(VP9_COMP *cpi, BLOCK_SIZE bsize, |
| TX_SIZE tx_size, |
| MACROBLOCK *x, MACROBLOCKD *xd, |
| int *out_rate_sum, int64_t *out_dist_sum, |
| int *out_skip) { |
| int j, k; |
| BLOCK_SIZE bs; |
| struct macroblock_plane *const p = &x->plane[0]; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| const int width = 4 << num_4x4_blocks_wide_lookup[bsize]; |
| const int height = 4 << num_4x4_blocks_high_lookup[bsize]; |
| int rate_sum = 0; |
| int64_t dist_sum = 0; |
| const int t = 4 << tx_size; |
| |
| if (tx_size == TX_4X4) { |
| bs = BLOCK_4X4; |
| } else if (tx_size == TX_8X8) { |
| bs = BLOCK_8X8; |
| } else if (tx_size == TX_16X16) { |
| bs = BLOCK_16X16; |
| } else if (tx_size == TX_32X32) { |
| bs = BLOCK_32X32; |
| } else { |
| assert(0); |
| } |
| |
| *out_skip = 1; |
| for (j = 0; j < height; j += t) { |
| for (k = 0; k < width; k += t) { |
| int rate; |
| int64_t dist; |
| unsigned int sse; |
| cpi->fn_ptr[bs].vf(&p->src.buf[j * p->src.stride + k], p->src.stride, |
| &pd->dst.buf[j * pd->dst.stride + k], pd->dst.stride, |
| &sse); |
| // sse works better than var, since there is no dc prediction used |
| model_rd_from_var_lapndz(sse, t * t, pd->dequant[1] >> 3, &rate, &dist); |
| rate_sum += rate; |
| dist_sum += dist; |
| *out_skip &= (rate < 1024); |
| } |
| } |
| |
| *out_rate_sum = rate_sum; |
| *out_dist_sum = dist_sum << 4; |
| } |
| |
| int64_t vp9_block_error_c(int16_t *coeff, int16_t *dqcoeff, |
| intptr_t block_size, int64_t *ssz) { |
| int i; |
| int64_t error = 0, sqcoeff = 0; |
| |
| for (i = 0; i < block_size; i++) { |
| int this_diff = coeff[i] - dqcoeff[i]; |
| error += (unsigned)this_diff * this_diff; |
| sqcoeff += (unsigned) coeff[i] * coeff[i]; |
| } |
| |
| *ssz = sqcoeff; |
| return error; |
| } |
| |
| /* The trailing '0' is a terminator which is used inside cost_coeffs() to |
| * decide whether to include cost of a trailing EOB node or not (i.e. we |
| * can skip this if the last coefficient in this transform block, e.g. the |
| * 16th coefficient in a 4x4 block or the 64th coefficient in a 8x8 block, |
| * were non-zero). */ |
| static const int16_t band_counts[TX_SIZES][8] = { |
| { 1, 2, 3, 4, 3, 16 - 13, 0 }, |
| { 1, 2, 3, 4, 11, 64 - 21, 0 }, |
| { 1, 2, 3, 4, 11, 256 - 21, 0 }, |
| { 1, 2, 3, 4, 11, 1024 - 21, 0 }, |
| }; |
| |
| static INLINE int cost_coeffs(MACROBLOCK *mb, |
| int plane, int block, |
| ENTROPY_CONTEXT *A, ENTROPY_CONTEXT *L, |
| TX_SIZE tx_size, |
| const int16_t *scan, const int16_t *nb) { |
| MACROBLOCKD *const xd = &mb->e_mbd; |
| MB_MODE_INFO *mbmi = &xd->this_mi->mbmi; |
| struct macroblockd_plane *pd = &xd->plane[plane]; |
| const PLANE_TYPE type = pd->plane_type; |
| const int16_t *band_count = &band_counts[tx_size][1]; |
| const int eob = pd->eobs[block]; |
| const int16_t *const qcoeff_ptr = BLOCK_OFFSET(pd->qcoeff, block); |
| const int ref = mbmi->ref_frame[0] != INTRA_FRAME; |
| unsigned int (*token_costs)[2][PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS] = |
| mb->token_costs[tx_size][type][ref]; |
| const ENTROPY_CONTEXT above_ec = !!*A, left_ec = !!*L; |
| uint8_t token_cache[1024]; |
| int pt = combine_entropy_contexts(above_ec, left_ec); |
| int c, cost; |
| |
| // Check for consistency of tx_size with mode info |
| assert(type == PLANE_TYPE_Y_WITH_DC ? mbmi->tx_size == tx_size |
| : get_uv_tx_size(mbmi) == tx_size); |
| |
| if (eob == 0) { |
| // single eob token |
| cost = token_costs[0][0][pt][DCT_EOB_TOKEN]; |
| c = 0; |
| } else { |
| int band_left = *band_count++; |
| |
| // dc token |
| int v = qcoeff_ptr[0]; |
| int prev_t = vp9_dct_value_tokens_ptr[v].token; |
| cost = (*token_costs)[0][pt][prev_t] + vp9_dct_value_cost_ptr[v]; |
| token_cache[0] = vp9_pt_energy_class[prev_t]; |
| ++token_costs; |
| |
| // ac tokens |
| for (c = 1; c < eob; c++) { |
| const int rc = scan[c]; |
| int t; |
| |
| v = qcoeff_ptr[rc]; |
| t = vp9_dct_value_tokens_ptr[v].token; |
| pt = get_coef_context(nb, token_cache, c); |
| cost += (*token_costs)[!prev_t][pt][t] + vp9_dct_value_cost_ptr[v]; |
| token_cache[rc] = vp9_pt_energy_class[t]; |
| prev_t = t; |
| if (!--band_left) { |
| band_left = *band_count++; |
| ++token_costs; |
| } |
| } |
| |
| // eob token |
| if (band_left) { |
| pt = get_coef_context(nb, token_cache, c); |
| cost += (*token_costs)[0][pt][DCT_EOB_TOKEN]; |
| } |
| } |
| |
| // is eob first coefficient; |
| *A = *L = (c > 0); |
| |
| return cost; |
| } |
| |
| struct rdcost_block_args { |
| MACROBLOCK *x; |
| ENTROPY_CONTEXT t_above[16]; |
| ENTROPY_CONTEXT t_left[16]; |
| TX_SIZE tx_size; |
| int bw; |
| int bh; |
| int rate[256]; |
| int64_t dist[256]; |
| int64_t sse[256]; |
| int this_rate; |
| int64_t this_dist; |
| int64_t this_sse; |
| int64_t this_rd; |
| int64_t best_rd; |
| int skip; |
| const int16_t *scan, *nb; |
| }; |
| |
| static void dist_block(int plane, int block, TX_SIZE tx_size, void *arg) { |
| const int ss_txfrm_size = tx_size << 1; |
| struct rdcost_block_args* args = arg; |
| MACROBLOCK* const x = args->x; |
| MACROBLOCKD* const xd = &x->e_mbd; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| int64_t this_sse; |
| int shift = args->tx_size == TX_32X32 ? 0 : 2; |
| int16_t *const coeff = BLOCK_OFFSET(p->coeff, block); |
| int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| args->dist[block] = vp9_block_error(coeff, dqcoeff, 16 << ss_txfrm_size, |
| &this_sse) >> shift; |
| args->sse[block] = this_sse >> shift; |
| |
| if (x->skip_encode && |
| xd->this_mi->mbmi.ref_frame[0] == INTRA_FRAME) { |
| // TODO(jingning): tune the model to better capture the distortion. |
| int64_t p = (pd->dequant[1] * pd->dequant[1] * |
| (1 << ss_txfrm_size)) >> shift; |
| args->dist[block] = p; |
| args->sse[block] = p; |
| } |
| } |
| |
| static void rate_block(int plane, int block, BLOCK_SIZE plane_bsize, |
| TX_SIZE tx_size, void *arg) { |
| struct rdcost_block_args* args = arg; |
| |
| int x_idx, y_idx; |
| txfrm_block_to_raster_xy(plane_bsize, args->tx_size, block, &x_idx, &y_idx); |
| |
| args->rate[block] = cost_coeffs(args->x, plane, block, |
| args->t_above + x_idx, |
| args->t_left + y_idx, args->tx_size, |
| args->scan, args->nb); |
| } |
| |
| static void block_yrd_txfm(int plane, int block, BLOCK_SIZE plane_bsize, |
| TX_SIZE tx_size, void *arg) { |
| struct rdcost_block_args *args = arg; |
| MACROBLOCK *const x = args->x; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct encode_b_args encode_args = {x, NULL}; |
| int64_t rd1, rd2, rd; |
| |
| if (args->skip) |
| return; |
| |
| if (!is_inter_block(&xd->this_mi->mbmi)) |
| vp9_encode_block_intra(plane, block, plane_bsize, tx_size, &encode_args); |
| else |
| vp9_xform_quant(plane, block, plane_bsize, tx_size, &encode_args); |
| |
| dist_block(plane, block, tx_size, args); |
| rate_block(plane, block, plane_bsize, tx_size, args); |
| rd1 = RDCOST(x->rdmult, x->rddiv, args->rate[block], args->dist[block]); |
| rd2 = RDCOST(x->rdmult, x->rddiv, 0, args->sse[block]); |
| |
| // TODO(jingning): temporarily enabled only for luma component |
| rd = MIN(rd1, rd2); |
| if (plane == 0) |
| x->zcoeff_blk[tx_size][block] = rd1 > rd2; |
| |
| args->this_rate += args->rate[block]; |
| args->this_dist += args->dist[block]; |
| args->this_sse += args->sse[block]; |
| args->this_rd += rd; |
| |
| if (args->this_rd > args->best_rd) { |
| args->skip = 1; |
| return; |
| } |
| } |
| |
| static void txfm_rd_in_plane(MACROBLOCK *x, |
| int *rate, int64_t *distortion, |
| int *skippable, int64_t *sse, |
| int64_t ref_best_rd, int plane, |
| BLOCK_SIZE bsize, TX_SIZE tx_size) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE bs = get_plane_block_size(bsize, pd); |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bs]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bs]; |
| int i; |
| struct rdcost_block_args args = { x, { 0 }, { 0 }, tx_size, |
| num_4x4_blocks_wide, num_4x4_blocks_high, |
| { 0 }, { 0 }, { 0 }, |
| 0, 0, 0, 0, ref_best_rd, 0 }; |
| if (plane == 0) |
| xd->this_mi->mbmi.tx_size = tx_size; |
| |
| switch (tx_size) { |
| case TX_4X4: |
| vpx_memcpy(&args.t_above, pd->above_context, |
| sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide); |
| vpx_memcpy(&args.t_left, pd->left_context, |
| sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high); |
| get_scan_nb_4x4(get_tx_type_4x4(pd->plane_type, xd, 0), |
| &args.scan, &args.nb); |
| break; |
| case TX_8X8: |
| for (i = 0; i < num_4x4_blocks_wide; i += 2) |
| args.t_above[i] = !!*(uint16_t *)&pd->above_context[i]; |
| for (i = 0; i < num_4x4_blocks_high; i += 2) |
| args.t_left[i] = !!*(uint16_t *)&pd->left_context[i]; |
| get_scan_nb_8x8(get_tx_type_8x8(pd->plane_type, xd), |
| &args.scan, &args.nb); |
| break; |
| case TX_16X16: |
| for (i = 0; i < num_4x4_blocks_wide; i += 4) |
| args.t_above[i] = !!*(uint32_t *)&pd->above_context[i]; |
| for (i = 0; i < num_4x4_blocks_high; i += 4) |
| args.t_left[i] = !!*(uint32_t *)&pd->left_context[i]; |
| get_scan_nb_16x16(get_tx_type_16x16(pd->plane_type, xd), |
| &args.scan, &args.nb); |
| break; |
| case TX_32X32: |
| for (i = 0; i < num_4x4_blocks_wide; i += 8) |
| args.t_above[i] = !!*(uint64_t *)&pd->above_context[i]; |
| for (i = 0; i < num_4x4_blocks_high; i += 8) |
| args.t_left[i] = !!*(uint64_t *)&pd->left_context[i]; |
| args.scan = vp9_default_scan_32x32; |
| args.nb = vp9_default_scan_32x32_neighbors; |
| break; |
| default: |
| assert(0); |
| } |
| |
| foreach_transformed_block_in_plane(xd, bsize, plane, block_yrd_txfm, &args); |
| if (args.skip) { |
| *rate = INT_MAX; |
| *distortion = INT64_MAX; |
| *sse = INT64_MAX; |
| *skippable = 0; |
| } else { |
| *distortion = args.this_dist; |
| *rate = args.this_rate; |
| *sse = args.this_sse; |
| *skippable = vp9_is_skippable_in_plane(xd, bsize, plane); |
| } |
| } |
| |
| static void choose_largest_txfm_size(VP9_COMP *cpi, MACROBLOCK *x, |
| int *rate, int64_t *distortion, |
| int *skip, int64_t *sse, |
| int64_t ref_best_rd, |
| BLOCK_SIZE bs) { |
| const TX_SIZE max_txfm_size = max_txsize_lookup[bs]; |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->this_mi->mbmi; |
| if (max_txfm_size == TX_32X32 && |
| (cm->tx_mode == ALLOW_32X32 || |
| cm->tx_mode == TX_MODE_SELECT)) { |
| mbmi->tx_size = TX_32X32; |
| } else if (max_txfm_size >= TX_16X16 && |
| (cm->tx_mode == ALLOW_16X16 || |
| cm->tx_mode == ALLOW_32X32 || |
| cm->tx_mode == TX_MODE_SELECT)) { |
| mbmi->tx_size = TX_16X16; |
| } else if (cm->tx_mode != ONLY_4X4) { |
| mbmi->tx_size = TX_8X8; |
| } else { |
| mbmi->tx_size = TX_4X4; |
| } |
| txfm_rd_in_plane(x, rate, distortion, skip, |
| &sse[mbmi->tx_size], ref_best_rd, 0, bs, |
| mbmi->tx_size); |
| cpi->txfm_stepdown_count[0]++; |
| } |
| |
| static void choose_txfm_size_from_rd(VP9_COMP *cpi, MACROBLOCK *x, |
| int (*r)[2], int *rate, |
| int64_t *d, int64_t *distortion, |
| int *s, int *skip, |
| int64_t tx_cache[TX_MODES], |
| BLOCK_SIZE bs) { |
| const TX_SIZE max_tx_size = max_txsize_lookup[bs]; |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->this_mi->mbmi; |
| vp9_prob skip_prob = vp9_get_pred_prob_mbskip(cm, xd); |
| int64_t rd[TX_SIZES][2]; |
| int n, m; |
| int s0, s1; |
| |
| const vp9_prob *tx_probs = get_tx_probs2(xd, &cm->fc.tx_probs, xd->this_mi); |
| |
| for (n = TX_4X4; n <= max_tx_size; n++) { |
| r[n][1] = r[n][0]; |
| if (r[n][0] == INT_MAX) |
| continue; |
| for (m = 0; m <= n - (n == max_tx_size); m++) { |
| if (m == n) |
| r[n][1] += vp9_cost_zero(tx_probs[m]); |
| else |
| r[n][1] += vp9_cost_one(tx_probs[m]); |
| } |
| } |
| |
| assert(skip_prob > 0); |
| s0 = vp9_cost_bit(skip_prob, 0); |
| s1 = vp9_cost_bit(skip_prob, 1); |
| |
| for (n = TX_4X4; n <= max_tx_size; n++) { |
| if (d[n] == INT64_MAX) { |
| rd[n][0] = rd[n][1] = INT64_MAX; |
| continue; |
| } |
| if (s[n]) { |
| rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, d[n]); |
| } else { |
| rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]); |
| rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]); |
| } |
| } |
| |
| if (max_tx_size == TX_32X32 && |
| (cm->tx_mode == ALLOW_32X32 || |
| (cm->tx_mode == TX_MODE_SELECT && |
| rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] && |
| rd[TX_32X32][1] < rd[TX_4X4][1]))) { |
| mbmi->tx_size = TX_32X32; |
| } else if (max_tx_size >= TX_16X16 && |
| (cm->tx_mode == ALLOW_16X16 || |
| cm->tx_mode == ALLOW_32X32 || |
| (cm->tx_mode == TX_MODE_SELECT && |
| rd[TX_16X16][1] < rd[TX_8X8][1] && |
| rd[TX_16X16][1] < rd[TX_4X4][1]))) { |
| mbmi->tx_size = TX_16X16; |
| } else if (cm->tx_mode == ALLOW_8X8 || |
| cm->tx_mode == ALLOW_16X16 || |
| cm->tx_mode == ALLOW_32X32 || |
| (cm->tx_mode == TX_MODE_SELECT && rd[TX_8X8][1] < rd[TX_4X4][1])) { |
| mbmi->tx_size = TX_8X8; |
| } else { |
| mbmi->tx_size = TX_4X4; |
| } |
| |
| *distortion = d[mbmi->tx_size]; |
| *rate = r[mbmi->tx_size][cm->tx_mode == TX_MODE_SELECT]; |
| *skip = s[mbmi->tx_size]; |
| |
| tx_cache[ONLY_4X4] = rd[TX_4X4][0]; |
| tx_cache[ALLOW_8X8] = rd[TX_8X8][0]; |
| tx_cache[ALLOW_16X16] = rd[MIN(max_tx_size, TX_16X16)][0]; |
| tx_cache[ALLOW_32X32] = rd[MIN(max_tx_size, TX_32X32)][0]; |
| if (max_tx_size == TX_32X32 && |
| rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] && |
| rd[TX_32X32][1] < rd[TX_4X4][1]) |
| tx_cache[TX_MODE_SELECT] = rd[TX_32X32][1]; |
| else if (max_tx_size >= TX_16X16 && |
| rd[TX_16X16][1] < rd[TX_8X8][1] && rd[TX_16X16][1] < rd[TX_4X4][1]) |
| tx_cache[TX_MODE_SELECT] = rd[TX_16X16][1]; |
| else |
| tx_cache[TX_MODE_SELECT] = rd[TX_4X4][1] < rd[TX_8X8][1] ? |
| rd[TX_4X4][1] : rd[TX_8X8][1]; |
| |
| if (max_tx_size == TX_32X32 && |
| rd[TX_32X32][1] < rd[TX_16X16][1] && |
| rd[TX_32X32][1] < rd[TX_8X8][1] && |
| rd[TX_32X32][1] < rd[TX_4X4][1]) { |
| cpi->txfm_stepdown_count[0]++; |
| } else if (max_tx_size >= TX_16X16 && |
| rd[TX_16X16][1] < rd[TX_8X8][1] && |
| rd[TX_16X16][1] < rd[TX_4X4][1]) { |
| cpi->txfm_stepdown_count[max_tx_size - TX_16X16]++; |
| } else if (rd[TX_8X8][1] < rd[TX_4X4][1]) { |
| cpi->txfm_stepdown_count[max_tx_size - TX_8X8]++; |
| } else { |
| cpi->txfm_stepdown_count[max_tx_size - TX_4X4]++; |
| } |
| } |
| |
| static void choose_txfm_size_from_modelrd(VP9_COMP *cpi, MACROBLOCK *x, |
| int (*r)[2], int *rate, |
| int64_t *d, int64_t *distortion, |
| int *s, int *skip, int64_t *sse, |
| int64_t ref_best_rd, |
| BLOCK_SIZE bs) { |
| const TX_SIZE max_txfm_size = max_txsize_lookup[bs]; |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->this_mi->mbmi; |
| vp9_prob skip_prob = vp9_get_pred_prob_mbskip(cm, xd); |
| int64_t rd[TX_SIZES][2]; |
| int n, m; |
| int s0, s1; |
| double scale_rd[TX_SIZES] = {1.73, 1.44, 1.20, 1.00}; |
| // double scale_r[TX_SIZES] = {2.82, 2.00, 1.41, 1.00}; |
| |
| const vp9_prob *tx_probs = get_tx_probs2(xd, &cm->fc.tx_probs, xd->this_mi); |
| |
| // for (n = TX_4X4; n <= max_txfm_size; n++) |
| // r[n][0] = (r[n][0] * scale_r[n]); |
| |
| for (n = TX_4X4; n <= max_txfm_size; n++) { |
| r[n][1] = r[n][0]; |
| for (m = 0; m <= n - (n == max_txfm_size); m++) { |
| if (m == n) |
| r[n][1] += vp9_cost_zero(tx_probs[m]); |
| else |
| r[n][1] += vp9_cost_one(tx_probs[m]); |
| } |
| } |
| |
| assert(skip_prob > 0); |
| s0 = vp9_cost_bit(skip_prob, 0); |
| s1 = vp9_cost_bit(skip_prob, 1); |
| |
| for (n = TX_4X4; n <= max_txfm_size; n++) { |
| if (s[n]) { |
| rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, d[n]); |
| } else { |
| rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]); |
| rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]); |
| } |
| } |
| for (n = TX_4X4; n <= max_txfm_size; n++) { |
| rd[n][0] = (int64_t)(scale_rd[n] * rd[n][0]); |
| rd[n][1] = (int64_t)(scale_rd[n] * rd[n][1]); |
| } |
| |
| if (max_txfm_size == TX_32X32 && |
| (cm->tx_mode == ALLOW_32X32 || |
| (cm->tx_mode == TX_MODE_SELECT && |
| rd[TX_32X32][1] <= rd[TX_16X16][1] && |
| rd[TX_32X32][1] <= rd[TX_8X8][1] && |
| rd[TX_32X32][1] <= rd[TX_4X4][1]))) { |
| mbmi->tx_size = TX_32X32; |
| } else if (max_txfm_size >= TX_16X16 && |
| (cm->tx_mode == ALLOW_16X16 || |
| cm->tx_mode == ALLOW_32X32 || |
| (cm->tx_mode == TX_MODE_SELECT && |
| rd[TX_16X16][1] <= rd[TX_8X8][1] && |
| rd[TX_16X16][1] <= rd[TX_4X4][1]))) { |
| mbmi->tx_size = TX_16X16; |
| } else if (cm->tx_mode == ALLOW_8X8 || |
| cm->tx_mode == ALLOW_16X16 || |
| cm->tx_mode == ALLOW_32X32 || |
| (cm->tx_mode == TX_MODE_SELECT && |
| rd[TX_8X8][1] <= rd[TX_4X4][1])) { |
| mbmi->tx_size = TX_8X8; |
| } else { |
| mbmi->tx_size = TX_4X4; |
| } |
| |
| // Actually encode using the chosen mode if a model was used, but do not |
| // update the r, d costs |
| txfm_rd_in_plane(x, rate, distortion, skip, &sse[mbmi->tx_size], |
| ref_best_rd, 0, bs, mbmi->tx_size); |
| |
| if (max_txfm_size == TX_32X32 && |
| rd[TX_32X32][1] <= rd[TX_16X16][1] && |
| rd[TX_32X32][1] <= rd[TX_8X8][1] && |
| rd[TX_32X32][1] <= rd[TX_4X4][1]) { |
| cpi->txfm_stepdown_count[0]++; |
| } else if (max_txfm_size >= TX_16X16 && |
| rd[TX_16X16][1] <= rd[TX_8X8][1] && |
| rd[TX_16X16][1] <= rd[TX_4X4][1]) { |
| cpi->txfm_stepdown_count[max_txfm_size - TX_16X16]++; |
| } else if (rd[TX_8X8][1] <= rd[TX_4X4][1]) { |
| cpi->txfm_stepdown_count[max_txfm_size - TX_8X8]++; |
| } else { |
| cpi->txfm_stepdown_count[max_txfm_size - TX_4X4]++; |
| } |
| } |
| |
| static void super_block_yrd(VP9_COMP *cpi, |
| MACROBLOCK *x, int *rate, int64_t *distortion, |
| int *skip, int64_t *psse, BLOCK_SIZE bs, |
| int64_t txfm_cache[TX_MODES], |
| int64_t ref_best_rd) { |
| int r[TX_SIZES][2], s[TX_SIZES]; |
| int64_t d[TX_SIZES], sse[TX_SIZES]; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->this_mi->mbmi; |
| |
| assert(bs == mbmi->sb_type); |
| if (mbmi->ref_frame[0] > INTRA_FRAME) |
| vp9_subtract_sby(x, bs); |
| |
| if (cpi->sf.tx_size_search_method == USE_LARGESTALL || |
| (cpi->sf.tx_size_search_method != USE_FULL_RD && |
| mbmi->ref_frame[0] == INTRA_FRAME)) { |
| vpx_memset(txfm_cache, 0, TX_MODES * sizeof(int64_t)); |
| choose_largest_txfm_size(cpi, x, rate, distortion, skip, sse, |
| ref_best_rd, bs); |
| if (psse) |
| *psse = sse[mbmi->tx_size]; |
| return; |
| } |
| |
| if (cpi->sf.tx_size_search_method == USE_LARGESTINTRA_MODELINTER && |
| mbmi->ref_frame[0] > INTRA_FRAME) { |
| if (bs >= BLOCK_32X32) |
| model_rd_for_sb_y_tx(cpi, bs, TX_32X32, x, xd, |
| &r[TX_32X32][0], &d[TX_32X32], &s[TX_32X32]); |
| if (bs >= BLOCK_16X16) |
| model_rd_for_sb_y_tx(cpi, bs, TX_16X16, x, xd, |
| &r[TX_16X16][0], &d[TX_16X16], &s[TX_16X16]); |
| |
| model_rd_for_sb_y_tx(cpi, bs, TX_8X8, x, xd, |
| &r[TX_8X8][0], &d[TX_8X8], &s[TX_8X8]); |
| |
| model_rd_for_sb_y_tx(cpi, bs, TX_4X4, x, xd, |
| &r[TX_4X4][0], &d[TX_4X4], &s[TX_4X4]); |
| |
| choose_txfm_size_from_modelrd(cpi, x, r, rate, d, distortion, s, |
| skip, sse, ref_best_rd, bs); |
| } else { |
| if (bs >= BLOCK_32X32) |
| txfm_rd_in_plane(x, &r[TX_32X32][0], &d[TX_32X32], &s[TX_32X32], |
| &sse[TX_32X32], ref_best_rd, 0, bs, TX_32X32); |
| if (bs >= BLOCK_16X16) |
| txfm_rd_in_plane(x, &r[TX_16X16][0], &d[TX_16X16], &s[TX_16X16], |
| &sse[TX_16X16], ref_best_rd, 0, bs, TX_16X16); |
| txfm_rd_in_plane(x, &r[TX_8X8][0], &d[TX_8X8], &s[TX_8X8], |
| &sse[TX_8X8], ref_best_rd, 0, bs, TX_8X8); |
| txfm_rd_in_plane(x, &r[TX_4X4][0], &d[TX_4X4], &s[TX_4X4], |
| &sse[TX_4X4], ref_best_rd, 0, bs, TX_4X4); |
| choose_txfm_size_from_rd(cpi, x, r, rate, d, distortion, s, |
| skip, txfm_cache, bs); |
| } |
| if (psse) |
| *psse = sse[mbmi->tx_size]; |
| } |
| |
| static int conditional_skipintra(MB_PREDICTION_MODE mode, |
| MB_PREDICTION_MODE best_intra_mode) { |
| if (mode == D117_PRED && |
| best_intra_mode != V_PRED && |
| best_intra_mode != D135_PRED) |
| return 1; |
| if (mode == D63_PRED && |
| best_intra_mode != V_PRED && |
| best_intra_mode != D45_PRED) |
| return 1; |
| if (mode == D207_PRED && |
| best_intra_mode != H_PRED && |
| best_intra_mode != D45_PRED) |
| return 1; |
| if (mode == D153_PRED && |
| best_intra_mode != H_PRED && |
| best_intra_mode != D135_PRED) |
| return 1; |
| return 0; |
| } |
| |
| static int64_t rd_pick_intra4x4block(VP9_COMP *cpi, MACROBLOCK *x, int ib, |
| MB_PREDICTION_MODE *best_mode, |
| int *bmode_costs, |
| ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, |
| int *bestrate, int *bestratey, |
| int64_t *bestdistortion, |
| BLOCK_SIZE bsize, int64_t rd_thresh) { |
| MB_PREDICTION_MODE mode; |
| MACROBLOCKD *xd = &x->e_mbd; |
| int64_t best_rd = rd_thresh; |
| int rate = 0; |
| int64_t distortion; |
| struct macroblock_plane *p = &x->plane[0]; |
| struct macroblockd_plane *pd = &xd->plane[0]; |
| const int src_stride = p->src.stride; |
| const int dst_stride = pd->dst.stride; |
| uint8_t *src_init = raster_block_offset_uint8(BLOCK_8X8, ib, |
| p->src.buf, src_stride); |
| uint8_t *dst_init = raster_block_offset_uint8(BLOCK_8X8, ib, |
| pd->dst.buf, dst_stride); |
| int16_t *src_diff, *coeff; |
| |
| ENTROPY_CONTEXT ta[2], tempa[2]; |
| ENTROPY_CONTEXT tl[2], templ[2]; |
| TX_TYPE tx_type = DCT_DCT; |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; |
| int idx, idy, block; |
| uint8_t best_dst[8 * 8]; |
| |
| assert(ib < 4); |
| |
| vpx_memcpy(ta, a, sizeof(ta)); |
| vpx_memcpy(tl, l, sizeof(tl)); |
| xd->this_mi->mbmi.tx_size = TX_4X4; |
| |
| for (mode = DC_PRED; mode <= TM_PRED; ++mode) { |
| int64_t this_rd; |
| int ratey = 0; |
| |
| if (!(cpi->sf.intra_y_mode_mask & (1 << mode))) |
| continue; |
| |
| // Only do the oblique modes if the best so far is |
| // one of the neighboring directional modes |
| if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { |
| if (conditional_skipintra(mode, *best_mode)) |
| continue; |
| } |
| |
| rate = bmode_costs[mode]; |
| distortion = 0; |
| |
| vpx_memcpy(tempa, ta, sizeof(ta)); |
| vpx_memcpy(templ, tl, sizeof(tl)); |
| |
| for (idy = 0; idy < num_4x4_blocks_high; ++idy) { |
| for (idx = 0; idx < num_4x4_blocks_wide; ++idx) { |
| int64_t ssz; |
| const int16_t *scan; |
| uint8_t *src = src_init + idx * 4 + idy * 4 * src_stride; |
| uint8_t *dst = dst_init + idx * 4 + idy * 4 * dst_stride; |
| |
| block = ib + idy * 2 + idx; |
| xd->this_mi->bmi[block].as_mode = mode; |
| src_diff = raster_block_offset_int16(BLOCK_8X8, block, p->src_diff); |
| coeff = BLOCK_OFFSET(x->plane[0].coeff, block); |
| vp9_predict_intra_block(xd, block, 1, |
| TX_4X4, mode, |
| x->skip_encode ? src : dst, |
| x->skip_encode ? src_stride : dst_stride, |
| dst, dst_stride); |
| vp9_subtract_block(4, 4, src_diff, 8, |
| src, src_stride, |
| dst, dst_stride); |
| |
| tx_type = get_tx_type_4x4(PLANE_TYPE_Y_WITH_DC, xd, block); |
| if (tx_type != DCT_DCT) { |
| vp9_short_fht4x4(src_diff, coeff, 8, tx_type); |
| x->quantize_b_4x4(x, block, tx_type, 16); |
| } else { |
| x->fwd_txm4x4(src_diff, coeff, 16); |
| x->quantize_b_4x4(x, block, tx_type, 16); |
| } |
| |
| scan = get_scan_4x4(get_tx_type_4x4(PLANE_TYPE_Y_WITH_DC, xd, block)); |
| ratey += cost_coeffs(x, 0, block, |
| tempa + idx, templ + idy, TX_4X4, scan, |
| vp9_get_coef_neighbors_handle(scan)); |
| distortion += vp9_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, block), |
| 16, &ssz) >> 2; |
| if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) |
| goto next; |
| |
| if (tx_type != DCT_DCT) |
| vp9_short_iht4x4_add(BLOCK_OFFSET(pd->dqcoeff, block), |
| dst, pd->dst.stride, tx_type); |
| else |
| xd->inv_txm4x4_add(BLOCK_OFFSET(pd->dqcoeff, block), |
| dst, pd->dst.stride); |
| } |
| } |
| |
| rate += ratey; |
| this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); |
| |
| if (this_rd < best_rd) { |
| *bestrate = rate; |
| *bestratey = ratey; |
| *bestdistortion = distortion; |
| best_rd = this_rd; |
| *best_mode = mode; |
| vpx_memcpy(a, tempa, sizeof(tempa)); |
| vpx_memcpy(l, templ, sizeof(templ)); |
| for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) |
| vpx_memcpy(best_dst + idy * 8, dst_init + idy * dst_stride, |
| num_4x4_blocks_wide * 4); |
| } |
| next: |
| {} |
| } |
| |
| if (best_rd >= rd_thresh || x->skip_encode) |
| return best_rd; |
| |
| for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) |
| vpx_memcpy(dst_init + idy * dst_stride, best_dst + idy * 8, |
| num_4x4_blocks_wide * 4); |
| |
| return best_rd; |
| } |
| |
| static int64_t rd_pick_intra_sub_8x8_y_mode(VP9_COMP * const cpi, |
| MACROBLOCK * const mb, |
| int * const rate, |
| int * const rate_y, |
| int64_t * const distortion, |
| int64_t best_rd) { |
| int i, j; |
| MACROBLOCKD *const xd = &mb->e_mbd; |
| MODE_INFO *const mic = xd->this_mi; |
| const MODE_INFO *above_mi = xd->mi_8x8[-xd->mode_info_stride]; |
| const MODE_INFO *left_mi = xd->mi_8x8[-1]; |
| const BLOCK_SIZE bsize = xd->this_mi->mbmi.sb_type; |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; |
| int idx, idy; |
| int cost = 0; |
| int64_t total_distortion = 0; |
| int tot_rate_y = 0; |
| int64_t total_rd = 0; |
| ENTROPY_CONTEXT t_above[4], t_left[4]; |
| int *bmode_costs; |
| |
| vpx_memcpy(t_above, xd->plane[0].above_context, sizeof(t_above)); |
| vpx_memcpy(t_left, xd->plane[0].left_context, sizeof(t_left)); |
| |
| bmode_costs = mb->mbmode_cost; |
| |
| // Pick modes for each sub-block (of size 4x4, 4x8, or 8x4) in an 8x8 block. |
| for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { |
| for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { |
| MB_PREDICTION_MODE best_mode = DC_PRED; |
| int r = INT_MAX, ry = INT_MAX; |
| int64_t d = INT64_MAX, this_rd = INT64_MAX; |
| i = idy * 2 + idx; |
| if (cpi->common.frame_type == KEY_FRAME) { |
| const MB_PREDICTION_MODE A = above_block_mode(mic, above_mi, i); |
| const MB_PREDICTION_MODE L = (xd->left_available || idx) ? |
| left_block_mode(mic, left_mi, i) : |
| DC_PRED; |
| |
| bmode_costs = mb->y_mode_costs[A][L]; |
| } |
| |
| this_rd = rd_pick_intra4x4block(cpi, mb, i, &best_mode, bmode_costs, |
| t_above + idx, t_left + idy, &r, &ry, &d, |
| bsize, best_rd - total_rd); |
| if (this_rd >= best_rd - total_rd) |
| return INT64_MAX; |
| |
| total_rd += this_rd; |
| cost += r; |
| total_distortion += d; |
| tot_rate_y += ry; |
| |
| mic->bmi[i].as_mode = best_mode; |
| for (j = 1; j < num_4x4_blocks_high; ++j) |
| mic->bmi[i + j * 2].as_mode = best_mode; |
| for (j = 1; j < num_4x4_blocks_wide; ++j) |
| mic->bmi[i + j].as_mode = best_mode; |
| |
| if (total_rd >= best_rd) |
| return INT64_MAX; |
| } |
| } |
| |
| *rate = cost; |
| *rate_y = tot_rate_y; |
| *distortion = total_distortion; |
| mic->mbmi.mode = mic->bmi[3].as_mode; |
| |
| return RDCOST(mb->rdmult, mb->rddiv, cost, total_distortion); |
| } |
| |
| static int64_t rd_pick_intra_sby_mode(VP9_COMP *cpi, MACROBLOCK *x, |
| int *rate, int *rate_tokenonly, |
| int64_t *distortion, int *skippable, |
| BLOCK_SIZE bsize, |
| int64_t tx_cache[TX_MODES], |
| int64_t best_rd) { |
| MB_PREDICTION_MODE mode; |
| MB_PREDICTION_MODE mode_selected = DC_PRED; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mic = xd->this_mi; |
| int this_rate, this_rate_tokenonly, s; |
| int64_t this_distortion, this_rd; |
| TX_SIZE best_tx = TX_4X4; |
| int i; |
| int *bmode_costs = x->mbmode_cost; |
| |
| if (cpi->sf.tx_size_search_method == USE_FULL_RD) |
| for (i = 0; i < TX_MODES; i++) |
| tx_cache[i] = INT64_MAX; |
| |
| /* Y Search for intra prediction mode */ |
| for (mode = DC_PRED; mode <= TM_PRED; mode++) { |
| int64_t local_tx_cache[TX_MODES]; |
| MODE_INFO *above_mi = xd->mi_8x8[-xd->mode_info_stride]; |
| MODE_INFO *left_mi = xd->mi_8x8[-1]; |
| |
| if (!(cpi->sf.intra_y_mode_mask & (1 << mode))) |
| continue; |
| |
| if (cpi->common.frame_type == KEY_FRAME) { |
| const MB_PREDICTION_MODE A = above_block_mode(mic, above_mi, 0); |
| const MB_PREDICTION_MODE L = xd->left_available ? |
| left_block_mode(mic, left_mi, 0) : DC_PRED; |
| |
| bmode_costs = x->y_mode_costs[A][L]; |
| } |
| mic->mbmi.mode = mode; |
| |
| super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, NULL, |
| bsize, local_tx_cache, best_rd); |
| |
| if (this_rate_tokenonly == INT_MAX) |
| continue; |
| |
| this_rate = this_rate_tokenonly + bmode_costs[mode]; |
| this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); |
| |
| if (this_rd < best_rd) { |
| mode_selected = mode; |
| best_rd = this_rd; |
| best_tx = mic->mbmi.tx_size; |
| *rate = this_rate; |
| *rate_tokenonly = this_rate_tokenonly; |
| *distortion = this_distortion; |
| *skippable = s; |
| } |
| |
| if (cpi->sf.tx_size_search_method == USE_FULL_RD && this_rd < INT64_MAX) { |
| for (i = 0; i < TX_MODES && local_tx_cache[i] < INT64_MAX; i++) { |
| const int64_t adj_rd = this_rd + local_tx_cache[i] - |
| local_tx_cache[cpi->common.tx_mode]; |
| if (adj_rd < tx_cache[i]) { |
| tx_cache[i] = adj_rd; |
| } |
| } |
| } |
| } |
| |
| mic->mbmi.mode = mode_selected; |
| mic->mbmi.tx_size = best_tx; |
| |
| return best_rd; |
| } |
| |
| static void super_block_uvrd(VP9_COMMON *const cm, MACROBLOCK *x, |
| int *rate, int64_t *distortion, int *skippable, |
| int64_t *sse, BLOCK_SIZE bsize, |
| int64_t ref_best_rd) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->this_mi->mbmi; |
| TX_SIZE uv_txfm_size = get_uv_tx_size(mbmi); |
| int plane; |
| int pnrate = 0, pnskip = 1; |
| int64_t pndist = 0, pnsse = 0; |
| |
| if (ref_best_rd < 0) |
| goto term; |
| |
| if (is_inter_block(mbmi)) |
| vp9_subtract_sbuv(x, bsize); |
| |
| *rate = 0; |
| *distortion = 0; |
| *sse = 0; |
| *skippable = 1; |
| |
| for (plane = 1; plane < MAX_MB_PLANE; ++plane) { |
| txfm_rd_in_plane(x, &pnrate, &pndist, &pnskip, &pnsse, |
| ref_best_rd, plane, bsize, uv_txfm_size); |
| if (pnrate == INT_MAX) |
| goto term; |
| *rate += pnrate; |
| *distortion += pndist; |
| *sse += pnsse; |
| *skippable &= pnskip; |
| } |
| return; |
| |
| term: |
| *rate = INT_MAX; |
| *distortion = INT64_MAX; |
| *sse = INT64_MAX; |
| *skippable = 0; |
| return; |
| } |
| |
| static int64_t rd_pick_intra_sbuv_mode(VP9_COMP *cpi, MACROBLOCK *x, |
| int *rate, int *rate_tokenonly, |
| int64_t *distortion, int *skippable, |
| BLOCK_SIZE bsize) { |
| MB_PREDICTION_MODE mode; |
| MB_PREDICTION_MODE mode_selected = DC_PRED; |
| int64_t best_rd = INT64_MAX, this_rd; |
| int this_rate_tokenonly, this_rate, s; |
| int64_t this_distortion, this_sse; |
| |
| // int mode_mask = (bsize <= BLOCK_8X8) |
| // ? ALL_INTRA_MODES : cpi->sf.intra_uv_mode_mask; |
| |
| for (mode = DC_PRED; mode <= TM_PRED; mode++) { |
| // if (!(mode_mask & (1 << mode))) |
| if (!(cpi->sf.intra_uv_mode_mask & (1 << mode))) |
| continue; |
| |
| x->e_mbd.mi_8x8[0]->mbmi.uv_mode = mode; |
| |
| super_block_uvrd(&cpi->common, x, &this_rate_tokenonly, |
| &this_distortion, &s, &this_sse, bsize, best_rd); |
| if (this_rate_tokenonly == INT_MAX) |
| continue; |
| this_rate = this_rate_tokenonly + |
| x->intra_uv_mode_cost[cpi->common.frame_type][mode]; |
| this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); |
| |
| if (this_rd < best_rd) { |
| mode_selected = mode; |
| best_rd = this_rd; |
| *rate = this_rate; |
| *rate_tokenonly = this_rate_tokenonly; |
| *distortion = this_distortion; |
| *skippable = s; |
| } |
| } |
| |
| x->e_mbd.mi_8x8[0]->mbmi.uv_mode = mode_selected; |
| |
| return best_rd; |
| } |
| |
| static int64_t rd_sbuv_dcpred(VP9_COMP *cpi, MACROBLOCK *x, |
| int *rate, int *rate_tokenonly, |
| int64_t *distortion, int *skippable, |
| BLOCK_SIZE bsize) { |
| int64_t this_rd; |
| int64_t this_sse; |
| |
| x->e_mbd.mi_8x8[0]->mbmi.uv_mode = DC_PRED; |
| super_block_uvrd(&cpi->common, x, rate_tokenonly, |
| distortion, skippable, &this_sse, bsize, INT64_MAX); |
| *rate = *rate_tokenonly + |
| x->intra_uv_mode_cost[cpi->common.frame_type][DC_PRED]; |
| this_rd = RDCOST(x->rdmult, x->rddiv, *rate, *distortion); |
| |
| return this_rd; |
| } |
| |
| static void choose_intra_uv_mode(VP9_COMP *cpi, BLOCK_SIZE bsize, |
| int *rate_uv, int *rate_uv_tokenonly, |
| int64_t *dist_uv, int *skip_uv, |
| MB_PREDICTION_MODE *mode_uv) { |
| MACROBLOCK *const x = &cpi->mb; |
| |
| // Use an estimated rd for uv_intra based on DC_PRED if the |
| // appropriate speed flag is set. |
| if (cpi->sf.use_uv_intra_rd_estimate) { |
| rd_sbuv_dcpred(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv, |
| bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize); |
| // Else do a proper rd search for each possible transform size that may |
| // be considered in the main rd loop. |
| } else { |
| rd_pick_intra_sbuv_mode(cpi, x, |
| rate_uv, rate_uv_tokenonly, dist_uv, skip_uv, |
| bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize); |
| } |
| *mode_uv = x->e_mbd.mi_8x8[0]->mbmi.uv_mode; |
| } |
| |
| static int cost_mv_ref(VP9_COMP *cpi, MB_PREDICTION_MODE mode, |
| int mode_context) { |
| MACROBLOCK *const x = &cpi->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int segment_id = xd->this_mi->mbmi.segment_id; |
| |
| // Don't account for mode here if segment skip is enabled. |
| if (!vp9_segfeature_active(&cpi->common.seg, segment_id, SEG_LVL_SKIP)) { |
| assert(is_inter_mode(mode)); |
| return x->inter_mode_cost[mode_context][mode - NEARESTMV]; |
| } else { |
| return 0; |
| } |
| } |
| |
| void vp9_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv) { |
| x->e_mbd.mi_8x8[0]->mbmi.mode = mb; |
| x->e_mbd.mi_8x8[0]->mbmi.mv[0].as_int = mv->as_int; |
| } |
| |
| static void joint_motion_search(VP9_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, |
| int_mv *frame_mv, |
| int mi_row, int mi_col, |
| int_mv single_newmv[MAX_REF_FRAMES], |
| int *rate_mv); |
| static void single_motion_search(VP9_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, |
| int mi_row, int mi_col, |
| int_mv *tmp_mv, int *rate_mv); |
| |
| static int labels2mode(MACROBLOCK *x, int i, |
| MB_PREDICTION_MODE this_mode, |
| int_mv *this_mv, int_mv *this_second_mv, |
| int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES], |
| int_mv seg_mvs[MAX_REF_FRAMES], |
| int_mv *best_ref_mv, |
| int_mv *second_best_ref_mv, |
| int *mvjcost, int *mvcost[2], VP9_COMP *cpi) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mic = xd->this_mi; |
| MB_MODE_INFO *mbmi = &mic->mbmi; |
| int cost = 0, thismvcost = 0; |
| int idx, idy; |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[mbmi->sb_type]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[mbmi->sb_type]; |
| const int has_second_rf = has_second_ref(mbmi); |
| |
| /* We have to be careful retrieving previously-encoded motion vectors. |
| Ones from this macroblock have to be pulled from the BLOCKD array |
| as they have not yet made it to the bmi array in our MB_MODE_INFO. */ |
| MB_PREDICTION_MODE m; |
| |
| // the only time we should do costing for new motion vector or mode |
| // is when we are on a new label (jbb May 08, 2007) |
| switch (m = this_mode) { |
| case NEWMV: |
| this_mv->as_int = seg_mvs[mbmi->ref_frame[0]].as_int; |
| thismvcost = vp9_mv_bit_cost(this_mv, best_ref_mv, mvjcost, mvcost, |
| 102); |
| if (has_second_rf) { |
| this_second_mv->as_int = seg_mvs[mbmi->ref_frame[1]].as_int; |
| thismvcost += vp9_mv_bit_cost(this_second_mv, second_best_ref_mv, |
| mvjcost, mvcost, 102); |
| } |
| break; |
| case NEARESTMV: |
| this_mv->as_int = frame_mv[NEARESTMV][mbmi->ref_frame[0]].as_int; |
| if (has_second_rf) |
| this_second_mv->as_int = |
| frame_mv[NEARESTMV][mbmi->ref_frame[1]].as_int; |
| break; |
| case NEARMV: |
| this_mv->as_int = frame_mv[NEARMV][mbmi->ref_frame[0]].as_int; |
| if (has_second_rf) |
| this_second_mv->as_int = |
| frame_mv[NEARMV][mbmi->ref_frame[1]].as_int; |
| break; |
| case ZEROMV: |
| this_mv->as_int = 0; |
| if (has_second_rf) |
| this_second_mv->as_int = 0; |
| break; |
| default: |
| break; |
| } |
| |
| cost = cost_mv_ref(cpi, this_mode, |
| mbmi->mode_context[mbmi->ref_frame[0]]); |
| |
| mic->bmi[i].as_mv[0].as_int = this_mv->as_int; |
| if (has_second_rf) |
| mic->bmi[i].as_mv[1].as_int = this_second_mv->as_int; |
| |
| x->partition_info->bmi[i].mode = m; |
| for (idy = 0; idy < num_4x4_blocks_high; ++idy) |
| for (idx = 0; idx < num_4x4_blocks_wide; ++idx) |
| vpx_memcpy(&mic->bmi[i + idy * 2 + idx], |
| &mic->bmi[i], sizeof(mic->bmi[i])); |
| |
| cost += thismvcost; |
| return cost; |
| } |
| |
| static int64_t encode_inter_mb_segment(VP9_COMP *cpi, |
| MACROBLOCK *x, |
| int64_t best_yrd, |
| int i, |
| int *labelyrate, |
| int64_t *distortion, int64_t *sse, |
| ENTROPY_CONTEXT *ta, |
| ENTROPY_CONTEXT *tl) { |
| int k; |
| MACROBLOCKD *xd = &x->e_mbd; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| struct macroblock_plane *const p = &x->plane[0]; |
| MODE_INFO *const mi = xd->this_mi; |
| const BLOCK_SIZE bsize = mi->mbmi.sb_type; |
| const int width = plane_block_width(bsize, pd); |
| const int height = plane_block_height(bsize, pd); |
| int idx, idy; |
| |
| uint8_t *const src = raster_block_offset_uint8(BLOCK_8X8, i, |
| p->src.buf, p->src.stride); |
| uint8_t *const dst = raster_block_offset_uint8(BLOCK_8X8, i, |
| pd->dst.buf, pd->dst.stride); |
| int64_t thisdistortion = 0, thissse = 0; |
| int thisrate = 0, ref; |
| const int is_compound = has_second_ref(&mi->mbmi); |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| const uint8_t *pre = raster_block_offset_uint8(BLOCK_8X8, i, |
| pd->pre[ref].buf, pd->pre[ref].stride); |
| vp9_build_inter_predictor(pre, pd->pre[ref].stride, |
| dst, pd->dst.stride, |
| &mi->bmi[i].as_mv[ref].as_mv, |
| &xd->scale_factor[ref], |
| width, height, ref, &xd->subpix, MV_PRECISION_Q3); |
| } |
| |
| vp9_subtract_block(height, width, |
| raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), 8, |
| src, p->src.stride, |
| dst, pd->dst.stride); |
| |
| k = i; |
| for (idy = 0; idy < height / 4; ++idy) { |
| for (idx = 0; idx < width / 4; ++idx) { |
| int64_t ssz, rd, rd1, rd2; |
| int16_t* coeff; |
| |
| k += (idy * 2 + idx); |
| coeff = BLOCK_OFFSET(p->coeff, k); |
| x->fwd_txm4x4(raster_block_offset_int16(BLOCK_8X8, k, p->src_diff), |
| coeff, 16); |
| x->quantize_b_4x4(x, k, DCT_DCT, 16); |
| thisdistortion += vp9_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, k), |
| 16, &ssz); |
| thissse += ssz; |
| thisrate += cost_coeffs(x, 0, k, |
| ta + (k & 1), |
| tl + (k >> 1), TX_4X4, |
| vp9_default_scan_4x4, |
| vp9_default_scan_4x4_neighbors); |
| rd1 = RDCOST(x->rdmult, x->rddiv, thisrate, thisdistortion >> 2); |
| rd2 = RDCOST(x->rdmult, x->rddiv, 0, thissse >> 2); |
| rd = MIN(rd1, rd2); |
| if (rd >= best_yrd) |
| return INT64_MAX; |
| } |
| } |
| |
| *distortion = thisdistortion >> 2; |
| *labelyrate = thisrate; |
| *sse = thissse >> 2; |
| |
| return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion); |
| } |
| |
| typedef struct { |
| int eobs; |
| int brate; |
| int byrate; |
| int64_t bdist; |
| int64_t bsse; |
| int64_t brdcost; |
| int_mv mvs[2]; |
| ENTROPY_CONTEXT ta[2]; |
| ENTROPY_CONTEXT tl[2]; |
| } SEG_RDSTAT; |
| |
| typedef struct { |
| int_mv *ref_mv, *second_ref_mv; |
| int_mv mvp; |
| |
| int64_t segment_rd; |
| int r; |
| int64_t d; |
| int64_t sse; |
| int segment_yrate; |
| MB_PREDICTION_MODE modes[4]; |
| SEG_RDSTAT rdstat[4][INTER_MODES]; |
| int mvthresh; |
| } BEST_SEG_INFO; |
| |
| static INLINE int mv_check_bounds(MACROBLOCK *x, int_mv *mv) { |
| int r = 0; |
| r |= (mv->as_mv.row >> 3) < x->mv_row_min; |
| r |= (mv->as_mv.row >> 3) > x->mv_row_max; |
| r |= (mv->as_mv.col >> 3) < x->mv_col_min; |
| r |= (mv->as_mv.col >> 3) > x->mv_col_max; |
| return r; |
| } |
| |
| static INLINE void mi_buf_shift(MACROBLOCK *x, int i) { |
| MB_MODE_INFO *const mbmi = &x->e_mbd.mi_8x8[0]->mbmi; |
| struct macroblock_plane *const p = &x->plane[0]; |
| struct macroblockd_plane *const pd = &x->e_mbd.plane[0]; |
| |
| p->src.buf = raster_block_offset_uint8(BLOCK_8X8, i, p->src.buf, |
| p->src.stride); |
| assert(((intptr_t)pd->pre[0].buf & 0x7) == 0); |
| pd->pre[0].buf = raster_block_offset_uint8(BLOCK_8X8, i, pd->pre[0].buf, |
| pd->pre[0].stride); |
| if (has_second_ref(mbmi)) |
| pd->pre[1].buf = raster_block_offset_uint8(BLOCK_8X8, i, pd->pre[1].buf, |
| pd->pre[1].stride); |
| } |
| |
| static INLINE void mi_buf_restore(MACROBLOCK *x, struct buf_2d orig_src, |
| struct buf_2d orig_pre[2]) { |
| MB_MODE_INFO *mbmi = &x->e_mbd.mi_8x8[0]->mbmi; |
| x->plane[0].src = orig_src; |
| x->e_mbd.plane[0].pre[0] = orig_pre[0]; |
| if (has_second_ref(mbmi)) |
| x->e_mbd.plane[0].pre[1] = orig_pre[1]; |
| } |
| |
| static void rd_check_segment_txsize(VP9_COMP *cpi, MACROBLOCK *x, |
| BEST_SEG_INFO *bsi_buf, int filter_idx, |
| int_mv seg_mvs[4][MAX_REF_FRAMES], |
| int mi_row, int mi_col) { |
| int i, j, br = 0, idx, idy; |
| int64_t bd = 0, block_sse = 0; |
| MB_PREDICTION_MODE this_mode; |
| MODE_INFO *mi = x->e_mbd.mi_8x8[0]; |
| MB_MODE_INFO *const mbmi = &mi->mbmi; |
| const int label_count = 4; |
| int64_t this_segment_rd = 0; |
| int label_mv_thresh; |
| int segmentyrate = 0; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; |
| vp9_variance_fn_ptr_t *v_fn_ptr; |
| ENTROPY_CONTEXT t_above[2], t_left[2]; |
| BEST_SEG_INFO *bsi = bsi_buf + filter_idx; |
| int mode_idx; |
| int subpelmv = 1, have_ref = 0; |
| const int has_second_rf = has_second_ref(mbmi); |
| |
| vpx_memcpy(t_above, x->e_mbd.plane[0].above_context, sizeof(t_above)); |
| vpx_memcpy(t_left, x->e_mbd.plane[0].left_context, sizeof(t_left)); |
| |
| v_fn_ptr = &cpi->fn_ptr[bsize]; |
| |
| // 64 makes this threshold really big effectively |
| // making it so that we very rarely check mvs on |
| // segments. setting this to 1 would make mv thresh |
| // roughly equal to what it is for macroblocks |
| label_mv_thresh = 1 * bsi->mvthresh / label_count; |
| |
| // Segmentation method overheads |
| for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { |
| for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { |
| // TODO(jingning,rbultje): rewrite the rate-distortion optimization |
| // loop for 4x4/4x8/8x4 block coding. to be replaced with new rd loop |
| int_mv mode_mv[MB_MODE_COUNT], second_mode_mv[MB_MODE_COUNT]; |
| int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; |
| MB_PREDICTION_MODE mode_selected = ZEROMV; |
| int64_t best_rd = INT64_MAX; |
| i = idy * 2 + idx; |
| |
| frame_mv[ZEROMV][mbmi->ref_frame[0]].as_int = 0; |
| vp9_append_sub8x8_mvs_for_idx(&cpi->common, &x->e_mbd, |
| &frame_mv[NEARESTMV][mbmi->ref_frame[0]], |
| &frame_mv[NEARMV][mbmi->ref_frame[0]], |
| i, 0, mi_row, mi_col); |
| if (has_second_rf) { |
| frame_mv[ZEROMV][mbmi->ref_frame[1]].as_int = 0; |
| vp9_append_sub8x8_mvs_for_idx(&cpi->common, &x->e_mbd, |
| &frame_mv[NEARESTMV][mbmi->ref_frame[1]], |
| &frame_mv[NEARMV][mbmi->ref_frame[1]], |
| i, 1, mi_row, mi_col); |
| } |
| // search for the best motion vector on this segment |
| for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) { |
| const struct buf_2d orig_src = x->plane[0].src; |
| struct buf_2d orig_pre[2]; |
| |
| mode_idx = inter_mode_offset(this_mode); |
| bsi->rdstat[i][mode_idx].brdcost = INT64_MAX; |
| |
| // if we're near/nearest and mv == 0,0, compare to zeromv |
| if ((this_mode == NEARMV || this_mode == NEARESTMV || |
| this_mode == ZEROMV) && |
| frame_mv[this_mode][mbmi->ref_frame[0]].as_int == 0 && |
| (!has_second_rf || |
| frame_mv[this_mode][mbmi->ref_frame[1]].as_int == 0)) { |
| int rfc = mbmi->mode_context[mbmi->ref_frame[0]]; |
| int c1 = cost_mv_ref(cpi, NEARMV, rfc); |
| int c2 = cost_mv_ref(cpi, NEARESTMV, rfc); |
| int c3 = cost_mv_ref(cpi, ZEROMV, rfc); |
| |
| if (this_mode == NEARMV) { |
| if (c1 > c3) |
| continue; |
| } else if (this_mode == NEARESTMV) { |
| if (c2 > c3) |
| continue; |
| } else { |
| assert(this_mode == ZEROMV); |
| if (!has_second_rf) { |
| if ((c3 >= c2 && |
| frame_mv[NEARESTMV][mbmi->ref_frame[0]].as_int == 0) || |
| (c3 >= c1 && |
| frame_mv[NEARMV][mbmi->ref_frame[0]].as_int == 0)) |
| continue; |
| } else { |
| if ((c3 >= c2 && |
| frame_mv[NEARESTMV][mbmi->ref_frame[0]].as_int == 0 && |
| frame_mv[NEARESTMV][mbmi->ref_frame[1]].as_int == 0) || |
| (c3 >= c1 && |
| frame_mv[NEARMV][mbmi->ref_frame[0]].as_int == 0 && |
| frame_mv[NEARMV][mbmi->ref_frame[1]].as_int == 0)) |
| continue; |
| } |
| } |
| } |
| |
| vpx_memcpy(orig_pre, x->e_mbd.plane[0].pre, sizeof(orig_pre)); |
| vpx_memcpy(bsi->rdstat[i][mode_idx].ta, t_above, |
| sizeof(bsi->rdstat[i][mode_idx].ta)); |
| vpx_memcpy(bsi->rdstat[i][mode_idx].tl, t_left, |
| sizeof(bsi->rdstat[i][mode_idx].tl)); |
| |
| // motion search for newmv (single predictor case only) |
| if (!has_second_rf && this_mode == NEWMV && |
| seg_mvs[i][mbmi->ref_frame[0]].as_int == INVALID_MV) { |
| int step_param = 0; |
| int further_steps; |
| int thissme, bestsme = INT_MAX; |
| int sadpb = x->sadperbit4; |
| int_mv mvp_full; |
| int max_mv; |
| |
| /* Is the best so far sufficiently good that we cant justify doing |
| * and new motion search. */ |
| if (best_rd < label_mv_thresh) |
| break; |
| |
| if (cpi->compressor_speed) { |
| // use previous block's result as next block's MV predictor. |
| if (i > 0) { |
| bsi->mvp.as_int = mi->bmi[i - 1].as_mv[0].as_int; |
| if (i == 2) |
| bsi->mvp.as_int = mi->bmi[i - 2].as_mv[0].as_int; |
| } |
| } |
| if (i == 0) |
| max_mv = x->max_mv_context[mbmi->ref_frame[0]]; |
| else |
| max_mv = MAX(abs(bsi->mvp.as_mv.row), abs(bsi->mvp.as_mv.col)) >> 3; |
| |
| if (cpi->sf.auto_mv_step_size && cpi->common.show_frame) { |
| // Take wtd average of the step_params based on the last frame's |
| // max mv magnitude and the best ref mvs of the current block for |
| // the given reference. |
| step_param = (vp9_init_search_range(cpi, max_mv) + |
| cpi->mv_step_param) >> 1; |
| } else { |
| step_param = cpi->mv_step_param; |
| } |
| |
| mvp_full.as_mv.row = bsi->mvp.as_mv.row >> 3; |
| mvp_full.as_mv.col = bsi->mvp.as_mv.col >> 3; |
| |
| if (cpi->sf.adaptive_motion_search && cpi->common.show_frame) { |
| mvp_full.as_mv.row = x->pred_mv[mbmi->ref_frame[0]].as_mv.row >> 3; |
| mvp_full.as_mv.col = x->pred_mv[mbmi->ref_frame[0]].as_mv.col >> 3; |
| step_param = MAX(step_param, 8); |
| } |
| |
| further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; |
| // adjust src pointer for this block |
| mi_buf_shift(x, i); |
| if (cpi->sf.search_method == HEX) { |
| bestsme = vp9_hex_search(x, &mvp_full, |
| step_param, |
| sadpb, 1, v_fn_ptr, 1, |
| bsi->ref_mv, &mode_mv[NEWMV]); |
| } else if (cpi->sf.search_method == SQUARE) { |
| bestsme = vp9_square_search(x, &mvp_full, |
| step_param, |
| sadpb, 1, v_fn_ptr, 1, |
| bsi->ref_mv, &mode_mv[NEWMV]); |
| } else if (cpi->sf.search_method == BIGDIA) { |
| bestsme = vp9_bigdia_search(x, &mvp_full, |
| step_param, |
| sadpb, 1, v_fn_ptr, 1, |
| bsi->ref_mv, &mode_mv[NEWMV]); |
| } else { |
| bestsme = vp9_full_pixel_diamond(cpi, x, &mvp_full, step_param, |
| sadpb, further_steps, 0, v_fn_ptr, |
| bsi->ref_mv, &mode_mv[NEWMV]); |
| } |
| |
| // Should we do a full search (best quality only) |
| if (cpi->compressor_speed == 0) { |
| /* Check if mvp_full is within the range. */ |
| clamp_mv(&mvp_full.as_mv, x->mv_col_min, x->mv_col_max, |
| x->mv_row_min, x->mv_row_max); |
| |
| thissme = cpi->full_search_sad(x, &mvp_full, |
| sadpb, 16, v_fn_ptr, |
| x->nmvjointcost, x->mvcost, |
| bsi->ref_mv, i); |
| |
| if (thissme < bestsme) { |
| bestsme = thissme; |
| mode_mv[NEWMV].as_int = mi->bmi[i].as_mv[0].as_int; |
| } else { |
| /* The full search result is actually worse so re-instate the |
| * previous best vector */ |
| mi->bmi[i].as_mv[0].as_int = mode_mv[NEWMV].as_int; |
| } |
| } |
| |
| if (bestsme < INT_MAX) { |
| int distortion; |
| unsigned int sse; |
| cpi->find_fractional_mv_step(x, &mode_mv[NEWMV], |
| bsi->ref_mv, x->errorperbit, v_fn_ptr, |
| 0, cpi->sf.subpel_iters_per_step, |
| x->nmvjointcost, x->mvcost, |
| &distortion, &sse); |
| |
| // save motion search result for use in compound prediction |
| seg_mvs[i][mbmi->ref_frame[0]].as_int = mode_mv[NEWMV].as_int; |
| } |
| |
| if (cpi->sf.adaptive_motion_search) |
| x->pred_mv[mbmi->ref_frame[0]].as_int = mode_mv[NEWMV].as_int; |
| |
| // restore src pointers |
| mi_buf_restore(x, orig_src, orig_pre); |
| } |
| |
| if (has_second_rf && this_mode == NEWMV && |
| mbmi->interp_filter == EIGHTTAP) { |
| if (seg_mvs[i][mbmi->ref_frame[1]].as_int == INVALID_MV || |
| seg_mvs[i][mbmi->ref_frame[0]].as_int == INVALID_MV) |
| continue; |
| |
| // adjust src pointers |
| mi_buf_shift(x, i); |
| if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { |
| int rate_mv; |
| joint_motion_search(cpi, x, bsize, frame_mv[this_mode], |
| mi_row, mi_col, seg_mvs[i], |
| &rate_mv); |
| seg_mvs[i][mbmi->ref_frame[0]].as_int = |
| frame_mv[this_mode][mbmi->ref_frame[0]].as_int; |
| seg_mvs[i][mbmi->ref_frame[1]].as_int = |
| frame_mv[this_mode][mbmi->ref_frame[1]].as_int; |
| } |
| // restore src pointers |
| mi_buf_restore(x, orig_src, orig_pre); |
| } |
| |
| bsi->rdstat[i][mode_idx].brate = |
| labels2mode(x, i, this_mode, &mode_mv[this_mode], |
| &second_mode_mv[this_mode], frame_mv, seg_mvs[i], |
| bsi->ref_mv, bsi->second_ref_mv, x->nmvjointcost, |
| x->mvcost, cpi); |
| |
| bsi->rdstat[i][mode_idx].mvs[0].as_int = mode_mv[this_mode].as_int; |
| if (num_4x4_blocks_wide > 1) |
| bsi->rdstat[i + 1][mode_idx].mvs[0].as_int = |
| mode_mv[this_mode].as_int; |
| if (num_4x4_blocks_high > 1) |
| bsi->rdstat[i + 2][mode_idx].mvs[0].as_int = |
| mode_mv[this_mode].as_int; |
| if (has_second_rf) { |
| bsi->rdstat[i][mode_idx].mvs[1].as_int = |
| second_mode_mv[this_mode].as_int; |
| if (num_4x4_blocks_wide > 1) |
| bsi->rdstat[i + 1][mode_idx].mvs[1].as_int = |
| second_mode_mv[this_mode].as_int; |
| if (num_4x4_blocks_high > 1) |
| bsi->rdstat[i + 2][mode_idx].mvs[1].as_int = |
| second_mode_mv[this_mode].as_int; |
| } |
| |
| // Trap vectors that reach beyond the UMV borders |
| if (mv_check_bounds(x, &mode_mv[this_mode])) |
| continue; |
| if (has_second_rf && |
| mv_check_bounds(x, &second_mode_mv[this_mode])) |
| continue; |
| |
| if (filter_idx > 0) { |
| BEST_SEG_INFO *ref_bsi = bsi_buf; |
| subpelmv = (mode_mv[this_mode].as_mv.row & 0x0f) || |
| (mode_mv[this_mode].as_mv.col & 0x0f); |
| have_ref = mode_mv[this_mode].as_int == |
| ref_bsi->rdstat[i][mode_idx].mvs[0].as_int; |
| if (has_second_rf) { |
| subpelmv |= (second_mode_mv[this_mode].as_mv.row & 0x0f) || |
| (second_mode_mv[this_mode].as_mv.col & 0x0f); |
| have_ref &= second_mode_mv[this_mode].as_int == |
| ref_bsi->rdstat[i][mode_idx].mvs[1].as_int; |
| } |
| |
| if (filter_idx > 1 && !subpelmv && !have_ref) { |
| ref_bsi = bsi_buf + 1; |
| have_ref = mode_mv[this_mode].as_int == |
| ref_bsi->rdstat[i][mode_idx].mvs[0].as_int; |
| if (has_second_rf) { |
| have_ref &= second_mode_mv[this_mode].as_int == |
| ref_bsi->rdstat[i][mode_idx].mvs[1].as_int; |
| } |
| } |
| |
| if (!subpelmv && have_ref && |
| ref_bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) { |
| vpx_memcpy(&bsi->rdstat[i][mode_idx], &ref_bsi->rdstat[i][mode_idx], |
| sizeof(SEG_RDSTAT)); |
| if (bsi->rdstat[i][mode_idx].brdcost < best_rd) { |
| mode_selected = this_mode; |
| best_rd = bsi->rdstat[i][mode_idx].brdcost; |
| } |
| continue; |
| } |
| } |
| |
| bsi->rdstat[i][mode_idx].brdcost = |
| encode_inter_mb_segment(cpi, x, |
| bsi->segment_rd - this_segment_rd, i, |
| &bsi->rdstat[i][mode_idx].byrate, |
| &bsi->rdstat[i][mode_idx].bdist, |
| &bsi->rdstat[i][mode_idx].bsse, |
| bsi->rdstat[i][mode_idx].ta, |
| bsi->rdstat[i][mode_idx].tl); |
| if (bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) { |
| bsi->rdstat[i][mode_idx].brdcost += RDCOST(x->rdmult, x->rddiv, |
| bsi->rdstat[i][mode_idx].brate, 0); |
| bsi->rdstat[i][mode_idx].brate += bsi->rdstat[i][mode_idx].byrate; |
| bsi->rdstat[i][mode_idx].eobs = x->e_mbd.plane[0].eobs[i]; |
| } |
| |
| if (bsi->rdstat[i][mode_idx].brdcost < best_rd) { |
| mode_selected = this_mode; |
| best_rd = bsi->rdstat[i][mode_idx].brdcost; |
| } |
| } /*for each 4x4 mode*/ |
| |
| if (best_rd == INT64_MAX) { |
| int iy, midx; |
| for (iy = i + 1; iy < 4; ++iy) |
| for (midx = 0; midx < INTER_MODES; ++midx) |
| bsi->rdstat[iy][midx].brdcost = INT64_MAX; |
| bsi->segment_rd = INT64_MAX; |
| return; |
| } |
| |
| mode_idx = inter_mode_offset(mode_selected); |
| vpx_memcpy(t_above, bsi->rdstat[i][mode_idx].ta, sizeof(t_above)); |
| vpx_memcpy(t_left, bsi->rdstat[i][mode_idx].tl, sizeof(t_left)); |
| |
| labels2mode(x, i, mode_selected, &mode_mv[mode_selected], |
| &second_mode_mv[mode_selected], frame_mv, seg_mvs[i], |
| bsi->ref_mv, bsi->second_ref_mv, x->nmvjointcost, |
| x->mvcost, cpi); |
| |
| br += bsi->rdstat[i][mode_idx].brate; |
| bd += bsi->rdstat[i][mode_idx].bdist; |
| block_sse += bsi->rdstat[i][mode_idx].bsse; |
| segmentyrate += bsi->rdstat[i][mode_idx].byrate; |
| this_segment_rd += bsi->rdstat[i][mode_idx].brdcost; |
| |
| if (this_segment_rd > bsi->segment_rd) { |
| int iy, midx; |
| for (iy = i + 1; iy < 4; ++iy) |
| for (midx = 0; midx < INTER_MODES; ++midx) |
| bsi->rdstat[iy][midx].brdcost = INT64_MAX; |
| bsi->segment_rd = INT64_MAX; |
| return; |
| } |
| |
| for (j = 1; j < num_4x4_blocks_high; ++j) |
| vpx_memcpy(&x->partition_info->bmi[i + j * 2], |
| &x->partition_info->bmi[i], |
| sizeof(x->partition_info->bmi[i])); |
| for (j = 1; j < num_4x4_blocks_wide; ++j) |
| vpx_memcpy(&x->partition_info->bmi[i + j], |
| &x->partition_info->bmi[i], |
| sizeof(x->partition_info->bmi[i])); |
| } |
| } /* for each label */ |
| |
| bsi->r = br; |
| bsi->d = bd; |
| bsi->segment_yrate = segmentyrate; |
| bsi->segment_rd = this_segment_rd; |
| bsi->sse = block_sse; |
| |
| // update the coding decisions |
| for (i = 0; i < 4; ++i) |
| bsi->modes[i] = x->partition_info->bmi[i].mode; |
| } |
| |
| static int64_t rd_pick_best_mbsegmentation(VP9_COMP *cpi, MACROBLOCK *x, |
| int_mv *best_ref_mv, |
| int_mv *second_best_ref_mv, |
| int64_t best_rd, |
| int *returntotrate, |
| int *returnyrate, |
| int64_t *returndistortion, |
| int *skippable, int64_t *psse, |
| int mvthresh, |
| int_mv seg_mvs[4][MAX_REF_FRAMES], |
| BEST_SEG_INFO *bsi_buf, |
| int filter_idx, |
| int mi_row, int mi_col) { |
| int i; |
| BEST_SEG_INFO *bsi = bsi_buf + filter_idx; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MODE_INFO *mi = xd->this_mi; |
| MB_MODE_INFO *mbmi = &mi->mbmi; |
| int mode_idx; |
| |
| vp9_zero(*bsi); |
| |
| bsi->segment_rd = best_rd; |
| bsi->ref_mv = best_ref_mv; |
| bsi->second_ref_mv = second_best_ref_mv; |
| bsi->mvp.as_int = best_ref_mv->as_int; |
| bsi->mvthresh = mvthresh; |
| |
| for (i = 0; i < 4; i++) |
| bsi->modes[i] = ZEROMV; |
| |
| rd_check_segment_txsize(cpi, x, bsi_buf, filter_idx, seg_mvs, mi_row, mi_col); |
| |
| if (bsi->segment_rd > best_rd) |
| return INT64_MAX; |
| /* set it to the best */ |
| for (i = 0; i < 4; i++) { |
| mode_idx = inter_mode_offset(bsi->modes[i]); |
| mi->bmi[i].as_mv[0].as_int = bsi->rdstat[i][mode_idx].mvs[0].as_int; |
| if (has_second_ref(mbmi)) |
| mi->bmi[i].as_mv[1].as_int = bsi->rdstat[i][mode_idx].mvs[1].as_int; |
| xd->plane[0].eobs[i] = bsi->rdstat[i][mode_idx].eobs; |
| x->partition_info->bmi[i].mode = bsi->modes[i]; |
| } |
| |
| /* |
| * used to set mbmi->mv.as_int |
| */ |
| *returntotrate = bsi->r; |
| *returndistortion = bsi->d; |
| *returnyrate = bsi->segment_yrate; |
| *skippable = vp9_is_skippable_in_plane(&x->e_mbd, BLOCK_8X8, 0); |
| *psse = bsi->sse; |
| mbmi->mode = bsi->modes[3]; |
| |
| return bsi->segment_rd; |
| } |
| |
| static void mv_pred(VP9_COMP *cpi, MACROBLOCK *x, |
| uint8_t *ref_y_buffer, int ref_y_stride, |
| int ref_frame, BLOCK_SIZE block_size ) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = &xd->this_mi->mbmi; |
| int_mv this_mv; |
| int i; |
| int zero_seen = 0; |
| int best_index = 0; |
| int best_sad = INT_MAX; |
| int this_sad = INT_MAX; |
| unsigned int max_mv = 0; |
| |
| uint8_t *src_y_ptr = x->plane[0].src.buf; |
| uint8_t *ref_y_ptr; |
| int row_offset, col_offset; |
| int num_mv_refs = MAX_MV_REF_CANDIDATES + |
| (cpi->sf.adaptive_motion_search && |
| cpi->common.show_frame && |
| block_size < cpi->sf.max_partition_size); |
| |
| // Get the sad for each candidate reference mv |
| for (i = 0; i < num_mv_refs; i++) { |
| this_mv.as_int = (i < MAX_MV_REF_CANDIDATES) ? |
| mbmi->ref_mvs[ref_frame][i].as_int : x->pred_mv[ref_frame].as_int; |
| |
| max_mv = MAX(max_mv, |
| MAX(abs(this_mv.as_mv.row), abs(this_mv.as_mv.col)) >> 3); |
| // The list is at an end if we see 0 for a second time. |
| if (!this_mv.as_int && zero_seen) |
| break; |
| zero_seen = zero_seen || !this_mv.as_int; |
| |
| row_offset = this_mv.as_mv.row >> 3; |
| col_offset = this_mv.as_mv.col >> 3; |
| ref_y_ptr = ref_y_buffer + (ref_y_stride * row_offset) + col_offset; |
| |
| // Find sad for current vector. |
| this_sad = cpi->fn_ptr[block_size].sdf(src_y_ptr, x->plane[0].src.stride, |
| ref_y_ptr, ref_y_stride, |
| 0x7fffffff); |
| |
| // Note if it is the best so far. |
| if (this_sad < best_sad) { |
| best_sad = this_sad; |
| best_index = i; |
| } |
| } |
| |
| // Note the index of the mv that worked best in the reference list. |
| x->mv_best_ref_index[ref_frame] = best_index; |
| x->max_mv_context[ref_frame] = max_mv; |
| } |
| |
| static void estimate_ref_frame_costs(VP9_COMP *cpi, int segment_id, |
| unsigned int *ref_costs_single, |
| unsigned int *ref_costs_comp, |
| vp9_prob *comp_mode_p) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
| int seg_ref_active = vp9_segfeature_active(&cm->seg, segment_id, |
| SEG_LVL_REF_FRAME); |
| if (seg_ref_active) { |
| vpx_memset(ref_costs_single, 0, MAX_REF_FRAMES * sizeof(*ref_costs_single)); |
| vpx_memset(ref_costs_comp, 0, MAX_REF_FRAMES * sizeof(*ref_costs_comp)); |
| *comp_mode_p = 128; |
| } else { |
| vp9_prob intra_inter_p = vp9_get_pred_prob_intra_inter(cm, xd); |
| vp9_prob comp_inter_p = 128; |
| |
| if (cm->comp_pred_mode == HYBRID_PREDICTION) { |
| comp_inter_p = vp9_get_pred_prob_comp_inter_inter(cm, xd); |
| *comp_mode_p = comp_inter_p; |
| } else { |
| *comp_mode_p = 128; |
| } |
| |
| ref_costs_single[INTRA_FRAME] = vp9_cost_bit(intra_inter_p, 0); |
| |
| if (cm->comp_pred_mode != COMP_PREDICTION_ONLY) { |
| vp9_prob ref_single_p1 = vp9_get_pred_prob_single_ref_p1(cm, xd); |
| vp9_prob ref_single_p2 = vp9_get_pred_prob_single_ref_p2(cm, xd); |
| unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1); |
| |
| if (cm->comp_pred_mode == HYBRID_PREDICTION) |
| base_cost += vp9_cost_bit(comp_inter_p, 0); |
| |
| ref_costs_single[LAST_FRAME] = ref_costs_single[GOLDEN_FRAME] = |
| ref_costs_single[ALTREF_FRAME] = base_cost; |
| ref_costs_single[LAST_FRAME] += vp9_cost_bit(ref_single_p1, 0); |
| ref_costs_single[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p1, 1); |
| ref_costs_single[ALTREF_FRAME] += vp9_cost_bit(ref_single_p1, 1); |
| ref_costs_single[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p2, 0); |
| ref_costs_single[ALTREF_FRAME] += vp9_cost_bit(ref_single_p2, 1); |
| } else { |
| ref_costs_single[LAST_FRAME] = 512; |
| ref_costs_single[GOLDEN_FRAME] = 512; |
| ref_costs_single[ALTREF_FRAME] = 512; |
| } |
| if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY) { |
| vp9_prob ref_comp_p = vp9_get_pred_prob_comp_ref_p(cm, xd); |
| unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1); |
| |
| if (cm->comp_pred_mode == HYBRID_PREDICTION) |
| base_cost += vp9_cost_bit(comp_inter_p, 1); |
| |
| ref_costs_comp[LAST_FRAME] = base_cost + vp9_cost_bit(ref_comp_p, 0); |
| ref_costs_comp[GOLDEN_FRAME] = base_cost + vp9_cost_bit(ref_comp_p, 1); |
| } else { |
| ref_costs_comp[LAST_FRAME] = 512; |
| ref_costs_comp[GOLDEN_FRAME] = 512; |
| } |
| } |
| } |
| |
| static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, |
| int mode_index, |
| PARTITION_INFO *partition, |
| int_mv *ref_mv, |
| int_mv *second_ref_mv, |
| int64_t comp_pred_diff[NB_PREDICTION_TYPES], |
| int64_t tx_size_diff[TX_MODES], |
| int64_t best_filter_diff[SWITCHABLE_FILTERS + 1]) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| |
| // Take a snapshot of the coding context so it can be |
| // restored if we decide to encode this way |
| ctx->skip = x->skip; |
| ctx->best_mode_index = mode_index; |
| ctx->mic = *xd->this_mi; |
| |
| if (partition) |
| ctx->partition_info = *partition; |
| |
| ctx->best_ref_mv.as_int = ref_mv->as_int; |
| ctx->second_best_ref_mv.as_int = second_ref_mv->as_int; |
| |
| ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_PREDICTION_ONLY]; |
| ctx->comp_pred_diff = (int)comp_pred_diff[COMP_PREDICTION_ONLY]; |
| ctx->hybrid_pred_diff = (int)comp_pred_diff[HYBRID_PREDICTION]; |
| |
| vpx_memcpy(ctx->zcoeff_blk, x->zcoeff_blk[xd->this_mi->mbmi.tx_size], |
| sizeof(ctx->zcoeff_blk)); |
| |
| vpx_memcpy(ctx->tx_rd_diff, tx_size_diff, sizeof(ctx->tx_rd_diff)); |
| vpx_memcpy(ctx->best_filter_diff, best_filter_diff, |
| sizeof(*best_filter_diff) * (SWITCHABLE_FILTERS + 1)); |
| } |
| |
| static void setup_pred_block(const MACROBLOCKD *xd, |
| struct buf_2d dst[MAX_MB_PLANE], |
| const YV12_BUFFER_CONFIG *src, |
| int mi_row, int mi_col, |
| const struct scale_factors *scale, |
| const struct scale_factors *scale_uv) { |
| int i; |
| |
| dst[0].buf = src->y_buffer; |
| dst[0].stride = src->y_stride; |
| dst[1].buf = src->u_buffer; |
| dst[2].buf = src->v_buffer; |
| dst[1].stride = dst[2].stride = src->uv_stride; |
| #if CONFIG_ALPHA |
| dst[3].buf = src->alpha_buffer; |
| dst[3].stride = src->alpha_stride; |
| #endif |
| |
| // TODO(jkoleszar): Make scale factors per-plane data |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| setup_pred_plane(dst + i, dst[i].buf, dst[i].stride, mi_row, mi_col, |
| i ? scale_uv : scale, |
| xd->plane[i].subsampling_x, xd->plane[i].subsampling_y); |
| } |
| } |
| |
| static void setup_buffer_inter(VP9_COMP *cpi, MACROBLOCK *x, |
| int idx, MV_REFERENCE_FRAME frame_type, |
| BLOCK_SIZE block_size, |
| int mi_row, int mi_col, |
| int_mv frame_nearest_mv[MAX_REF_FRAMES], |
| int_mv frame_near_mv[MAX_REF_FRAMES], |
| struct buf_2d yv12_mb[4][MAX_MB_PLANE], |
| struct scale_factors scale[MAX_REF_FRAMES]) { |
| VP9_COMMON *cm = &cpi->common; |
| YV12_BUFFER_CONFIG *yv12 = &cm->yv12_fb[cpi->common.ref_frame_map[idx]]; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->this_mi->mbmi; |
| |
| // set up scaling factors |
| scale[frame_type] = cpi->common.active_ref_scale[frame_type - 1]; |
| |
| scale[frame_type].x_offset_q4 = |
| ROUND_POWER_OF_TWO(mi_col * MI_SIZE * scale[frame_type].x_scale_fp, |
| REF_SCALE_SHIFT) & 0xf; |
| scale[frame_type].y_offset_q4 = |
| ROUND_POWER_OF_TWO(mi_row * MI_SIZE * scale[frame_type].y_scale_fp, |
| REF_SCALE_SHIFT) & 0xf; |
| |
| // TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this |
| // use the UV scaling factors. |
| setup_pred_block(xd, yv12_mb[frame_type], yv12, mi_row, mi_col, |
| &scale[frame_type], &scale[frame_type]); |
| |
| // Gets an initial list of candidate vectors from neighbours and orders them |
| vp9_find_mv_refs(&cpi->common, xd, xd->this_mi, |
| xd->last_mi, |
| frame_type, |
| mbmi->ref_mvs[frame_type], mi_row, mi_col); |
| |
| // Candidate refinement carried out at encoder and decoder |
| vp9_find_best_ref_mvs(xd, |
| mbmi->ref_mvs[frame_type], |
| &frame_nearest_mv[frame_type], |
| &frame_near_mv[frame_type]); |
| |
| // Further refinement that is encode side only to test the top few candidates |
| // in full and choose the best as the centre point for subsequent searches. |
| // The current implementation doesn't support scaling. |
| if (!vp9_is_scaled(&scale[frame_type]) && block_size >= BLOCK_8X8) |
| mv_pred(cpi, x, yv12_mb[frame_type][0].buf, yv12->y_stride, |
| frame_type, block_size); |
| } |
| |
| static YV12_BUFFER_CONFIG *get_scaled_ref_frame(VP9_COMP *cpi, int ref_frame) { |
| YV12_BUFFER_CONFIG *scaled_ref_frame = NULL; |
| int fb = get_ref_frame_idx(cpi, ref_frame); |
| int fb_scale = get_scale_ref_frame_idx(cpi, ref_frame); |
| if (cpi->scaled_ref_idx[fb_scale] != cpi->common.ref_frame_map[fb]) |
| scaled_ref_frame = &cpi->common.yv12_fb[cpi->scaled_ref_idx[fb_scale]]; |
| return scaled_ref_frame; |
| } |
| |
| static INLINE int get_switchable_rate(const MACROBLOCK *x) { |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = &xd->this_mi->mbmi; |
| const int ctx = vp9_get_pred_context_switchable_interp(xd); |
| return SWITCHABLE_INTERP_RATE_FACTOR * |
| x->switchable_interp_costs[ctx][mbmi->interp_filter]; |
| } |
| |
| static void single_motion_search(VP9_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, |
| int mi_row, int mi_col, |
| int_mv *tmp_mv, int *rate_mv) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| VP9_COMMON *cm = &cpi->common; |
| MB_MODE_INFO *mbmi = &xd->this_mi->mbmi; |
| struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0}}; |
| int bestsme = INT_MAX; |
| int further_steps, step_param; |
| int sadpb = x->sadperbit16; |
| int_mv mvp_full; |
| int ref = mbmi->ref_frame[0]; |
| int_mv ref_mv = mbmi->ref_mvs[ref][0]; |
| const BLOCK_SIZE block_size = get_plane_block_size(bsize, &xd->plane[0]); |
| |
| int tmp_col_min = x->mv_col_min; |
| int tmp_col_max = x->mv_col_max; |
| int tmp_row_min = x->mv_row_min; |
| int tmp_row_max = x->mv_row_max; |
| |
| YV12_BUFFER_CONFIG *scaled_ref_frame = get_scaled_ref_frame(cpi, ref); |
| |
| if (scaled_ref_frame) { |
| int i; |
| // Swap out the reference frame for a version that's been scaled to |
| // match the resolution of the current frame, allowing the existing |
| // motion search code to be used without additional modifications. |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| backup_yv12[i] = xd->plane[i].pre[0]; |
| |
| setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL); |
| } |
| |
| vp9_clamp_mv_min_max(x, &ref_mv.as_mv); |
| |
| // Adjust search parameters based on small partitions' result. |
| if (x->fast_ms) { |
| // && abs(mvp_full.as_mv.row - x->pred_mv.as_mv.row) < 24 && |
| // abs(mvp_full.as_mv.col - x->pred_mv.as_mv.col) < 24) { |
| // adjust search range |
| step_param = 6; |
| if (x->fast_ms > 1) |
| step_param = 8; |
| |
| // Get prediction MV. |
| mvp_full.as_int = x->pred_mv[ref].as_int; |
| |
| // Adjust MV sign if needed. |
| if (cm->ref_frame_sign_bias[ref]) { |
| mvp_full.as_mv.col *= -1; |
| mvp_full.as_mv.row *= -1; |
| } |
| } else { |
| // Work out the size of the first step in the mv step search. |
| // 0 here is maximum length first step. 1 is MAX >> 1 etc. |
| if (cpi->sf.auto_mv_step_size && cpi->common.show_frame) { |
| // Take wtd average of the step_params based on the last frame's |
| // max mv magnitude and that based on the best ref mvs of the current |
| // block for the given reference. |
| step_param = (vp9_init_search_range(cpi, x->max_mv_context[ref]) + |
| cpi->mv_step_param) >> 1; |
| } else { |
| step_param = cpi->mv_step_param; |
| } |
| } |
| |
| if (cpi->sf.adaptive_motion_search && bsize < BLOCK_64X64 && |
| cpi->common.show_frame) { |
| int boffset = 2 * (b_width_log2(BLOCK_64X64) - MIN(b_height_log2(bsize), |
| b_width_log2(bsize))); |
| step_param = MAX(step_param, boffset); |
| } |
| |
| mvp_full.as_int = x->mv_best_ref_index[ref] < MAX_MV_REF_CANDIDATES ? |
| mbmi->ref_mvs[ref][x->mv_best_ref_index[ref]].as_int : |
| x->pred_mv[ref].as_int; |
| |
| mvp_full.as_mv.col >>= 3; |
| mvp_full.as_mv.row >>= 3; |
| |
| // Further step/diamond searches as necessary |
| further_steps = (cpi->sf.max_step_search_steps - 1) - step_param; |
| |
| if (cpi->sf.search_method == HEX) { |
| bestsme = vp9_hex_search(x, &mvp_full, |
| step_param, |
| sadpb, 1, |
| &cpi->fn_ptr[block_size], 1, |
| &ref_mv, tmp_mv); |
| } else if (cpi->sf.search_method == SQUARE) { |
| bestsme = vp9_square_search(x, &mvp_full, |
| step_param, |
| sadpb, 1, |
| &cpi->fn_ptr[block_size], 1, |
| &ref_mv, tmp_mv); |
| } else if (cpi->sf.search_method == BIGDIA) { |
| bestsme = vp9_bigdia_search(x, &mvp_full, |
| step_param, |
| sadpb, 1, |
| &cpi->fn_ptr[block_size], 1, |
| &ref_mv, tmp_mv); |
| } else { |
| bestsme = vp9_full_pixel_diamond(cpi, x, &mvp_full, step_param, |
| sadpb, further_steps, 1, |
| &cpi->fn_ptr[block_size], |
| &ref_mv, tmp_mv); |
| } |
| |
| x->mv_col_min = tmp_col_min; |
| x->mv_col_max = tmp_col_max; |
| x->mv_row_min = tmp_row_min; |
| x->mv_row_max = tmp_row_max; |
| |
| if (bestsme < INT_MAX) { |
| int dis; /* TODO: use dis in distortion calculation later. */ |
| unsigned int sse; |
| cpi->find_fractional_mv_step(x, tmp_mv, &ref_mv, |
| x->errorperbit, |
| &cpi->fn_ptr[block_size], |
| 0, cpi->sf.subpel_iters_per_step, |
| x->nmvjointcost, x->mvcost, |
| &dis, &sse); |
| } |
| *rate_mv = vp9_mv_bit_cost(tmp_mv, &ref_mv, |
| x->nmvjointcost, x->mvcost, |
| 96); |
| |
| if (cpi->sf.adaptive_motion_search && cpi->common.show_frame) |
| x->pred_mv[ref].as_int = tmp_mv->as_int; |
| |
| if (scaled_ref_frame) { |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| xd->plane[i].pre[0] = backup_yv12[i]; |
| } |
| } |
| |
| static void joint_motion_search(VP9_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, |
| int_mv *frame_mv, |
| int mi_row, int mi_col, |
| int_mv single_newmv[MAX_REF_FRAMES], |
| int *rate_mv) { |
| int pw = 4 << b_width_log2(bsize), ph = 4 << b_height_log2(bsize); |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = &xd->this_mi->mbmi; |
| int refs[2] = { mbmi->ref_frame[0], |
| (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) }; |
| int_mv ref_mv[2]; |
| const BLOCK_SIZE block_size = get_plane_block_size(bsize, &xd->plane[0]); |
| int ite; |
| // Prediction buffer from second frame. |
| uint8_t *second_pred = vpx_memalign(16, pw * ph * sizeof(uint8_t)); |
| |
| // Do joint motion search in compound mode to get more accurate mv. |
| struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0}}; |
| struct buf_2d backup_second_yv12[MAX_MB_PLANE] = {{0}}; |
| struct buf_2d scaled_first_yv12; |
| int last_besterr[2] = {INT_MAX, INT_MAX}; |
| YV12_BUFFER_CONFIG *scaled_ref_frame[2] = {NULL, NULL}; |
| scaled_ref_frame[0] = get_scaled_ref_frame(cpi, mbmi->ref_frame[0]); |
| scaled_ref_frame[1] = get_scaled_ref_frame(cpi, mbmi->ref_frame[1]); |
| |
| ref_mv[0] = mbmi->ref_mvs[refs[0]][0]; |
| ref_mv[1] = mbmi->ref_mvs[refs[1]][0]; |
| |
| if (scaled_ref_frame[0]) { |
| int i; |
| // Swap out the reference frame for a version that's been scaled to |
| // match the resolution of the current frame, allowing the existing |
| // motion search code to be used without additional modifications. |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| backup_yv12[i] = xd->plane[i].pre[0]; |
| setup_pre_planes(xd, 0, scaled_ref_frame[0], mi_row, mi_col, NULL); |
| } |
| |
| if (scaled_ref_frame[1]) { |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| backup_second_yv12[i] = xd->plane[i].pre[1]; |
| |
| setup_pre_planes(xd, 1, scaled_ref_frame[1], mi_row, mi_col, NULL); |
| } |
| |
| xd->scale_factor[0].set_scaled_offsets(&xd->scale_factor[0], |
| mi_row, mi_col); |
| xd->scale_factor[1].set_scaled_offsets(&xd->scale_factor[1], |
| mi_row, mi_col); |
| scaled_first_yv12 = xd->plane[0].pre[0]; |
| |
| // Initialize mv using single prediction mode result. |
| frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int; |
| frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int; |
| |
| // Allow joint search multiple times iteratively for each ref frame |
| // and break out the search loop if it couldn't find better mv. |
| for (ite = 0; ite < 4; ite++) { |
| struct buf_2d ref_yv12[2]; |
| int bestsme = INT_MAX; |
| int sadpb = x->sadperbit16; |
| int_mv tmp_mv; |
| int search_range = 3; |
| |
| int tmp_col_min = x->mv_col_min; |
| int tmp_col_max = x->mv_col_max; |
| int tmp_row_min = x->mv_row_min; |
| int tmp_row_max = x->mv_row_max; |
| int id = ite % 2; |
| |
| // Initialized here because of compiler problem in Visual Studio. |
| ref_yv12[0] = xd->plane[0].pre[0]; |
| ref_yv12[1] = xd->plane[0].pre[1]; |
| |
| // Get pred block from second frame. |
| vp9_build_inter_predictor(ref_yv12[!id].buf, |
| ref_yv12[!id].stride, |
| second_pred, pw, |
| &frame_mv[refs[!id]].as_mv, |
| &xd->scale_factor[!id], |
| pw, ph, 0, |
| &xd->subpix, MV_PRECISION_Q3); |
| |
| // Compound motion search on first ref frame. |
| if (id) |
| xd->plane[0].pre[0] = ref_yv12[id]; |
| vp9_clamp_mv_min_max(x, &ref_mv[id].as_mv); |
| |
| // Use mv result from single mode as mvp. |
| tmp_mv.as_int = frame_mv[refs[id]].as_int; |
| |
| tmp_mv.as_mv.col >>= 3; |
| tmp_mv.as_mv.row >>= 3; |
| |
| // Small-range full-pixel motion search |
| bestsme = vp9_refining_search_8p_c(x, &tmp_mv, sadpb, |
| search_range, |
| &cpi->fn_ptr[block_size], |
| x->nmvjointcost, x->mvcost, |
| &ref_mv[id], second_pred, |
| pw, ph); |
| |
| x->mv_col_min = tmp_col_min; |
| x->mv_col_max = tmp_col_max; |
| x->mv_row_min = tmp_row_min; |
| x->mv_row_max = tmp_row_max; |
| |
| if (bestsme < INT_MAX) { |
| int dis; /* TODO: use dis in distortion calculation later. */ |
| unsigned int sse; |
| |
| bestsme = cpi->find_fractional_mv_step_comp( |
| x, &tmp_mv, |
| &ref_mv[id], |
| x->errorperbit, |
| &cpi->fn_ptr[block_size], |
| 0, cpi->sf.subpel_iters_per_step, |
| x->nmvjointcost, x->mvcost, |
| &dis, &sse, second_pred, |
| pw, ph); |
| } |
| |
| if (id) |
| xd->plane[0].pre[0] = scaled_first_yv12; |
| |
| if (bestsme < last_besterr[id]) { |
| frame_mv[refs[id]].as_int = tmp_mv.as_int; |
| last_besterr[id] = bestsme; |
| } else { |
| break; |
| } |
| } |
| |
| // restore the predictor |
| if (scaled_ref_frame[0]) { |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| xd->plane[i].pre[0] = backup_yv12[i]; |
| } |
| |
| if (scaled_ref_frame[1]) { |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| xd->plane[i].pre[1] = backup_second_yv12[i]; |
| } |
| *rate_mv = vp9_mv_bit_cost(&frame_mv[refs[0]], |
| &mbmi->ref_mvs[refs[0]][0], |
| x->nmvjointcost, x->mvcost, 96); |
| *rate_mv += vp9_mv_bit_cost(&frame_mv[refs[1]], |
| &mbmi->ref_mvs[refs[1]][0], |
| x->nmvjointcost, x->mvcost, 96); |
| |
| vpx_free(second_pred); |
| } |
| |
| static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, |
| int64_t txfm_cache[], |
| int *rate2, int64_t *distortion, |
| int *skippable, |
| int *rate_y, int64_t *distortion_y, |
| int *rate_uv, int64_t *distortion_uv, |
| int *mode_excluded, int *disable_skip, |
| INTERPOLATIONFILTERTYPE *best_filter, |
| int_mv (*mode_mv)[MAX_REF_FRAMES], |
| int mi_row, int mi_col, |
| int_mv single_newmv[MAX_REF_FRAMES], |
| int64_t *psse, |
| const int64_t ref_best_rd) { |
| VP9_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = &xd->this_mi->mbmi; |
| const int is_comp_pred = (mbmi->ref_frame[1] > 0); |
| const int num_refs = is_comp_pred ? 2 : 1; |
| const int this_mode = mbmi->mode; |
| int_mv *frame_mv = mode_mv[this_mode]; |
| int i; |
| int refs[2] = { mbmi->ref_frame[0], |
| (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) }; |
| int_mv cur_mv[2]; |
| int64_t this_rd = 0; |
| DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf, MAX_MB_PLANE * 64 * 64); |
| int pred_exists = 0; |
| int intpel_mv; |
| int64_t rd, best_rd = INT64_MAX; |
| int best_needs_copy = 0; |
| uint8_t *orig_dst[MAX_MB_PLANE]; |
| int orig_dst_stride[MAX_MB_PLANE]; |
| int rs = 0; |
| |
| if (this_mode == NEWMV) { |
| int rate_mv; |
| if (is_comp_pred) { |
| // Initialize mv using single prediction mode result. |
| frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int; |
| frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int; |
| |
| if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { |
| joint_motion_search(cpi, x, bsize, frame_mv, |
| mi_row, mi_col, single_newmv, &rate_mv); |
| } else { |
| rate_mv = vp9_mv_bit_cost(&frame_mv[refs[0]], |
| &mbmi->ref_mvs[refs[0]][0], |
| x->nmvjointcost, x->mvcost, 96); |
| rate_mv += vp9_mv_bit_cost(&frame_mv[refs[1]], |
| &mbmi->ref_mvs[refs[1]][0], |
| x->nmvjointcost, x->mvcost, 96); |
| } |
| if (frame_mv[refs[0]].as_int == INVALID_MV || |
| frame_mv[refs[1]].as_int == INVALID_MV) |
| return INT64_MAX; |
| *rate2 += rate_mv; |
| } else { |
| int_mv tmp_mv; |
| single_motion_search(cpi, x, bsize, mi_row, mi_col, &tmp_mv, &rate_mv); |
| *rate2 += rate_mv; |
| frame_mv[refs[0]].as_int = |
| xd->this_mi->bmi[0].as_mv[0].as_int = tmp_mv.as_int; |
| single_newmv[refs[0]].as_int = tmp_mv.as_int; |
| } |
| } |
| |
| // if we're near/nearest and mv == 0,0, compare to zeromv |
| if ((this_mode == NEARMV || this_mode == NEARESTMV || this_mode == ZEROMV) && |
| frame_mv[refs[0]].as_int == 0 && |
| !vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP) && |
| (num_refs == 1 || frame_mv[refs[1]].as_int == 0)) { |
| int rfc = mbmi->mode_context[mbmi->ref_frame[0]]; |
| int c1 = cost_mv_ref(cpi, NEARMV, rfc); |
| int c2 = cost_mv_ref(cpi, NEARESTMV, rfc); |
| int c3 = cost_mv_ref(cpi, ZEROMV, rfc); |
| |
| if (this_mode == NEARMV) { |
| if (c1 > c3) |
| return INT64_MAX; |
| } else if (this_mode == NEARESTMV) { |
| if (c2 > c3) |
| return INT64_MAX; |
| } else { |
| assert(this_mode == ZEROMV); |
| if (num_refs == 1) { |
| if ((c3 >= c2 && |
| mode_mv[NEARESTMV][mbmi->ref_frame[0]].as_int == 0) || |
| (c3 >= c1 && |
| mode_mv[NEARMV][mbmi->ref_frame[0]].as_int == 0)) |
| return INT64_MAX; |
| } else { |
| if ((c3 >= c2 && |
| mode_mv[NEARESTMV][mbmi->ref_frame[0]].as_int == 0 && |
| mode_mv[NEARESTMV][mbmi->ref_frame[1]].as_int == 0) || |
| (c3 >= c1 && |
| mode_mv[NEARMV][mbmi->ref_frame[0]].as_int == 0 && |
| mode_mv[NEARMV][mbmi->ref_frame[1]].as_int == 0)) |
| return INT64_MAX; |
| } |
| } |
| } |
| |
| for (i = 0; i < num_refs; ++i) { |
| cur_mv[i] = frame_mv[refs[i]]; |
| // Clip "next_nearest" so that it does not extend to far out of image |
| if (this_mode != NEWMV) |
| clamp_mv2(&cur_mv[i].as_mv, xd); |
| |
| if (mv_check_bounds(x, &cur_mv[i])) |
| return INT64_MAX; |
| mbmi->mv[i].as_int = cur_mv[i].as_int; |
| } |
| |
| // do first prediction into the destination buffer. Do the next |
| // prediction into a temporary buffer. Then keep track of which one |
| // of these currently holds the best predictor, and use the other |
| // one for future predictions. In the end, copy from tmp_buf to |
| // dst if necessary. |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| orig_dst[i] = xd->plane[i].dst.buf; |
| orig_dst_stride[i] = xd->plane[i].dst.stride; |
| } |
| |
| /* We don't include the cost of the second reference here, because there |
| * are only three options: Last/Golden, ARF/Last or Golden/ARF, or in other |
| * words if you present them in that order, the second one is always known |
| * if the first is known */ |
| *rate2 += cost_mv_ref(cpi, this_mode, |
| mbmi->mode_context[mbmi->ref_frame[0]]); |
| |
| if (!(*mode_excluded)) { |
| if (is_comp_pred) { |
| *mode_excluded = (cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY); |
| } else { |
| *mode_excluded = (cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY); |
| } |
| } |
| |
| pred_exists = 0; |
| // Are all MVs integer pel for Y and UV |
| intpel_mv = (mbmi->mv[0].as_mv.row & 15) == 0 && |
| (mbmi->mv[0].as_mv.col & 15) == 0; |
| if (is_comp_pred) |
| intpel_mv &= (mbmi->mv[1].as_mv.row & 15) == 0 && |
| (mbmi->mv[1].as_mv.col & 15) == 0; |
| // Search for best switchable filter by checking the variance of |
| // pred error irrespective of whether the filter will be used |
| if (cm->mcomp_filter_type != BILINEAR) { |
| *best_filter = EIGHTTAP; |
| if (x->source_variance < |
| cpi->sf.disable_filter_search_var_thresh) { |
| *best_filter = EIGHTTAP; |
| vp9_zero(cpi->rd_filter_cache); |
| } else { |
| int i, newbest; |
| int tmp_rate_sum = 0; |
| int64_t tmp_dist_sum = 0; |
| |
| cpi->rd_filter_cache[SWITCHABLE_FILTERS] = INT64_MAX; |
| for (i = 0; i < SWITCHABLE_FILTERS; ++i) { |
| int j; |
| int64_t rs_rd; |
| mbmi->interp_filter = i; |
| vp9_setup_interp_filters(xd, mbmi->interp_filter, cm); |
| rs = get_switchable_rate(x); |
| rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0); |
| |
| if (i > 0 && intpel_mv) { |
| cpi->rd_filter_cache[i] = RDCOST(x->rdmult, x->rddiv, |
| tmp_rate_sum, tmp_dist_sum); |
| cpi->rd_filter_cache[SWITCHABLE_FILTERS] = |
| MIN(cpi->rd_filter_cache[SWITCHABLE_FILTERS], |
| cpi->rd_filter_cache[i] + rs_rd); |
| rd = cpi->rd_filter_cache[i]; |
| if (cm->mcomp_filter_type == SWITCHABLE) |
| rd += rs_rd; |
| } else { |
| int rate_sum = 0; |
| int64_t dist_sum = 0; |
| if ((cm->mcomp_filter_type == SWITCHABLE && |
| (!i || best_needs_copy)) || |
| (cm->mcomp_filter_type != SWITCHABLE && |
| (cm->mcomp_filter_type == mbmi->interp_filter || |
| (i == 0 && intpel_mv)))) { |
| for (j = 0; j < MAX_MB_PLANE; j++) { |
| xd->plane[j].dst.buf = orig_dst[j]; |
| xd->plane[j].dst.stride = orig_dst_stride[j]; |
| } |
| } else { |
| for (j = 0; j < MAX_MB_PLANE; j++) { |
| xd->plane[j].dst.buf = tmp_buf + j * 64 * 64; |
| xd->plane[j].dst.stride = 64; |
| } |
| } |
| vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); |
| model_rd_for_sb(cpi, bsize, x, xd, &rate_sum, &dist_sum); |
| cpi->rd_filter_cache[i] = RDCOST(x->rdmult, x->rddiv, |
| rate_sum, dist_sum); |
| cpi->rd_filter_cache[SWITCHABLE_FILTERS] = |
| MIN(cpi->rd_filter_cache[SWITCHABLE_FILTERS], |
| cpi->rd_filter_cache[i] + rs_rd); |
| rd = cpi->rd_filter_cache[i]; |
| if (cm->mcomp_filter_type == SWITCHABLE) |
| rd += rs_rd; |
| if (i == 0 && intpel_mv) { |
| tmp_rate_sum = rate_sum; |
| tmp_dist_sum = dist_sum; |
| } |
| } |
| if (i == 0 && cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) { |
| if (rd / 2 > ref_best_rd) { |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = orig_dst[i]; |
| xd->plane[i].dst.stride = orig_dst_stride[i]; |
| } |
| return INT64_MAX; |
| } |
| } |
| newbest = i == 0 || rd < best_rd; |
| |
| if (newbest) { |
| best_rd = rd; |
| *best_filter = mbmi->interp_filter; |
| if (cm->mcomp_filter_type == SWITCHABLE && i && !intpel_mv) |
| best_needs_copy = !best_needs_copy; |
| } |
| |
| if ((cm->mcomp_filter_type == SWITCHABLE && newbest) || |
| (cm->mcomp_filter_type != SWITCHABLE && |
| cm->mcomp_filter_type == mbmi->interp_filter)) { |
| pred_exists = 1; |
| } |
| } |
| |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = orig_dst[i]; |
| xd->plane[i].dst.stride = orig_dst_stride[i]; |
| } |
| } |
| } |
| // Set the appropriate filter |
| mbmi->interp_filter = cm->mcomp_filter_type != SWITCHABLE ? |
| cm->mcomp_filter_type : *best_filter; |
| vp9_setup_interp_filters(xd, mbmi->interp_filter, cm); |
| rs = cm->mcomp_filter_type == SWITCHABLE ? get_switchable_rate(x) : 0; |
| |
| if (pred_exists) { |
| if (best_needs_copy) { |
| // again temporarily set the buffers to local memory to prevent a memcpy |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = tmp_buf + i * 64 * 64; |
| xd->plane[i].dst.stride = 64; |
| } |
| } |
| } else { |
| // Handles the special case when a filter that is not in the |
| // switchable list (ex. bilinear, 6-tap) is indicated at the frame level |
| vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); |
| } |
| |
| |
| if (cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) { |
| int tmp_rate; |
| int64_t tmp_dist; |
| model_rd_for_sb(cpi, bsize, x, xd, &tmp_rate, &tmp_dist); |
| rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate, tmp_dist); |
| // if current pred_error modeled rd is substantially more than the best |
| // so far, do not bother doing full rd |
| if (rd / 2 > ref_best_rd) { |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = orig_dst[i]; |
| xd->plane[i].dst.stride = orig_dst_stride[i]; |
| } |
| return INT64_MAX; |
| } |
| } |
| |
| if (cpi->common.mcomp_filter_type == SWITCHABLE) |
| *rate2 += get_switchable_rate(x); |
| |
| if (!is_comp_pred && cpi->enable_encode_breakout) { |
| if (cpi->active_map_enabled && x->active_ptr[0] == 0) |
| x->skip = 1; |
| else if (x->encode_breakout) { |
| const BLOCK_SIZE y_size = get_plane_block_size(bsize, &xd->plane[0]); |
| const BLOCK_SIZE uv_size = get_plane_block_size(bsize, &xd->plane[1]); |
| unsigned int var, sse; |
| // Skipping threshold for ac. |
| unsigned int thresh_ac; |
| // The encode_breakout input |
| unsigned int encode_breakout = x->encode_breakout << 4; |
| unsigned int max_thresh = 36000; |
| |
| // Use extreme low threshold for static frames to limit skipping. |
| if (cpi->enable_encode_breakout == 2) |
| max_thresh = 128; |
| |
| // Calculate threshold according to dequant value. |
| thresh_ac = (xd->plane[0].dequant[1] * xd->plane[0].dequant[1]) / 9; |
| |
| // Use encode_breakout input if it is bigger than internal threshold. |
| if (thresh_ac < encode_breakout) |
| thresh_ac = encode_breakout; |
| |
| // Set a maximum for threshold to avoid big PSNR loss in low bitrate case. |
| if (thresh_ac > max_thresh) |
| thresh_ac = max_thresh; |
| |
| var = cpi->fn_ptr[y_size].vf(x->plane[0].src.buf, x->plane[0].src.stride, |
| xd->plane[0].dst.buf, |
| xd->plane[0].dst.stride, &sse); |
| |
| // Adjust threshold according to partition size. |
| thresh_ac >>= 8 - (b_width_log2_lookup[bsize] + |
| b_height_log2_lookup[bsize]); |
| |
| // Y skipping condition checking |
| if (sse < thresh_ac || sse == 0) { |
| // Skipping threshold for dc |
| unsigned int thresh_dc; |
| |
| thresh_dc = (xd->plane[0].dequant[0] * xd->plane[0].dequant[0] >> 6); |
| |
| // dc skipping checking |
| if ((sse - var) < thresh_dc || sse == var) { |
| unsigned int sse_u, sse_v; |
| unsigned int var_u, var_v; |
| |
| var_u = cpi->fn_ptr[uv_size].vf(x->plane[1].src.buf, |
| x->plane[1].src.stride, |
| xd->plane[1].dst.buf, |
| xd->plane[1].dst.stride, &sse_u); |
| |
| // U skipping condition checking |
| if ((sse_u * 4 < thresh_ac || sse_u == 0) && |
| (sse_u - var_u < thresh_dc || sse_u == var_u)) { |
| var_v = cpi->fn_ptr[uv_size].vf(x->plane[2].src.buf, |
| x->plane[2].src.stride, |
| xd->plane[2].dst.buf, |
| xd->plane[2].dst.stride, &sse_v); |
| |
| // V skipping condition checking |
| if ((sse_v * 4 < thresh_ac || sse_v == 0) && |
| (sse_v - var_v < thresh_dc || sse_v == var_v)) { |
| x->skip = 1; |
| |
| // The cost of skip bit needs to be added. |
| *rate2 += vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd), 1); |
| |
| // Scaling factor for SSE from spatial domain to frequency domain |
| // is 16. Adjust distortion accordingly. |
| *distortion_uv = (sse_u + sse_v) << 4; |
| *distortion = (sse << 4) + *distortion_uv; |
| |
| *disable_skip = 1; |
| this_rd = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| if (!x->skip) { |
| int skippable_y, skippable_uv; |
| int64_t sseuv = INT64_MAX; |
| int64_t rdcosty = INT64_MAX; |
| |
| // Y cost and distortion |
| super_block_yrd(cpi, x, rate_y, distortion_y, &skippable_y, psse, |
| bsize, txfm_cache, ref_best_rd); |
| |
| if (*rate_y == INT_MAX) { |
| *rate2 = INT_MAX; |
| *distortion = INT64_MAX; |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = orig_dst[i]; |
| xd->plane[i].dst.stride = orig_dst_stride[i]; |
| } |
| return INT64_MAX; |
| } |
| |
| *rate2 += *rate_y; |
| *distortion += *distortion_y; |
| |
| rdcosty = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion); |
| rdcosty = MIN(rdcosty, RDCOST(x->rdmult, x->rddiv, 0, *psse)); |
| |
| super_block_uvrd(cm, x, rate_uv, distortion_uv, &skippable_uv, &sseuv, |
| bsize, ref_best_rd - rdcosty); |
| if (*rate_uv == INT_MAX) { |
| *rate2 = INT_MAX; |
| *distortion = INT64_MAX; |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = orig_dst[i]; |
| xd->plane[i].dst.stride = orig_dst_stride[i]; |
| } |
| return INT64_MAX; |
| } |
| |
| *psse += sseuv; |
| *rate2 += *rate_uv; |
| *distortion += *distortion_uv; |
| *skippable = skippable_y && skippable_uv; |
| } |
| |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = orig_dst[i]; |
| xd->plane[i].dst.stride = orig_dst_stride[i]; |
| } |
| |
| return this_rd; // if 0, this will be re-calculated by caller |
| } |
| |
| void vp9_rd_pick_intra_mode_sb(VP9_COMP *cpi, MACROBLOCK *x, |
| int *returnrate, int64_t *returndist, |
| BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx, int64_t best_rd) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0; |
| int y_skip = 0, uv_skip = 0; |
| int64_t dist_y = 0, dist_uv = 0, tx_cache[TX_MODES] = { 0 }; |
| x->skip_encode = 0; |
| ctx->skip = 0; |
| xd->this_mi->mbmi.ref_frame[0] = INTRA_FRAME; |
| if (bsize >= BLOCK_8X8) { |
| if (rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly, |
| &dist_y, &y_skip, bsize, tx_cache, |
| best_rd) >= best_rd) { |
| *returnrate = INT_MAX; |
| return; |
| } |
| rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly, |
| &dist_uv, &uv_skip, bsize); |
| } else { |
| y_skip = 0; |
| if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate_y, &rate_y_tokenonly, |
| &dist_y, best_rd) >= best_rd) { |
| *returnrate = INT_MAX; |
| return; |
| } |
| rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly, |
| &dist_uv, &uv_skip, BLOCK_8X8); |
| } |
| |
| if (y_skip && uv_skip) { |
| *returnrate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly + |
| vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd), 1); |
| *returndist = dist_y + dist_uv; |
| vp9_zero(ctx->tx_rd_diff); |
| } else { |
| int i; |
| *returnrate = rate_y + rate_uv + |
| vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd), 0); |
| *returndist = dist_y + dist_uv; |
| if (cpi->sf.tx_size_search_method == USE_FULL_RD) |
| for (i = 0; i < TX_MODES; i++) |
| ctx->tx_rd_diff[i] = tx_cache[i] - tx_cache[cm->tx_mode]; |
| } |
| |
| ctx->mic = *xd->this_mi; |
| } |
| |
| int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x, |
| int mi_row, int mi_col, |
| int *returnrate, |
| int64_t *returndistortion, |
| BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx, |
| int64_t best_rd_so_far) { |
| VP9_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = &xd->this_mi->mbmi; |
| const struct segmentation *seg = &cm->seg; |
| const BLOCK_SIZE block_size = get_plane_block_size(bsize, &xd->plane[0]); |
| RD_PREDICTION_MODE this_mode; |
| MV_REFERENCE_FRAME ref_frame, second_ref_frame; |
| unsigned char segment_id = mbmi->segment_id; |
| int comp_pred, i; |
| int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; |
| struct buf_2d yv12_mb[4][MAX_MB_PLANE]; |
| int_mv single_newmv[MAX_REF_FRAMES] = { { 0 } }; |
| static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, |
| VP9_ALT_FLAG }; |
| int idx_list[4] = {0, |
| cpi->lst_fb_idx, |
| cpi->gld_fb_idx, |
| cpi->alt_fb_idx}; |
| int64_t best_rd = best_rd_so_far; |
| int64_t best_yrd = best_rd_so_far; // FIXME(rbultje) more precise |
| int64_t best_tx_rd[TX_MODES]; |
| int64_t best_tx_diff[TX_MODES]; |
| int64_t best_pred_diff[NB_PREDICTION_TYPES]; |
| int64_t best_pred_rd[NB_PREDICTION_TYPES]; |
| int64_t best_filter_rd[SWITCHABLE_FILTERS + 1]; |
| int64_t best_filter_diff[SWITCHABLE_FILTERS + 1]; |
| MB_MODE_INFO best_mbmode = { 0 }; |
| int j; |
| int mode_index, best_mode_index = 0; |
| unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES]; |
| vp9_prob comp_mode_p; |
| int64_t best_intra_rd = INT64_MAX; |
| int64_t best_inter_rd = INT64_MAX; |
| MB_PREDICTION_MODE best_intra_mode = DC_PRED; |
| // MB_PREDICTION_MODE best_inter_mode = ZEROMV; |
| MV_REFERENCE_FRAME best_inter_ref_frame = LAST_FRAME; |
| INTERPOLATIONFILTERTYPE tmp_best_filter = SWITCHABLE; |
| int rate_uv_intra[TX_SIZES], rate_uv_tokenonly[TX_SIZES]; |
| int64_t dist_uv[TX_SIZES]; |
| int skip_uv[TX_SIZES]; |
| MB_PREDICTION_MODE mode_uv[TX_SIZES]; |
| struct scale_factors scale_factor[4]; |
| unsigned int ref_frame_mask = 0; |
| unsigned int mode_mask = 0; |
| int64_t mode_distortions[MB_MODE_COUNT] = {-1}; |
| int64_t frame_distortions[MAX_REF_FRAMES] = {-1}; |
| int intra_cost_penalty = 20 * vp9_dc_quant(cpi->common.base_qindex, |
| cpi->common.y_dc_delta_q); |
| int_mv seg_mvs[4][MAX_REF_FRAMES]; |
| union b_mode_info best_bmodes[4]; |
| PARTITION_INFO best_partition; |
| const int bws = num_8x8_blocks_wide_lookup[bsize] / 2; |
| const int bhs = num_8x8_blocks_high_lookup[bsize] / 2; |
| int best_skip2 = 0; |
| unsigned char best_zcoeff_blk[256] = { 0 }; |
| |
| x->skip_encode = cpi->sf.skip_encode_frame && xd->q_index < QIDX_SKIP_THRESH; |
| vpx_memset(x->zcoeff_blk, 0, sizeof(x->zcoeff_blk)); |
| vpx_memset(ctx->zcoeff_blk, 0, sizeof(ctx->zcoeff_blk)); |
| |
| for (i = 0; i < 4; i++) { |
| int j; |
| for (j = 0; j < MAX_REF_FRAMES; j++) |
| seg_mvs[i][j].as_int = INVALID_MV; |
| } |
| // Everywhere the flag is set the error is much higher than its neighbors. |
| ctx->frames_with_high_error = 0; |
| ctx->modes_with_high_error = 0; |
| |
| estimate_ref_frame_costs(cpi, segment_id, ref_costs_single, ref_costs_comp, |
| &comp_mode_p); |
| |
| for (i = 0; i < NB_PREDICTION_TYPES; ++i) |
| best_pred_rd[i] = INT64_MAX; |
| for (i = 0; i < TX_MODES; i++) |
| best_tx_rd[i] = INT64_MAX; |
| for (i = 0; i <= SWITCHABLE_FILTERS; i++) |
| best_filter_rd[i] = INT64_MAX; |
| for (i = 0; i < TX_SIZES; i++) |
| rate_uv_intra[i] = INT_MAX; |
| |
| *returnrate = INT_MAX; |
| |
| // Create a mask set to 1 for each reference frame used by a smaller |
| // resolution. |
| if (cpi->sf.use_avoid_tested_higherror) { |
| switch (block_size) { |
| case BLOCK_64X64: |
| for (i = 0; i < 4; i++) { |
| for (j = 0; j < 4; j++) { |
| ref_frame_mask |= x->mb_context[i][j].frames_with_high_error; |
| mode_mask |= x->mb_context[i][j].modes_with_high_error; |
| } |
| } |
| for (i = 0; i < 4; i++) { |
| ref_frame_mask |= x->sb32_context[i].frames_with_high_error; |
| mode_mask |= x->sb32_context[i].modes_with_high_error; |
| } |
| break; |
| case BLOCK_32X32: |
| for (i = 0; i < 4; i++) { |
| ref_frame_mask |= |
| x->mb_context[xd->sb_index][i].frames_with_high_error; |
| mode_mask |= x->mb_context[xd->sb_index][i].modes_with_high_error; |
| } |
| break; |
| default: |
| // Until we handle all block sizes set it to present; |
| ref_frame_mask = 0; |
| mode_mask = 0; |
| break; |
| } |
| ref_frame_mask = ~ref_frame_mask; |
| mode_mask = ~mode_mask; |
| } |
| |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) { |
| if (cpi->ref_frame_flags & flag_list[ref_frame]) { |
| setup_buffer_inter(cpi, x, idx_list[ref_frame], ref_frame, block_size, |
| mi_row, mi_col, frame_mv[NEARESTMV], frame_mv[NEARMV], |
| yv12_mb, scale_factor); |
| } |
| frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; |
| frame_mv[ZEROMV][ref_frame].as_int = 0; |
| } |
| |
| for (mode_index = 0; mode_index < MAX_MODES; ++mode_index) { |
| int mode_excluded = 0; |
| int64_t this_rd = INT64_MAX; |
| int disable_skip = 0; |
| int compmode_cost = 0; |
| int rate2 = 0, rate_y = 0, rate_uv = 0; |
| int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0; |
| int skippable = 0; |
| int64_t tx_cache[TX_MODES]; |
| int i; |
| int this_skip2 = 0; |
| int64_t total_sse = INT_MAX; |
| int early_term = 0; |
| |
| for (i = 0; i < TX_MODES; ++i) |
| tx_cache[i] = INT64_MAX; |
| |
| x->skip = 0; |
| this_mode = vp9_mode_order[mode_index].mode; |
| ref_frame = vp9_mode_order[mode_index].ref_frame; |
| second_ref_frame = vp9_mode_order[mode_index].second_ref_frame; |
| |
| // Look at the reference frame of the best mode so far and set the |
| // skip mask to look at a subset of the remaining modes. |
| if (mode_index > cpi->sf.mode_skip_start) { |
| if (mode_index == (cpi->sf.mode_skip_start + 1)) { |
| switch (vp9_mode_order[best_mode_index].ref_frame) { |
| case INTRA_FRAME: |
| cpi->mode_skip_mask = 0; |
| break; |
| case LAST_FRAME: |
| cpi->mode_skip_mask = LAST_FRAME_MODE_MASK; |
| break; |
| case GOLDEN_FRAME: |
| cpi->mode_skip_mask = GOLDEN_FRAME_MODE_MASK; |
| break; |
| case ALTREF_FRAME: |
| cpi->mode_skip_mask = ALT_REF_MODE_MASK; |
| break; |
| case NONE: |
| case MAX_REF_FRAMES: |
| assert(!"Invalid Reference frame"); |
| } |
| } |
| if (cpi->mode_skip_mask & ((int64_t)1 << mode_index)) |
| continue; |
| } |
| |
| // Skip if the current reference frame has been masked off |
| if (cpi->sf.reference_masking && !cpi->set_ref_frame_mask && |
| (cpi->ref_frame_mask & (1 << ref_frame))) |
| continue; |
| |
| // Test best rd so far against threshold for trying this mode. |
| if ((best_rd < ((int64_t)cpi->rd_threshes[bsize][mode_index] * |
| cpi->rd_thresh_freq_fact[bsize][mode_index] >> 5)) || |
| cpi->rd_threshes[bsize][mode_index] == INT_MAX) |
| continue; |
| |
| // Do not allow compound prediction if the segment level reference |
| // frame feature is in use as in this case there can only be one reference. |
| if ((second_ref_frame > INTRA_FRAME) && |
| vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) |
| continue; |
| |
| // Skip some checking based on small partitions' result. |
| if (x->fast_ms > 1 && !ref_frame) |
| continue; |
| if (x->fast_ms > 2 && ref_frame != x->subblock_ref) |
| continue; |
| |
| if (cpi->sf.use_avoid_tested_higherror && bsize >= BLOCK_8X8) { |
| if (!(ref_frame_mask & (1 << ref_frame))) { |
| continue; |
| } |
| if (!(mode_mask & (1 << this_mode))) { |
| continue; |
| } |
| if (second_ref_frame != NONE |
| && !(ref_frame_mask & (1 << second_ref_frame))) { |
| continue; |
| } |
| } |
| |
| mbmi->ref_frame[0] = ref_frame; |
| mbmi->ref_frame[1] = second_ref_frame; |
| |
| if (!(ref_frame == INTRA_FRAME |
| || (cpi->ref_frame_flags & flag_list[ref_frame]))) { |
| continue; |
| } |
| if (!(second_ref_frame == NONE |
| || (cpi->ref_frame_flags & flag_list[second_ref_frame]))) { |
| continue; |
| } |
| |
| comp_pred = second_ref_frame > INTRA_FRAME; |
| if (comp_pred) { |
| if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) |
| if (vp9_mode_order[best_mode_index].ref_frame == INTRA_FRAME) |
| continue; |
| if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_COMP_REFMISMATCH) |
| if (ref_frame != best_inter_ref_frame && |
| second_ref_frame != best_inter_ref_frame) |
| continue; |
| } |
| // TODO(jingning, jkoleszar): scaling reference frame not supported for |
| // SPLITMV. |
| if (ref_frame > 0 && |
| vp9_is_scaled(&scale_factor[ref_frame]) && |
| this_mode == RD_SPLITMV) |
| continue; |
| |
| if (second_ref_frame > 0 && |
| vp9_is_scaled(&scale_factor[second_ref_frame]) && |
| this_mode == RD_SPLITMV) |
| continue; |
| |
| if (bsize >= BLOCK_8X8 && |
| (this_mode == RD_I4X4_PRED || this_mode == RD_SPLITMV)) |
| continue; |
| |
| if (bsize < BLOCK_8X8 && |
| !(this_mode == RD_I4X4_PRED || this_mode == RD_SPLITMV)) |
| continue; |
| |
| set_scale_factors(xd, ref_frame, second_ref_frame, scale_factor); |
| mbmi->uv_mode = DC_PRED; |
| |
| // Evaluate all sub-pel filters irrespective of whether we can use |
| // them for this frame. |
| mbmi->interp_filter = cm->mcomp_filter_type; |
| vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common); |
| |
| if (comp_pred) { |
| if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) |
| continue; |
| set_scale_factors(xd, ref_frame, second_ref_frame, scale_factor); |
| |
| mode_excluded = mode_excluded |
| ? mode_excluded |
| : cm->comp_pred_mode == SINGLE_PREDICTION_ONLY; |
| } else { |
| if (ref_frame != INTRA_FRAME && second_ref_frame != INTRA_FRAME) { |
| mode_excluded = |
| mode_excluded ? |
| mode_excluded : cm->comp_pred_mode == COMP_PREDICTION_ONLY; |
| } |
| } |
| |
| // Select prediction reference frames. |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; |
| if (comp_pred) |
| xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i]; |
| } |
| |
| // If the segment reference frame feature is enabled.... |
| // then do nothing if the current ref frame is not allowed.. |
| if (vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && |
| vp9_get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != |
| (int)ref_frame) { |
| continue; |
| // If the segment skip feature is enabled.... |
| // then do nothing if the current mode is not allowed.. |
| } else if (vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP) && |
| (this_mode != RD_ZEROMV && ref_frame != INTRA_FRAME)) { |
| continue; |
| // Disable this drop out case if the ref frame |
| // segment level feature is enabled for this segment. This is to |
| // prevent the possibility that we end up unable to pick any mode. |
| } else if (!vp9_segfeature_active(seg, segment_id, |
| SEG_LVL_REF_FRAME)) { |
| // Only consider ZEROMV/ALTREF_FRAME for alt ref frame, |
| // unless ARNR filtering is enabled in which case we want |
| // an unfiltered alternative. We allow near/nearest as well |
| // because they may result in zero-zero MVs but be cheaper. |
| if (cpi->is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) { |
| if ((this_mode != RD_ZEROMV && |
| !(this_mode == RD_NEARMV && |
| frame_mv[RD_NEARMV][ALTREF_FRAME].as_int == 0) && |
| !(this_mode == RD_NEARESTMV && |
| frame_mv[RD_NEARESTMV][ALTREF_FRAME].as_int == 0)) || |
| ref_frame != ALTREF_FRAME) { |
| continue; |
| } |
| } |
| } |
| // TODO(JBB): This is to make up for the fact that we don't have sad |
| // functions that work when the block size reads outside the umv. We |
| // should fix this either by making the motion search just work on |
| // a representative block in the boundary ( first ) and then implement a |
| // function that does sads when inside the border.. |
| if (((mi_row + bhs) > cm->mi_rows || (mi_col + bws) > cm->mi_cols) && |
| this_mode == RD_NEWMV) { |
| continue; |
| } |
| |
| #ifdef MODE_TEST_HIT_STATS |
| // TEST/DEBUG CODE |
| // Keep a rcord of the number of test hits at each size |
| cpi->mode_test_hits[bsize]++; |
| #endif |
| |
| if (this_mode == RD_I4X4_PRED) { |
| int rate; |
| |
| /* |
| if ((cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) && |
| (vp9_mode_order[best_mode_index].ref_frame > INTRA_FRAME)) |
| continue; |
| */ |
| |
| // RD_I4X4_PRED is only considered for block sizes less than 8x8. |
| mbmi->tx_size = TX_4X4; |
| if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate, &rate_y, |
| &distortion_y, best_rd) >= best_rd) |
| continue; |
| rate2 += rate; |
| rate2 += intra_cost_penalty; |
| distortion2 += distortion_y; |
| |
| if (rate_uv_intra[TX_4X4] == INT_MAX) { |
| choose_intra_uv_mode(cpi, bsize, &rate_uv_intra[TX_4X4], |
| &rate_uv_tokenonly[TX_4X4], |
| &dist_uv[TX_4X4], &skip_uv[TX_4X4], |
| &mode_uv[TX_4X4]); |
| } |
| rate2 += rate_uv_intra[TX_4X4]; |
| rate_uv = rate_uv_tokenonly[TX_4X4]; |
| distortion2 += dist_uv[TX_4X4]; |
| distortion_uv = dist_uv[TX_4X4]; |
| mbmi->uv_mode = mode_uv[TX_4X4]; |
| tx_cache[ONLY_4X4] = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); |
| for (i = 0; i < TX_MODES; ++i) |
| tx_cache[i] = tx_cache[ONLY_4X4]; |
| } else if (ref_frame == INTRA_FRAME) { |
| TX_SIZE uv_tx; |
| // Disable intra modes other than DC_PRED for blocks with low variance |
| // Threshold for intra skipping based on source variance |
| // TODO(debargha): Specialize the threshold for super block sizes |
| static const unsigned int skip_intra_var_thresh[BLOCK_SIZES] = { |
| 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| }; |
| if ((cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) && |
| this_mode != RD_DC_PRED && |
| x->source_variance < skip_intra_var_thresh[mbmi->sb_type]) |
| continue; |
| // Only search the oblique modes if the best so far is |
| // one of the neighboring directional modes |
| if ((cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) && |
| (this_mode >= RD_D45_PRED && this_mode <= RD_TM_PRED)) { |
| if (vp9_mode_order[best_mode_index].ref_frame > INTRA_FRAME) |
| continue; |
| } |
| mbmi->mode = rd_mode_to_mode(this_mode); |
| if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { |
| if (conditional_skipintra(mbmi->mode, best_intra_mode)) |
| continue; |
| } |
| |
| super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable, NULL, |
| bsize, tx_cache, best_rd); |
| |
| if (rate_y == INT_MAX) |
| continue; |
| |
| uv_tx = MIN(mbmi->tx_size, max_uv_txsize_lookup[bsize]); |
| if (rate_uv_intra[uv_tx] == INT_MAX) { |
| choose_intra_uv_mode(cpi, bsize, &rate_uv_intra[uv_tx], |
| &rate_uv_tokenonly[uv_tx], |
| &dist_uv[uv_tx], &skip_uv[uv_tx], |
| &mode_uv[uv_tx]); |
| } |
| |
| rate_uv = rate_uv_tokenonly[uv_tx]; |
| distortion_uv = dist_uv[uv_tx]; |
| skippable = skippable && skip_uv[uv_tx]; |
| mbmi->uv_mode = mode_uv[uv_tx]; |
| |
| rate2 = rate_y + x->mbmode_cost[mbmi->mode] + rate_uv_intra[uv_tx]; |
| if (this_mode != RD_DC_PRED && this_mode != RD_TM_PRED) |
| rate2 += intra_cost_penalty; |
| distortion2 = distortion_y + distortion_uv; |
| } else if (this_mode == RD_SPLITMV) { |
| const int is_comp_pred = second_ref_frame > 0; |
| int rate; |
| int64_t distortion; |
| int64_t this_rd_thresh; |
| int64_t tmp_rd, tmp_best_rd = INT64_MAX, tmp_best_rdu = INT64_MAX; |
| int tmp_best_rate = INT_MAX, tmp_best_ratey = INT_MAX; |
| int64_t tmp_best_distortion = INT_MAX, tmp_best_sse, uv_sse; |
| int tmp_best_skippable = 0; |
| int switchable_filter_index; |
| int_mv *second_ref = is_comp_pred ? |
| &mbmi->ref_mvs[second_ref_frame][0] : NULL; |
| union b_mode_info tmp_best_bmodes[16]; |
| MB_MODE_INFO tmp_best_mbmode; |
| PARTITION_INFO tmp_best_partition; |
| BEST_SEG_INFO bsi[SWITCHABLE_FILTERS]; |
| int pred_exists = 0; |
| int uv_skippable; |
| if (is_comp_pred) { |
| if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) |
| if (vp9_mode_order[best_mode_index].ref_frame == INTRA_FRAME) |
| continue; |
| if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_COMP_REFMISMATCH) |
| if (ref_frame != best_inter_ref_frame && |
| second_ref_frame != best_inter_ref_frame) |
| continue; |
| } |
| |
| this_rd_thresh = (ref_frame == LAST_FRAME) ? |
| cpi->rd_threshes[bsize][THR_NEWMV] : |
| cpi->rd_threshes[bsize][THR_NEWA]; |
| this_rd_thresh = (ref_frame == GOLDEN_FRAME) ? |
| cpi->rd_threshes[bsize][THR_NEWG] : this_rd_thresh; |
| xd->this_mi->mbmi.tx_size = TX_4X4; |
| |
| cpi->rd_filter_cache[SWITCHABLE_FILTERS] = INT64_MAX; |
| if (cm->mcomp_filter_type != BILINEAR) { |
| tmp_best_filter = EIGHTTAP; |
| if (x->source_variance < |
| cpi->sf.disable_filter_search_var_thresh) { |
| tmp_best_filter = EIGHTTAP; |
| vp9_zero(cpi->rd_filter_cache); |
| } else { |
| for (switchable_filter_index = 0; |
| switchable_filter_index < SWITCHABLE_FILTERS; |
| ++switchable_filter_index) { |
| int newbest, rs; |
| int64_t rs_rd; |
| mbmi->interp_filter = switchable_filter_index; |
| vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common); |
| |
| tmp_rd = rd_pick_best_mbsegmentation(cpi, x, |
| &mbmi->ref_mvs[ref_frame][0], |
| second_ref, |
| best_yrd, |
| &rate, &rate_y, &distortion, |
| &skippable, &total_sse, |
| (int)this_rd_thresh, seg_mvs, |
| bsi, switchable_filter_index, |
| mi_row, mi_col); |
| |
| if (tmp_rd == INT64_MAX) |
| continue; |
| cpi->rd_filter_cache[switchable_filter_index] = tmp_rd; |
| rs = get_switchable_rate(x); |
| rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0); |
| cpi->rd_filter_cache[SWITCHABLE_FILTERS] = |
| MIN(cpi->rd_filter_cache[SWITCHABLE_FILTERS], |
| tmp_rd + rs_rd); |
| if (cm->mcomp_filter_type == SWITCHABLE) |
| tmp_rd += rs_rd; |
| |
| newbest = (tmp_rd < tmp_best_rd); |
| if (newbest) { |
| tmp_best_filter = mbmi->interp_filter; |
| tmp_best_rd = tmp_rd; |
| } |
| if ((newbest && cm->mcomp_filter_type == SWITCHABLE) || |
| (mbmi->interp_filter == cm->mcomp_filter_type && |
| cm->mcomp_filter_type != SWITCHABLE)) { |
| tmp_best_rdu = tmp_rd; |
| tmp_best_rate = rate; |
| tmp_best_ratey = rate_y; |
| tmp_best_distortion = distortion; |
| tmp_best_sse = total_sse; |
| tmp_best_skippable = skippable; |
| tmp_best_mbmode = *mbmi; |
| tmp_best_partition = *x->partition_info; |
| for (i = 0; i < 4; i++) |
| tmp_best_bmodes[i] = xd->this_mi->bmi[i]; |
| pred_exists = 1; |
| if (switchable_filter_index == 0 && |
| cpi->sf.use_rd_breakout && |
| best_rd < INT64_MAX) { |
| if (tmp_best_rdu / 2 > best_rd) { |
| // skip searching the other filters if the first is |
| // already substantially larger than the best so far |
| tmp_best_filter = mbmi->interp_filter; |
| tmp_best_rdu = INT64_MAX; |
| break; |
| } |
| } |
| } |
| } // switchable_filter_index loop |
| } |
| } |
| |
| if (tmp_best_rdu == INT64_MAX) |
| continue; |
| |
| mbmi->interp_filter = (cm->mcomp_filter_type == SWITCHABLE ? |
| tmp_best_filter : cm->mcomp_filter_type); |
| vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common); |
| if (!pred_exists) { |
| // Handles the special case when a filter that is not in the |
| // switchable list (bilinear, 6-tap) is indicated at the frame level |
| tmp_rd = rd_pick_best_mbsegmentation(cpi, x, |
| &mbmi->ref_mvs[ref_frame][0], |
| second_ref, |
| best_yrd, |
| &rate, &rate_y, &distortion, |
| &skippable, &total_sse, |
| (int)this_rd_thresh, seg_mvs, |
| bsi, 0, |
| mi_row, mi_col); |
| if (tmp_rd == INT64_MAX) |
| continue; |
| } else { |
| if (cpi->common.mcomp_filter_type == SWITCHABLE) { |
| int rs = get_switchable_rate(x); |
| tmp_best_rdu -= RDCOST(x->rdmult, x->rddiv, rs, 0); |
| } |
| tmp_rd = tmp_best_rdu; |
| total_sse = tmp_best_sse; |
| rate = tmp_best_rate; |
| rate_y = tmp_best_ratey; |
| distortion = tmp_best_distortion; |
| skippable = tmp_best_skippable; |
| *mbmi = tmp_best_mbmode; |
| *x->partition_info = tmp_best_partition; |
| for (i = 0; i < 4; i++) |
| xd->this_mi->bmi[i] = tmp_best_bmodes[i]; |
| } |
| |
| rate2 += rate; |
| distortion2 += distortion; |
| |
| if (cpi->common.mcomp_filter_type == SWITCHABLE) |
| rate2 += get_switchable_rate(x); |
| |
| if (!mode_excluded) { |
| if (is_comp_pred) |
| mode_excluded = cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY; |
| else |
| mode_excluded = cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY; |
| } |
| compmode_cost = vp9_cost_bit(comp_mode_p, is_comp_pred); |
| |
| tmp_best_rdu = best_rd - |
| MIN(RDCOST(x->rdmult, x->rddiv, rate2, distortion2), |
| RDCOST(x->rdmult, x->rddiv, 0, total_sse)); |
| |
| if (tmp_best_rdu > 0) { |
| // If even the 'Y' rd value of split is higher than best so far |
| // then dont bother looking at UV |
| vp9_build_inter_predictors_sbuv(&x->e_mbd, mi_row, mi_col, |
| BLOCK_8X8); |
| super_block_uvrd(cm, x, &rate_uv, &distortion_uv, &uv_skippable, |
| &uv_sse, BLOCK_8X8, tmp_best_rdu); |
| if (rate_uv == INT_MAX) |
| continue; |
| rate2 += rate_uv; |
| distortion2 += distortion_uv; |
| skippable = skippable && uv_skippable; |
| total_sse += uv_sse; |
| |
| tx_cache[ONLY_4X4] = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); |
| for (i = 0; i < TX_MODES; ++i) |
| tx_cache[i] = tx_cache[ONLY_4X4]; |
| } |
| } else { |
| mbmi->mode = rd_mode_to_mode(this_mode); |
| compmode_cost = vp9_cost_bit(comp_mode_p, second_ref_frame > INTRA_FRAME); |
| this_rd = handle_inter_mode(cpi, x, bsize, |
| tx_cache, |
| &rate2, &distortion2, &skippable, |
| &rate_y, &distortion_y, |
| &rate_uv, &distortion_uv, |
| &mode_excluded, &disable_skip, |
| &tmp_best_filter, frame_mv, |
| mi_row, mi_col, |
| single_newmv, &total_sse, best_rd); |
| if (this_rd == INT64_MAX) |
| continue; |
| } |
| |
| if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) { |
| rate2 += compmode_cost; |
| } |
| |
| // Estimate the reference frame signaling cost and add it |
| // to the rolling cost variable. |
| if (second_ref_frame > INTRA_FRAME) { |
| rate2 += ref_costs_comp[ref_frame]; |
| } else { |
| rate2 += ref_costs_single[ref_frame]; |
| } |
| |
| if (!disable_skip) { |
| // Test for the condition where skip block will be activated |
| // because there are no non zero coefficients and make any |
| // necessary adjustment for rate. Ignore if skip is coded at |
| // segment level as the cost wont have been added in. |
| // Is Mb level skip allowed (i.e. not coded at segment level). |
| const int mb_skip_allowed = !vp9_segfeature_active(seg, segment_id, |
| SEG_LVL_SKIP); |
| |
| if (skippable && bsize >= BLOCK_8X8) { |
| // Back out the coefficient coding costs |
| rate2 -= (rate_y + rate_uv); |
| // for best yrd calculation |
| rate_uv = 0; |
| |
| if (mb_skip_allowed) { |
| int prob_skip_cost; |
| |
| // Cost the skip mb case |
| vp9_prob skip_prob = |
| vp9_get_pred_prob_mbskip(cm, xd); |
| |
| if (skip_prob) { |
| prob_skip_cost = vp9_cost_bit(skip_prob, 1); |
| rate2 += prob_skip_cost; |
| } |
| } |
| } else if (mb_skip_allowed && ref_frame != INTRA_FRAME && !xd->lossless) { |
| if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) < |
| RDCOST(x->rdmult, x->rddiv, 0, total_sse)) { |
| // Add in the cost of the no skip flag. |
| int prob_skip_cost = vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd), |
| 0); |
| rate2 += prob_skip_cost; |
| } else { |
| // FIXME(rbultje) make this work for splitmv also |
| int prob_skip_cost = vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd), |
| 1); |
| rate2 += prob_skip_cost; |
| distortion2 = total_sse; |
| assert(total_sse >= 0); |
| rate2 -= (rate_y + rate_uv); |
| rate_y = 0; |
| rate_uv = 0; |
| this_skip2 = 1; |
| } |
| } else if (mb_skip_allowed) { |
| // Add in the cost of the no skip flag. |
| int prob_skip_cost = vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd), |
| 0); |
| rate2 += prob_skip_cost; |
| } |
| |
| // Calculate the final RD estimate for this mode. |
| this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); |
| } |
| |
| // Keep record of best intra rd |
| if (xd->this_mi->mbmi.ref_frame[0] == INTRA_FRAME && |
| is_intra_mode(xd->this_mi->mbmi.mode) && |
| this_rd < best_intra_rd) { |
| best_intra_rd = this_rd; |
| best_intra_mode = xd->this_mi->mbmi.mode; |
| } |
| // Keep record of best inter rd with single reference |
| if (xd->this_mi->mbmi.ref_frame[0] > INTRA_FRAME && |
| xd->this_mi->mbmi.ref_frame[1] == NONE && |
| !mode_excluded && |
| this_rd < best_inter_rd) { |
| best_inter_rd = this_rd; |
| best_inter_ref_frame = ref_frame; |
| // best_inter_mode = xd->this_mi->mbmi.mode; |
| } |
| |
| if (!disable_skip && ref_frame == INTRA_FRAME) { |
| for (i = 0; i < NB_PREDICTION_TYPES; ++i) |
| best_pred_rd[i] = MIN(best_pred_rd[i], this_rd); |
| for (i = 0; i <= SWITCHABLE_FILTERS; i++) |
| best_filter_rd[i] = MIN(best_filter_rd[i], this_rd); |
| } |
| |
| if (this_mode != RD_I4X4_PRED && this_mode != RD_SPLITMV) { |
| // Store the respective mode distortions for later use. |
| if (mode_distortions[this_mode] == -1 |
| || distortion2 < mode_distortions[this_mode]) { |
| mode_distortions[this_mode] = distortion2; |
| } |
| if (frame_distortions[ref_frame] == -1 |
| || distortion2 < frame_distortions[ref_frame]) { |
| frame_distortions[ref_frame] = distortion2; |
| } |
| } |
| |
| // Did this mode help.. i.e. is it the new best mode |
| if (this_rd < best_rd || x->skip) { |
| if (!mode_excluded) { |
| // Note index of best mode so far |
| best_mode_index = mode_index; |
| |
| if (ref_frame == INTRA_FRAME) { |
| /* required for left and above block mv */ |
| mbmi->mv[0].as_int = 0; |
| } |
| |
| *returnrate = rate2; |
| *returndistortion = distortion2; |
| best_rd = this_rd; |
| best_yrd = best_rd - |
| RDCOST(x->rdmult, x->rddiv, rate_uv, distortion_uv); |
| best_mbmode = *mbmi; |
| best_skip2 = this_skip2; |
| best_partition = *x->partition_info; |
| vpx_memcpy(best_zcoeff_blk, x->zcoeff_blk[mbmi->tx_size], |
| sizeof(best_zcoeff_blk)); |
| |
| if (this_mode == RD_I4X4_PRED || this_mode == RD_SPLITMV) |
| for (i = 0; i < 4; i++) |
| best_bmodes[i] = xd->this_mi->bmi[i]; |
| |
| // TODO(debargha): enhance this test with a better distortion prediction |
| // based on qp, activity mask and history |
| if (cpi->sf.mode_search_skip_flags & FLAG_EARLY_TERMINATE) { |
| const int qstep = xd->plane[0].dequant[1]; |
| // TODO(debargha): Enhance this by specializing for each mode_index |
| int scale = 4; |
| if (x->source_variance < UINT_MAX) { |
| const int var_adjust = (x->source_variance < 16); |
| scale -= var_adjust; |
| } |
| if (ref_frame > INTRA_FRAME && |
| distortion2 * scale < qstep * qstep) { |
| early_term = 1; |
| } |
| } |
| } |
| } |
| |
| /* keep record of best compound/single-only prediction */ |
| if (!disable_skip && ref_frame != INTRA_FRAME) { |
| int single_rd, hybrid_rd, single_rate, hybrid_rate; |
| |
| if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) { |
| single_rate = rate2 - compmode_cost; |
| hybrid_rate = rate2; |
| } else { |
| single_rate = rate2; |
| hybrid_rate = rate2 + compmode_cost; |
| } |
| |
| single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2); |
| hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2); |
| |
| if (second_ref_frame <= INTRA_FRAME && |
| single_rd < best_pred_rd[SINGLE_PREDICTION_ONLY]) { |
| best_pred_rd[SINGLE_PREDICTION_ONLY] = single_rd; |
| } else if (second_ref_frame > INTRA_FRAME && |
| single_rd < best_pred_rd[COMP_PREDICTION_ONLY]) { |
| best_pred_rd[COMP_PREDICTION_ONLY] = single_rd; |
| } |
| if (hybrid_rd < best_pred_rd[HYBRID_PREDICTION]) |
| best_pred_rd[HYBRID_PREDICTION] = hybrid_rd; |
| } |
| |
| /* keep record of best filter type */ |
| if (!mode_excluded && !disable_skip && ref_frame != INTRA_FRAME && |
| cm->mcomp_filter_type != BILINEAR) { |
| int64_t ref = cpi->rd_filter_cache[cm->mcomp_filter_type == SWITCHABLE ? |
| SWITCHABLE_FILTERS : cm->mcomp_filter_type]; |
| for (i = 0; i <= SWITCHABLE_FILTERS; i++) { |
| int64_t adj_rd; |
| // In cases of poor prediction, filter_cache[] can contain really big |
| // values, which actually are bigger than this_rd itself. This can |
| // cause negative best_filter_rd[] values, which is obviously silly. |
| // Therefore, if filter_cache < ref, we do an adjusted calculation. |
| if (cpi->rd_filter_cache[i] >= ref) |
| adj_rd = this_rd + cpi->rd_filter_cache[i] - ref; |
| else // FIXME(rbultje) do this for comppred also |
| adj_rd = this_rd - (ref - cpi->rd_filter_cache[i]) * this_rd / ref; |
| best_filter_rd[i] = MIN(best_filter_rd[i], adj_rd); |
| } |
| } |
| |
| /* keep record of best txfm size */ |
| if (bsize < BLOCK_32X32) { |
| if (bsize < BLOCK_16X16) { |
| if (this_mode == RD_SPLITMV || this_mode == RD_I4X4_PRED) |
| tx_cache[ALLOW_8X8] = tx_cache[ONLY_4X4]; |
| tx_cache[ALLOW_16X16] = tx_cache[ALLOW_8X8]; |
| } |
| tx_cache[ALLOW_32X32] = tx_cache[ALLOW_16X16]; |
| } |
| if (!mode_excluded && this_rd != INT64_MAX) { |
| for (i = 0; i < TX_MODES && tx_cache[i] < INT64_MAX; i++) { |
| int64_t adj_rd = INT64_MAX; |
| if (this_mode != RD_I4X4_PRED) { |
| adj_rd = this_rd + tx_cache[i] - tx_cache[cm->tx_mode]; |
| } else { |
| adj_rd = this_rd; |
| } |
| |
| if (adj_rd < best_tx_rd[i]) |
| best_tx_rd[i] = adj_rd; |
| } |
| } |
| |
| if (early_term) |
| break; |
| |
| if (x->skip && !comp_pred) |
| break; |
| } |
| |
| if (best_rd >= best_rd_so_far) |
| return INT64_MAX; |
| |
| // If we used an estimate for the uv intra rd in the loop above... |
| if (cpi->sf.use_uv_intra_rd_estimate) { |
| // Do Intra UV best rd mode selection if best mode choice above was intra. |
| if (vp9_mode_order[best_mode_index].ref_frame == INTRA_FRAME) { |
| TX_SIZE uv_tx_size = get_uv_tx_size(mbmi); |
| rd_pick_intra_sbuv_mode(cpi, x, &rate_uv_intra[uv_tx_size], |
| &rate_uv_tokenonly[uv_tx_size], |
| &dist_uv[uv_tx_size], |
| &skip_uv[uv_tx_size], |
| bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize); |
| } |
| } |
| |
| // If we are using reference masking and the set mask flag is set then |
| // create the reference frame mask. |
| if (cpi->sf.reference_masking && cpi->set_ref_frame_mask) |
| cpi->ref_frame_mask = ~(1 << vp9_mode_order[best_mode_index].ref_frame); |
| |
| // Flag all modes that have a distortion thats > 2x the best we found at |
| // this level. |
| for (mode_index = 0; mode_index < MB_MODE_COUNT; ++mode_index) { |
| if (mode_index == NEARESTMV || mode_index == NEARMV || mode_index == NEWMV) |
| continue; |
| |
| if (mode_distortions[mode_index] > 2 * *returndistortion) { |
| ctx->modes_with_high_error |= (1 << mode_index); |
| } |
| } |
| |
| // Flag all ref frames that have a distortion thats > 2x the best we found at |
| // this level. |
| for (ref_frame = INTRA_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) { |
| if (frame_distortions[ref_frame] > 2 * *returndistortion) { |
| ctx->frames_with_high_error |= (1 << ref_frame); |
| } |
| } |
| |
| if (best_rd == INT64_MAX && bsize < BLOCK_8X8) { |
| *returnrate = INT_MAX; |
| *returndistortion = INT_MAX; |
| return best_rd; |
| } |
| |
| assert((cm->mcomp_filter_type == SWITCHABLE) || |
| (cm->mcomp_filter_type == best_mbmode.interp_filter) || |
| (best_mbmode.ref_frame[0] == INTRA_FRAME)); |
| |
| // Updating rd_thresh_freq_fact[] here means that the different |
| // partition/block sizes are handled independently based on the best |
| // choice for the current partition. It may well be better to keep a scaled |
| // best rd so far value and update rd_thresh_freq_fact based on the mode/size |
| // combination that wins out. |
| if (cpi->sf.adaptive_rd_thresh) { |
| for (mode_index = 0; mode_index < MAX_MODES; ++mode_index) { |
| if (mode_index == best_mode_index) { |
| cpi->rd_thresh_freq_fact[bsize][mode_index] -= |
| (cpi->rd_thresh_freq_fact[bsize][mode_index] >> 3); |
| } else { |
| cpi->rd_thresh_freq_fact[bsize][mode_index] += RD_THRESH_INC; |
| if (cpi->rd_thresh_freq_fact[bsize][mode_index] > |
| (cpi->sf.adaptive_rd_thresh * MAX_RD_THRESH_FACT)) { |
| cpi->rd_thresh_freq_fact[bsize][mode_index] = |
| cpi->sf.adaptive_rd_thresh * MAX_RD_THRESH_FACT; |
| } |
| } |
| } |
| } |
| |
| // macroblock modes |
| *mbmi = best_mbmode; |
| x->skip |= best_skip2; |
| if (best_mbmode.ref_frame[0] == INTRA_FRAME && |
| best_mbmode.sb_type < BLOCK_8X8) { |
| for (i = 0; i < 4; i++) |
| xd->this_mi->bmi[i].as_mode = best_bmodes[i].as_mode; |
| } |
| |
| if (best_mbmode.ref_frame[0] != INTRA_FRAME && |
| best_mbmode.sb_type < BLOCK_8X8) { |
| for (i = 0; i < 4; i++) |
| xd->this_mi->bmi[i].as_mv[0].as_int = |
| best_bmodes[i].as_mv[0].as_int; |
| |
| if (mbmi->ref_frame[1] > 0) |
| for (i = 0; i < 4; i++) |
| xd->this_mi->bmi[i].as_mv[1].as_int = |
| best_bmodes[i].as_mv[1].as_int; |
| |
| *x->partition_info = best_partition; |
| |
| mbmi->mv[0].as_int = xd->this_mi->bmi[3].as_mv[0].as_int; |
| mbmi->mv[1].as_int = xd->this_mi->bmi[3].as_mv[1].as_int; |
| } |
| |
| vpx_memcpy(x->zcoeff_blk[mbmi->tx_size], best_zcoeff_blk, |
| sizeof(best_zcoeff_blk)); |
| |
| for (i = 0; i < NB_PREDICTION_TYPES; ++i) { |
| if (best_pred_rd[i] == INT64_MAX) |
| best_pred_diff[i] = INT_MIN; |
| else |
| best_pred_diff[i] = best_rd - best_pred_rd[i]; |
| } |
| |
| if (!x->skip) { |
| for (i = 0; i <= SWITCHABLE_FILTERS; i++) { |
| if (best_filter_rd[i] == INT64_MAX) |
| best_filter_diff[i] = 0; |
| else |
| best_filter_diff[i] = best_rd - best_filter_rd[i]; |
| } |
| if (cm->mcomp_filter_type == SWITCHABLE) |
| assert(best_filter_diff[SWITCHABLE_FILTERS] == 0); |
| } else { |
| vpx_memset(best_filter_diff, 0, sizeof(best_filter_diff)); |
| } |
| |
| if (!x->skip) { |
| for (i = 0; i < TX_MODES; i++) { |
| if (best_tx_rd[i] == INT64_MAX) |
| best_tx_diff[i] = 0; |
| else |
| best_tx_diff[i] = best_rd - best_tx_rd[i]; |
| } |
| } else { |
| vpx_memset(best_tx_diff, 0, sizeof(best_tx_diff)); |
| } |
| |
| set_scale_factors(xd, mbmi->ref_frame[0], mbmi->ref_frame[1], |
| scale_factor); |
| store_coding_context(x, ctx, best_mode_index, |
| &best_partition, |
| &mbmi->ref_mvs[mbmi->ref_frame[0]][0], |
| &mbmi->ref_mvs[mbmi->ref_frame[1] < 0 ? 0 : |
| mbmi->ref_frame[1]][0], |
| best_pred_diff, best_tx_diff, best_filter_diff); |
| |
| return best_rd; |
| } |