| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| * |
| * This code was originally written by: Nathan E. Egge, at the Daala |
| * project. |
| */ |
| #include <assert.h> |
| #include <math.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include "./aom_config.h" |
| #include "./aom_dsp_rtcd.h" |
| #include "aom_dsp/ssim.h" |
| #include "aom_ports/system_state.h" |
| |
| typedef struct fs_level fs_level; |
| typedef struct fs_ctx fs_ctx; |
| |
| #define SSIM_C1 (255 * 255 * 0.01 * 0.01) |
| #define SSIM_C2 (255 * 255 * 0.03 * 0.03) |
| #if CONFIG_AOM_HIGHBITDEPTH |
| #define SSIM_C1_10 (1023 * 1023 * 0.01 * 0.01) |
| #define SSIM_C1_12 (4095 * 4095 * 0.01 * 0.01) |
| #define SSIM_C2_10 (1023 * 1023 * 0.03 * 0.03) |
| #define SSIM_C2_12 (4095 * 4095 * 0.03 * 0.03) |
| #endif |
| #define FS_MINI(_a, _b) ((_a) < (_b) ? (_a) : (_b)) |
| #define FS_MAXI(_a, _b) ((_a) > (_b) ? (_a) : (_b)) |
| |
| struct fs_level { |
| uint32_t *im1; |
| uint32_t *im2; |
| double *ssim; |
| int w; |
| int h; |
| }; |
| |
| struct fs_ctx { |
| fs_level *level; |
| int nlevels; |
| unsigned *col_buf; |
| }; |
| |
| static void fs_ctx_init(fs_ctx *_ctx, int _w, int _h, int _nlevels) { |
| unsigned char *data; |
| size_t data_size; |
| int lw; |
| int lh; |
| int l; |
| lw = (_w + 1) >> 1; |
| lh = (_h + 1) >> 1; |
| data_size = |
| _nlevels * sizeof(fs_level) + 2 * (lw + 8) * 8 * sizeof(*_ctx->col_buf); |
| for (l = 0; l < _nlevels; l++) { |
| size_t im_size; |
| size_t level_size; |
| im_size = lw * (size_t)lh; |
| level_size = 2 * im_size * sizeof(*_ctx->level[l].im1); |
| level_size += sizeof(*_ctx->level[l].ssim) - 1; |
| level_size /= sizeof(*_ctx->level[l].ssim); |
| level_size += im_size; |
| level_size *= sizeof(*_ctx->level[l].ssim); |
| data_size += level_size; |
| lw = (lw + 1) >> 1; |
| lh = (lh + 1) >> 1; |
| } |
| data = (unsigned char *)malloc(data_size); |
| _ctx->level = (fs_level *)data; |
| _ctx->nlevels = _nlevels; |
| data += _nlevels * sizeof(*_ctx->level); |
| lw = (_w + 1) >> 1; |
| lh = (_h + 1) >> 1; |
| for (l = 0; l < _nlevels; l++) { |
| size_t im_size; |
| size_t level_size; |
| _ctx->level[l].w = lw; |
| _ctx->level[l].h = lh; |
| im_size = lw * (size_t)lh; |
| level_size = 2 * im_size * sizeof(*_ctx->level[l].im1); |
| level_size += sizeof(*_ctx->level[l].ssim) - 1; |
| level_size /= sizeof(*_ctx->level[l].ssim); |
| level_size *= sizeof(*_ctx->level[l].ssim); |
| _ctx->level[l].im1 = (uint32_t *)data; |
| _ctx->level[l].im2 = _ctx->level[l].im1 + im_size; |
| data += level_size; |
| _ctx->level[l].ssim = (double *)data; |
| data += im_size * sizeof(*_ctx->level[l].ssim); |
| lw = (lw + 1) >> 1; |
| lh = (lh + 1) >> 1; |
| } |
| _ctx->col_buf = (unsigned *)data; |
| } |
| |
| static void fs_ctx_clear(fs_ctx *_ctx) { free(_ctx->level); } |
| |
| static void fs_downsample_level(fs_ctx *_ctx, int _l) { |
| const uint32_t *src1; |
| const uint32_t *src2; |
| uint32_t *dst1; |
| uint32_t *dst2; |
| int w2; |
| int h2; |
| int w; |
| int h; |
| int i; |
| int j; |
| w = _ctx->level[_l].w; |
| h = _ctx->level[_l].h; |
| dst1 = _ctx->level[_l].im1; |
| dst2 = _ctx->level[_l].im2; |
| w2 = _ctx->level[_l - 1].w; |
| h2 = _ctx->level[_l - 1].h; |
| src1 = _ctx->level[_l - 1].im1; |
| src2 = _ctx->level[_l - 1].im2; |
| for (j = 0; j < h; j++) { |
| int j0offs; |
| int j1offs; |
| j0offs = 2 * j * w2; |
| j1offs = FS_MINI(2 * j + 1, h2) * w2; |
| for (i = 0; i < w; i++) { |
| int i0; |
| int i1; |
| i0 = 2 * i; |
| i1 = FS_MINI(i0 + 1, w2); |
| dst1[j * w + i] = src1[j0offs + i0] + src1[j0offs + i1] + |
| src1[j1offs + i0] + src1[j1offs + i1]; |
| dst2[j * w + i] = src2[j0offs + i0] + src2[j0offs + i1] + |
| src2[j1offs + i0] + src2[j1offs + i1]; |
| } |
| } |
| } |
| |
| static void fs_downsample_level0(fs_ctx *_ctx, const uint8_t *_src1, |
| int _s1ystride, const uint8_t *_src2, |
| int _s2ystride, int _w, int _h, uint32_t bd, |
| uint32_t shift) { |
| uint32_t *dst1; |
| uint32_t *dst2; |
| int w; |
| int h; |
| int i; |
| int j; |
| w = _ctx->level[0].w; |
| h = _ctx->level[0].h; |
| dst1 = _ctx->level[0].im1; |
| dst2 = _ctx->level[0].im2; |
| for (j = 0; j < h; j++) { |
| int j0; |
| int j1; |
| j0 = 2 * j; |
| j1 = FS_MINI(j0 + 1, _h); |
| for (i = 0; i < w; i++) { |
| int i0; |
| int i1; |
| i0 = 2 * i; |
| i1 = FS_MINI(i0 + 1, _w); |
| if (bd == 8 && shift == 0) { |
| dst1[j * w + i] = |
| _src1[j0 * _s1ystride + i0] + _src1[j0 * _s1ystride + i1] + |
| _src1[j1 * _s1ystride + i0] + _src1[j1 * _s1ystride + i1]; |
| dst2[j * w + i] = |
| _src2[j0 * _s2ystride + i0] + _src2[j0 * _s2ystride + i1] + |
| _src2[j1 * _s2ystride + i0] + _src2[j1 * _s2ystride + i1]; |
| } else { |
| uint16_t *src1s = CONVERT_TO_SHORTPTR(_src1); |
| uint16_t *src2s = CONVERT_TO_SHORTPTR(_src2); |
| dst1[j * w + i] = (src1s[j0 * _s1ystride + i0] >> shift) + |
| (src1s[j0 * _s1ystride + i1] >> shift) + |
| (src1s[j1 * _s1ystride + i0] >> shift) + |
| (src1s[j1 * _s1ystride + i1] >> shift); |
| dst2[j * w + i] = (src2s[j0 * _s2ystride + i0] >> shift) + |
| (src2s[j0 * _s2ystride + i1] >> shift) + |
| (src2s[j1 * _s2ystride + i0] >> shift) + |
| (src2s[j1 * _s2ystride + i1] >> shift); |
| } |
| } |
| } |
| } |
| |
| static void fs_apply_luminance(fs_ctx *_ctx, int _l, int bit_depth) { |
| unsigned *col_sums_x; |
| unsigned *col_sums_y; |
| uint32_t *im1; |
| uint32_t *im2; |
| double *ssim; |
| double c1; |
| int w; |
| int h; |
| int j0offs; |
| int j1offs; |
| int i; |
| int j; |
| double ssim_c1 = SSIM_C1; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (bit_depth == 10) ssim_c1 = SSIM_C1_10; |
| if (bit_depth == 12) ssim_c1 = SSIM_C1_12; |
| #else |
| assert(bit_depth == 8); |
| (void)bit_depth; |
| #endif |
| w = _ctx->level[_l].w; |
| h = _ctx->level[_l].h; |
| col_sums_x = _ctx->col_buf; |
| col_sums_y = col_sums_x + w; |
| im1 = _ctx->level[_l].im1; |
| im2 = _ctx->level[_l].im2; |
| for (i = 0; i < w; i++) col_sums_x[i] = 5 * im1[i]; |
| for (i = 0; i < w; i++) col_sums_y[i] = 5 * im2[i]; |
| for (j = 1; j < 4; j++) { |
| j1offs = FS_MINI(j, h - 1) * w; |
| for (i = 0; i < w; i++) col_sums_x[i] += im1[j1offs + i]; |
| for (i = 0; i < w; i++) col_sums_y[i] += im2[j1offs + i]; |
| } |
| ssim = _ctx->level[_l].ssim; |
| c1 = (double)(ssim_c1 * 4096 * (1 << 4 * _l)); |
| for (j = 0; j < h; j++) { |
| unsigned mux; |
| unsigned muy; |
| int i0; |
| int i1; |
| mux = 5 * col_sums_x[0]; |
| muy = 5 * col_sums_y[0]; |
| for (i = 1; i < 4; i++) { |
| i1 = FS_MINI(i, w - 1); |
| mux += col_sums_x[i1]; |
| muy += col_sums_y[i1]; |
| } |
| for (i = 0; i < w; i++) { |
| ssim[j * w + i] *= (2 * mux * (double)muy + c1) / |
| (mux * (double)mux + muy * (double)muy + c1); |
| if (i + 1 < w) { |
| i0 = FS_MAXI(0, i - 4); |
| i1 = FS_MINI(i + 4, w - 1); |
| mux += col_sums_x[i1] - col_sums_x[i0]; |
| muy += col_sums_x[i1] - col_sums_x[i0]; |
| } |
| } |
| if (j + 1 < h) { |
| j0offs = FS_MAXI(0, j - 4) * w; |
| for (i = 0; i < w; i++) col_sums_x[i] -= im1[j0offs + i]; |
| for (i = 0; i < w; i++) col_sums_y[i] -= im2[j0offs + i]; |
| j1offs = FS_MINI(j + 4, h - 1) * w; |
| for (i = 0; i < w; i++) col_sums_x[i] += im1[j1offs + i]; |
| for (i = 0; i < w; i++) col_sums_y[i] += im2[j1offs + i]; |
| } |
| } |
| } |
| |
| #define FS_COL_SET(_col, _joffs, _ioffs) \ |
| do { \ |
| unsigned gx; \ |
| unsigned gy; \ |
| gx = gx_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ |
| gy = gy_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ |
| col_sums_gx2[(_col)] = gx * (double)gx; \ |
| col_sums_gy2[(_col)] = gy * (double)gy; \ |
| col_sums_gxgy[(_col)] = gx * (double)gy; \ |
| } while (0) |
| |
| #define FS_COL_ADD(_col, _joffs, _ioffs) \ |
| do { \ |
| unsigned gx; \ |
| unsigned gy; \ |
| gx = gx_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ |
| gy = gy_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ |
| col_sums_gx2[(_col)] += gx * (double)gx; \ |
| col_sums_gy2[(_col)] += gy * (double)gy; \ |
| col_sums_gxgy[(_col)] += gx * (double)gy; \ |
| } while (0) |
| |
| #define FS_COL_SUB(_col, _joffs, _ioffs) \ |
| do { \ |
| unsigned gx; \ |
| unsigned gy; \ |
| gx = gx_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ |
| gy = gy_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ |
| col_sums_gx2[(_col)] -= gx * (double)gx; \ |
| col_sums_gy2[(_col)] -= gy * (double)gy; \ |
| col_sums_gxgy[(_col)] -= gx * (double)gy; \ |
| } while (0) |
| |
| #define FS_COL_COPY(_col1, _col2) \ |
| do { \ |
| col_sums_gx2[(_col1)] = col_sums_gx2[(_col2)]; \ |
| col_sums_gy2[(_col1)] = col_sums_gy2[(_col2)]; \ |
| col_sums_gxgy[(_col1)] = col_sums_gxgy[(_col2)]; \ |
| } while (0) |
| |
| #define FS_COL_HALVE(_col1, _col2) \ |
| do { \ |
| col_sums_gx2[(_col1)] = col_sums_gx2[(_col2)] * 0.5; \ |
| col_sums_gy2[(_col1)] = col_sums_gy2[(_col2)] * 0.5; \ |
| col_sums_gxgy[(_col1)] = col_sums_gxgy[(_col2)] * 0.5; \ |
| } while (0) |
| |
| #define FS_COL_DOUBLE(_col1, _col2) \ |
| do { \ |
| col_sums_gx2[(_col1)] = col_sums_gx2[(_col2)] * 2; \ |
| col_sums_gy2[(_col1)] = col_sums_gy2[(_col2)] * 2; \ |
| col_sums_gxgy[(_col1)] = col_sums_gxgy[(_col2)] * 2; \ |
| } while (0) |
| |
| static void fs_calc_structure(fs_ctx *_ctx, int _l, int bit_depth) { |
| uint32_t *im1; |
| uint32_t *im2; |
| unsigned *gx_buf; |
| unsigned *gy_buf; |
| double *ssim; |
| double col_sums_gx2[8]; |
| double col_sums_gy2[8]; |
| double col_sums_gxgy[8]; |
| double c2; |
| int stride; |
| int w; |
| int h; |
| int i; |
| int j; |
| double ssim_c2 = SSIM_C2; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (bit_depth == 10) ssim_c2 = SSIM_C2_10; |
| if (bit_depth == 12) ssim_c2 = SSIM_C2_12; |
| #else |
| assert(bit_depth == 8); |
| (void)bit_depth; |
| #endif |
| |
| w = _ctx->level[_l].w; |
| h = _ctx->level[_l].h; |
| im1 = _ctx->level[_l].im1; |
| im2 = _ctx->level[_l].im2; |
| ssim = _ctx->level[_l].ssim; |
| gx_buf = _ctx->col_buf; |
| stride = w + 8; |
| gy_buf = gx_buf + 8 * stride; |
| memset(gx_buf, 0, 2 * 8 * stride * sizeof(*gx_buf)); |
| c2 = ssim_c2 * (1 << 4 * _l) * 16 * 104; |
| for (j = 0; j < h + 4; j++) { |
| if (j < h - 1) { |
| for (i = 0; i < w - 1; i++) { |
| unsigned g1; |
| unsigned g2; |
| unsigned gx; |
| unsigned gy; |
| g1 = abs((int)im1[(j + 1) * w + i + 1] - (int)im1[j * w + i]); |
| g2 = abs((int)im1[(j + 1) * w + i] - (int)im1[j * w + i + 1]); |
| gx = 4 * FS_MAXI(g1, g2) + FS_MINI(g1, g2); |
| g1 = abs((int)im2[(j + 1) * w + i + 1] - (int)im2[j * w + i]); |
| g2 = abs((int)im2[(j + 1) * w + i] - (int)im2[j * w + i + 1]); |
| gy = 4 * FS_MAXI(g1, g2) + FS_MINI(g1, g2); |
| gx_buf[(j & 7) * stride + i + 4] = gx; |
| gy_buf[(j & 7) * stride + i + 4] = gy; |
| } |
| } else { |
| memset(gx_buf + (j & 7) * stride, 0, stride * sizeof(*gx_buf)); |
| memset(gy_buf + (j & 7) * stride, 0, stride * sizeof(*gy_buf)); |
| } |
| if (j >= 4) { |
| int k; |
| col_sums_gx2[3] = col_sums_gx2[2] = col_sums_gx2[1] = col_sums_gx2[0] = 0; |
| col_sums_gy2[3] = col_sums_gy2[2] = col_sums_gy2[1] = col_sums_gy2[0] = 0; |
| col_sums_gxgy[3] = col_sums_gxgy[2] = col_sums_gxgy[1] = |
| col_sums_gxgy[0] = 0; |
| for (i = 4; i < 8; i++) { |
| FS_COL_SET(i, -1, 0); |
| FS_COL_ADD(i, 0, 0); |
| for (k = 1; k < 8 - i; k++) { |
| FS_COL_DOUBLE(i, i); |
| FS_COL_ADD(i, -k - 1, 0); |
| FS_COL_ADD(i, k, 0); |
| } |
| } |
| for (i = 0; i < w; i++) { |
| double mugx2; |
| double mugy2; |
| double mugxgy; |
| mugx2 = col_sums_gx2[0]; |
| for (k = 1; k < 8; k++) mugx2 += col_sums_gx2[k]; |
| mugy2 = col_sums_gy2[0]; |
| for (k = 1; k < 8; k++) mugy2 += col_sums_gy2[k]; |
| mugxgy = col_sums_gxgy[0]; |
| for (k = 1; k < 8; k++) mugxgy += col_sums_gxgy[k]; |
| ssim[(j - 4) * w + i] = (2 * mugxgy + c2) / (mugx2 + mugy2 + c2); |
| if (i + 1 < w) { |
| FS_COL_SET(0, -1, 1); |
| FS_COL_ADD(0, 0, 1); |
| FS_COL_SUB(2, -3, 2); |
| FS_COL_SUB(2, 2, 2); |
| FS_COL_HALVE(1, 2); |
| FS_COL_SUB(3, -4, 3); |
| FS_COL_SUB(3, 3, 3); |
| FS_COL_HALVE(2, 3); |
| FS_COL_COPY(3, 4); |
| FS_COL_DOUBLE(4, 5); |
| FS_COL_ADD(4, -4, 5); |
| FS_COL_ADD(4, 3, 5); |
| FS_COL_DOUBLE(5, 6); |
| FS_COL_ADD(5, -3, 6); |
| FS_COL_ADD(5, 2, 6); |
| FS_COL_DOUBLE(6, 7); |
| FS_COL_ADD(6, -2, 7); |
| FS_COL_ADD(6, 1, 7); |
| FS_COL_SET(7, -1, 8); |
| FS_COL_ADD(7, 0, 8); |
| } |
| } |
| } |
| } |
| } |
| |
| #define FS_NLEVELS (4) |
| |
| /*These weights were derived from the default weights found in Wang's original |
| Matlab implementation: {0.0448, 0.2856, 0.2363, 0.1333}. |
| We drop the finest scale and renormalize the rest to sum to 1.*/ |
| |
| static const double FS_WEIGHTS[FS_NLEVELS] = { |
| 0.2989654541015625, 0.3141326904296875, 0.2473602294921875, 0.1395416259765625 |
| }; |
| |
| static double fs_average(fs_ctx *_ctx, int _l) { |
| double *ssim; |
| double ret; |
| int w; |
| int h; |
| int i; |
| int j; |
| w = _ctx->level[_l].w; |
| h = _ctx->level[_l].h; |
| ssim = _ctx->level[_l].ssim; |
| ret = 0; |
| for (j = 0; j < h; j++) |
| for (i = 0; i < w; i++) ret += ssim[j * w + i]; |
| return pow(ret / (w * h), FS_WEIGHTS[_l]); |
| } |
| |
| static double convert_ssim_db(double _ssim, double _weight) { |
| assert(_weight >= _ssim); |
| if ((_weight - _ssim) < 1e-10) return MAX_SSIM_DB; |
| return 10 * (log10(_weight) - log10(_weight - _ssim)); |
| } |
| |
| static double calc_ssim(const uint8_t *_src, int _systride, const uint8_t *_dst, |
| int _dystride, int _w, int _h, uint32_t _bd, |
| uint32_t _shift) { |
| fs_ctx ctx; |
| double ret; |
| int l; |
| ret = 1; |
| fs_ctx_init(&ctx, _w, _h, FS_NLEVELS); |
| fs_downsample_level0(&ctx, _src, _systride, _dst, _dystride, _w, _h, _bd, |
| _shift); |
| for (l = 0; l < FS_NLEVELS - 1; l++) { |
| fs_calc_structure(&ctx, l, _bd); |
| ret *= fs_average(&ctx, l); |
| fs_downsample_level(&ctx, l + 1); |
| } |
| fs_calc_structure(&ctx, l, _bd); |
| fs_apply_luminance(&ctx, l, _bd); |
| ret *= fs_average(&ctx, l); |
| fs_ctx_clear(&ctx); |
| return ret; |
| } |
| |
| double aom_calc_fastssim(const YV12_BUFFER_CONFIG *source, |
| const YV12_BUFFER_CONFIG *dest, double *ssim_y, |
| double *ssim_u, double *ssim_v, uint32_t bd, |
| uint32_t in_bd) { |
| double ssimv; |
| uint32_t bd_shift = 0; |
| aom_clear_system_state(); |
| assert(bd >= in_bd); |
| |
| bd_shift = bd - in_bd; |
| |
| *ssim_y = calc_ssim(source->y_buffer, source->y_stride, dest->y_buffer, |
| dest->y_stride, source->y_crop_width, |
| source->y_crop_height, in_bd, bd_shift); |
| *ssim_u = calc_ssim(source->u_buffer, source->uv_stride, dest->u_buffer, |
| dest->uv_stride, source->uv_crop_width, |
| source->uv_crop_height, in_bd, bd_shift); |
| *ssim_v = calc_ssim(source->v_buffer, source->uv_stride, dest->v_buffer, |
| dest->uv_stride, source->uv_crop_width, |
| source->uv_crop_height, in_bd, bd_shift); |
| ssimv = (*ssim_y) * .8 + .1 * ((*ssim_u) + (*ssim_v)); |
| return convert_ssim_db(ssimv, 1.0); |
| } |