blob: d2689e0a1a7c39d4f1b1fa95af6e4a122d280670 [file] [log] [blame]
/*
* Copyright (c) 2015 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef AV1_ENCODER_PALETTE_H_
#define AV1_ENCODER_PALETTE_H_
#include "av1/common/blockd.h"
#ifdef __cplusplus
extern "C" {
#endif
// Given 'n' 'data' points and 'k' 'centroids' each of dimension 'dim',
// calculate the centroid 'indices' for the data points.
void av1_calc_indices(const float *data, const float *centroids,
uint8_t *indices, int n, int k, int dim);
// Given 'n' 'data' points and an initial guess of 'k' 'centroids' each of
// dimension 'dim', runs up to 'max_itr' iterations of k-means algorithm to get
// updated 'centroids' and the centroid 'indices' for elements in 'data'.
// Note: the output centroids are rounded off to nearest integers.
void av1_k_means(const float *data, float *centroids, uint8_t *indices, int n,
int k, int dim, int max_itr);
// Given a list of centroids, returns the unique number of centroids 'k', and
// puts these unique centroids in first 'k' indices of 'centroids' array.
// Ideally, the centroids should be rounded to integers before calling this
// method.
int av1_remove_duplicates(float *centroids, int num_centroids);
// Returns the number of colors in 'src'.
int av1_count_colors(const uint8_t *src, int stride, int rows, int cols);
#if CONFIG_AOM_HIGHBITDEPTH
// Same as av1_count_colors(), but for high-bitdepth mode.
int av1_count_colors_highbd(const uint8_t *src8, int stride, int rows, int cols,
int bit_depth);
#endif // CONFIG_AOM_HIGHBITDEPTH
#ifdef __cplusplus
} // extern "C"
#endif
#endif /* AV1_ENCODER_PALETTE_H_ */