blob: dccc6e2bb71c9eb8c59556b6fcb534657664c6d4 [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <tuple>
#include <vector>
#include "config/av1_rtcd.h"
#include "test/acm_random.h"
#include "test/util.h"
#include "test/av1_txfm_test.h"
#include "test/function_equivalence_test.h"
#include "av1/common/av1_txfm.h"
#include "av1/encoder/hybrid_fwd_txfm.h"
using libaom_test::ACMRandom;
using libaom_test::bd;
using libaom_test::compute_avg_abs_error;
using libaom_test::input_base;
using libaom_test::TYPE_TXFM;
using std::vector;
namespace {
// tx_type_, tx_size_, max_error_, max_avg_error_
typedef std::tuple<TX_TYPE, TX_SIZE, double, double> AV1FwdTxfm2dParam;
class AV1FwdTxfm2d : public ::testing::TestWithParam<AV1FwdTxfm2dParam> {
public:
virtual void SetUp() {
tx_type_ = GET_PARAM(0);
tx_size_ = GET_PARAM(1);
max_error_ = GET_PARAM(2);
max_avg_error_ = GET_PARAM(3);
count_ = 500;
TXFM_2D_FLIP_CFG fwd_txfm_flip_cfg;
av1_get_fwd_txfm_cfg(tx_type_, tx_size_, &fwd_txfm_flip_cfg);
amplify_factor_ = libaom_test::get_amplification_factor(tx_type_, tx_size_);
tx_width_ = tx_size_wide[fwd_txfm_flip_cfg.tx_size];
tx_height_ = tx_size_high[fwd_txfm_flip_cfg.tx_size];
ud_flip_ = fwd_txfm_flip_cfg.ud_flip;
lr_flip_ = fwd_txfm_flip_cfg.lr_flip;
fwd_txfm_ = libaom_test::fwd_txfm_func_ls[tx_size_];
txfm2d_size_ = tx_width_ * tx_height_;
input_ = reinterpret_cast<int16_t *>(
aom_memalign(16, sizeof(input_[0]) * txfm2d_size_));
output_ = reinterpret_cast<int32_t *>(
aom_memalign(16, sizeof(output_[0]) * txfm2d_size_));
ref_input_ = reinterpret_cast<double *>(
aom_memalign(16, sizeof(ref_input_[0]) * txfm2d_size_));
ref_output_ = reinterpret_cast<double *>(
aom_memalign(16, sizeof(ref_output_[0]) * txfm2d_size_));
}
void RunFwdAccuracyCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
double avg_abs_error = 0;
for (int ci = 0; ci < count_; ci++) {
for (int ni = 0; ni < txfm2d_size_; ++ni) {
input_[ni] = rnd.Rand16() % input_base;
ref_input_[ni] = static_cast<double>(input_[ni]);
output_[ni] = 0;
ref_output_[ni] = 0;
}
fwd_txfm_(input_, output_, tx_width_, tx_type_,
#if CONFIG_INTER_DDT
0,
#endif // CONFIG_INTER_DDT
bd);
if (lr_flip_ && ud_flip_) {
libaom_test::fliplrud(ref_input_, tx_width_, tx_height_, tx_width_);
} else if (lr_flip_) {
libaom_test::fliplr(ref_input_, tx_width_, tx_height_, tx_width_);
} else if (ud_flip_) {
libaom_test::flipud(ref_input_, tx_width_, tx_height_, tx_width_);
}
libaom_test::reference_hybrid_2d(ref_input_, ref_output_, tx_type_,
tx_size_);
double actual_max_error = 0;
for (int ni = 0; ni < txfm2d_size_; ++ni) {
ref_output_[ni] = round(ref_output_[ni]);
const double this_error =
fabs(output_[ni] - ref_output_[ni]) / amplify_factor_;
actual_max_error = AOMMAX(actual_max_error, this_error);
}
EXPECT_GE(max_error_, actual_max_error)
<< "tx_size = " << tx_size_ << ", tx_type = " << tx_type_;
if (actual_max_error > max_error_) { // exit early.
break;
}
avg_abs_error += compute_avg_abs_error<int32_t, double>(
output_, ref_output_, txfm2d_size_);
}
avg_abs_error /= amplify_factor_;
avg_abs_error /= count_;
EXPECT_GE(max_avg_error_, avg_abs_error)
<< "tx_size = " << tx_size_ << ", tx_type = " << tx_type_;
}
virtual void TearDown() {
aom_free(input_);
aom_free(output_);
aom_free(ref_input_);
aom_free(ref_output_);
}
private:
double max_error_;
double max_avg_error_;
int count_;
double amplify_factor_;
TX_TYPE tx_type_;
TX_SIZE tx_size_;
int tx_width_;
int tx_height_;
int txfm2d_size_;
FwdTxfm2dFunc fwd_txfm_;
int16_t *input_;
int32_t *output_;
double *ref_input_;
double *ref_output_;
int ud_flip_; // flip upside down
int lr_flip_; // flip left to right
};
static double avg_error_ls[TX_SIZES_ALL] = {
0.66, // 4x4 transform
0.5, // 8x8 transform
1.2, // 16x16 transform
6.1, // 32x32 transform
3.4, // 64x64 transform
0.57, // 4x8 transform
0.68, // 8x4 transform
0.92, // 8x16 transform
1.1, // 16x8 transform
4.1, // 16x32 transform
6, // 32x16 transform
3.5, // 32x64 transform
5.7, // 64x32 transform
0.6, // 4x16 transform
0.9, // 16x4 transform
1.2, // 8x32 transform
1.7, // 32x8 transform
2.0, // 16x64 transform
4.7, // 64x16 transform
#if CONFIG_FLEX_PARTITION
0.8, // 4x32 transform
0.8, // 32x4 transform
4.0, // 8x64 transform
4.0, // 64x8 transform
3.0, // 4x64 transform
3.0, // 64x4 transform
#endif // CONFIG_FLEX_PARTITION
};
static double max_error_ls[TX_SIZES_ALL] = {
3.5, // 4x4 transform
5, // 8x8 transform
11, // 16x16 transform
70, // 32x32 transform
64, // 64x64 transform
3.9, // 4x8 transform
4.3, // 8x4 transform
12, // 8x16 transform
12, // 16x8 transform
32, // 16x32 transform
46, // 32x16 transform
136, // 32x64 transform
136, // 64x32 transform
5, // 4x16 transform
6, // 16x4 transform
21, // 8x32 transform
13, // 32x8 transform
30, // 16x64 transform
36, // 64x16 transform
#if CONFIG_FLEX_PARTITION
8, // 4x32 transform
8, // 32x4 transform
99, // 8x64 transform
99, // 64x8 transform
90, // 4x64 transform
90, // 64x4 transform
#endif // CONFIG_FLEX_PARTITION
};
vector<AV1FwdTxfm2dParam> GetTxfm2dParamList() {
vector<AV1FwdTxfm2dParam> param_list;
for (int s = 0; s < TX_SIZES; ++s) {
const double max_error = max_error_ls[s];
const double avg_error = avg_error_ls[s];
for (int t = 0; t < TX_TYPES; ++t) {
const TX_TYPE tx_type = static_cast<TX_TYPE>(t);
const TX_SIZE tx_size = static_cast<TX_SIZE>(s);
if (libaom_test::IsTxSizeTypeValid(tx_size, tx_type)) {
param_list.push_back(
AV1FwdTxfm2dParam(tx_type, tx_size, max_error, avg_error));
}
}
}
return param_list;
}
INSTANTIATE_TEST_SUITE_P(C, AV1FwdTxfm2d,
::testing::ValuesIn(GetTxfm2dParamList()));
TEST_P(AV1FwdTxfm2d, RunFwdAccuracyCheck) { RunFwdAccuracyCheck(); }
TEST(AV1FwdTxfm2d, CfgTest) {
for (int bd_idx = 0; bd_idx < BD_NUM; ++bd_idx) {
int bd = libaom_test::bd_arr[bd_idx];
int8_t low_range = libaom_test::low_range_arr[bd_idx];
int8_t high_range = libaom_test::high_range_arr[bd_idx];
for (int tx_size = 0; tx_size < TX_SIZES_ALL; ++tx_size) {
for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) {
if (libaom_test::IsTxSizeTypeValid(static_cast<TX_SIZE>(tx_size),
static_cast<TX_TYPE>(tx_type)) ==
false) {
continue;
}
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(static_cast<TX_TYPE>(tx_type),
static_cast<TX_SIZE>(tx_size), &cfg);
int8_t stage_range_col[MAX_TXFM_STAGE_NUM];
int8_t stage_range_row[MAX_TXFM_STAGE_NUM];
av1_gen_fwd_stage_range(stage_range_col, stage_range_row, &cfg, bd);
libaom_test::txfm_stage_range_check(stage_range_col, cfg.stage_num_col,
cfg.cos_bit_col, low_range,
high_range);
libaom_test::txfm_stage_range_check(stage_range_row, cfg.stage_num_row,
cfg.cos_bit_row, low_range,
high_range);
}
}
}
}
typedef void (*lowbd_fwd_txfm_func)(const int16_t *src_diff, tran_low_t *coeff,
int diff_stride, TxfmParam *txfm_param);
void AV1FwdTxfm2dMatchTest(TX_SIZE tx_size, lowbd_fwd_txfm_func target_func) {
const int bd = 8;
TxfmParam param;
memset(&param, 0, sizeof(param));
const int rows = tx_size_high[tx_size];
const int cols = tx_size_wide[tx_size];
// printf("%d x %d\n", cols, rows);
for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) {
if (libaom_test::IsTxSizeTypeValid(
tx_size, static_cast<TX_TYPE>(tx_type)) == false) {
continue;
}
FwdTxfm2dFunc ref_func = libaom_test::fwd_txfm_func_ls[tx_size];
if (ref_func != NULL) {
DECLARE_ALIGNED(32, int16_t, input[64 * 64]) = { 0 };
DECLARE_ALIGNED(32, int32_t, output[64 * 64]);
DECLARE_ALIGNED(32, int32_t, ref_output[64 * 64]);
int input_stride = 64;
ACMRandom rnd(ACMRandom::DeterministicSeed());
for (int cnt = 0; cnt < 500; ++cnt) {
if (cnt == 0) {
for (int r = 0; r < rows; ++r) {
for (int c = 0; c < cols; ++c) {
input[r * input_stride + c] = (1 << bd) - 1;
}
}
} else {
for (int r = 0; r < rows; ++r) {
for (int c = 0; c < cols; ++c) {
input[r * input_stride + c] = rnd.Rand16() % (1 << bd);
}
}
}
param.tx_type = (TX_TYPE)tx_type;
param.tx_size = (TX_SIZE)tx_size;
param.tx_set_type = EXT_TX_SET_ALL16;
param.bd = bd;
ref_func(input, ref_output, input_stride, (TX_TYPE)tx_type,
#if CONFIG_INTER_DDT
0,
#endif // CONFIG_INTER_DDT
bd);
target_func(input, output, input_stride, &param);
const int check_rows = AOMMIN(32, rows);
const int check_cols = AOMMIN(32, rows * cols / check_rows);
for (int r = 0; r < check_rows; ++r) {
for (int c = 0; c < check_cols; ++c) {
ASSERT_EQ(ref_output[r * check_cols + c],
output[r * check_cols + c])
<< "[" << r << "," << c << "] cnt:" << cnt
<< " tx_size: " << tx_size << " tx_type: " << tx_type;
}
}
}
}
}
}
void AV1FwdTxfm2dSpeedTest(TX_SIZE tx_size, lowbd_fwd_txfm_func target_func) {
TxfmParam param;
memset(&param, 0, sizeof(param));
const int rows = tx_size_high[tx_size];
const int cols = tx_size_wide[tx_size];
const int num_loops = 1000000 / (rows * cols);
for (int i = 0; i < 2; ++i) {
const int bd = 8;
for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) {
if (libaom_test::IsTxSizeTypeValid(
tx_size, static_cast<TX_TYPE>(tx_type)) == false) {
continue;
}
FwdTxfm2dFunc ref_func = libaom_test::fwd_txfm_func_ls[tx_size];
if (ref_func != NULL) {
DECLARE_ALIGNED(32, int16_t, input[64 * 64]) = { 0 };
DECLARE_ALIGNED(32, int32_t, output[64 * 64]);
DECLARE_ALIGNED(32, int32_t, ref_output[64 * 64]);
int input_stride = 64;
ACMRandom rnd(ACMRandom::DeterministicSeed());
for (int r = 0; r < rows; ++r) {
for (int c = 0; c < cols; ++c) {
input[r * input_stride + c] = rnd.Rand16() % (1 << bd);
}
}
param.tx_type = (TX_TYPE)tx_type;
param.tx_size = (TX_SIZE)tx_size;
param.tx_set_type = EXT_TX_SET_ALL16;
param.bd = bd;
aom_usec_timer ref_timer, test_timer;
aom_usec_timer_start(&ref_timer);
for (int i = 0; i < num_loops; ++i) {
ref_func(input, ref_output, input_stride, (TX_TYPE)tx_type,
#if CONFIG_INTER_DDT
0,
#endif // CONFIG_INTER_DDT
bd);
}
aom_usec_timer_mark(&ref_timer);
const int elapsed_time_c =
static_cast<int>(aom_usec_timer_elapsed(&ref_timer));
aom_usec_timer_start(&test_timer);
for (int i = 0; i < num_loops; ++i) {
target_func(input, output, input_stride, &param);
}
aom_usec_timer_mark(&test_timer);
const int elapsed_time_simd =
static_cast<int>(aom_usec_timer_elapsed(&test_timer));
printf(
"txfm_size[%d] \t txfm_type[%d] \t c_time=%d \t simd_time=%d \t "
"gain=%d \n",
tx_size, tx_type, elapsed_time_c, elapsed_time_simd,
(elapsed_time_c / elapsed_time_simd));
}
}
}
}
typedef std::tuple<TX_SIZE, lowbd_fwd_txfm_func> LbdFwdTxfm2dParam;
class AV1FwdTxfm2dTest : public ::testing::TestWithParam<LbdFwdTxfm2dParam> {};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1FwdTxfm2dTest);
TEST_P(AV1FwdTxfm2dTest, match) {
AV1FwdTxfm2dMatchTest(GET_PARAM(0), GET_PARAM(1));
}
TEST_P(AV1FwdTxfm2dTest, DISABLED_Speed) {
AV1FwdTxfm2dSpeedTest(GET_PARAM(0), GET_PARAM(1));
}
using ::testing::Combine;
using ::testing::Values;
using ::testing::ValuesIn;
#if HAVE_SSE2
static TX_SIZE fwd_txfm_for_sse2[] = {
TX_4X4, TX_8X8, TX_16X16, TX_32X32, TX_64X64, TX_4X8, TX_8X4,
TX_8X16, TX_16X8, TX_16X32, TX_32X16, TX_32X64, TX_64X32, TX_4X16,
TX_16X4, TX_8X32, TX_32X8, TX_16X64, TX_64X16,
#if CONFIG_FLEX_PARTITION
TX_4X32, TX_32X4, TX_8X64, TX_64X8, TX_4X64, TX_64X4,
#endif // CONFIG_FLEX_PARTITION
};
INSTANTIATE_TEST_SUITE_P(SSE2, AV1FwdTxfm2dTest,
Combine(ValuesIn(fwd_txfm_for_sse2),
Values(av1_lowbd_fwd_txfm_sse2)));
#endif // HAVE_SSE2
#if HAVE_SSE4_1
static TX_SIZE fwd_txfm_for_sse41[] = {
TX_4X4,
TX_64X64,
TX_32X64,
TX_64X32,
};
INSTANTIATE_TEST_SUITE_P(SSE4_1, AV1FwdTxfm2dTest,
Combine(ValuesIn(fwd_txfm_for_sse41),
Values(av1_lowbd_fwd_txfm_sse4_1)));
#endif // HAVE_SSE4_1
#if HAVE_AVX2
static TX_SIZE fwd_txfm_for_avx2[] = {
TX_4X4, TX_8X8, TX_16X16, TX_32X32, TX_64X64, TX_4X8, TX_8X4,
TX_8X16, TX_16X8, TX_16X32, TX_32X16, TX_32X64, TX_64X32, TX_4X16,
TX_16X4, TX_8X32, TX_32X8, TX_16X64, TX_64X16,
#if CONFIG_FLEX_PARTITION
TX_4X32, TX_32X4, TX_8X64, TX_64X8, TX_4X64, TX_64X4,
#endif // CONFIG_FLEX_PARTITION
};
INSTANTIATE_TEST_SUITE_P(AVX2, AV1FwdTxfm2dTest,
Combine(ValuesIn(fwd_txfm_for_avx2),
Values(av1_lowbd_fwd_txfm_avx2)));
#endif // HAVE_AVX2
#if HAVE_NEON && !CONFIG_ADST_TUNED
static TX_SIZE fwd_txfm_for_neon[] = { TX_4X4, TX_8X8, TX_16X16, TX_32X32,
TX_64X64, TX_4X8, TX_8X4, TX_8X16,
TX_16X8, TX_16X32, TX_32X16, TX_32X64,
TX_64X32, TX_4X16, TX_16X4, TX_8X32,
TX_32X8, TX_16X64, TX_64X16 };
INSTANTIATE_TEST_SUITE_P(NEON, AV1FwdTxfm2dTest,
Combine(ValuesIn(fwd_txfm_for_neon),
Values(av1_lowbd_fwd_txfm_neon)));
#endif // HAVE_NEON && !CONFIG_ADST_TUNED
typedef void (*Highbd_fwd_txfm_func)(const int16_t *src_diff, tran_low_t *coeff,
int diff_stride, TxfmParam *txfm_param);
void AV1HighbdFwdTxfm2dMatchTest(TX_SIZE tx_size,
Highbd_fwd_txfm_func target_func) {
const int bd_ar[2] = { 10, 12 };
TxfmParam param;
memset(&param, 0, sizeof(param));
const int rows = tx_size_high[tx_size];
const int cols = tx_size_wide[tx_size];
for (int i = 0; i < 2; ++i) {
const int bd = bd_ar[i];
for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) {
if (libaom_test::IsTxSizeTypeValid(
tx_size, static_cast<TX_TYPE>(tx_type)) == false) {
continue;
}
FwdTxfm2dFunc ref_func = libaom_test::fwd_txfm_func_ls[tx_size];
if (ref_func != NULL) {
DECLARE_ALIGNED(32, int16_t, input[64 * 64]) = { 0 };
DECLARE_ALIGNED(32, int32_t, output[64 * 64]);
DECLARE_ALIGNED(32, int32_t, ref_output[64 * 64]);
int input_stride = 64;
ACMRandom rnd(ACMRandom::DeterministicSeed());
for (int cnt = 0; cnt < 500; ++cnt) {
if (cnt == 0) {
for (int r = 0; r < rows; ++r) {
for (int c = 0; c < cols; ++c) {
input[r * input_stride + c] = (1 << bd) - 1;
}
}
} else {
for (int r = 0; r < rows; ++r) {
for (int c = 0; c < cols; ++c) {
input[r * input_stride + c] = rnd.Rand16() % (1 << bd);
}
}
}
param.tx_type = (TX_TYPE)tx_type;
param.tx_size = (TX_SIZE)tx_size;
param.tx_set_type = EXT_TX_SET_ALL16;
param.bd = bd;
ref_func(input, ref_output, input_stride, (TX_TYPE)tx_type,
#if CONFIG_INTER_DDT
0,
#endif // CONFIG_INTER_DDT
bd);
target_func(input, output, input_stride, &param);
const int check_rows = AOMMIN(32, rows);
const int check_cols = AOMMIN(32, rows * cols / check_rows);
for (int r = 0; r < check_rows; ++r) {
for (int c = 0; c < check_cols; ++c) {
ASSERT_EQ(ref_output[r * check_cols + c],
output[r * check_cols + c])
<< "[" << r << "," << c << "] cnt:" << cnt
<< " tx_size: " << tx_size << " tx_type: " << tx_type;
}
}
}
}
}
}
}
void AV1HighbdFwdTxfm2dSpeedTest(TX_SIZE tx_size,
Highbd_fwd_txfm_func target_func) {
const int bd_ar[2] = { 10, 12 };
TxfmParam param;
memset(&param, 0, sizeof(param));
const int rows = tx_size_high[tx_size];
const int cols = tx_size_wide[tx_size];
const int num_loops = 1000000 / (rows * cols);
for (int i = 0; i < 2; ++i) {
const int bd = bd_ar[i];
for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) {
if (libaom_test::IsTxSizeTypeValid(
tx_size, static_cast<TX_TYPE>(tx_type)) == false) {
continue;
}
FwdTxfm2dFunc ref_func = libaom_test::fwd_txfm_func_ls[tx_size];
if (ref_func != NULL) {
DECLARE_ALIGNED(32, int16_t, input[64 * 64]) = { 0 };
DECLARE_ALIGNED(32, int32_t, output[64 * 64]);
DECLARE_ALIGNED(32, int32_t, ref_output[64 * 64]);
int input_stride = 64;
ACMRandom rnd(ACMRandom::DeterministicSeed());
for (int r = 0; r < rows; ++r) {
for (int c = 0; c < cols; ++c) {
input[r * input_stride + c] = rnd.Rand16() % (1 << bd);
}
}
param.tx_type = (TX_TYPE)tx_type;
param.tx_size = (TX_SIZE)tx_size;
param.tx_set_type = EXT_TX_SET_ALL16;
param.bd = bd;
aom_usec_timer ref_timer, test_timer;
aom_usec_timer_start(&ref_timer);
for (int i = 0; i < num_loops; ++i) {
ref_func(input, ref_output, input_stride, (TX_TYPE)tx_type,
#if CONFIG_INTER_DDT
0,
#endif // CONFIG_INTER_DDT
bd);
}
aom_usec_timer_mark(&ref_timer);
const int elapsed_time_c =
static_cast<int>(aom_usec_timer_elapsed(&ref_timer));
aom_usec_timer_start(&test_timer);
for (int i = 0; i < num_loops; ++i) {
target_func(input, output, input_stride, &param);
}
aom_usec_timer_mark(&test_timer);
const int elapsed_time_simd =
static_cast<int>(aom_usec_timer_elapsed(&test_timer));
printf(
"txfm_size[%d] \t txfm_type[%d] \t c_time=%d \t simd_time=%d \t "
"gain=%d \n",
tx_size, tx_type, elapsed_time_c, elapsed_time_simd,
(elapsed_time_c / elapsed_time_simd));
}
}
}
}
typedef std::tuple<TX_SIZE, Highbd_fwd_txfm_func> HighbdFwdTxfm2dParam;
class AV1HighbdFwdTxfm2dTest
: public ::testing::TestWithParam<HighbdFwdTxfm2dParam> {};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1HighbdFwdTxfm2dTest);
TEST_P(AV1HighbdFwdTxfm2dTest, match) {
AV1HighbdFwdTxfm2dMatchTest(GET_PARAM(0), GET_PARAM(1));
}
TEST_P(AV1HighbdFwdTxfm2dTest, DISABLED_Speed) {
AV1HighbdFwdTxfm2dSpeedTest(GET_PARAM(0), GET_PARAM(1));
}
using ::testing::Combine;
using ::testing::Values;
using ::testing::ValuesIn;
#if HAVE_SSE4_1
static TX_SIZE Highbd_fwd_txfm_for_sse4_1[] = {
TX_4X4, TX_8X8, TX_16X16, TX_32X32, TX_64X64, TX_4X8, TX_8X4,
TX_8X16, TX_16X8, TX_16X32, TX_32X16, TX_32X64, TX_64X32, TX_4X16,
TX_16X4, TX_8X32, TX_32X8, TX_16X64, TX_64X16,
#if CONFIG_FLEX_PARTITION
TX_4X32, TX_32X4, TX_8X64, TX_64X8, TX_4X64, TX_64X4,
#endif // CONFIG_FLEX_PARTITION
};
INSTANTIATE_TEST_SUITE_P(SSE4_1, AV1HighbdFwdTxfm2dTest,
Combine(ValuesIn(Highbd_fwd_txfm_for_sse4_1),
Values(av1_highbd_fwd_txfm)));
#endif // HAVE_SSE4_1
#if HAVE_AVX2
static TX_SIZE Highbd_fwd_txfm_for_avx2[] = { TX_8X8, TX_16X16, TX_32X32,
TX_64X64, TX_8X16, TX_16X8 };
INSTANTIATE_TEST_SUITE_P(AVX2, AV1HighbdFwdTxfm2dTest,
Combine(ValuesIn(Highbd_fwd_txfm_for_avx2),
Values(av1_highbd_fwd_txfm)));
#endif // HAVE_AVX2
#if HAVE_NEON && !CONFIG_ADST_TUNED
static TX_SIZE Highbd_fwd_txfm_for_neon[] = {
TX_4X4, TX_8X8, TX_16X16, TX_32X32, TX_64X64, TX_4X8, TX_8X4,
TX_8X16, TX_16X8, TX_16X32, TX_32X16, TX_32X64, TX_64X32, TX_4X16,
TX_16X4, TX_8X32, TX_32X8, TX_16X64, TX_64X16
};
INSTANTIATE_TEST_SUITE_P(NEON, AV1HighbdFwdTxfm2dTest,
Combine(ValuesIn(Highbd_fwd_txfm_for_neon),
Values(av1_highbd_fwd_txfm)));
#endif // HAVE_NEON && !CONFIG_ADST_TUNED
///////////////////////////////////////////////////////////////
// unit-test for 'av1_fwd_cross_chroma_tx_block' //
///////////////////////////////////////////////////////////////
typedef void (*CCTXFunc)(tran_low_t *coeff_c1, tran_low_t *coeff_c2,
TX_SIZE tx_size, CctxType cctx_type);
typedef libaom_test::FuncParam<CCTXFunc> TestFuncs;
class FwdCctxTest : public ::testing::TestWithParam<TestFuncs> {
public:
virtual ~FwdCctxTest() {}
virtual void SetUp() {
params_ = this->GetParam();
rnd_.Reset(ACMRandom::DeterministicSeed());
const int max_tx_height = tx_size_high[TX_SIZES_LARGEST];
const int max_tx_width = tx_size_wide[TX_SIZES_LARGEST];
coeff_alloc_size_ = max_tx_height * max_tx_width * sizeof(coeff_c1_ref_[0]);
coeff_c1_ref_ =
reinterpret_cast<int32_t *>(aom_memalign(32, coeff_alloc_size_));
coeff_c2_ref_ =
reinterpret_cast<int32_t *>(aom_memalign(32, coeff_alloc_size_));
coeff_c1_test_ =
reinterpret_cast<int32_t *>(aom_memalign(32, coeff_alloc_size_));
coeff_c2_test_ =
reinterpret_cast<int32_t *>(aom_memalign(32, coeff_alloc_size_));
ASSERT_TRUE(coeff_c1_ref_ != NULL && coeff_c2_ref_ != NULL);
ASSERT_TRUE(coeff_c1_test_ != NULL && coeff_c2_test_ != NULL);
}
void GenRandomData(const int ncoeffs, const int coeffRange) {
for (int i = 0; i < ncoeffs; i++) {
coeff_c1_ref_[i] = rnd_(2) ? rnd_(coeffRange) : -rnd_(coeffRange);
coeff_c2_ref_[i] = rnd_(2) ? rnd_(coeffRange) : -rnd_(coeffRange);
}
}
void GenExtremeData(const int ncoeffs, const int coeffRange) {
const int val = rnd_(2) ? coeffRange : -coeffRange;
for (int i = 0; i < ncoeffs; i++) {
coeff_c1_ref_[i] = coeff_c2_ref_[i] = val;
}
}
virtual void TearDown() {
libaom_test::ClearSystemState();
aom_free(coeff_c1_ref_);
aom_free(coeff_c2_ref_);
aom_free(coeff_c1_test_);
aom_free(coeff_c2_test_);
}
void RunTest(int isRandom);
void RunSpeedTest();
protected:
TestFuncs params_;
tran_low_t *coeff_c1_ref_;
tran_low_t *coeff_c1_test_;
tran_low_t *coeff_c2_ref_;
tran_low_t *coeff_c2_test_;
int coeff_alloc_size_;
ACMRandom rnd_;
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(FwdCctxTest);
void FwdCctxTest::RunTest(int isRandom) {
const int bd_ar[3] = { 8, 10, 12 };
const int kNumIterations = 500;
for (int i = 0; i < 3; ++i) {
const int bd = bd_ar[i];
const int msb = bd + 8; // bit-depth + 8
const int coeffRange = (1 << msb) - 1;
for (TX_SIZE tx_size = 0; tx_size < TX_SIZES_ALL; tx_size++) {
const int ncoeffs = av1_get_max_eob(tx_size);
for (CctxType cctx_type = 0; cctx_type < CCTX_TYPES; cctx_type++) {
for (int k = 0; k < kNumIterations; k++) {
if (isRandom) {
GenRandomData(ncoeffs, coeffRange);
} else {
GenExtremeData(ncoeffs, coeffRange);
}
memcpy(coeff_c1_test_, coeff_c1_ref_, coeff_alloc_size_);
memcpy(coeff_c2_test_, coeff_c2_ref_, coeff_alloc_size_);
params_.ref_func(coeff_c1_ref_, coeff_c2_ref_, tx_size, cctx_type);
params_.tst_func(coeff_c1_test_, coeff_c2_test_, tx_size, cctx_type);
for (int i = 0; i < ncoeffs; i++) {
EXPECT_EQ(coeff_c1_ref_[i], coeff_c1_test_[i])
<< "Error: CCTXTest [tx_size=" << tx_size
<< " cctx_type=" << cctx_type << "] C AVX2 does not match.";
EXPECT_EQ(coeff_c2_ref_[i], coeff_c2_test_[i])
<< "Error: CCTXTest [tx_size=" << tx_size
<< " cctx_type=" << cctx_type << "] C AVX2 does not match.";
}
}
}
}
}
}
void FwdCctxTest::RunSpeedTest() {
for (TX_SIZE tx_size = 0; tx_size < TX_SIZES_ALL; tx_size++) {
const CctxType cctx_type = CCTX_45;
const int ncoeffs = av1_get_max_eob(tx_size);
const int msb = 12 + 8; // bit-depth + 8
const int coeffRange = (1 << msb) - 1;
GenExtremeData(ncoeffs, coeffRange);
memcpy(coeff_c1_test_, coeff_c1_ref_, coeff_alloc_size_);
memcpy(coeff_c2_test_, coeff_c2_ref_, coeff_alloc_size_);
const int rows = tx_size_high[tx_size];
const int cols = tx_size_wide[tx_size];
const int num_loops = 1000000 / (rows * cols);
aom_usec_timer ref_timer, test_timer;
aom_usec_timer_start(&ref_timer);
for (int i = 0; i < num_loops; ++i)
params_.ref_func(coeff_c1_ref_, coeff_c2_ref_, tx_size, cctx_type);
aom_usec_timer_mark(&ref_timer);
const int elapsed_time_c =
static_cast<int>(aom_usec_timer_elapsed(&ref_timer));
aom_usec_timer_start(&test_timer);
for (int i = 0; i < num_loops; ++i)
params_.tst_func(coeff_c1_test_, coeff_c2_test_, tx_size, cctx_type);
aom_usec_timer_mark(&test_timer);
const int elapsed_time_simd =
static_cast<int>(aom_usec_timer_elapsed(&test_timer));
printf(
"txfm_size[%d] \t cctx_type[%d] \t c_time=%d \t simd_time=%d \t "
"scaling=%0.2f \n",
tx_size, cctx_type, elapsed_time_c, elapsed_time_simd,
(float)elapsed_time_c / elapsed_time_simd);
}
}
TEST_P(FwdCctxTest, BitExactCheck) { RunTest(1); }
TEST_P(FwdCctxTest, ExtremeValues) { RunTest(0); }
TEST_P(FwdCctxTest, DISABLED_Speed) { RunSpeedTest(); }
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(
AVX2, FwdCctxTest,
::testing::Values(TestFuncs(&av1_fwd_cross_chroma_tx_block_c,
&av1_fwd_cross_chroma_tx_block_avx2)));
#endif // HAVE_AVX2
///////////////////////////////////////////////////////////////
// unit-test for 'fwd_stxfm' //
///////////////////////////////////////////////////////////////
typedef void (*FwdSTxfmFunc)(tran_low_t *src, tran_low_t *dst,
const PREDICTION_MODE mode, const uint8_t stx_idx,
const int size);
class AV1FwdSecTxfmTest : public ::testing::TestWithParam<FwdSTxfmFunc> {
public:
AV1FwdSecTxfmTest() : fwd_stxfm_func_(GetParam()) {}
void AV1FwdSecTxfmMatchTest() {
for (int set_id = 0; set_id < IST_DIR_SIZE; ++set_id) {
for (uint8_t stx = 0; stx < STX_TYPES - 1; ++stx) {
for (int sb_size_idx = 0; sb_size_idx < 2; ++sb_size_idx) {
int sb_size = (sb_size_idx == 0) ? 4 : 8;
DECLARE_ALIGNED(32, tran_low_t, input[IST_8x8_WIDTH]) = { 0 };
DECLARE_ALIGNED(32, tran_low_t, output[IST_8x8_HEIGHT]) = { 0 };
DECLARE_ALIGNED(32, tran_low_t, ref_output[IST_8x8_HEIGHT]) = { 0 };
ACMRandom rnd(ACMRandom::DeterministicSeed());
for (int cnt = 0; cnt < 2; ++cnt) {
if (cnt == 0) {
for (int r = 0; r < IST_8x8_WIDTH; ++r) {
input[r] = (1 << bd) - 1;
}
} else {
for (int r = 0; r < IST_8x8_WIDTH; ++r) {
input[r] = rnd.Rand16() % (1 << bd);
}
}
fwd_stxfm_c(input, ref_output, set_id, stx, sb_size);
fwd_stxfm_func_(input, output, set_id, stx, sb_size);
int check_rows = (sb_size == 4) ? IST_4x4_HEIGHT : IST_8x8_HEIGHT;
for (int r = 0; r < check_rows; ++r) {
ASSERT_EQ(ref_output[r], output[r])
<< "[" << r << "] cnt:" << cnt
<< " ref_output: " << ref_output[r]
<< " mod_output: " << output[r];
}
}
}
}
}
}
void AV1FwdSecTxfmSpeedTest() {
for (int sb_size_idx = 0; sb_size_idx < 2; ++sb_size_idx) {
int sb_size = (sb_size_idx == 0) ? 4 : 8;
DECLARE_ALIGNED(32, tran_low_t, input[IST_8x8_WIDTH]) = { 0 };
DECLARE_ALIGNED(32, tran_low_t, output[IST_8x8_HEIGHT]) = { 0 };
ACMRandom rnd(ACMRandom::DeterministicSeed());
for (int r = 0; r < IST_8x8_WIDTH; ++r) {
input[r] = rnd.Rand16() % (1 << bd);
}
aom_usec_timer ref_timer, test_timer;
const int knum_loops = 100000000;
aom_usec_timer_start(&ref_timer);
for (int i = 0; i < knum_loops; ++i) {
fwd_stxfm_c(input, output, 0, 0, sb_size);
}
aom_usec_timer_mark(&ref_timer);
const int elapsed_time_c =
static_cast<int>(aom_usec_timer_elapsed(&ref_timer));
aom_usec_timer_start(&test_timer);
for (int i = 0; i < knum_loops; ++i) {
fwd_stxfm_func_(input, output, 0, 0, sb_size);
}
aom_usec_timer_mark(&test_timer);
const int elapsed_time_simd =
static_cast<int>(aom_usec_timer_elapsed(&test_timer));
printf(
"sb_size[%d] \t c_time=%d \t simd_time=%d \t "
"gain=%f \n",
sb_size, elapsed_time_c, elapsed_time_simd,
((1.0 * elapsed_time_c) / elapsed_time_simd));
}
}
FwdSTxfmFunc fwd_stxfm_func_;
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1FwdSecTxfmTest);
TEST_P(AV1FwdSecTxfmTest, match) { AV1FwdSecTxfmMatchTest(); }
TEST_P(AV1FwdSecTxfmTest, DISABLED_Speed) { AV1FwdSecTxfmSpeedTest(); }
#if HAVE_SSE4_1
INSTANTIATE_TEST_SUITE_P(SSE4_1, AV1FwdSecTxfmTest,
::testing::Values(fwd_stxfm_sse4_1));
#endif // HAVE_SSE4_1
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(AVX2, AV1FwdSecTxfmTest,
::testing::Values(fwd_stxfm_avx2));
#endif // HAVE_AVX2
///////////////////////////////////////////////////////////////
// unit-test for 'inv_stxfm' //
///////////////////////////////////////////////////////////////
typedef void (*InvSTxfmFunc)(tran_low_t *src, tran_low_t *dst,
const PREDICTION_MODE mode, const uint8_t stx_idx,
const int size);
class AV1InvSecTxfmTest : public ::testing::TestWithParam<InvSTxfmFunc> {
public:
AV1InvSecTxfmTest() : inv_stxfm_func_(GetParam()) {}
void AV1InvSecTxfmMatchTest() {
for (int set_id = 0; set_id < IST_DIR_SIZE; ++set_id) {
for (uint8_t stx = 0; stx < STX_TYPES - 1; ++stx) {
for (int sb_size_idx = 0; sb_size_idx < 2; ++sb_size_idx) {
int sb_size = (sb_size_idx == 0) ? 4 : 8;
DECLARE_ALIGNED(32, tran_low_t, input[IST_8x8_HEIGHT]) = { 0 };
DECLARE_ALIGNED(32, tran_low_t, output[IST_8x8_WIDTH]) = { 0 };
DECLARE_ALIGNED(32, tran_low_t, ref_output[IST_8x8_WIDTH]) = { 0 };
ACMRandom rnd(ACMRandom::DeterministicSeed());
const uint16_t inv_input_mask =
static_cast<uint16_t>((1 << (bd + 7)) - 1);
for (int r = 0; r < IST_8x8_HEIGHT; r++) {
input[r] = (rnd.Rand31() & inv_input_mask);
}
inv_stxfm_c(input, ref_output, set_id, stx, sb_size);
inv_stxfm_func_(input, output, set_id, stx, sb_size);
int check_rows = (sb_size == 4) ? IST_4x4_WIDTH : IST_8x8_WIDTH;
for (int r = 0; r < check_rows; ++r) {
ASSERT_EQ(ref_output[r], output[r])
<< "[" << r << "] "
<< " ref_output: " << ref_output[r]
<< " mod_output: " << output[r];
}
}
}
}
}
void AV1InvSecTxfmSpeedTest() {
for (int sb_size_idx = 0; sb_size_idx < 2; ++sb_size_idx) {
int sb_size = (sb_size_idx == 0) ? 4 : 8;
DECLARE_ALIGNED(32, tran_low_t, input[IST_8x8_HEIGHT]) = { 0 };
DECLARE_ALIGNED(32, tran_low_t, output[IST_8x8_WIDTH]) = { 0 };
ACMRandom rnd(ACMRandom::DeterministicSeed());
const uint16_t inv_input_mask =
static_cast<uint16_t>((1 << (bd + 7)) - 1);
for (int r = 0; r < IST_8x8_HEIGHT; ++r) {
input[r] = (rnd.Rand31() & inv_input_mask);
}
aom_usec_timer ref_timer, test_timer;
const int knum_loops = 100000000;
aom_usec_timer_start(&ref_timer);
for (int i = 0; i < knum_loops; ++i) {
fwd_stxfm_c(input, output, 0, 0, sb_size);
}
aom_usec_timer_mark(&ref_timer);
const int elapsed_time_c =
static_cast<int>(aom_usec_timer_elapsed(&ref_timer));
aom_usec_timer_start(&test_timer);
for (int i = 0; i < knum_loops; ++i) {
inv_stxfm_func_(input, output, 0, 0, sb_size);
}
aom_usec_timer_mark(&test_timer);
const int elapsed_time_simd =
static_cast<int>(aom_usec_timer_elapsed(&test_timer));
printf(
"sb_size[%d] \t c_time=%d \t simd_time=%d \t "
"gain=%f \n",
sb_size, elapsed_time_c, elapsed_time_simd,
((1.0 * elapsed_time_c) / elapsed_time_simd));
}
}
InvSTxfmFunc inv_stxfm_func_;
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1InvSecTxfmTest);
TEST_P(AV1InvSecTxfmTest, match) { AV1InvSecTxfmMatchTest(); }
TEST_P(AV1InvSecTxfmTest, DISABLED_Speed) { AV1InvSecTxfmSpeedTest(); }
#if HAVE_SSE4_1
INSTANTIATE_TEST_SUITE_P(SSE4_1, AV1InvSecTxfmTest,
::testing::Values(inv_stxfm_sse4_1));
#endif // HAVE_SSE4_1
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(AVX2, AV1InvSecTxfmTest,
::testing::Values(inv_stxfm_avx2));
#endif // HAVE_AVX2
} // namespace