|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #ifndef AV1_COMMON_ONYXC_INT_H_ | 
|  | #define AV1_COMMON_ONYXC_INT_H_ | 
|  |  | 
|  | #include "./aom_config.h" | 
|  | #include "./av1_rtcd.h" | 
|  | #include "aom/internal/aom_codec_internal.h" | 
|  | #include "aom_util/aom_thread.h" | 
|  | #if CONFIG_ANS | 
|  | #include "aom_dsp/ans.h" | 
|  | #endif | 
|  | #include "av1/common/alloccommon.h" | 
|  | #include "av1/common/av1_loopfilter.h" | 
|  | #include "av1/common/entropy.h" | 
|  | #include "av1/common/entropymode.h" | 
|  | #include "av1/common/entropymv.h" | 
|  | #include "av1/common/frame_buffers.h" | 
|  | #include "av1/common/mv.h" | 
|  | #include "av1/common/quant_common.h" | 
|  | #if CONFIG_LOOP_RESTORATION | 
|  | #include "av1/common/restoration.h" | 
|  | #endif  // CONFIG_LOOP_RESTORATION | 
|  | #include "av1/common/tile_common.h" | 
|  | #include "av1/common/odintrin.h" | 
|  | #if CONFIG_CFL | 
|  | #include "av1/common/cfl.h" | 
|  | #endif | 
|  | #if CONFIG_HASH_ME | 
|  | // TODO(youzhou@microsoft.com): Encoder only. Move it out of common | 
|  | #include "av1/encoder/hash_motion.h" | 
|  | #endif | 
|  | #ifdef __cplusplus | 
|  | extern "C" { | 
|  | #endif | 
|  |  | 
|  | #define CDEF_MAX_STRENGTHS 16 | 
|  |  | 
|  | #define REF_FRAMES_LOG2 3 | 
|  | #define REF_FRAMES (1 << REF_FRAMES_LOG2) | 
|  |  | 
|  | // 4 scratch frames for the new frames to support a maximum of 4 cores decoding | 
|  | // in parallel, 3 for scaled references on the encoder. | 
|  | // TODO(hkuang): Add ondemand frame buffers instead of hardcoding the number | 
|  | // of framebuffers. | 
|  | // TODO(jkoleszar): These 3 extra references could probably come from the | 
|  | // normal reference pool. | 
|  | #define FRAME_BUFFERS (REF_FRAMES + 7) | 
|  |  | 
|  | #if CONFIG_REFERENCE_BUFFER | 
|  | /* Constant values while waiting for the sequence header */ | 
|  | #define FRAME_ID_NUMBERS_PRESENT_FLAG 1 | 
|  | #define FRAME_ID_LENGTH 15 | 
|  | #define DELTA_FRAME_ID_LENGTH 14 | 
|  | #endif  // CONFIG_REFERENCE_BUFFER | 
|  |  | 
|  | #if CONFIG_NO_FRAME_CONTEXT_SIGNALING | 
|  | #define FRAME_CONTEXTS (FRAME_BUFFERS + 1) | 
|  | // Extra frame context which is always kept at default values | 
|  | #define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1) | 
|  | #else | 
|  |  | 
|  | #define FRAME_CONTEXTS_LOG2 3 | 
|  |  | 
|  | #define FRAME_CONTEXTS (1 << FRAME_CONTEXTS_LOG2) | 
|  | #endif  // CONFIG_NO_FRAME_CONTEXT_SIGNALING | 
|  |  | 
|  | #define NUM_PING_PONG_BUFFERS 2 | 
|  |  | 
|  | typedef enum { | 
|  | SINGLE_REFERENCE = 0, | 
|  | COMPOUND_REFERENCE = 1, | 
|  | REFERENCE_MODE_SELECT = 2, | 
|  | REFERENCE_MODES = 3, | 
|  | } REFERENCE_MODE; | 
|  |  | 
|  | #if !CONFIG_NO_FRAME_CONTEXT_SIGNALING | 
|  | typedef enum { | 
|  | RESET_FRAME_CONTEXT_NONE = 0, | 
|  | RESET_FRAME_CONTEXT_CURRENT = 1, | 
|  | RESET_FRAME_CONTEXT_ALL = 2, | 
|  | } RESET_FRAME_CONTEXT_MODE; | 
|  | #endif | 
|  |  | 
|  | typedef enum { | 
|  | /** | 
|  | * Update frame context to values resulting from forward probability | 
|  | * updates signaled in the frame header | 
|  | */ | 
|  | REFRESH_FRAME_CONTEXT_FORWARD, | 
|  | /** | 
|  | * Update frame context to values resulting from backward probability | 
|  | * updates based on entropy/counts in the decoded frame | 
|  | */ | 
|  | REFRESH_FRAME_CONTEXT_BACKWARD, | 
|  | } REFRESH_FRAME_CONTEXT_MODE; | 
|  |  | 
|  | #if CONFIG_MFMV | 
|  | #define MFMV_STACK_SIZE 3 | 
|  |  | 
|  | typedef struct { | 
|  | int_mv mfmv[INTER_REFS_PER_FRAME][MFMV_STACK_SIZE]; | 
|  | } TPL_MV_REF; | 
|  | #endif | 
|  |  | 
|  | typedef struct { | 
|  | int_mv mv[2]; | 
|  | int_mv pred_mv[2]; | 
|  | MV_REFERENCE_FRAME ref_frame[2]; | 
|  | } MV_REF; | 
|  |  | 
|  | typedef struct { | 
|  | int ref_count; | 
|  |  | 
|  | #if CONFIG_FRAME_MARKER | 
|  | unsigned int cur_frame_offset; | 
|  | unsigned int lst_frame_offset; | 
|  | unsigned int alt_frame_offset; | 
|  | unsigned int gld_frame_offset; | 
|  | unsigned int lst2_frame_offset; | 
|  | unsigned int lst3_frame_offset; | 
|  | unsigned int bwd_frame_offset; | 
|  | unsigned int alt2_frame_offset; | 
|  | #endif  // CONFIG_FRAME_MARKER | 
|  |  | 
|  | MV_REF *mvs; | 
|  | int mi_rows; | 
|  | int mi_cols; | 
|  | // Width and height give the size of the buffer (before any upscaling, unlike | 
|  | // the sizes that can be derived from the buf structure) | 
|  | int width; | 
|  | int height; | 
|  | WarpedMotionParams global_motion[TOTAL_REFS_PER_FRAME]; | 
|  | aom_codec_frame_buffer_t raw_frame_buffer; | 
|  | YV12_BUFFER_CONFIG buf; | 
|  | #if CONFIG_HASH_ME | 
|  | hash_table hash_table; | 
|  | #endif | 
|  | #if CONFIG_TEMPMV_SIGNALING | 
|  | uint8_t intra_only; | 
|  | #endif | 
|  | // The Following variables will only be used in frame parallel decode. | 
|  |  | 
|  | // frame_worker_owner indicates which FrameWorker owns this buffer. NULL means | 
|  | // that no FrameWorker owns, or is decoding, this buffer. | 
|  | AVxWorker *frame_worker_owner; | 
|  |  | 
|  | // row and col indicate which position frame has been decoded to in real | 
|  | // pixel unit. They are reset to -1 when decoding begins and set to INT_MAX | 
|  | // when the frame is fully decoded. | 
|  | int row; | 
|  | int col; | 
|  | } RefCntBuffer; | 
|  |  | 
|  | typedef struct BufferPool { | 
|  | // Protect BufferPool from being accessed by several FrameWorkers at | 
|  | // the same time during frame parallel decode. | 
|  | // TODO(hkuang): Try to use atomic variable instead of locking the whole pool. | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_t pool_mutex; | 
|  | #endif | 
|  |  | 
|  | // Private data associated with the frame buffer callbacks. | 
|  | void *cb_priv; | 
|  |  | 
|  | aom_get_frame_buffer_cb_fn_t get_fb_cb; | 
|  | aom_release_frame_buffer_cb_fn_t release_fb_cb; | 
|  |  | 
|  | RefCntBuffer frame_bufs[FRAME_BUFFERS]; | 
|  |  | 
|  | // Frame buffers allocated internally by the codec. | 
|  | InternalFrameBufferList int_frame_buffers; | 
|  | } BufferPool; | 
|  |  | 
|  | #if CONFIG_LV_MAP | 
|  | typedef struct { | 
|  | int base_ctx_table[2 /*row*/][2 /*col*/][3 /*sig_map*/] | 
|  | [BASE_CONTEXT_POSITION_NUM + 1]; | 
|  | } LV_MAP_CTX_TABLE; | 
|  | typedef int BASE_CTX_TABLE[2 /*col*/][3 /*sig_map*/] | 
|  | [BASE_CONTEXT_POSITION_NUM + 1]; | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_REFERENCE_BUFFER | 
|  | /* Initial version of sequence header structure */ | 
|  | typedef struct SequenceHeader { | 
|  | #if CONFIG_FRAME_SIZE | 
|  | int num_bits_width; | 
|  | int num_bits_height; | 
|  | int max_frame_width; | 
|  | int max_frame_height; | 
|  | #endif | 
|  | int frame_id_numbers_present_flag; | 
|  | int frame_id_length; | 
|  | int delta_frame_id_length; | 
|  | } SequenceHeader; | 
|  | #endif  // CONFIG_REFERENCE_BUFFER | 
|  |  | 
|  | typedef struct AV1Common { | 
|  | struct aom_internal_error_info error; | 
|  | aom_color_space_t color_space; | 
|  | aom_transfer_function_t transfer_function; | 
|  | aom_chroma_sample_position_t chroma_sample_position; | 
|  | int color_range; | 
|  | int width; | 
|  | int height; | 
|  | int render_width; | 
|  | int render_height; | 
|  | int last_width; | 
|  | int last_height; | 
|  |  | 
|  | // TODO(jkoleszar): this implies chroma ss right now, but could vary per | 
|  | // plane. Revisit as part of the future change to YV12_BUFFER_CONFIG to | 
|  | // support additional planes. | 
|  | int subsampling_x; | 
|  | int subsampling_y; | 
|  | #if CONFIG_SIMPLE_BWD_ADAPT | 
|  | int largest_tile_id; | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_HIGHBITDEPTH | 
|  | // Marks if we need to use 16bit frame buffers (1: yes, 0: no). | 
|  | int use_highbitdepth; | 
|  | #endif | 
|  | YV12_BUFFER_CONFIG *frame_to_show; | 
|  | RefCntBuffer *prev_frame; | 
|  |  | 
|  | // TODO(hkuang): Combine this with cur_buf in macroblockd. | 
|  | RefCntBuffer *cur_frame; | 
|  |  | 
|  | int ref_frame_map[REF_FRAMES]; /* maps fb_idx to reference slot */ | 
|  |  | 
|  | // Prepare ref_frame_map for the next frame. | 
|  | // Only used in frame parallel decode. | 
|  | int next_ref_frame_map[REF_FRAMES]; | 
|  |  | 
|  | // TODO(jkoleszar): could expand active_ref_idx to 4, with 0 as intra, and | 
|  | // roll new_fb_idx into it. | 
|  |  | 
|  | // Each Inter frame can reference INTER_REFS_PER_FRAME buffers | 
|  | RefBuffer frame_refs[INTER_REFS_PER_FRAME]; | 
|  | #if CONFIG_EXT_SKIP | 
|  | int is_skip_mode_allowed; | 
|  | int ref_frame_idx_0; | 
|  | int ref_frame_idx_1; | 
|  | #endif  // CONFIG_EXT_SKIP | 
|  |  | 
|  | int new_fb_idx; | 
|  |  | 
|  | FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/ | 
|  | FRAME_TYPE frame_type; | 
|  |  | 
|  | int show_frame; | 
|  | int last_show_frame; | 
|  | int show_existing_frame; | 
|  | // Flag for a frame used as a reference - not written to the bitstream | 
|  | int is_reference_frame; | 
|  |  | 
|  | // Flag signaling that the frame is encoded using only INTRA modes. | 
|  | uint8_t intra_only; | 
|  | uint8_t last_intra_only; | 
|  |  | 
|  | int allow_high_precision_mv; | 
|  | #if CONFIG_AMVR | 
|  | int seq_force_integer_mv;        // 0 - Not to force. MV can be in 1/4 or 1/8 | 
|  | // 1 - force to integer | 
|  | // 2 - adaptive | 
|  | int cur_frame_force_integer_mv;  // 0 the default in AOM, 1 only integer | 
|  | #endif | 
|  |  | 
|  | int allow_screen_content_tools; | 
|  | int allow_interintra_compound; | 
|  | int allow_masked_compound; | 
|  |  | 
|  | #if !CONFIG_NO_FRAME_CONTEXT_SIGNALING | 
|  | // Flag signaling which frame contexts should be reset to default values. | 
|  | RESET_FRAME_CONTEXT_MODE reset_frame_context; | 
|  | #endif | 
|  |  | 
|  | // MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in | 
|  | // MODE_INFO (8-pixel) units. | 
|  | int MBs; | 
|  | int mb_rows, mi_rows; | 
|  | int mb_cols, mi_cols; | 
|  | int mi_stride; | 
|  |  | 
|  | /* profile settings */ | 
|  | TX_MODE tx_mode; | 
|  |  | 
|  | int base_qindex; | 
|  | int y_dc_delta_q; | 
|  | int uv_dc_delta_q; | 
|  | int uv_ac_delta_q; | 
|  | int16_t y_dequant[MAX_SEGMENTS][2]; | 
|  | int16_t uv_dequant[MAX_SEGMENTS][2]; | 
|  |  | 
|  | #if CONFIG_AOM_QM | 
|  | // Global quant matrix tables | 
|  | qm_val_t *giqmatrix[NUM_QM_LEVELS][2][TX_SIZES_ALL]; | 
|  | qm_val_t *gqmatrix[NUM_QM_LEVELS][2][TX_SIZES_ALL]; | 
|  |  | 
|  | // Local quant matrix tables for each frame | 
|  | qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; | 
|  | qm_val_t *uv_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; | 
|  | // Encoder | 
|  | qm_val_t *y_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; | 
|  | qm_val_t *uv_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; | 
|  |  | 
|  | int using_qmatrix; | 
|  | int min_qmlevel; | 
|  | int max_qmlevel; | 
|  | #endif | 
|  | #if CONFIG_NEW_QUANT | 
|  | dequant_val_type_nuq y_dequant_nuq[MAX_SEGMENTS][QUANT_PROFILES][COEF_BANDS]; | 
|  | dequant_val_type_nuq uv_dequant_nuq[MAX_SEGMENTS][QUANT_PROFILES][COEF_BANDS]; | 
|  | #endif | 
|  |  | 
|  | /* We allocate a MODE_INFO struct for each macroblock, together with | 
|  | an extra row on top and column on the left to simplify prediction. */ | 
|  | int mi_alloc_size; | 
|  | MODE_INFO *mip; /* Base of allocated array */ | 
|  | MODE_INFO *mi;  /* Corresponds to upper left visible macroblock */ | 
|  |  | 
|  | // TODO(agrange): Move prev_mi into encoder structure. | 
|  | // prev_mip and prev_mi will only be allocated in encoder. | 
|  | MODE_INFO *prev_mip; /* MODE_INFO array 'mip' from last decoded frame */ | 
|  | MODE_INFO *prev_mi;  /* 'mi' from last frame (points into prev_mip) */ | 
|  |  | 
|  | // Separate mi functions between encoder and decoder. | 
|  | int (*alloc_mi)(struct AV1Common *cm, int mi_size); | 
|  | void (*free_mi)(struct AV1Common *cm); | 
|  | void (*setup_mi)(struct AV1Common *cm); | 
|  |  | 
|  | // Grid of pointers to 8x8 MODE_INFO structs.  Any 8x8 not in the visible | 
|  | // area will be NULL. | 
|  | MODE_INFO **mi_grid_base; | 
|  | MODE_INFO **mi_grid_visible; | 
|  | MODE_INFO **prev_mi_grid_base; | 
|  | MODE_INFO **prev_mi_grid_visible; | 
|  |  | 
|  | // Whether to use previous frame's motion vectors for prediction. | 
|  | int use_prev_frame_mvs; | 
|  |  | 
|  | int use_ref_frame_mvs; | 
|  |  | 
|  | // Persistent mb segment id map used in prediction. | 
|  | int seg_map_idx; | 
|  | int prev_seg_map_idx; | 
|  |  | 
|  | uint8_t *seg_map_array[NUM_PING_PONG_BUFFERS]; | 
|  | uint8_t *last_frame_seg_map; | 
|  | uint8_t *current_frame_seg_map; | 
|  | int seg_map_alloc_size; | 
|  |  | 
|  | InterpFilter interp_filter; | 
|  |  | 
|  | loop_filter_info_n lf_info; | 
|  | #if CONFIG_FRAME_SUPERRES | 
|  | // The denominator of the superres scale; the numerator is fixed. | 
|  | uint8_t superres_scale_denominator; | 
|  | int superres_upscaled_width; | 
|  | int superres_upscaled_height; | 
|  | #endif  // CONFIG_FRAME_SUPERRES | 
|  | #if CONFIG_LOOP_RESTORATION | 
|  | RestorationInfo rst_info[MAX_MB_PLANE]; | 
|  |  | 
|  | // rst_end_stripe[i] is one more than the index of the bottom stripe | 
|  | // for tile row i. | 
|  | int rst_end_stripe[MAX_TILE_ROWS]; | 
|  |  | 
|  | // Pointer to a scratch buffer used by self-guided restoration | 
|  | int32_t *rst_tmpbuf; | 
|  | #endif  // CONFIG_LOOP_RESTORATION | 
|  |  | 
|  | // Flag signaling how frame contexts should be updated at the end of | 
|  | // a frame decode | 
|  | REFRESH_FRAME_CONTEXT_MODE refresh_frame_context; | 
|  |  | 
|  | int ref_frame_sign_bias[TOTAL_REFS_PER_FRAME]; /* Two state 0, 1 */ | 
|  |  | 
|  | struct loopfilter lf; | 
|  | struct segmentation seg; | 
|  | int all_lossless; | 
|  | int frame_parallel_decode;  // frame-based threading. | 
|  |  | 
|  | int reduced_tx_set_used; | 
|  |  | 
|  | // Context probabilities for reference frame prediction | 
|  | MV_REFERENCE_FRAME comp_fwd_ref[FWD_REFS]; | 
|  | MV_REFERENCE_FRAME comp_bwd_ref[BWD_REFS]; | 
|  | REFERENCE_MODE reference_mode; | 
|  |  | 
|  | FRAME_CONTEXT *fc;              /* this frame entropy */ | 
|  | FRAME_CONTEXT *frame_contexts;  // FRAME_CONTEXTS | 
|  | FRAME_CONTEXT *pre_fc;          // Context referenced in this frame | 
|  | #if !CONFIG_NO_FRAME_CONTEXT_SIGNALING | 
|  | unsigned int frame_context_idx; /* Context to use/update */ | 
|  | #endif | 
|  | FRAME_COUNTS counts; | 
|  |  | 
|  | #if CONFIG_FRAME_MARKER | 
|  | unsigned int frame_offset; | 
|  | #endif | 
|  |  | 
|  | unsigned int current_video_frame; | 
|  | BITSTREAM_PROFILE profile; | 
|  |  | 
|  | // AOM_BITS_8 in profile 0 or 1, AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3. | 
|  | aom_bit_depth_t bit_depth; | 
|  | aom_bit_depth_t dequant_bit_depth;  // bit_depth of current dequantizer | 
|  |  | 
|  | int error_resilient_mode; | 
|  |  | 
|  | int tile_cols, tile_rows; | 
|  | int last_tile_cols, last_tile_rows; | 
|  |  | 
|  | #if CONFIG_MAX_TILE | 
|  | int min_log2_tile_cols; | 
|  | int max_log2_tile_cols; | 
|  | int max_log2_tile_rows; | 
|  | int min_log2_tile_rows; | 
|  | int min_log2_tiles; | 
|  | int max_tile_width_sb; | 
|  | int max_tile_height_sb; | 
|  | int uniform_tile_spacing_flag; | 
|  | int log2_tile_cols;                        // only valid for uniform tiles | 
|  | int log2_tile_rows;                        // only valid for uniform tiles | 
|  | int tile_col_start_sb[MAX_TILE_COLS + 1];  // valid for 0 <= i <= tile_cols | 
|  | int tile_row_start_sb[MAX_TILE_ROWS + 1];  // valid for 0 <= i <= tile_rows | 
|  | #if CONFIG_DEPENDENT_HORZTILES | 
|  | int tile_row_independent[MAX_TILE_ROWS];  // valid for 0 <= i <  tile_rows | 
|  | #endif | 
|  | #else | 
|  | int log2_tile_cols, log2_tile_rows;  // Used in non-large_scale_tile_coding. | 
|  | int tile_width, tile_height;         // In MI units | 
|  | #endif  // CONFIG_MAX_TILE | 
|  |  | 
|  | #if CONFIG_EXT_TILE | 
|  | unsigned int large_scale_tile; | 
|  | unsigned int single_tile_decoding; | 
|  | #endif  // CONFIG_EXT_TILE | 
|  |  | 
|  | #if CONFIG_DEPENDENT_HORZTILES | 
|  | int dependent_horz_tiles; | 
|  | int tile_group_start_row[MAX_TILE_ROWS][MAX_TILE_COLS]; | 
|  | int tile_group_start_col[MAX_TILE_ROWS][MAX_TILE_COLS]; | 
|  | #endif | 
|  | #if CONFIG_LOOPFILTERING_ACROSS_TILES | 
|  | int loop_filter_across_tiles_enabled; | 
|  | #endif  // CONFIG_LOOPFILTERING_ACROSS_TILES | 
|  |  | 
|  | int byte_alignment; | 
|  | int skip_loop_filter; | 
|  |  | 
|  | // Private data associated with the frame buffer callbacks. | 
|  | void *cb_priv; | 
|  | aom_get_frame_buffer_cb_fn_t get_fb_cb; | 
|  | aom_release_frame_buffer_cb_fn_t release_fb_cb; | 
|  |  | 
|  | // Handles memory for the codec. | 
|  | InternalFrameBufferList int_frame_buffers; | 
|  |  | 
|  | // External BufferPool passed from outside. | 
|  | BufferPool *buffer_pool; | 
|  |  | 
|  | PARTITION_CONTEXT *above_seg_context; | 
|  | ENTROPY_CONTEXT *above_context[MAX_MB_PLANE]; | 
|  | TXFM_CONTEXT *above_txfm_context; | 
|  | TXFM_CONTEXT *top_txfm_context[MAX_MB_PLANE]; | 
|  | TXFM_CONTEXT left_txfm_context[MAX_MB_PLANE][2 * MAX_MIB_SIZE]; | 
|  | int above_context_alloc_cols; | 
|  |  | 
|  | // scratch memory for intraonly/keyframe forward updates from default tables | 
|  | // - this is intentionally not placed in FRAME_CONTEXT since it's reset upon | 
|  | // each keyframe and not used afterwards | 
|  | aom_prob kf_y_prob[INTRA_MODES][INTRA_MODES][INTRA_MODES - 1]; | 
|  | WarpedMotionParams global_motion[TOTAL_REFS_PER_FRAME]; | 
|  |  | 
|  | BLOCK_SIZE sb_size;  // Size of the superblock used for this frame | 
|  | int mib_size;        // Size of the superblock in units of MI blocks | 
|  | int mib_size_log2;   // Log 2 of above. | 
|  | #if CONFIG_CDEF | 
|  | int cdef_pri_damping; | 
|  | int cdef_sec_damping; | 
|  | int nb_cdef_strengths; | 
|  | int cdef_strengths[CDEF_MAX_STRENGTHS]; | 
|  | int cdef_uv_strengths[CDEF_MAX_STRENGTHS]; | 
|  | int cdef_bits; | 
|  | #endif | 
|  |  | 
|  | int delta_q_present_flag; | 
|  | // Resolution of delta quant | 
|  | int delta_q_res; | 
|  | #if CONFIG_EXT_DELTA_Q | 
|  | int delta_lf_present_flag; | 
|  | // Resolution of delta lf level | 
|  | int delta_lf_res; | 
|  | #if CONFIG_LOOPFILTER_LEVEL | 
|  | // This is a flag for number of deltas of loop filter level | 
|  | // 0: use 1 delta, for y_vertical, y_horizontal, u, and v | 
|  | // 1: use separate deltas for each filter level | 
|  | int delta_lf_multi; | 
|  | #endif  // CONFIG_LOOPFILTER_LEVEL | 
|  | #endif | 
|  | int num_tg; | 
|  | #if CONFIG_REFERENCE_BUFFER | 
|  | SequenceHeader seq_params; | 
|  | int current_frame_id; | 
|  | int ref_frame_id[REF_FRAMES]; | 
|  | int valid_for_referencing[REF_FRAMES]; | 
|  | int refresh_mask; | 
|  | int invalid_delta_frame_id_minus1; | 
|  | #endif  // CONFIG_REFERENCE_BUFFER | 
|  | #if CONFIG_ANS && ANS_MAX_SYMBOLS | 
|  | int ans_window_size_log2; | 
|  | #endif | 
|  | #if CONFIG_LV_MAP | 
|  | LV_MAP_CTX_TABLE coeff_ctx_table; | 
|  | #endif | 
|  | #if CONFIG_LPF_SB | 
|  | int final_lpf_encode; | 
|  | #endif | 
|  | #if CONFIG_ADAPT_SCAN | 
|  | int use_adapt_scan; | 
|  | #endif | 
|  | #if CONFIG_MFMV | 
|  | TPL_MV_REF *tpl_mvs; | 
|  | #endif | 
|  | } AV1_COMMON; | 
|  |  | 
|  | // TODO(hkuang): Don't need to lock the whole pool after implementing atomic | 
|  | // frame reference count. | 
|  | static void lock_buffer_pool(BufferPool *const pool) { | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_lock(&pool->pool_mutex); | 
|  | #else | 
|  | (void)pool; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void unlock_buffer_pool(BufferPool *const pool) { | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_unlock(&pool->pool_mutex); | 
|  | #else | 
|  | (void)pool; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) { | 
|  | if (index < 0 || index >= REF_FRAMES) return NULL; | 
|  | if (cm->ref_frame_map[index] < 0) return NULL; | 
|  | assert(cm->ref_frame_map[index] < FRAME_BUFFERS); | 
|  | return &cm->buffer_pool->frame_bufs[cm->ref_frame_map[index]].buf; | 
|  | } | 
|  |  | 
|  | static INLINE YV12_BUFFER_CONFIG *get_frame_new_buffer( | 
|  | const AV1_COMMON *const cm) { | 
|  | return &cm->buffer_pool->frame_bufs[cm->new_fb_idx].buf; | 
|  | } | 
|  |  | 
|  | static INLINE int get_free_fb(AV1_COMMON *cm) { | 
|  | RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; | 
|  | int i; | 
|  |  | 
|  | lock_buffer_pool(cm->buffer_pool); | 
|  | for (i = 0; i < FRAME_BUFFERS; ++i) | 
|  | if (frame_bufs[i].ref_count == 0) break; | 
|  |  | 
|  | if (i != FRAME_BUFFERS) { | 
|  | frame_bufs[i].ref_count = 1; | 
|  | } else { | 
|  | // Reset i to be INVALID_IDX to indicate no free buffer found. | 
|  | i = INVALID_IDX; | 
|  | } | 
|  |  | 
|  | unlock_buffer_pool(cm->buffer_pool); | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static INLINE void ref_cnt_fb(RefCntBuffer *bufs, int *idx, int new_idx) { | 
|  | const int ref_index = *idx; | 
|  |  | 
|  | if (ref_index >= 0 && bufs[ref_index].ref_count > 0) | 
|  | bufs[ref_index].ref_count--; | 
|  |  | 
|  | *idx = new_idx; | 
|  |  | 
|  | bufs[new_idx].ref_count++; | 
|  | } | 
|  |  | 
|  | #if CONFIG_TEMPMV_SIGNALING | 
|  | // Returns 1 if this frame might use mvs from some previous frame. This | 
|  | // function doesn't consider whether prev_frame is actually suitable (see | 
|  | // frame_can_use_prev_frame_mvs for that) | 
|  | static INLINE int frame_might_use_prev_frame_mvs(const AV1_COMMON *cm) { | 
|  | return !cm->error_resilient_mode && !cm->intra_only; | 
|  | } | 
|  |  | 
|  | // Returns 1 if this frame really can use MVs from some previous frame. | 
|  | static INLINE int frame_can_use_prev_frame_mvs(const AV1_COMMON *cm) { | 
|  | return (frame_might_use_prev_frame_mvs(cm) && cm->last_show_frame && | 
|  | cm->prev_frame && !cm->prev_frame->intra_only && | 
|  | cm->width == cm->prev_frame->width && | 
|  | cm->height == cm->prev_frame->height); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) { | 
|  | if (buf->mvs == NULL || buf->mi_rows < cm->mi_rows || | 
|  | buf->mi_cols < cm->mi_cols) { | 
|  | aom_free(buf->mvs); | 
|  | buf->mi_rows = cm->mi_rows; | 
|  | buf->mi_cols = cm->mi_cols; | 
|  | #if CONFIG_TMV || CONFIG_MFMV | 
|  | CHECK_MEM_ERROR(cm, buf->mvs, | 
|  | (MV_REF *)aom_calloc( | 
|  | ((cm->mi_rows + 1) >> 1) * ((cm->mi_cols + 1) >> 1), | 
|  | sizeof(*buf->mvs))); | 
|  | #else | 
|  | CHECK_MEM_ERROR( | 
|  | cm, buf->mvs, | 
|  | (MV_REF *)aom_calloc(cm->mi_rows * cm->mi_cols, sizeof(*buf->mvs))); | 
|  | #endif  // CONFIG_TMV | 
|  | } | 
|  |  | 
|  | #if CONFIG_MFMV | 
|  | if (cm->tpl_mvs == NULL || buf->mi_rows < cm->mi_rows || | 
|  | buf->mi_cols < cm->mi_cols) { | 
|  | aom_free(cm->tpl_mvs); | 
|  | CHECK_MEM_ERROR(cm, cm->tpl_mvs, (TPL_MV_REF *)aom_calloc( | 
|  | ((cm->mi_rows + MAX_MIB_SIZE) >> 1) * | 
|  | (cm->mi_stride >> 1), | 
|  | sizeof(*cm->tpl_mvs))); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static INLINE int mi_cols_aligned_to_sb(const AV1_COMMON *cm) { | 
|  | return ALIGN_POWER_OF_TWO(cm->mi_cols, cm->mib_size_log2); | 
|  | } | 
|  |  | 
|  | static INLINE int mi_rows_aligned_to_sb(const AV1_COMMON *cm) { | 
|  | return ALIGN_POWER_OF_TWO(cm->mi_rows, cm->mib_size_log2); | 
|  | } | 
|  |  | 
|  | static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) { | 
|  | return cm->frame_type == KEY_FRAME || cm->intra_only; | 
|  | } | 
|  |  | 
|  | #if CONFIG_CFL | 
|  | #if CONFIG_DEBUG | 
|  | static INLINE void cfl_clear_sub8x8_val(CFL_CTX *cfl) { | 
|  | memset(cfl->sub8x8_val, 0, sizeof(cfl->sub8x8_val)); | 
|  | } | 
|  | #endif  // CONFIG_DEBUG | 
|  | void cfl_init(CFL_CTX *cfl, AV1_COMMON *cm); | 
|  | #endif  // CONFIG_CFL | 
|  |  | 
|  | static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd, | 
|  | #if CONFIG_CFL | 
|  | CFL_CTX *cfl, | 
|  | #endif | 
|  | tran_low_t *dqcoeff) { | 
|  | for (int i = 0; i < MAX_MB_PLANE; ++i) { | 
|  | xd->plane[i].dqcoeff = dqcoeff; | 
|  | xd->above_context[i] = cm->above_context[i]; | 
|  | if (xd->plane[i].plane_type == PLANE_TYPE_Y) { | 
|  | memcpy(xd->plane[i].seg_dequant, cm->y_dequant, sizeof(cm->y_dequant)); | 
|  | #if CONFIG_AOM_QM | 
|  | memcpy(xd->plane[i].seg_iqmatrix, cm->y_iqmatrix, sizeof(cm->y_iqmatrix)); | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_NEW_QUANT | 
|  | memcpy(xd->plane[i].seg_dequant_nuq, cm->y_dequant_nuq, | 
|  | sizeof(cm->y_dequant_nuq)); | 
|  | #endif | 
|  | } else { | 
|  | memcpy(xd->plane[i].seg_dequant, cm->uv_dequant, sizeof(cm->uv_dequant)); | 
|  | #if CONFIG_AOM_QM | 
|  | memcpy(xd->plane[i].seg_iqmatrix, cm->uv_iqmatrix, | 
|  | sizeof(cm->uv_iqmatrix)); | 
|  | #endif | 
|  | #if CONFIG_NEW_QUANT | 
|  | memcpy(xd->plane[i].seg_dequant_nuq, cm->uv_dequant_nuq, | 
|  | sizeof(cm->uv_dequant_nuq)); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | xd->fc = cm->fc; | 
|  | xd->above_seg_context = cm->above_seg_context; | 
|  | xd->above_txfm_context = cm->above_txfm_context; | 
|  | #if CONFIG_CFL | 
|  | cfl_init(cfl, cm); | 
|  | xd->cfl = cfl; | 
|  | #endif | 
|  | xd->mi_stride = cm->mi_stride; | 
|  | xd->error_info = &cm->error; | 
|  | } | 
|  |  | 
|  | static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col) { | 
|  | int i; | 
|  | int row_offset = mi_row; | 
|  | int col_offset = mi_col; | 
|  | for (i = 0; i < MAX_MB_PLANE; ++i) { | 
|  | struct macroblockd_plane *const pd = &xd->plane[i]; | 
|  | // Offset the buffer pointer | 
|  | const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; | 
|  | if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1)) | 
|  | row_offset = mi_row - 1; | 
|  | if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1)) | 
|  | col_offset = mi_col - 1; | 
|  | int above_idx = col_offset << (MI_SIZE_LOG2 - tx_size_wide_log2[0]); | 
|  | int left_idx = (row_offset & MAX_MIB_MASK) | 
|  | << (MI_SIZE_LOG2 - tx_size_high_log2[0]); | 
|  | pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x]; | 
|  | pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y]; | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE int calc_mi_size(int len) { | 
|  | // len is in mi units. | 
|  | return len + MAX_MIB_SIZE; | 
|  | } | 
|  |  | 
|  | static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh) { | 
|  | int i; | 
|  | for (i = 0; i < MAX_MB_PLANE; i++) { | 
|  | xd->plane[i].n4_w = (bw << 1) >> xd->plane[i].subsampling_x; | 
|  | xd->plane[i].n4_h = (bh << 1) >> xd->plane[i].subsampling_y; | 
|  |  | 
|  | xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x; | 
|  | xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y; | 
|  |  | 
|  | xd->plane[i].width = AOMMAX(xd->plane[i].width, 4); | 
|  | xd->plane[i].height = AOMMAX(xd->plane[i].height, 4); | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile, | 
|  | int mi_row, int bh, int mi_col, int bw, | 
|  | #if CONFIG_DEPENDENT_HORZTILES | 
|  | int dependent_horz_tile_flag, | 
|  | #endif  // CONFIG_DEPENDENT_HORZTILES | 
|  | int mi_rows, int mi_cols) { | 
|  | xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); | 
|  | xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8; | 
|  | xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); | 
|  | xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8; | 
|  |  | 
|  | #if CONFIG_DEPENDENT_HORZTILES | 
|  | if (dependent_horz_tile_flag) { | 
|  | xd->up_available = (mi_row > tile->mi_row_start) || !tile->tg_horz_boundary; | 
|  | } else { | 
|  | #endif  // CONFIG_DEPENDENT_HORZTILES | 
|  | // Are edges available for intra prediction? | 
|  | xd->up_available = (mi_row > tile->mi_row_start); | 
|  | #if CONFIG_DEPENDENT_HORZTILES | 
|  | } | 
|  | #endif  // CONFIG_DEPENDENT_HORZTILES | 
|  |  | 
|  | xd->left_available = (mi_col > tile->mi_col_start); | 
|  | xd->chroma_up_available = xd->up_available; | 
|  | xd->chroma_left_available = xd->left_available; | 
|  | if (xd->plane[1].subsampling_x && bw < mi_size_wide[BLOCK_8X8]) | 
|  | xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start; | 
|  | if (xd->plane[1].subsampling_y && bh < mi_size_high[BLOCK_8X8]) | 
|  | xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start; | 
|  | if (xd->up_available) { | 
|  | xd->above_mi = xd->mi[-xd->mi_stride]; | 
|  | // above_mi may be NULL in encoder's first pass. | 
|  | xd->above_mbmi = xd->above_mi ? &xd->above_mi->mbmi : NULL; | 
|  | } else { | 
|  | xd->above_mi = NULL; | 
|  | xd->above_mbmi = NULL; | 
|  | } | 
|  |  | 
|  | if (xd->left_available) { | 
|  | xd->left_mi = xd->mi[-1]; | 
|  | // left_mi may be NULL in encoder's first pass. | 
|  | xd->left_mbmi = xd->left_mi ? &xd->left_mi->mbmi : NULL; | 
|  | } else { | 
|  | xd->left_mi = NULL; | 
|  | xd->left_mbmi = NULL; | 
|  | } | 
|  |  | 
|  | xd->n8_h = bh; | 
|  | xd->n8_w = bw; | 
|  | xd->is_sec_rect = 0; | 
|  | if (xd->n8_w < xd->n8_h) | 
|  | if (mi_col & (xd->n8_h - 1)) xd->is_sec_rect = 1; | 
|  |  | 
|  | if (xd->n8_w > xd->n8_h) | 
|  | if (mi_row & (xd->n8_w - 1)) xd->is_sec_rect = 1; | 
|  | } | 
|  |  | 
|  | static INLINE const aom_prob *get_y_mode_probs(const AV1_COMMON *cm, | 
|  | const MODE_INFO *mi, | 
|  | const MODE_INFO *above_mi, | 
|  | const MODE_INFO *left_mi, | 
|  | int block) { | 
|  | const PREDICTION_MODE above = av1_above_block_mode(mi, above_mi, block); | 
|  | const PREDICTION_MODE left = av1_left_block_mode(mi, left_mi, block); | 
|  | return cm->kf_y_prob[above][left]; | 
|  | } | 
|  |  | 
|  | static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx, | 
|  | const MODE_INFO *mi, | 
|  | const MODE_INFO *above_mi, | 
|  | const MODE_INFO *left_mi, | 
|  | int block) { | 
|  | const PREDICTION_MODE above = av1_above_block_mode(mi, above_mi, block); | 
|  | const PREDICTION_MODE left = av1_left_block_mode(mi, left_mi, block); | 
|  |  | 
|  | #if CONFIG_KF_CTX | 
|  | int above_ctx = intra_mode_context[above]; | 
|  | int left_ctx = intra_mode_context[left]; | 
|  | return tile_ctx->kf_y_cdf[above_ctx][left_ctx]; | 
|  | #else | 
|  | return tile_ctx->kf_y_cdf[above][left]; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row, | 
|  | int mi_col, BLOCK_SIZE subsize, | 
|  | BLOCK_SIZE bsize) { | 
|  | PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col; | 
|  | PARTITION_CONTEXT *const left_ctx = | 
|  | xd->left_seg_context + (mi_row & MAX_MIB_MASK); | 
|  |  | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | const int bw = mi_size_wide[bsize]; | 
|  | const int bh = mi_size_high[bsize]; | 
|  | memset(above_ctx, partition_context_lookup[subsize].above, bw); | 
|  | memset(left_ctx, partition_context_lookup[subsize].left, bh); | 
|  | #else | 
|  | // num_4x4_blocks_wide_lookup[bsize] / 2 | 
|  | const int bs = mi_size_wide[bsize]; | 
|  |  | 
|  | // update the partition context at the end notes. set partition bits | 
|  | // of block sizes larger than the current one to be one, and partition | 
|  | // bits of smaller block sizes to be zero. | 
|  | memset(above_ctx, partition_context_lookup[subsize].above, bs); | 
|  | memset(left_ctx, partition_context_lookup[subsize].left, bs); | 
|  | #endif  // CONFIG_EXT_PARTITION_TYPES | 
|  | } | 
|  |  | 
|  | static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize, | 
|  | int subsampling_x, int subsampling_y) { | 
|  | const int bw = mi_size_wide[bsize]; | 
|  | const int bh = mi_size_high[bsize]; | 
|  | int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) && | 
|  | ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x); | 
|  | return ref_pos; | 
|  | } | 
|  |  | 
|  | static INLINE BLOCK_SIZE scale_chroma_bsize(BLOCK_SIZE bsize, int subsampling_x, | 
|  | int subsampling_y) { | 
|  | BLOCK_SIZE bs = bsize; | 
|  | switch (bsize) { | 
|  | case BLOCK_4X4: | 
|  | if (subsampling_x == 1 && subsampling_y == 1) | 
|  | bs = BLOCK_8X8; | 
|  | else if (subsampling_x == 1) | 
|  | bs = BLOCK_8X4; | 
|  | else if (subsampling_y == 1) | 
|  | bs = BLOCK_4X8; | 
|  | break; | 
|  | case BLOCK_4X8: | 
|  | if (subsampling_x == 1 && subsampling_y == 1) | 
|  | bs = BLOCK_8X8; | 
|  | else if (subsampling_x == 1) | 
|  | bs = BLOCK_8X8; | 
|  | else if (subsampling_y == 1) | 
|  | bs = BLOCK_4X8; | 
|  | break; | 
|  | case BLOCK_8X4: | 
|  | if (subsampling_x == 1 && subsampling_y == 1) | 
|  | bs = BLOCK_8X8; | 
|  | else if (subsampling_x == 1) | 
|  | bs = BLOCK_8X4; | 
|  | else if (subsampling_y == 1) | 
|  | bs = BLOCK_8X8; | 
|  | break; | 
|  | case BLOCK_4X16: | 
|  | if (subsampling_x == 1 && subsampling_y == 1) | 
|  | bs = BLOCK_8X16; | 
|  | else if (subsampling_x == 1) | 
|  | bs = BLOCK_8X16; | 
|  | else if (subsampling_y == 1) | 
|  | bs = BLOCK_4X16; | 
|  | break; | 
|  | case BLOCK_16X4: | 
|  | if (subsampling_x == 1 && subsampling_y == 1) | 
|  | bs = BLOCK_16X8; | 
|  | else if (subsampling_x == 1) | 
|  | bs = BLOCK_16X4; | 
|  | else if (subsampling_y == 1) | 
|  | bs = BLOCK_16X8; | 
|  | break; | 
|  | default: break; | 
|  | } | 
|  | return bs; | 
|  | } | 
|  |  | 
|  | static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf, | 
|  | size_t element) { | 
|  | assert(cdf != NULL); | 
|  | #if !CONFIG_ANS | 
|  | return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element]; | 
|  | #else | 
|  | return cdf[element] - (element > 0 ? cdf[element - 1] : 0); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static INLINE void partition_gather_horz_alike(aom_cdf_prob *out, | 
|  | const aom_cdf_prob *const in) { | 
|  | out[0] = CDF_PROB_TOP; | 
|  | out[0] -= cdf_element_prob(in, PARTITION_HORZ); | 
|  | out[0] -= cdf_element_prob(in, PARTITION_SPLIT); | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | out[0] -= cdf_element_prob(in, PARTITION_HORZ_A); | 
|  | out[0] -= cdf_element_prob(in, PARTITION_HORZ_B); | 
|  | out[0] -= cdf_element_prob(in, PARTITION_VERT_A); | 
|  | out[0] -= cdf_element_prob(in, PARTITION_HORZ_4); | 
|  | #endif | 
|  | out[0] = AOM_ICDF(out[0]); | 
|  | out[1] = AOM_ICDF(CDF_PROB_TOP); | 
|  | } | 
|  |  | 
|  | static INLINE void partition_gather_vert_alike(aom_cdf_prob *out, | 
|  | const aom_cdf_prob *const in) { | 
|  | out[0] = CDF_PROB_TOP; | 
|  | out[0] -= cdf_element_prob(in, PARTITION_VERT); | 
|  | out[0] -= cdf_element_prob(in, PARTITION_SPLIT); | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | out[0] -= cdf_element_prob(in, PARTITION_HORZ_A); | 
|  | out[0] -= cdf_element_prob(in, PARTITION_VERT_A); | 
|  | out[0] -= cdf_element_prob(in, PARTITION_VERT_B); | 
|  | out[0] -= cdf_element_prob(in, PARTITION_VERT_4); | 
|  | #endif | 
|  | out[0] = AOM_ICDF(out[0]); | 
|  | out[1] = AOM_ICDF(CDF_PROB_TOP); | 
|  | } | 
|  |  | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row, | 
|  | int mi_col, BLOCK_SIZE subsize, | 
|  | BLOCK_SIZE bsize, | 
|  | PARTITION_TYPE partition) { | 
|  | if (bsize >= BLOCK_8X8) { | 
|  | #if !CONFIG_EXT_PARTITION_TYPES_AB | 
|  | const int hbs = mi_size_wide[bsize] / 2; | 
|  | BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); | 
|  | #endif | 
|  | switch (partition) { | 
|  | case PARTITION_SPLIT: | 
|  | if (bsize != BLOCK_8X8) break; | 
|  | case PARTITION_NONE: | 
|  | case PARTITION_HORZ: | 
|  | case PARTITION_VERT: | 
|  | case PARTITION_HORZ_4: | 
|  | case PARTITION_VERT_4: | 
|  | update_partition_context(xd, mi_row, mi_col, subsize, bsize); | 
|  | break; | 
|  | #if CONFIG_EXT_PARTITION_TYPES_AB | 
|  | case PARTITION_HORZ_A: | 
|  | update_partition_context(xd, mi_row, mi_col, | 
|  | get_subsize(bsize, PARTITION_HORZ_4), subsize); | 
|  | update_partition_context(xd, mi_row + mi_size_high[bsize] / 2, mi_col, | 
|  | subsize, subsize); | 
|  | break; | 
|  | case PARTITION_HORZ_B: | 
|  | update_partition_context(xd, mi_row, mi_col, subsize, subsize); | 
|  | update_partition_context(xd, mi_row + mi_size_high[bsize] / 2, mi_col, | 
|  | get_subsize(bsize, PARTITION_HORZ_4), subsize); | 
|  | break; | 
|  | case PARTITION_VERT_A: | 
|  | update_partition_context(xd, mi_row, mi_col, | 
|  | get_subsize(bsize, PARTITION_VERT_4), subsize); | 
|  | update_partition_context(xd, mi_row, mi_col + mi_size_wide[bsize] / 2, | 
|  | subsize, subsize); | 
|  | break; | 
|  | case PARTITION_VERT_B: | 
|  | update_partition_context(xd, mi_row, mi_col, subsize, subsize); | 
|  | update_partition_context(xd, mi_row, mi_col + mi_size_wide[bsize] / 2, | 
|  | get_subsize(bsize, PARTITION_VERT_4), subsize); | 
|  | break; | 
|  | #else | 
|  | case PARTITION_HORZ_A: | 
|  | update_partition_context(xd, mi_row, mi_col, bsize2, subsize); | 
|  | update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize); | 
|  | break; | 
|  | case PARTITION_HORZ_B: | 
|  | update_partition_context(xd, mi_row, mi_col, subsize, subsize); | 
|  | update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize); | 
|  | break; | 
|  | case PARTITION_VERT_A: | 
|  | update_partition_context(xd, mi_row, mi_col, bsize2, subsize); | 
|  | update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize); | 
|  | break; | 
|  | case PARTITION_VERT_B: | 
|  | update_partition_context(xd, mi_row, mi_col, subsize, subsize); | 
|  | update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize); | 
|  | break; | 
|  | #endif | 
|  | default: assert(0 && "Invalid partition type"); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_EXT_PARTITION_TYPES | 
|  |  | 
|  | static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row, | 
|  | int mi_col, | 
|  | #if CONFIG_UNPOISON_PARTITION_CTX | 
|  | int has_rows, int has_cols, | 
|  | #endif | 
|  | BLOCK_SIZE bsize) { | 
|  | const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col; | 
|  | const PARTITION_CONTEXT *left_ctx = | 
|  | xd->left_seg_context + (mi_row & MAX_MIB_MASK); | 
|  | // Minimum partition point is 8x8. Offset the bsl accordingly. | 
|  | const int bsl = mi_width_log2_lookup[bsize] - mi_width_log2_lookup[BLOCK_8X8]; | 
|  | int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1; | 
|  |  | 
|  | assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]); | 
|  | assert(bsl >= 0); | 
|  |  | 
|  | #if CONFIG_UNPOISON_PARTITION_CTX | 
|  | if (has_rows && has_cols) | 
|  | return (left * 2 + above) + bsl * PARTITION_PLOFFSET; | 
|  | else if (has_rows && !has_cols) | 
|  | return PARTITION_CONTEXTS_PRIMARY + bsl; | 
|  | else if (!has_rows && has_cols) | 
|  | return PARTITION_CONTEXTS_PRIMARY + PARTITION_BLOCK_SIZES + bsl; | 
|  | else | 
|  | return INVALID_PARTITION_CTX;  // Bogus context, forced SPLIT | 
|  | #else | 
|  | return (left * 2 + above) + bsl * PARTITION_PLOFFSET; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize, | 
|  | int plane) { | 
|  | int max_blocks_wide = block_size_wide[bsize]; | 
|  | const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  |  | 
|  | if (xd->mb_to_right_edge < 0) | 
|  | max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x); | 
|  |  | 
|  | // Scale the width in the transform block unit. | 
|  | return max_blocks_wide >> tx_size_wide_log2[0]; | 
|  | } | 
|  |  | 
|  | static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize, | 
|  | int plane) { | 
|  | int max_blocks_high = block_size_high[bsize]; | 
|  | const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  |  | 
|  | if (xd->mb_to_bottom_edge < 0) | 
|  | max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y); | 
|  |  | 
|  | // Scale the width in the transform block unit. | 
|  | return max_blocks_high >> tx_size_wide_log2[0]; | 
|  | } | 
|  |  | 
|  | #if CONFIG_CFL | 
|  | static INLINE int max_intra_block_width(const MACROBLOCKD *xd, | 
|  | BLOCK_SIZE plane_bsize, int plane, | 
|  | TX_SIZE tx_size) { | 
|  | const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane) | 
|  | << tx_size_wide_log2[0]; | 
|  | return ALIGN_POWER_OF_TWO(max_blocks_wide, tx_size_wide_log2[tx_size]); | 
|  | } | 
|  |  | 
|  | static INLINE int max_intra_block_height(const MACROBLOCKD *xd, | 
|  | BLOCK_SIZE plane_bsize, int plane, | 
|  | TX_SIZE tx_size) { | 
|  | const int max_blocks_high = max_block_high(xd, plane_bsize, plane) | 
|  | << tx_size_high_log2[0]; | 
|  | return ALIGN_POWER_OF_TWO(max_blocks_high, tx_size_high_log2[tx_size]); | 
|  | } | 
|  | #endif  // CONFIG_CFL | 
|  |  | 
|  | static INLINE void av1_zero_above_context(AV1_COMMON *const cm, | 
|  | int mi_col_start, int mi_col_end) { | 
|  | const int width = mi_col_end - mi_col_start; | 
|  | const int aligned_width = ALIGN_POWER_OF_TWO(width, cm->mib_size_log2); | 
|  |  | 
|  | const int offset_y = mi_col_start << (MI_SIZE_LOG2 - tx_size_wide_log2[0]); | 
|  | const int width_y = aligned_width << (MI_SIZE_LOG2 - tx_size_wide_log2[0]); | 
|  | const int offset_uv = offset_y >> cm->subsampling_x; | 
|  | const int width_uv = width_y >> cm->subsampling_x; | 
|  |  | 
|  | av1_zero_array(cm->above_context[0] + offset_y, width_y); | 
|  | av1_zero_array(cm->above_context[1] + offset_uv, width_uv); | 
|  | av1_zero_array(cm->above_context[2] + offset_uv, width_uv); | 
|  |  | 
|  | av1_zero_array(cm->above_seg_context + mi_col_start, aligned_width); | 
|  |  | 
|  | av1_zero_array(cm->above_txfm_context + (mi_col_start << TX_UNIT_WIDE_LOG2), | 
|  | aligned_width << TX_UNIT_WIDE_LOG2); | 
|  | } | 
|  |  | 
|  | static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) { | 
|  | av1_zero(xd->left_context); | 
|  | av1_zero(xd->left_seg_context); | 
|  | av1_zero(xd->left_txfm_context_buffer); | 
|  | } | 
|  |  | 
|  | // Disable array-bounds checks as the TX_SIZE enum contains values larger than | 
|  | // TX_SIZES_ALL (TX_INVALID) which make extending the array as a workaround | 
|  | // infeasible. The assert is enough for static analysis and this or other tools | 
|  | // asan, valgrind would catch oob access at runtime. | 
|  | #if defined(__GNUC__) && __GNUC__ >= 4 | 
|  | #pragma GCC diagnostic ignored "-Warray-bounds" | 
|  | #endif | 
|  | static INLINE TX_SIZE get_min_tx_size(TX_SIZE tx_size) { | 
|  | assert(tx_size < TX_SIZES_ALL); | 
|  | return txsize_sqr_map[tx_size]; | 
|  | } | 
|  | #if defined(__GNUC__) && __GNUC__ >= 4 | 
|  | #pragma GCC diagnostic warning "-Warray-bounds" | 
|  | #endif | 
|  |  | 
|  | static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) { | 
|  | int i; | 
|  | for (i = 0; i < len; ++i) txfm_ctx[i] = txs; | 
|  | } | 
|  |  | 
|  | static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n8_w, int n8_h, int skip, | 
|  | const MACROBLOCKD *xd) { | 
|  | uint8_t bw = tx_size_wide[tx_size]; | 
|  | uint8_t bh = tx_size_high[tx_size]; | 
|  |  | 
|  | if (skip) { | 
|  | bw = n8_w * MI_SIZE; | 
|  | bh = n8_h * MI_SIZE; | 
|  | } | 
|  |  | 
|  | set_txfm_ctx(xd->above_txfm_context, bw, n8_w << TX_UNIT_WIDE_LOG2); | 
|  | set_txfm_ctx(xd->left_txfm_context, bh, n8_h << TX_UNIT_HIGH_LOG2); | 
|  | } | 
|  |  | 
|  | static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx, | 
|  | TXFM_CONTEXT *left_ctx, | 
|  | TX_SIZE tx_size, TX_SIZE txb_size) { | 
|  | BLOCK_SIZE bsize = txsize_to_bsize[txb_size]; | 
|  | int bh = mi_size_high[bsize] << TX_UNIT_HIGH_LOG2; | 
|  | int bw = mi_size_wide[bsize] << TX_UNIT_WIDE_LOG2; | 
|  | uint8_t txw = tx_size_wide[tx_size]; | 
|  | uint8_t txh = tx_size_high[tx_size]; | 
|  | int i; | 
|  | for (i = 0; i < bh; ++i) left_ctx[i] = txh; | 
|  | for (i = 0; i < bw; ++i) above_ctx[i] = txw; | 
|  | } | 
|  |  | 
|  | static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) { | 
|  | switch (tx_dim) { | 
|  | #if CONFIG_EXT_PARTITION | 
|  | case 128: | 
|  | #endif  // CONFIG_EXT_PARTITION | 
|  | case 64: | 
|  | #if CONFIG_TX64X64 | 
|  | return TX_64X64; | 
|  | #else | 
|  | return TX_32X32; | 
|  | #endif  // CONFIG_TX64X64 | 
|  | break; | 
|  | case 32: return TX_32X32; break; | 
|  | case 16: return TX_16X16; break; | 
|  | case 8: return TX_8X8; break; | 
|  | default: return TX_4X4; | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE int txfm_partition_context(TXFM_CONTEXT *above_ctx, | 
|  | TXFM_CONTEXT *left_ctx, | 
|  | BLOCK_SIZE bsize, TX_SIZE tx_size) { | 
|  | const uint8_t txw = tx_size_wide[tx_size]; | 
|  | const uint8_t txh = tx_size_high[tx_size]; | 
|  | const int above = *above_ctx < txw; | 
|  | const int left = *left_ctx < txh; | 
|  | int category = TXFM_PARTITION_CONTEXTS - 1; | 
|  |  | 
|  | // dummy return, not used by others. | 
|  | if (tx_size <= TX_4X4) return 0; | 
|  |  | 
|  | TX_SIZE max_tx_size = | 
|  | get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize])); | 
|  |  | 
|  | if (max_tx_size >= TX_8X8) { | 
|  | category = (tx_size != max_tx_size && max_tx_size > TX_8X8) + | 
|  | (TX_SIZES - 1 - max_tx_size) * 2; | 
|  | } | 
|  | if (category == TXFM_PARTITION_CONTEXTS - 1) return category; | 
|  | return category * 3 + above + left; | 
|  | } | 
|  |  | 
|  | // Compute the next partition in the direction of the sb_type stored in the mi | 
|  | // array, starting with bsize. | 
|  | static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm, | 
|  | int mi_row, int mi_col, | 
|  | BLOCK_SIZE bsize) { | 
|  | if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return PARTITION_INVALID; | 
|  |  | 
|  | const int offset = mi_row * cm->mi_stride + mi_col; | 
|  | MODE_INFO **mi = cm->mi_grid_visible + offset; | 
|  | const BLOCK_SIZE subsize = mi[0]->mbmi.sb_type; | 
|  |  | 
|  | if (subsize == bsize) return PARTITION_NONE; | 
|  |  | 
|  | const int bhigh = mi_size_high[bsize]; | 
|  | const int bwide = mi_size_wide[bsize]; | 
|  | const int sshigh = mi_size_high[subsize]; | 
|  | const int sswide = mi_size_wide[subsize]; | 
|  |  | 
|  | #if CONFIG_EXT_PARTITION_TYPES | 
|  | if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < cm->mi_rows && | 
|  | mi_col + bhigh / 2 < cm->mi_cols) { | 
|  | // In this case, the block might be using an extended partition | 
|  | // type. | 
|  | const MB_MODE_INFO *const mbmi_right = &mi[bwide / 2]->mbmi; | 
|  | const MB_MODE_INFO *const mbmi_below = &mi[bhigh / 2 * cm->mi_stride]->mbmi; | 
|  |  | 
|  | if (sswide == bwide) { | 
|  | #if CONFIG_EXT_PARTITION_TYPES_AB | 
|  | // Smaller height but same width. Is PARTITION_HORZ, PARTITION_HORZ_4, | 
|  | // PARTITION_HORZ_A or PARTITION_HORZ_B. | 
|  | if (sshigh * 2 == bhigh) | 
|  | return (mbmi_below->sb_type == subsize) ? PARTITION_HORZ | 
|  | : PARTITION_HORZ_B; | 
|  | assert(sshigh * 4 == bhigh); | 
|  | return (mbmi_below->sb_type == subsize) ? PARTITION_HORZ_4 | 
|  | : PARTITION_HORZ_A; | 
|  | #else | 
|  | // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or | 
|  | // PARTITION_HORZ_B. To distinguish the latter two, check if the lower | 
|  | // half was split. | 
|  | if (sshigh * 4 == bhigh) return PARTITION_HORZ_4; | 
|  | assert(sshigh * 2 == bhigh); | 
|  |  | 
|  | if (mbmi_below->sb_type == subsize) | 
|  | return PARTITION_HORZ; | 
|  | else | 
|  | return PARTITION_HORZ_B; | 
|  | #endif | 
|  | } else if (sshigh == bhigh) { | 
|  | #if CONFIG_EXT_PARTITION_TYPES_AB | 
|  | // Smaller width but same height. Is PARTITION_VERT, PARTITION_VERT_4, | 
|  | // PARTITION_VERT_A or PARTITION_VERT_B. | 
|  | if (sswide * 2 == bwide) | 
|  | return (mbmi_right->sb_type == subsize) ? PARTITION_VERT | 
|  | : PARTITION_VERT_B; | 
|  | assert(sswide * 4 == bwide); | 
|  | return (mbmi_right->sb_type == subsize) ? PARTITION_VERT_4 | 
|  | : PARTITION_VERT_A; | 
|  | #else | 
|  | // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or | 
|  | // PARTITION_VERT_B. To distinguish the latter two, check if the right | 
|  | // half was split. | 
|  | if (sswide * 4 == bwide) return PARTITION_VERT_4; | 
|  | assert(sswide * 2 == bhigh); | 
|  |  | 
|  | if (mbmi_right->sb_type == subsize) | 
|  | return PARTITION_VERT; | 
|  | else | 
|  | return PARTITION_VERT_B; | 
|  | #endif | 
|  | } else { | 
|  | #if !CONFIG_EXT_PARTITION_TYPES_AB | 
|  | // Smaller width and smaller height. Might be PARTITION_SPLIT or could be | 
|  | // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both | 
|  | // dimensions, we immediately know this is a split (which will recurse to | 
|  | // get to subsize). Otherwise look down and to the right. With | 
|  | // PARTITION_VERT_A, the right block will have height bhigh; with | 
|  | // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise | 
|  | // it's PARTITION_SPLIT. | 
|  | if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT; | 
|  |  | 
|  | if (mi_size_wide[mbmi_below->sb_type] == bwide) return PARTITION_HORZ_A; | 
|  | if (mi_size_high[mbmi_right->sb_type] == bhigh) return PARTITION_VERT_A; | 
|  | #endif | 
|  |  | 
|  | return PARTITION_SPLIT; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | const int vert_split = sswide < bwide; | 
|  | const int horz_split = sshigh < bhigh; | 
|  | const int split_idx = (vert_split << 1) | horz_split; | 
|  | assert(split_idx != 0); | 
|  |  | 
|  | static const PARTITION_TYPE base_partitions[4] = { | 
|  | PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT | 
|  | }; | 
|  |  | 
|  | return base_partitions[split_idx]; | 
|  | } | 
|  |  | 
|  | static INLINE void set_use_reference_buffer(AV1_COMMON *const cm, int use) { | 
|  | #if CONFIG_REFERENCE_BUFFER | 
|  | cm->seq_params.frame_id_numbers_present_flag = use; | 
|  | #else | 
|  | (void)cm; | 
|  | (void)use; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static INLINE void set_sb_size(AV1_COMMON *const cm, BLOCK_SIZE sb_size) { | 
|  | cm->sb_size = sb_size; | 
|  | cm->mib_size = mi_size_wide[cm->sb_size]; | 
|  | cm->mib_size_log2 = b_width_log2_lookup[cm->sb_size]; | 
|  | } | 
|  |  | 
|  | static INLINE int all_lossless(const AV1_COMMON *cm, const MACROBLOCKD *xd) { | 
|  | int i; | 
|  | int all_lossless = 1; | 
|  | if (cm->seg.enabled) { | 
|  | for (i = 0; i < MAX_SEGMENTS; ++i) { | 
|  | if (!xd->lossless[i]) { | 
|  | all_lossless = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | all_lossless = xd->lossless[0]; | 
|  | } | 
|  | return all_lossless; | 
|  | } | 
|  |  | 
|  | static INLINE int use_compressed_header(const AV1_COMMON *cm) { | 
|  | (void)cm; | 
|  | #if CONFIG_NEW_MULTISYMBOL | 
|  | return 0; | 
|  | #else | 
|  | return 1; | 
|  | #endif  // CONFIG_NEW_MULTISYMBOL | 
|  | } | 
|  |  | 
|  | #ifdef __cplusplus | 
|  | }  // extern "C" | 
|  | #endif | 
|  |  | 
|  | #endif  // AV1_COMMON_ONYXC_INT_H_ |