|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <stdlib.h> | 
|  | #include <memory.h> | 
|  | #include <math.h> | 
|  |  | 
|  | #include "./av1_rtcd.h" | 
|  | #include "av1/encoder/corner_match.h" | 
|  |  | 
|  | #define SEARCH_SZ 9 | 
|  | #define SEARCH_SZ_BY2 ((SEARCH_SZ - 1) / 2) | 
|  |  | 
|  | #define THRESHOLD_NCC 0.75 | 
|  |  | 
|  | /* Compute var(im) * MATCH_SZ_SQ over a MATCH_SZ by MATCH_SZ window of im, | 
|  | centered at (x, y). | 
|  | */ | 
|  | static double compute_variance(unsigned char *im, int stride, int x, int y) { | 
|  | int sum = 0; | 
|  | int sumsq = 0; | 
|  | int var; | 
|  | int i, j; | 
|  | for (i = 0; i < MATCH_SZ; ++i) | 
|  | for (j = 0; j < MATCH_SZ; ++j) { | 
|  | sum += im[(i + y - MATCH_SZ_BY2) * stride + (j + x - MATCH_SZ_BY2)]; | 
|  | sumsq += im[(i + y - MATCH_SZ_BY2) * stride + (j + x - MATCH_SZ_BY2)] * | 
|  | im[(i + y - MATCH_SZ_BY2) * stride + (j + x - MATCH_SZ_BY2)]; | 
|  | } | 
|  | var = sumsq * MATCH_SZ_SQ - sum * sum; | 
|  | return (double)var; | 
|  | } | 
|  |  | 
|  | /* Compute corr(im1, im2) * MATCH_SZ * stddev(im1), where the | 
|  | correlation/standard deviation are taken over MATCH_SZ by MATCH_SZ windows | 
|  | of each image, centered at (x1, y1) and (x2, y2) respectively. | 
|  | */ | 
|  | double compute_cross_correlation_c(unsigned char *im1, int stride1, int x1, | 
|  | int y1, unsigned char *im2, int stride2, | 
|  | int x2, int y2) { | 
|  | int v1, v2; | 
|  | int sum1 = 0; | 
|  | int sum2 = 0; | 
|  | int sumsq2 = 0; | 
|  | int cross = 0; | 
|  | int var2, cov; | 
|  | int i, j; | 
|  | for (i = 0; i < MATCH_SZ; ++i) | 
|  | for (j = 0; j < MATCH_SZ; ++j) { | 
|  | v1 = im1[(i + y1 - MATCH_SZ_BY2) * stride1 + (j + x1 - MATCH_SZ_BY2)]; | 
|  | v2 = im2[(i + y2 - MATCH_SZ_BY2) * stride2 + (j + x2 - MATCH_SZ_BY2)]; | 
|  | sum1 += v1; | 
|  | sum2 += v2; | 
|  | sumsq2 += v2 * v2; | 
|  | cross += v1 * v2; | 
|  | } | 
|  | var2 = sumsq2 * MATCH_SZ_SQ - sum2 * sum2; | 
|  | cov = cross * MATCH_SZ_SQ - sum1 * sum2; | 
|  | return cov / sqrt((double)var2); | 
|  | } | 
|  |  | 
|  | static int is_eligible_point(int pointx, int pointy, int width, int height) { | 
|  | return (pointx >= MATCH_SZ_BY2 && pointy >= MATCH_SZ_BY2 && | 
|  | pointx + MATCH_SZ_BY2 < width && pointy + MATCH_SZ_BY2 < height); | 
|  | } | 
|  |  | 
|  | static int is_eligible_distance(int point1x, int point1y, int point2x, | 
|  | int point2y, int width, int height) { | 
|  | const int thresh = (width < height ? height : width) >> 4; | 
|  | return ((point1x - point2x) * (point1x - point2x) + | 
|  | (point1y - point2y) * (point1y - point2y)) <= thresh * thresh; | 
|  | } | 
|  |  | 
|  | static void improve_correspondence(unsigned char *frm, unsigned char *ref, | 
|  | int width, int height, int frm_stride, | 
|  | int ref_stride, | 
|  | Correspondence *correspondences, | 
|  | int num_correspondences) { | 
|  | int i; | 
|  | for (i = 0; i < num_correspondences; ++i) { | 
|  | int x, y, best_x = 0, best_y = 0; | 
|  | double best_match_ncc = 0.0; | 
|  | for (y = -SEARCH_SZ_BY2; y <= SEARCH_SZ_BY2; ++y) { | 
|  | for (x = -SEARCH_SZ_BY2; x <= SEARCH_SZ_BY2; ++x) { | 
|  | double match_ncc; | 
|  | if (!is_eligible_point(correspondences[i].rx + x, | 
|  | correspondences[i].ry + y, width, height)) | 
|  | continue; | 
|  | if (!is_eligible_distance(correspondences[i].x, correspondences[i].y, | 
|  | correspondences[i].rx + x, | 
|  | correspondences[i].ry + y, width, height)) | 
|  | continue; | 
|  | match_ncc = compute_cross_correlation( | 
|  | frm, frm_stride, correspondences[i].x, correspondences[i].y, ref, | 
|  | ref_stride, correspondences[i].rx + x, correspondences[i].ry + y); | 
|  | if (match_ncc > best_match_ncc) { | 
|  | best_match_ncc = match_ncc; | 
|  | best_y = y; | 
|  | best_x = x; | 
|  | } | 
|  | } | 
|  | } | 
|  | correspondences[i].rx += best_x; | 
|  | correspondences[i].ry += best_y; | 
|  | } | 
|  | for (i = 0; i < num_correspondences; ++i) { | 
|  | int x, y, best_x = 0, best_y = 0; | 
|  | double best_match_ncc = 0.0; | 
|  | for (y = -SEARCH_SZ_BY2; y <= SEARCH_SZ_BY2; ++y) | 
|  | for (x = -SEARCH_SZ_BY2; x <= SEARCH_SZ_BY2; ++x) { | 
|  | double match_ncc; | 
|  | if (!is_eligible_point(correspondences[i].x + x, | 
|  | correspondences[i].y + y, width, height)) | 
|  | continue; | 
|  | if (!is_eligible_distance( | 
|  | correspondences[i].x + x, correspondences[i].y + y, | 
|  | correspondences[i].rx, correspondences[i].ry, width, height)) | 
|  | continue; | 
|  | match_ncc = compute_cross_correlation( | 
|  | ref, ref_stride, correspondences[i].rx, correspondences[i].ry, frm, | 
|  | frm_stride, correspondences[i].x + x, correspondences[i].y + y); | 
|  | if (match_ncc > best_match_ncc) { | 
|  | best_match_ncc = match_ncc; | 
|  | best_y = y; | 
|  | best_x = x; | 
|  | } | 
|  | } | 
|  | correspondences[i].x += best_x; | 
|  | correspondences[i].y += best_y; | 
|  | } | 
|  | } | 
|  |  | 
|  | int determine_correspondence(unsigned char *frm, int *frm_corners, | 
|  | int num_frm_corners, unsigned char *ref, | 
|  | int *ref_corners, int num_ref_corners, int width, | 
|  | int height, int frm_stride, int ref_stride, | 
|  | int *correspondence_pts) { | 
|  | // TODO(sarahparker) Improve this to include 2-way match | 
|  | int i, j; | 
|  | Correspondence *correspondences = (Correspondence *)correspondence_pts; | 
|  | int num_correspondences = 0; | 
|  | for (i = 0; i < num_frm_corners; ++i) { | 
|  | double best_match_ncc = 0.0; | 
|  | double template_norm; | 
|  | int best_match_j = -1; | 
|  | if (!is_eligible_point(frm_corners[2 * i], frm_corners[2 * i + 1], width, | 
|  | height)) | 
|  | continue; | 
|  | for (j = 0; j < num_ref_corners; ++j) { | 
|  | double match_ncc; | 
|  | if (!is_eligible_point(ref_corners[2 * j], ref_corners[2 * j + 1], width, | 
|  | height)) | 
|  | continue; | 
|  | if (!is_eligible_distance(frm_corners[2 * i], frm_corners[2 * i + 1], | 
|  | ref_corners[2 * j], ref_corners[2 * j + 1], | 
|  | width, height)) | 
|  | continue; | 
|  | match_ncc = compute_cross_correlation( | 
|  | frm, frm_stride, frm_corners[2 * i], frm_corners[2 * i + 1], ref, | 
|  | ref_stride, ref_corners[2 * j], ref_corners[2 * j + 1]); | 
|  | if (match_ncc > best_match_ncc) { | 
|  | best_match_ncc = match_ncc; | 
|  | best_match_j = j; | 
|  | } | 
|  | } | 
|  | // Note: We want to test if the best correlation is >= THRESHOLD_NCC, | 
|  | // but need to account for the normalization in compute_cross_correlation. | 
|  | template_norm = compute_variance(frm, frm_stride, frm_corners[2 * i], | 
|  | frm_corners[2 * i + 1]); | 
|  | if (best_match_ncc > THRESHOLD_NCC * sqrt(template_norm)) { | 
|  | correspondences[num_correspondences].x = frm_corners[2 * i]; | 
|  | correspondences[num_correspondences].y = frm_corners[2 * i + 1]; | 
|  | correspondences[num_correspondences].rx = ref_corners[2 * best_match_j]; | 
|  | correspondences[num_correspondences].ry = | 
|  | ref_corners[2 * best_match_j + 1]; | 
|  | num_correspondences++; | 
|  | } | 
|  | } | 
|  | improve_correspondence(frm, ref, width, height, frm_stride, ref_stride, | 
|  | correspondences, num_correspondences); | 
|  | return num_correspondences; | 
|  | } |