blob: 5e3e68152fb559b4c229343b6dfcf44eafa51a17 [file] [log] [blame]
/*
*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "./aom_config.h"
#include "aom_mem/aom_mem.h"
#include "av1/common/alloccommon.h"
#include "av1/common/blockd.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/onyxc_int.h"
int av1_get_MBs(int width, int height) {
const int aligned_width = ALIGN_POWER_OF_TWO(width, 3);
const int aligned_height = ALIGN_POWER_OF_TWO(height, 3);
const int mi_cols = aligned_width >> MI_SIZE_LOG2;
const int mi_rows = aligned_height >> MI_SIZE_LOG2;
const int mb_cols = (mi_cols + 2) >> 2;
const int mb_rows = (mi_rows + 2) >> 2;
return mb_rows * mb_cols;
}
void av1_set_mb_mi(AV1_COMMON *cm, int width, int height) {
// Ensure that the decoded width and height are both multiples of
// 8 luma pixels (note: this may only be a multiple of 4 chroma pixels if
// subsampling is used).
// This simplifies the implementation of various experiments,
// eg. cdef, which operates on units of 8x8 luma pixels.
const int aligned_width = ALIGN_POWER_OF_TWO(width, 3);
const int aligned_height = ALIGN_POWER_OF_TWO(height, 3);
cm->mi_cols = aligned_width >> MI_SIZE_LOG2;
cm->mi_rows = aligned_height >> MI_SIZE_LOG2;
cm->mi_stride = calc_mi_size(cm->mi_cols);
cm->mb_cols = (cm->mi_cols + 2) >> 2;
cm->mb_rows = (cm->mi_rows + 2) >> 2;
cm->MBs = cm->mb_rows * cm->mb_cols;
}
#if !CONFIG_SEGMENT_PRED_LAST
static int alloc_seg_map(AV1_COMMON *cm, int rows, int cols) {
int i;
int seg_map_size = rows * cols;
for (i = 0; i < NUM_PING_PONG_BUFFERS; ++i) {
cm->seg_map_array[i] = (uint8_t *)aom_calloc(seg_map_size, 1);
if (cm->seg_map_array[i] == NULL) return 1;
}
cm->seg_map_alloc_size = seg_map_size;
// Init the index.
cm->seg_map_idx = 0;
cm->prev_seg_map_idx = 1;
cm->current_frame_seg_map = cm->seg_map_array[cm->seg_map_idx];
if (!cm->frame_parallel_decode)
cm->last_frame_seg_map = cm->seg_map_array[cm->prev_seg_map_idx];
return 0;
}
static void free_seg_map(AV1_COMMON *cm) {
int i;
for (i = 0; i < NUM_PING_PONG_BUFFERS; ++i) {
aom_free(cm->seg_map_array[i]);
cm->seg_map_array[i] = NULL;
}
cm->current_frame_seg_map = NULL;
if (!cm->frame_parallel_decode) {
cm->last_frame_seg_map = NULL;
}
cm->seg_map_alloc_size = 0;
}
#endif
void av1_free_ref_frame_buffers(BufferPool *pool) {
int i;
for (i = 0; i < FRAME_BUFFERS; ++i) {
if (pool->frame_bufs[i].ref_count > 0 &&
pool->frame_bufs[i].raw_frame_buffer.data != NULL) {
pool->release_fb_cb(pool->cb_priv, &pool->frame_bufs[i].raw_frame_buffer);
pool->frame_bufs[i].ref_count = 0;
}
aom_free(pool->frame_bufs[i].mvs);
pool->frame_bufs[i].mvs = NULL;
#if CONFIG_SEGMENT_PRED_LAST
aom_free(pool->frame_bufs[i].seg_map);
pool->frame_bufs[i].seg_map = NULL;
#endif
aom_free_frame_buffer(&pool->frame_bufs[i].buf);
}
}
#if CONFIG_LOOP_RESTORATION
// Assumes cm->rst_info[p].restoration_unit_size is already initialized
void av1_alloc_restoration_buffers(AV1_COMMON *cm) {
const int num_planes = av1_num_planes(cm);
for (int p = 0; p < num_planes; ++p)
av1_alloc_restoration_struct(cm, &cm->rst_info[p], p > 0);
aom_free(cm->rst_tmpbuf);
CHECK_MEM_ERROR(cm, cm->rst_tmpbuf,
(int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE));
#if CONFIG_STRIPED_LOOP_RESTORATION
// For striped loop restoration, we divide each row of tiles into "stripes",
// of height 64 luma pixels but with an offset by RESTORATION_TILE_OFFSET
// luma pixels to match the output from CDEF. We will need to store 2 *
// RESTORATION_CTX_VERT lines of data for each stripe, and also need to be
// able to quickly answer the question "Where is the <n>'th stripe for tile
// row <m>?" To make that efficient, we generate the rst_last_stripe array.
int num_stripes = 0;
for (int i = 0; i < cm->tile_rows; ++i) {
#if CONFIG_MAX_TILE
TileInfo tile_info;
av1_tile_set_row(&tile_info, cm, i);
const int mi_h = tile_info.mi_row_end - tile_info.mi_row_start;
#else
const int mi_h = ((i + 1) < cm->tile_rows)
? cm->tile_height
: (cm->mi_rows - i * cm->tile_height);
#endif
const int ext_h = RESTORATION_TILE_OFFSET + (mi_h << MI_SIZE_LOG2);
const int tile_stripes = (ext_h + 63) / 64;
num_stripes += tile_stripes;
cm->rst_end_stripe[i] = num_stripes;
}
// Now we need to allocate enough space to store the line buffers for the
// stripes
#if CONFIG_HORZONLY_FRAME_SUPERRES
const int frame_w = cm->superres_upscaled_width;
#else
const int frame_w = cm->width;
#endif // CONFIG_HORZONLY_FRAME_SUPERRES
const int use_highbd = cm->use_highbitdepth ? 1 : 0;
for (int p = 0; p < num_planes; ++p) {
const int is_uv = p > 0;
const int ss_x = is_uv && cm->subsampling_x;
const int plane_w = ((frame_w + ss_x) >> ss_x) + 2 * RESTORATION_EXTRA_HORZ;
const int stride = ALIGN_POWER_OF_TWO(plane_w, 5);
const int buf_size = num_stripes * stride * RESTORATION_CTX_VERT
<< use_highbd;
RestorationStripeBoundaries *boundaries = &cm->rst_info[p].boundaries;
aom_free(boundaries->stripe_boundary_above);
aom_free(boundaries->stripe_boundary_below);
CHECK_MEM_ERROR(cm, boundaries->stripe_boundary_above,
(uint8_t *)aom_memalign(32, buf_size));
CHECK_MEM_ERROR(cm, boundaries->stripe_boundary_below,
(uint8_t *)aom_memalign(32, buf_size));
boundaries->stripe_boundary_stride = stride;
}
#endif // CONFIG_STRIPED_LOOP_RESTORATION
}
void av1_free_restoration_buffers(AV1_COMMON *cm) {
const int num_planes = av1_num_planes(cm);
int p;
for (p = 0; p < num_planes; ++p)
av1_free_restoration_struct(&cm->rst_info[p]);
aom_free(cm->rst_tmpbuf);
cm->rst_tmpbuf = NULL;
#if CONFIG_STRIPED_LOOP_RESTORATION
for (p = 0; p < num_planes; ++p) {
RestorationStripeBoundaries *boundaries = &cm->rst_info[p].boundaries;
aom_free(boundaries->stripe_boundary_above);
aom_free(boundaries->stripe_boundary_below);
boundaries->stripe_boundary_above = NULL;
boundaries->stripe_boundary_below = NULL;
}
#endif
}
#endif // CONFIG_LOOP_RESTORATION
void av1_free_context_buffers(AV1_COMMON *cm) {
const int num_planes = av1_num_planes(cm);
int i;
cm->free_mi(cm);
aom_free(cm->boundary_info);
cm->boundary_info_alloc_size = 0;
cm->boundary_info = NULL;
#if !CONFIG_SEGMENT_PRED_LAST
free_seg_map(cm);
#endif
for (i = 0; i < num_planes; i++) {
aom_free(cm->above_context[i]);
cm->above_context[i] = NULL;
}
aom_free(cm->above_seg_context);
cm->above_seg_context = NULL;
cm->above_context_alloc_cols = 0;
aom_free(cm->above_txfm_context);
cm->above_txfm_context = NULL;
for (i = 0; i < num_planes; ++i) {
aom_free(cm->top_txfm_context[i]);
cm->top_txfm_context[i] = NULL;
}
}
int av1_alloc_context_buffers(AV1_COMMON *cm, int width, int height) {
const int num_planes = av1_num_planes(cm);
int new_mi_size;
av1_set_mb_mi(cm, width, height);
new_mi_size = cm->mi_stride * calc_mi_size(cm->mi_rows);
if (cm->mi_alloc_size < new_mi_size) {
cm->free_mi(cm);
if (cm->alloc_mi(cm, new_mi_size)) goto fail;
}
const int new_boundary_info_alloc_size = cm->mi_rows * cm->mi_stride;
if (cm->boundary_info_alloc_size < new_boundary_info_alloc_size) {
aom_free(cm->boundary_info);
cm->boundary_info = (BOUNDARY_TYPE *)aom_calloc(
new_boundary_info_alloc_size, sizeof(BOUNDARY_TYPE));
cm->boundary_info_alloc_size = 0;
if (!cm->boundary_info) goto fail;
cm->boundary_info_alloc_size = new_boundary_info_alloc_size;
}
#if !CONFIG_SEGMENT_PRED_LAST
if (cm->seg_map_alloc_size < cm->mi_rows * cm->mi_cols) {
// Create the segmentation map structure and set to 0.
free_seg_map(cm);
if (alloc_seg_map(cm, cm->mi_rows, cm->mi_cols)) goto fail;
}
#endif
if (cm->above_context_alloc_cols < cm->mi_cols) {
// TODO(geza.lore): These are bigger than they need to be.
// cm->tile_width would be enough but it complicates indexing a
// little elsewhere.
const int aligned_mi_cols =
ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2);
int i;
for (i = 0; i < num_planes; i++) {
aom_free(cm->above_context[i]);
cm->above_context[i] = (ENTROPY_CONTEXT *)aom_calloc(
aligned_mi_cols << (MI_SIZE_LOG2 - tx_size_wide_log2[0]),
sizeof(*cm->above_context[0]));
if (!cm->above_context[i]) goto fail;
}
aom_free(cm->above_seg_context);
cm->above_seg_context = (PARTITION_CONTEXT *)aom_calloc(
aligned_mi_cols, sizeof(*cm->above_seg_context));
if (!cm->above_seg_context) goto fail;
aom_free(cm->above_txfm_context);
cm->above_txfm_context = (TXFM_CONTEXT *)aom_calloc(
aligned_mi_cols << TX_UNIT_WIDE_LOG2, sizeof(*cm->above_txfm_context));
if (!cm->above_txfm_context) goto fail;
for (i = 0; i < num_planes; ++i) {
aom_free(cm->top_txfm_context[i]);
cm->top_txfm_context[i] =
(TXFM_CONTEXT *)aom_calloc(aligned_mi_cols << TX_UNIT_WIDE_LOG2,
sizeof(*cm->top_txfm_context[0]));
if (!cm->top_txfm_context[i]) goto fail;
}
cm->above_context_alloc_cols = aligned_mi_cols;
}
return 0;
fail:
// clear the mi_* values to force a realloc on resync
av1_set_mb_mi(cm, 0, 0);
av1_free_context_buffers(cm);
return 1;
}
void av1_remove_common(AV1_COMMON *cm) {
av1_free_context_buffers(cm);
aom_free(cm->fc);
cm->fc = NULL;
aom_free(cm->frame_contexts);
cm->frame_contexts = NULL;
}
void av1_init_context_buffers(AV1_COMMON *cm) {
cm->setup_mi(cm);
#if !CONFIG_SEGMENT_PRED_LAST
if (cm->last_frame_seg_map && !cm->frame_parallel_decode)
memset(cm->last_frame_seg_map, 0, cm->mi_rows * cm->mi_cols);
#endif
}
#if !CONFIG_SEGMENT_PRED_LAST
void av1_swap_current_and_last_seg_map(AV1_COMMON *cm) {
// Swap indices.
const int tmp = cm->seg_map_idx;
cm->seg_map_idx = cm->prev_seg_map_idx;
cm->prev_seg_map_idx = tmp;
cm->current_frame_seg_map = cm->seg_map_array[cm->seg_map_idx];
cm->last_frame_seg_map = cm->seg_map_array[cm->prev_seg_map_idx];
}
#endif