blob: c06df8b05f42e1e0c65626efd82e1b3837f346f9 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/encoder/context_tree.h"
#include "av1/encoder/encoder.h"
static const BLOCK_SIZE square[MAX_SB_SIZE_LOG2 - 1] = {
BLOCK_4X4, BLOCK_8X8, BLOCK_16X16, BLOCK_32X32, BLOCK_64X64,
#if CONFIG_EXT_PARTITION
BLOCK_128X128,
#endif // CONFIG_EXT_PARTITION
};
static void alloc_mode_context(AV1_COMMON *cm, int num_pix,
PICK_MODE_CONTEXT *ctx) {
const int num_planes = av1_num_planes(cm);
int i;
const int num_blk = num_pix / 16;
ctx->num_4x4_blk = num_blk;
for (i = 0; i < num_planes; ++i) {
CHECK_MEM_ERROR(cm, ctx->blk_skip[i], aom_calloc(num_blk, sizeof(uint8_t)));
CHECK_MEM_ERROR(cm, ctx->coeff[i],
aom_memalign(32, num_pix * sizeof(*ctx->coeff[i])));
CHECK_MEM_ERROR(cm, ctx->qcoeff[i],
aom_memalign(32, num_pix * sizeof(*ctx->qcoeff[i])));
CHECK_MEM_ERROR(cm, ctx->dqcoeff[i],
aom_memalign(32, num_pix * sizeof(*ctx->dqcoeff[i])));
CHECK_MEM_ERROR(cm, ctx->eobs[i],
aom_memalign(32, num_blk * sizeof(*ctx->eobs[i])));
#if CONFIG_LV_MAP
CHECK_MEM_ERROR(
cm, ctx->txb_entropy_ctx[i],
aom_memalign(32, num_blk * sizeof(*ctx->txb_entropy_ctx[i])));
#endif
}
if (num_pix <= MAX_PALETTE_SQUARE) {
for (i = 0; i < 2; ++i) {
CHECK_MEM_ERROR(
cm, ctx->color_index_map[i],
aom_memalign(32, num_pix * sizeof(*ctx->color_index_map[i])));
}
}
}
static void free_mode_context(PICK_MODE_CONTEXT *ctx, const int num_planes) {
int i;
for (i = 0; i < num_planes; ++i) {
aom_free(ctx->blk_skip[i]);
ctx->blk_skip[i] = 0;
aom_free(ctx->coeff[i]);
ctx->coeff[i] = 0;
aom_free(ctx->qcoeff[i]);
ctx->qcoeff[i] = 0;
aom_free(ctx->dqcoeff[i]);
ctx->dqcoeff[i] = 0;
aom_free(ctx->eobs[i]);
ctx->eobs[i] = 0;
#if CONFIG_LV_MAP
aom_free(ctx->txb_entropy_ctx[i]);
ctx->txb_entropy_ctx[i] = 0;
#endif
}
for (i = 0; i < 2; ++i) {
aom_free(ctx->color_index_map[i]);
ctx->color_index_map[i] = 0;
}
}
static void alloc_tree_contexts(AV1_COMMON *cm, PC_TREE *tree, int num_pix,
int is_leaf) {
alloc_mode_context(cm, num_pix, &tree->none);
if (is_leaf) return;
alloc_mode_context(cm, num_pix / 2, &tree->horizontal[0]);
alloc_mode_context(cm, num_pix / 2, &tree->vertical[0]);
alloc_mode_context(cm, num_pix / 2, &tree->horizontal[1]);
alloc_mode_context(cm, num_pix / 2, &tree->vertical[1]);
#if CONFIG_EXT_PARTITION_TYPES
alloc_mode_context(cm, num_pix / 4, &tree->horizontala[0]);
alloc_mode_context(cm, num_pix / 4, &tree->horizontala[1]);
alloc_mode_context(cm, num_pix / 2, &tree->horizontala[2]);
alloc_mode_context(cm, num_pix / 2, &tree->horizontalb[0]);
alloc_mode_context(cm, num_pix / 4, &tree->horizontalb[1]);
alloc_mode_context(cm, num_pix / 4, &tree->horizontalb[2]);
alloc_mode_context(cm, num_pix / 4, &tree->verticala[0]);
alloc_mode_context(cm, num_pix / 4, &tree->verticala[1]);
alloc_mode_context(cm, num_pix / 2, &tree->verticala[2]);
alloc_mode_context(cm, num_pix / 2, &tree->verticalb[0]);
alloc_mode_context(cm, num_pix / 4, &tree->verticalb[1]);
alloc_mode_context(cm, num_pix / 4, &tree->verticalb[2]);
for (int i = 0; i < 4; ++i) {
alloc_mode_context(cm, num_pix / 4, &tree->horizontal4[i]);
alloc_mode_context(cm, num_pix / 4, &tree->vertical4[i]);
}
#endif // CONFIG_EXT_PARTITION_TYPES
}
static void free_tree_contexts(PC_TREE *tree, const int num_planes) {
#if CONFIG_EXT_PARTITION_TYPES
int i;
for (i = 0; i < 3; i++) {
free_mode_context(&tree->horizontala[i], num_planes);
free_mode_context(&tree->horizontalb[i], num_planes);
free_mode_context(&tree->verticala[i], num_planes);
free_mode_context(&tree->verticalb[i], num_planes);
}
for (i = 0; i < 4; ++i) {
free_mode_context(&tree->horizontal4[i], num_planes);
free_mode_context(&tree->vertical4[i], num_planes);
}
#endif // CONFIG_EXT_PARTITION_TYPES
free_mode_context(&tree->none, num_planes);
free_mode_context(&tree->horizontal[0], num_planes);
free_mode_context(&tree->horizontal[1], num_planes);
free_mode_context(&tree->vertical[0], num_planes);
free_mode_context(&tree->vertical[1], num_planes);
}
// This function sets up a tree of contexts such that at each square
// partition level. There are contexts for none, horizontal, vertical, and
// split. Along with a block_size value and a selected block_size which
// represents the state of our search.
void av1_setup_pc_tree(AV1_COMMON *cm, ThreadData *td) {
int i, j;
#if CONFIG_EXT_PARTITION
const int tree_nodes_inc = 1024;
#else
const int tree_nodes_inc = 256;
#endif // CONFIG_EXT_PARTITION
const int leaf_factor = 4;
#if CONFIG_EXT_PARTITION
const int leaf_nodes = 256 * leaf_factor;
const int tree_nodes = tree_nodes_inc + 256 + 64 + 16 + 4 + 1;
#else
const int leaf_nodes = 64 * leaf_factor;
const int tree_nodes = tree_nodes_inc + 64 + 16 + 4 + 1;
#endif // CONFIG_EXT_PARTITION
int pc_tree_index = 0;
PC_TREE *this_pc;
int square_index = 1;
int nodes;
aom_free(td->pc_tree);
CHECK_MEM_ERROR(cm, td->pc_tree,
aom_calloc(tree_nodes, sizeof(*td->pc_tree)));
this_pc = &td->pc_tree[0];
// Sets up all the leaf nodes in the tree.
for (pc_tree_index = 0; pc_tree_index < leaf_nodes; ++pc_tree_index) {
PC_TREE *const tree = &td->pc_tree[pc_tree_index];
tree->block_size = square[0];
alloc_tree_contexts(cm, tree, 16, 1);
}
// Each node has 4 leaf nodes, fill each block_size level of the tree
// from leafs to the root.
for (nodes = leaf_nodes >> 2; nodes > 0; nodes >>= 2) {
for (i = 0; i < nodes; ++i) {
PC_TREE *const tree = &td->pc_tree[pc_tree_index];
alloc_tree_contexts(cm, tree, 16 << (2 * square_index), 0);
tree->block_size = square[square_index];
for (j = 0; j < 4; j++) tree->split[j] = this_pc++;
++pc_tree_index;
}
++square_index;
}
// Set up the root node for the largest superblock size
i = MAX_MIB_SIZE_LOG2 - MIN_MIB_SIZE_LOG2;
td->pc_root[i] = &td->pc_tree[tree_nodes - 1];
td->pc_root[i]->none.best_mode_index = 2;
// Set up the root nodes for the rest of the possible superblock sizes
while (--i >= 0) {
td->pc_root[i] = td->pc_root[i + 1]->split[0];
td->pc_root[i]->none.best_mode_index = 2;
}
}
void av1_free_pc_tree(ThreadData *td, const int num_planes) {
#if CONFIG_EXT_PARTITION
const int tree_nodes_inc = 1024;
#else
const int tree_nodes_inc = 256;
#endif // CONFIG_EXT_PARTITION
#if CONFIG_EXT_PARTITION
const int tree_nodes = tree_nodes_inc + 256 + 64 + 16 + 4 + 1;
#else
const int tree_nodes = tree_nodes_inc + 64 + 16 + 4 + 1;
#endif // CONFIG_EXT_PARTITION
int i;
for (i = 0; i < tree_nodes; ++i)
free_tree_contexts(&td->pc_tree[i], num_planes);
aom_free(td->pc_tree);
td->pc_tree = NULL;
}