| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <assert.h> |
| #include <stdio.h> |
| #include <limits.h> |
| |
| #include "vpx/vpx_encoder.h" |
| #include "vpx_mem/vpx_mem.h" |
| |
| #include "vp9/common/vp9_entropymode.h" |
| #include "vp9/common/vp9_entropymv.h" |
| #include "vp9/common/vp9_findnearmv.h" |
| #include "vp9/common/vp9_tile_common.h" |
| #include "vp9/common/vp9_seg_common.h" |
| #include "vp9/common/vp9_pred_common.h" |
| #include "vp9/common/vp9_entropy.h" |
| #include "vp9/common/vp9_entropymv.h" |
| #include "vp9/common/vp9_mvref_common.h" |
| #include "vp9/common/vp9_treecoder.h" |
| #include "vp9/common/vp9_systemdependent.h" |
| #include "vp9/common/vp9_pragmas.h" |
| |
| #include "vp9/encoder/vp9_mcomp.h" |
| #include "vp9/encoder/vp9_encodemv.h" |
| #include "vp9/encoder/vp9_bitstream.h" |
| #include "vp9/encoder/vp9_segmentation.h" |
| #include "vp9/encoder/vp9_subexp.h" |
| #include "vp9/encoder/vp9_write_bit_buffer.h" |
| |
| |
| #if defined(SECTIONBITS_OUTPUT) |
| unsigned __int64 Sectionbits[500]; |
| #endif |
| |
| #ifdef ENTROPY_STATS |
| int intra_mode_stats[INTRA_MODES] |
| [INTRA_MODES] |
| [INTRA_MODES]; |
| vp9_coeff_stats tree_update_hist[TX_SIZES][BLOCK_TYPES]; |
| |
| extern unsigned int active_section; |
| #endif |
| |
| |
| #ifdef MODE_STATS |
| int64_t tx_count_32x32p_stats[TX_SIZE_CONTEXTS][TX_SIZES]; |
| int64_t tx_count_16x16p_stats[TX_SIZE_CONTEXTS][TX_SIZES - 1]; |
| int64_t tx_count_8x8p_stats[TX_SIZE_CONTEXTS][TX_SIZES - 2]; |
| int64_t switchable_interp_stats[SWITCHABLE_FILTERS+1] |
| [SWITCHABLE_FILTERS]; |
| |
| void init_tx_count_stats() { |
| vp9_zero(tx_count_32x32p_stats); |
| vp9_zero(tx_count_16x16p_stats); |
| vp9_zero(tx_count_8x8p_stats); |
| } |
| |
| void init_switchable_interp_stats() { |
| vp9_zero(switchable_interp_stats); |
| } |
| |
| static void update_tx_count_stats(VP9_COMMON *cm) { |
| int i, j; |
| for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
| for (j = 0; j < TX_SIZES; j++) { |
| tx_count_32x32p_stats[i][j] += cm->fc.tx_count_32x32p[i][j]; |
| } |
| } |
| for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
| for (j = 0; j < TX_SIZES - 1; j++) { |
| tx_count_16x16p_stats[i][j] += cm->fc.tx_count_16x16p[i][j]; |
| } |
| } |
| for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
| for (j = 0; j < TX_SIZES - 2; j++) { |
| tx_count_8x8p_stats[i][j] += cm->fc.tx_count_8x8p[i][j]; |
| } |
| } |
| } |
| |
| static void update_switchable_interp_stats(VP9_COMMON *cm) { |
| int i, j; |
| for (i = 0; i < SWITCHABLE_FILTERS+1; ++i) |
| for (j = 0; j < SWITCHABLE_FILTERS; ++j) { |
| switchable_interp_stats[i][j] += cm->fc.switchable_interp_count[i][j]; |
| } |
| } |
| |
| void write_tx_count_stats() { |
| int i, j; |
| FILE *fp = fopen("tx_count.bin", "wb"); |
| fwrite(tx_count_32x32p_stats, sizeof(tx_count_32x32p_stats), 1, fp); |
| fwrite(tx_count_16x16p_stats, sizeof(tx_count_16x16p_stats), 1, fp); |
| fwrite(tx_count_8x8p_stats, sizeof(tx_count_8x8p_stats), 1, fp); |
| fclose(fp); |
| |
| printf( |
| "vp9_default_tx_count_32x32p[TX_SIZE_CONTEXTS][TX_SIZES] = {\n"); |
| for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
| printf(" { "); |
| for (j = 0; j < TX_SIZES; j++) { |
| printf("%"PRId64", ", tx_count_32x32p_stats[i][j]); |
| } |
| printf("},\n"); |
| } |
| printf("};\n"); |
| printf( |
| "vp9_default_tx_count_16x16p[TX_SIZE_CONTEXTS][TX_SIZES-1] = {\n"); |
| for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
| printf(" { "); |
| for (j = 0; j < TX_SIZES - 1; j++) { |
| printf("%"PRId64", ", tx_count_16x16p_stats[i][j]); |
| } |
| printf("},\n"); |
| } |
| printf("};\n"); |
| printf( |
| "vp9_default_tx_count_8x8p[TX_SIZE_CONTEXTS][TX_SIZES-2] = {\n"); |
| for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
| printf(" { "); |
| for (j = 0; j < TX_SIZES - 2; j++) { |
| printf("%"PRId64", ", tx_count_8x8p_stats[i][j]); |
| } |
| printf("},\n"); |
| } |
| printf("};\n"); |
| } |
| |
| void write_switchable_interp_stats() { |
| int i, j; |
| FILE *fp = fopen("switchable_interp.bin", "wb"); |
| fwrite(switchable_interp_stats, sizeof(switchable_interp_stats), 1, fp); |
| fclose(fp); |
| |
| printf( |
| "vp9_default_switchable_filter_count[SWITCHABLE_FILTERS+1]" |
| "[SWITCHABLE_FILTERS] = {\n"); |
| for (i = 0; i < SWITCHABLE_FILTERS+1; i++) { |
| printf(" { "); |
| for (j = 0; j < SWITCHABLE_FILTERS; j++) { |
| printf("%"PRId64", ", switchable_interp_stats[i][j]); |
| } |
| printf("},\n"); |
| } |
| printf("};\n"); |
| } |
| #endif |
| |
| static INLINE void write_be32(uint8_t *p, int value) { |
| p[0] = value >> 24; |
| p[1] = value >> 16; |
| p[2] = value >> 8; |
| p[3] = value; |
| } |
| |
| void vp9_encode_unsigned_max(struct vp9_write_bit_buffer *wb, |
| int data, int max) { |
| vp9_wb_write_literal(wb, data, get_unsigned_bits(max)); |
| } |
| |
| static void update_mode( |
| vp9_writer *w, |
| int n, |
| vp9_tree tree, |
| vp9_prob Pnew[/* n-1 */], |
| vp9_prob Pcur[/* n-1 */], |
| unsigned int bct[/* n-1 */] [2], |
| const unsigned int num_events[/* n */] |
| ) { |
| int i = 0; |
| |
| vp9_tree_probs_from_distribution(tree, Pnew, bct, num_events, 0); |
| n--; |
| |
| for (i = 0; i < n; ++i) { |
| vp9_cond_prob_diff_update(w, &Pcur[i], MODE_UPDATE_PROB, bct[i]); |
| } |
| } |
| |
| static void update_mbintra_mode_probs(VP9_COMP* const cpi, |
| vp9_writer* const bc) { |
| VP9_COMMON *const cm = &cpi->common; |
| int j; |
| vp9_prob pnew[INTRA_MODES - 1]; |
| unsigned int bct[INTRA_MODES - 1][2]; |
| |
| for (j = 0; j < BLOCK_SIZE_GROUPS; j++) |
| update_mode(bc, INTRA_MODES, vp9_intra_mode_tree, pnew, |
| cm->fc.y_mode_prob[j], bct, |
| (unsigned int *)cpi->y_mode_count[j]); |
| } |
| |
| static void write_selected_tx_size(const VP9_COMP *cpi, TX_SIZE tx_size, |
| BLOCK_SIZE bsize, vp9_writer *w) { |
| const MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
| const vp9_prob *tx_probs = get_tx_probs2(xd, &cpi->common.fc.tx_probs); |
| vp9_write(w, tx_size != TX_4X4, tx_probs[0]); |
| if (bsize >= BLOCK_16X16 && tx_size != TX_4X4) { |
| vp9_write(w, tx_size != TX_8X8, tx_probs[1]); |
| if (bsize >= BLOCK_32X32 && tx_size != TX_8X8) |
| vp9_write(w, tx_size != TX_16X16, tx_probs[2]); |
| } |
| } |
| |
| static int write_skip_coeff(const VP9_COMP *cpi, int segment_id, MODE_INFO *m, |
| vp9_writer *w) { |
| const MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
| if (vp9_segfeature_active(&cpi->common.seg, segment_id, SEG_LVL_SKIP)) { |
| return 1; |
| } else { |
| const int skip_coeff = m->mbmi.skip_coeff; |
| vp9_write(w, skip_coeff, vp9_get_pred_prob_mbskip(&cpi->common, xd)); |
| return skip_coeff; |
| } |
| } |
| |
| void vp9_update_skip_probs(VP9_COMP *cpi, vp9_writer *w) { |
| VP9_COMMON *cm = &cpi->common; |
| int k; |
| |
| for (k = 0; k < MBSKIP_CONTEXTS; ++k) |
| vp9_cond_prob_diff_update(w, &cm->fc.mbskip_probs[k], |
| MODE_UPDATE_PROB, cm->counts.mbskip[k]); |
| } |
| |
| static void write_intra_mode(vp9_writer *bc, int m, const vp9_prob *p) { |
| write_token(bc, vp9_intra_mode_tree, p, vp9_intra_mode_encodings + m); |
| } |
| |
| static void update_switchable_interp_probs(VP9_COMP *const cpi, |
| vp9_writer* const bc) { |
| VP9_COMMON *const cm = &cpi->common; |
| unsigned int branch_ct[SWITCHABLE_FILTERS + 1] |
| [SWITCHABLE_FILTERS - 1][2]; |
| vp9_prob new_prob[SWITCHABLE_FILTERS + 1][SWITCHABLE_FILTERS - 1]; |
| int i, j; |
| for (j = 0; j <= SWITCHABLE_FILTERS; ++j) { |
| vp9_tree_probs_from_distribution( |
| vp9_switchable_interp_tree, |
| new_prob[j], branch_ct[j], |
| cm->counts.switchable_interp[j], 0); |
| } |
| for (j = 0; j <= SWITCHABLE_FILTERS; ++j) { |
| for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i) { |
| vp9_cond_prob_diff_update(bc, &cm->fc.switchable_interp_prob[j][i], |
| MODE_UPDATE_PROB, branch_ct[j][i]); |
| } |
| } |
| #ifdef MODE_STATS |
| if (!cpi->dummy_packing) |
| update_switchable_interp_stats(cm); |
| #endif |
| } |
| |
| static void update_inter_mode_probs(VP9_COMMON *cm, vp9_writer* const bc) { |
| int i, j; |
| |
| for (i = 0; i < INTER_MODE_CONTEXTS; ++i) { |
| unsigned int branch_ct[INTER_MODES - 1][2]; |
| vp9_prob new_prob[INTER_MODES - 1]; |
| |
| vp9_tree_probs_from_distribution(vp9_inter_mode_tree, |
| new_prob, branch_ct, |
| cm->counts.inter_mode[i], NEARESTMV); |
| |
| for (j = 0; j < INTER_MODES - 1; ++j) |
| vp9_cond_prob_diff_update(bc, &cm->fc.inter_mode_probs[i][j], |
| MODE_UPDATE_PROB, branch_ct[j]); |
| } |
| } |
| |
| static void pack_mb_tokens(vp9_writer* const bc, |
| TOKENEXTRA **tp, |
| const TOKENEXTRA *const stop) { |
| TOKENEXTRA *p = *tp; |
| |
| while (p < stop) { |
| const int t = p->token; |
| const struct vp9_token *const a = vp9_coef_encodings + t; |
| const vp9_extra_bit *const b = vp9_extra_bits + t; |
| int i = 0; |
| const vp9_prob *pp; |
| int v = a->value; |
| int n = a->len; |
| vp9_prob probs[ENTROPY_NODES]; |
| |
| if (t == EOSB_TOKEN) { |
| ++p; |
| break; |
| } |
| if (t >= TWO_TOKEN) { |
| vp9_model_to_full_probs(p->context_tree, probs); |
| pp = probs; |
| } else { |
| pp = p->context_tree; |
| } |
| assert(pp != 0); |
| |
| /* skip one or two nodes */ |
| if (p->skip_eob_node) { |
| n -= p->skip_eob_node; |
| i = 2 * p->skip_eob_node; |
| } |
| |
| do { |
| const int bb = (v >> --n) & 1; |
| vp9_write(bc, bb, pp[i >> 1]); |
| i = vp9_coef_tree[i + bb]; |
| } while (n); |
| |
| if (b->base_val) { |
| const int e = p->extra, l = b->len; |
| |
| if (l) { |
| const unsigned char *pb = b->prob; |
| int v = e >> 1; |
| int n = l; /* number of bits in v, assumed nonzero */ |
| int i = 0; |
| |
| do { |
| const int bb = (v >> --n) & 1; |
| vp9_write(bc, bb, pb[i >> 1]); |
| i = b->tree[i + bb]; |
| } while (n); |
| } |
| |
| vp9_write_bit(bc, e & 1); |
| } |
| ++p; |
| } |
| |
| *tp = p; |
| } |
| |
| static void write_sb_mv_ref(vp9_writer *w, MB_PREDICTION_MODE mode, |
| const vp9_prob *p) { |
| assert(is_inter_mode(mode)); |
| write_token(w, vp9_inter_mode_tree, p, |
| &vp9_inter_mode_encodings[mode - NEARESTMV]); |
| } |
| |
| |
| static void write_segment_id(vp9_writer *w, const struct segmentation *seg, |
| int segment_id) { |
| if (seg->enabled && seg->update_map) |
| treed_write(w, vp9_segment_tree, seg->tree_probs, segment_id, 3); |
| } |
| |
| // This function encodes the reference frame |
| static void encode_ref_frame(VP9_COMP *cpi, vp9_writer *bc) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mi = &xd->mode_info_context->mbmi; |
| const int segment_id = mi->segment_id; |
| int seg_ref_active = vp9_segfeature_active(&cm->seg, segment_id, |
| SEG_LVL_REF_FRAME); |
| // If segment level coding of this signal is disabled... |
| // or the segment allows multiple reference frame options |
| if (!seg_ref_active) { |
| // does the feature use compound prediction or not |
| // (if not specified at the frame/segment level) |
| if (cm->comp_pred_mode == HYBRID_PREDICTION) { |
| vp9_write(bc, mi->ref_frame[1] > INTRA_FRAME, |
| vp9_get_pred_prob_comp_inter_inter(cm, xd)); |
| } else { |
| assert((mi->ref_frame[1] <= INTRA_FRAME) == |
| (cm->comp_pred_mode == SINGLE_PREDICTION_ONLY)); |
| } |
| |
| if (mi->ref_frame[1] > INTRA_FRAME) { |
| vp9_write(bc, mi->ref_frame[0] == GOLDEN_FRAME, |
| vp9_get_pred_prob_comp_ref_p(cm, xd)); |
| } else { |
| vp9_write(bc, mi->ref_frame[0] != LAST_FRAME, |
| vp9_get_pred_prob_single_ref_p1(cm, xd)); |
| if (mi->ref_frame[0] != LAST_FRAME) |
| vp9_write(bc, mi->ref_frame[0] != GOLDEN_FRAME, |
| vp9_get_pred_prob_single_ref_p2(cm, xd)); |
| } |
| } else { |
| assert(mi->ref_frame[1] <= INTRA_FRAME); |
| assert(vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME) == |
| mi->ref_frame[0]); |
| } |
| |
| // if using the prediction mdoel we have nothing further to do because |
| // the reference frame is fully coded by the segment |
| } |
| |
| static void pack_inter_mode_mvs(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc) { |
| VP9_COMMON *const cm = &cpi->common; |
| const nmv_context *nmvc = &cm->fc.nmvc; |
| MACROBLOCK *const x = &cpi->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct segmentation *seg = &cm->seg; |
| MB_MODE_INFO *const mi = &m->mbmi; |
| const MV_REFERENCE_FRAME rf = mi->ref_frame[0]; |
| const MB_PREDICTION_MODE mode = mi->mode; |
| const int segment_id = mi->segment_id; |
| int skip_coeff; |
| const BLOCK_SIZE bsize = mi->sb_type; |
| const int allow_hp = xd->allow_high_precision_mv; |
| |
| x->partition_info = x->pi + (m - cm->mi); |
| |
| #ifdef ENTROPY_STATS |
| active_section = 9; |
| #endif |
| |
| if (seg->update_map) { |
| if (seg->temporal_update) { |
| const int pred_flag = mi->seg_id_predicted; |
| vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd); |
| vp9_write(bc, pred_flag, pred_prob); |
| if (!pred_flag) |
| write_segment_id(bc, seg, segment_id); |
| } else { |
| write_segment_id(bc, seg, segment_id); |
| } |
| } |
| |
| skip_coeff = write_skip_coeff(cpi, segment_id, m, bc); |
| |
| if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) |
| vp9_write(bc, rf != INTRA_FRAME, |
| vp9_get_pred_prob_intra_inter(cm, xd)); |
| |
| if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT && |
| !(rf != INTRA_FRAME && |
| (skip_coeff || vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)))) { |
| write_selected_tx_size(cpi, mi->tx_size, bsize, bc); |
| } |
| |
| if (rf == INTRA_FRAME) { |
| #ifdef ENTROPY_STATS |
| active_section = 6; |
| #endif |
| |
| if (bsize >= BLOCK_8X8) { |
| write_intra_mode(bc, mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]); |
| } else { |
| int idx, idy; |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; |
| for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { |
| for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { |
| const MB_PREDICTION_MODE bm = m->bmi[idy * 2 + idx].as_mode; |
| write_intra_mode(bc, bm, cm->fc.y_mode_prob[0]); |
| } |
| } |
| } |
| write_intra_mode(bc, mi->uv_mode, cm->fc.uv_mode_prob[mode]); |
| } else { |
| vp9_prob *mv_ref_p; |
| encode_ref_frame(cpi, bc); |
| mv_ref_p = cpi->common.fc.inter_mode_probs[mi->mode_context[rf]]; |
| |
| #ifdef ENTROPY_STATS |
| active_section = 3; |
| #endif |
| |
| // If segment skip is not enabled code the mode. |
| if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)) { |
| if (bsize >= BLOCK_8X8) { |
| write_sb_mv_ref(bc, mode, mv_ref_p); |
| ++cm->counts.inter_mode[mi->mode_context[rf]] |
| [inter_mode_offset(mode)]; |
| } |
| } |
| |
| if (cm->mcomp_filter_type == SWITCHABLE) { |
| const int ctx = vp9_get_pred_context_switchable_interp(xd); |
| write_token(bc, vp9_switchable_interp_tree, |
| cm->fc.switchable_interp_prob[ctx], |
| &vp9_switchable_interp_encodings[mi->interp_filter]); |
| } else { |
| assert(mi->interp_filter == cm->mcomp_filter_type); |
| } |
| |
| if (bsize < BLOCK_8X8) { |
| int j; |
| MB_PREDICTION_MODE blockmode; |
| int_mv blockmv; |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; |
| int idx, idy; |
| for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { |
| for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { |
| j = idy * 2 + idx; |
| blockmode = x->partition_info->bmi[j].mode; |
| blockmv = m->bmi[j].as_mv[0]; |
| write_sb_mv_ref(bc, blockmode, mv_ref_p); |
| ++cm->counts.inter_mode[mi->mode_context[rf]] |
| [inter_mode_offset(blockmode)]; |
| |
| if (blockmode == NEWMV) { |
| #ifdef ENTROPY_STATS |
| active_section = 11; |
| #endif |
| vp9_encode_mv(cpi, bc, &blockmv.as_mv, &mi->best_mv.as_mv, |
| nmvc, allow_hp); |
| |
| if (mi->ref_frame[1] > INTRA_FRAME) |
| vp9_encode_mv(cpi, bc, |
| &m->bmi[j].as_mv[1].as_mv, |
| &mi->best_second_mv.as_mv, |
| nmvc, allow_hp); |
| } |
| } |
| } |
| } else if (mode == NEWMV) { |
| #ifdef ENTROPY_STATS |
| active_section = 5; |
| #endif |
| vp9_encode_mv(cpi, bc, &mi->mv[0].as_mv, &mi->best_mv.as_mv, |
| nmvc, allow_hp); |
| |
| if (mi->ref_frame[1] > INTRA_FRAME) |
| vp9_encode_mv(cpi, bc, &mi->mv[1].as_mv, &mi->best_second_mv.as_mv, |
| nmvc, allow_hp); |
| } |
| } |
| } |
| |
| static void write_mb_modes_kf(const VP9_COMP *cpi, MODE_INFO *m, |
| vp9_writer *bc) { |
| const VP9_COMMON *const cm = &cpi->common; |
| const MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
| const struct segmentation *const seg = &cm->seg; |
| const int ym = m->mbmi.mode; |
| const int mis = cm->mode_info_stride; |
| const int segment_id = m->mbmi.segment_id; |
| |
| if (seg->update_map) |
| write_segment_id(bc, seg, m->mbmi.segment_id); |
| |
| write_skip_coeff(cpi, segment_id, m, bc); |
| |
| if (m->mbmi.sb_type >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT) |
| write_selected_tx_size(cpi, m->mbmi.tx_size, m->mbmi.sb_type, bc); |
| |
| if (m->mbmi.sb_type >= BLOCK_8X8) { |
| const MB_PREDICTION_MODE A = above_block_mode(m, 0, mis); |
| const MB_PREDICTION_MODE L = xd->left_available ? |
| left_block_mode(m, 0) : DC_PRED; |
| write_intra_mode(bc, ym, vp9_kf_y_mode_prob[A][L]); |
| } else { |
| int idx, idy; |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[m->mbmi.sb_type]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[m->mbmi.sb_type]; |
| for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { |
| for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { |
| const int i = idy * 2 + idx; |
| const MB_PREDICTION_MODE A = above_block_mode(m, i, mis); |
| const MB_PREDICTION_MODE L = (xd->left_available || idx) ? |
| left_block_mode(m, i) : DC_PRED; |
| const int bm = m->bmi[i].as_mode; |
| #ifdef ENTROPY_STATS |
| ++intra_mode_stats[A][L][bm]; |
| #endif |
| write_intra_mode(bc, bm, vp9_kf_y_mode_prob[A][L]); |
| } |
| } |
| } |
| |
| write_intra_mode(bc, m->mbmi.uv_mode, vp9_kf_uv_mode_prob[ym]); |
| } |
| |
| static void write_modes_b(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc, |
| TOKENEXTRA **tok, TOKENEXTRA *tok_end, |
| int mi_row, int mi_col) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
| |
| if (m->mbmi.sb_type < BLOCK_8X8) |
| if (xd->ab_index > 0) |
| return; |
| |
| xd->mode_info_context = m; |
| set_mi_row_col(&cpi->common, xd, |
| mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type], |
| mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type]); |
| |
| if (cm->frame_type == KEY_FRAME || cm->intra_only) { |
| write_mb_modes_kf(cpi, m, bc); |
| #ifdef ENTROPY_STATS |
| active_section = 8; |
| #endif |
| } else { |
| pack_inter_mode_mvs(cpi, m, bc); |
| #ifdef ENTROPY_STATS |
| active_section = 1; |
| #endif |
| } |
| |
| assert(*tok < tok_end); |
| pack_mb_tokens(bc, tok, tok_end); |
| } |
| |
| static void write_modes_sb(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc, |
| TOKENEXTRA **tok, TOKENEXTRA *tok_end, |
| int mi_row, int mi_col, BLOCK_SIZE bsize) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *xd = &cpi->mb.e_mbd; |
| const int mis = cm->mode_info_stride; |
| int bsl = b_width_log2(bsize); |
| int bs = (1 << bsl) / 4; // mode_info step for subsize |
| int n; |
| PARTITION_TYPE partition = PARTITION_NONE; |
| BLOCK_SIZE subsize; |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) |
| return; |
| |
| partition = partition_lookup[bsl][m->mbmi.sb_type]; |
| |
| if (bsize < BLOCK_8X8) |
| if (xd->ab_index > 0) |
| return; |
| |
| if (bsize >= BLOCK_8X8) { |
| int pl; |
| const int idx = check_bsize_coverage(bs, cm->mi_rows, cm->mi_cols, |
| mi_row, mi_col); |
| set_partition_seg_context(cm, xd, mi_row, mi_col); |
| pl = partition_plane_context(xd, bsize); |
| // encode the partition information |
| if (idx == 0) |
| write_token(bc, vp9_partition_tree, |
| cm->fc.partition_prob[cm->frame_type][pl], |
| vp9_partition_encodings + partition); |
| else if (idx > 0) |
| vp9_write(bc, partition == PARTITION_SPLIT, |
| cm->fc.partition_prob[cm->frame_type][pl][idx]); |
| } |
| |
| subsize = get_subsize(bsize, partition); |
| *(get_sb_index(xd, subsize)) = 0; |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col); |
| break; |
| case PARTITION_HORZ: |
| write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col); |
| *(get_sb_index(xd, subsize)) = 1; |
| if ((mi_row + bs) < cm->mi_rows) |
| write_modes_b(cpi, m + bs * mis, bc, tok, tok_end, mi_row + bs, mi_col); |
| break; |
| case PARTITION_VERT: |
| write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col); |
| *(get_sb_index(xd, subsize)) = 1; |
| if ((mi_col + bs) < cm->mi_cols) |
| write_modes_b(cpi, m + bs, bc, tok, tok_end, mi_row, mi_col + bs); |
| break; |
| case PARTITION_SPLIT: |
| for (n = 0; n < 4; n++) { |
| int j = n >> 1, i = n & 0x01; |
| *(get_sb_index(xd, subsize)) = n; |
| write_modes_sb(cpi, m + j * bs * mis + i * bs, bc, tok, tok_end, |
| mi_row + j * bs, mi_col + i * bs, subsize); |
| } |
| break; |
| default: |
| assert(0); |
| } |
| |
| // update partition context |
| if (bsize >= BLOCK_8X8 && |
| (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) { |
| set_partition_seg_context(cm, xd, mi_row, mi_col); |
| update_partition_context(xd, subsize, bsize); |
| } |
| } |
| |
| static void write_modes(VP9_COMP *cpi, vp9_writer* const bc, |
| TOKENEXTRA **tok, TOKENEXTRA *tok_end) { |
| VP9_COMMON *const cm = &cpi->common; |
| const int mis = cm->mode_info_stride; |
| MODE_INFO *m, *m_ptr = cm->mi; |
| int mi_row, mi_col; |
| |
| m_ptr += cm->cur_tile_mi_col_start + cm->cur_tile_mi_row_start * mis; |
| |
| for (mi_row = cm->cur_tile_mi_row_start; mi_row < cm->cur_tile_mi_row_end; |
| mi_row += 8, m_ptr += 8 * mis) { |
| m = m_ptr; |
| vp9_zero(cm->left_seg_context); |
| for (mi_col = cm->cur_tile_mi_col_start; mi_col < cm->cur_tile_mi_col_end; |
| mi_col += MI_BLOCK_SIZE, m += MI_BLOCK_SIZE) |
| write_modes_sb(cpi, m, bc, tok, tok_end, mi_row, mi_col, BLOCK_64X64); |
| } |
| } |
| |
| /* This function is used for debugging probability trees. */ |
| static void print_prob_tree(vp9_coeff_probs *coef_probs, int block_types) { |
| /* print coef probability tree */ |
| int i, j, k, l, m; |
| FILE *f = fopen("enc_tree_probs.txt", "a"); |
| fprintf(f, "{\n"); |
| for (i = 0; i < block_types; i++) { |
| fprintf(f, " {\n"); |
| for (j = 0; j < REF_TYPES; ++j) { |
| fprintf(f, " {\n"); |
| for (k = 0; k < COEF_BANDS; k++) { |
| fprintf(f, " {\n"); |
| for (l = 0; l < PREV_COEF_CONTEXTS; l++) { |
| fprintf(f, " {"); |
| for (m = 0; m < ENTROPY_NODES; m++) { |
| fprintf(f, "%3u, ", |
| (unsigned int)(coef_probs[i][j][k][l][m])); |
| } |
| } |
| fprintf(f, " }\n"); |
| } |
| fprintf(f, " }\n"); |
| } |
| fprintf(f, " }\n"); |
| } |
| fprintf(f, "}\n"); |
| fclose(f); |
| } |
| |
| static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size) { |
| vp9_coeff_probs_model *coef_probs = cpi->frame_coef_probs[tx_size]; |
| vp9_coeff_count *coef_counts = cpi->coef_counts[tx_size]; |
| unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] = |
| cpi->common.counts.eob_branch[tx_size]; |
| vp9_coeff_stats *coef_branch_ct = cpi->frame_branch_ct[tx_size]; |
| vp9_prob full_probs[ENTROPY_NODES]; |
| int i, j, k, l; |
| |
| for (i = 0; i < BLOCK_TYPES; ++i) { |
| for (j = 0; j < REF_TYPES; ++j) { |
| for (k = 0; k < COEF_BANDS; ++k) { |
| for (l = 0; l < PREV_COEF_CONTEXTS; ++l) { |
| if (l >= 3 && k == 0) |
| continue; |
| vp9_tree_probs_from_distribution(vp9_coef_tree, |
| full_probs, |
| coef_branch_ct[i][j][k][l], |
| coef_counts[i][j][k][l], 0); |
| vpx_memcpy(coef_probs[i][j][k][l], full_probs, |
| sizeof(vp9_prob) * UNCONSTRAINED_NODES); |
| coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] - |
| coef_branch_ct[i][j][k][l][0][0]; |
| coef_probs[i][j][k][l][0] = |
| get_binary_prob(coef_branch_ct[i][j][k][l][0][0], |
| coef_branch_ct[i][j][k][l][0][1]); |
| #ifdef ENTROPY_STATS |
| if (!cpi->dummy_packing) { |
| int t; |
| for (t = 0; t < MAX_ENTROPY_TOKENS; ++t) |
| context_counters[tx_size][i][j][k][l][t] += |
| coef_counts[i][j][k][l][t]; |
| context_counters[tx_size][i][j][k][l][MAX_ENTROPY_TOKENS] += |
| eob_branch_ct[i][j][k][l]; |
| } |
| #endif |
| } |
| } |
| } |
| } |
| } |
| |
| static void build_coeff_contexts(VP9_COMP *cpi) { |
| TX_SIZE t; |
| for (t = TX_4X4; t <= TX_32X32; t++) |
| build_tree_distribution(cpi, t); |
| } |
| |
| static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi, |
| TX_SIZE tx_size) { |
| vp9_coeff_probs_model *new_frame_coef_probs = cpi->frame_coef_probs[tx_size]; |
| vp9_coeff_probs_model *old_frame_coef_probs = |
| cpi->common.fc.coef_probs[tx_size]; |
| vp9_coeff_stats *frame_branch_ct = cpi->frame_branch_ct[tx_size]; |
| const vp9_prob upd = VP9_COEF_UPDATE_PROB; |
| const int entropy_nodes_update = UNCONSTRAINED_NODES; |
| int i, j, k, l, t; |
| switch (cpi->sf.use_fast_coef_updates) { |
| case 0: { |
| /* dry run to see if there is any udpate at all needed */ |
| int savings = 0; |
| int update[2] = {0, 0}; |
| for (i = 0; i < BLOCK_TYPES; ++i) { |
| for (j = 0; j < REF_TYPES; ++j) { |
| for (k = 0; k < COEF_BANDS; ++k) { |
| for (l = 0; l < PREV_COEF_CONTEXTS; ++l) { |
| for (t = 0; t < entropy_nodes_update; ++t) { |
| vp9_prob newp = new_frame_coef_probs[i][j][k][l][t]; |
| const vp9_prob oldp = old_frame_coef_probs[i][j][k][l][t]; |
| int s; |
| int u = 0; |
| |
| if (l >= 3 && k == 0) |
| continue; |
| if (t == PIVOT_NODE) |
| s = vp9_prob_diff_update_savings_search_model( |
| frame_branch_ct[i][j][k][l][0], |
| old_frame_coef_probs[i][j][k][l], &newp, upd, i, j); |
| else |
| s = vp9_prob_diff_update_savings_search( |
| frame_branch_ct[i][j][k][l][t], oldp, &newp, upd); |
| if (s > 0 && newp != oldp) |
| u = 1; |
| if (u) |
| savings += s - (int)(vp9_cost_zero(upd)); |
| else |
| savings -= (int)(vp9_cost_zero(upd)); |
| update[u]++; |
| } |
| } |
| } |
| } |
| } |
| |
| // printf("Update %d %d, savings %d\n", update[0], update[1], savings); |
| /* Is coef updated at all */ |
| if (update[1] == 0 || savings < 0) { |
| vp9_write_bit(bc, 0); |
| return; |
| } |
| vp9_write_bit(bc, 1); |
| for (i = 0; i < BLOCK_TYPES; ++i) { |
| for (j = 0; j < REF_TYPES; ++j) { |
| for (k = 0; k < COEF_BANDS; ++k) { |
| for (l = 0; l < PREV_COEF_CONTEXTS; ++l) { |
| // calc probs and branch cts for this frame only |
| for (t = 0; t < entropy_nodes_update; ++t) { |
| vp9_prob newp = new_frame_coef_probs[i][j][k][l][t]; |
| vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t; |
| const vp9_prob upd = VP9_COEF_UPDATE_PROB; |
| int s; |
| int u = 0; |
| if (l >= 3 && k == 0) |
| continue; |
| if (t == PIVOT_NODE) |
| s = vp9_prob_diff_update_savings_search_model( |
| frame_branch_ct[i][j][k][l][0], |
| old_frame_coef_probs[i][j][k][l], &newp, upd, i, j); |
| else |
| s = vp9_prob_diff_update_savings_search( |
| frame_branch_ct[i][j][k][l][t], |
| *oldp, &newp, upd); |
| if (s > 0 && newp != *oldp) |
| u = 1; |
| vp9_write(bc, u, upd); |
| #ifdef ENTROPY_STATS |
| if (!cpi->dummy_packing) |
| ++tree_update_hist[tx_size][i][j][k][l][t][u]; |
| #endif |
| if (u) { |
| /* send/use new probability */ |
| vp9_write_prob_diff_update(bc, newp, *oldp); |
| *oldp = newp; |
| } |
| } |
| } |
| } |
| } |
| } |
| return; |
| } |
| |
| case 1: |
| case 2: { |
| const int prev_coef_contexts_to_update = |
| (cpi->sf.use_fast_coef_updates == 2 ? |
| PREV_COEF_CONTEXTS >> 1 : PREV_COEF_CONTEXTS); |
| const int coef_band_to_update = |
| (cpi->sf.use_fast_coef_updates == 2 ? |
| COEF_BANDS >> 1 : COEF_BANDS); |
| int updates = 0; |
| int noupdates_before_first = 0; |
| for (i = 0; i < BLOCK_TYPES; ++i) { |
| for (j = 0; j < REF_TYPES; ++j) { |
| for (k = 0; k < COEF_BANDS; ++k) { |
| for (l = 0; l < PREV_COEF_CONTEXTS; ++l) { |
| // calc probs and branch cts for this frame only |
| for (t = 0; t < entropy_nodes_update; ++t) { |
| vp9_prob newp = new_frame_coef_probs[i][j][k][l][t]; |
| vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t; |
| int s; |
| int u = 0; |
| if (l >= 3 && k == 0) |
| continue; |
| if (l >= prev_coef_contexts_to_update || |
| k >= coef_band_to_update) { |
| u = 0; |
| } else { |
| if (t == PIVOT_NODE) |
| s = vp9_prob_diff_update_savings_search_model( |
| frame_branch_ct[i][j][k][l][0], |
| old_frame_coef_probs[i][j][k][l], &newp, upd, i, j); |
| else |
| s = vp9_prob_diff_update_savings_search( |
| frame_branch_ct[i][j][k][l][t], |
| *oldp, &newp, upd); |
| if (s > 0 && newp != *oldp) |
| u = 1; |
| } |
| updates += u; |
| if (u == 0 && updates == 0) { |
| noupdates_before_first++; |
| #ifdef ENTROPY_STATS |
| if (!cpi->dummy_packing) |
| ++tree_update_hist[tx_size][i][j][k][l][t][u]; |
| #endif |
| continue; |
| } |
| if (u == 1 && updates == 1) { |
| int v; |
| // first update |
| vp9_write_bit(bc, 1); |
| for (v = 0; v < noupdates_before_first; ++v) |
| vp9_write(bc, 0, upd); |
| } |
| vp9_write(bc, u, upd); |
| #ifdef ENTROPY_STATS |
| if (!cpi->dummy_packing) |
| ++tree_update_hist[tx_size][i][j][k][l][t][u]; |
| #endif |
| if (u) { |
| /* send/use new probability */ |
| vp9_write_prob_diff_update(bc, newp, *oldp); |
| *oldp = newp; |
| } |
| } |
| } |
| } |
| } |
| } |
| if (updates == 0) { |
| vp9_write_bit(bc, 0); // no updates |
| } |
| return; |
| } |
| |
| default: |
| assert(0); |
| } |
| } |
| |
| static void update_coef_probs(VP9_COMP* const cpi, vp9_writer* const bc) { |
| const TX_MODE tx_mode = cpi->common.tx_mode; |
| |
| vp9_clear_system_state(); |
| |
| // Build the cofficient contexts based on counts collected in encode loop |
| build_coeff_contexts(cpi); |
| |
| update_coef_probs_common(bc, cpi, TX_4X4); |
| |
| // do not do this if not even allowed |
| if (tx_mode > ONLY_4X4) |
| update_coef_probs_common(bc, cpi, TX_8X8); |
| |
| if (tx_mode > ALLOW_8X8) |
| update_coef_probs_common(bc, cpi, TX_16X16); |
| |
| if (tx_mode > ALLOW_16X16) |
| update_coef_probs_common(bc, cpi, TX_32X32); |
| } |
| |
| static void encode_loopfilter(struct loopfilter *lf, |
| struct vp9_write_bit_buffer *wb) { |
| int i; |
| |
| // Encode the loop filter level and type |
| vp9_wb_write_literal(wb, lf->filter_level, 6); |
| vp9_wb_write_literal(wb, lf->sharpness_level, 3); |
| |
| // Write out loop filter deltas applied at the MB level based on mode or |
| // ref frame (if they are enabled). |
| vp9_wb_write_bit(wb, lf->mode_ref_delta_enabled); |
| |
| if (lf->mode_ref_delta_enabled) { |
| // Do the deltas need to be updated |
| vp9_wb_write_bit(wb, lf->mode_ref_delta_update); |
| if (lf->mode_ref_delta_update) { |
| // Send update |
| for (i = 0; i < MAX_REF_LF_DELTAS; i++) { |
| const int delta = lf->ref_deltas[i]; |
| |
| // Frame level data |
| if (delta != lf->last_ref_deltas[i]) { |
| lf->last_ref_deltas[i] = delta; |
| vp9_wb_write_bit(wb, 1); |
| |
| assert(delta != 0); |
| vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6); |
| vp9_wb_write_bit(wb, delta < 0); |
| } else { |
| vp9_wb_write_bit(wb, 0); |
| } |
| } |
| |
| // Send update |
| for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { |
| const int delta = lf->mode_deltas[i]; |
| if (delta != lf->last_mode_deltas[i]) { |
| lf->last_mode_deltas[i] = delta; |
| vp9_wb_write_bit(wb, 1); |
| |
| assert(delta != 0); |
| vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6); |
| vp9_wb_write_bit(wb, delta < 0); |
| } else { |
| vp9_wb_write_bit(wb, 0); |
| } |
| } |
| } |
| } |
| } |
| |
| static void write_delta_q(struct vp9_write_bit_buffer *wb, int delta_q) { |
| if (delta_q != 0) { |
| vp9_wb_write_bit(wb, 1); |
| vp9_wb_write_literal(wb, abs(delta_q), 4); |
| vp9_wb_write_bit(wb, delta_q < 0); |
| } else { |
| vp9_wb_write_bit(wb, 0); |
| } |
| } |
| |
| static void encode_quantization(VP9_COMMON *cm, |
| struct vp9_write_bit_buffer *wb) { |
| vp9_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS); |
| write_delta_q(wb, cm->y_dc_delta_q); |
| write_delta_q(wb, cm->uv_dc_delta_q); |
| write_delta_q(wb, cm->uv_ac_delta_q); |
| } |
| |
| |
| static void encode_segmentation(VP9_COMP *cpi, |
| struct vp9_write_bit_buffer *wb) { |
| int i, j; |
| |
| struct segmentation *seg = &cpi->common.seg; |
| |
| vp9_wb_write_bit(wb, seg->enabled); |
| if (!seg->enabled) |
| return; |
| |
| // Segmentation map |
| vp9_wb_write_bit(wb, seg->update_map); |
| if (seg->update_map) { |
| // Select the coding strategy (temporal or spatial) |
| vp9_choose_segmap_coding_method(cpi); |
| // Write out probabilities used to decode unpredicted macro-block segments |
| for (i = 0; i < SEG_TREE_PROBS; i++) { |
| const int prob = seg->tree_probs[i]; |
| const int update = prob != MAX_PROB; |
| vp9_wb_write_bit(wb, update); |
| if (update) |
| vp9_wb_write_literal(wb, prob, 8); |
| } |
| |
| // Write out the chosen coding method. |
| vp9_wb_write_bit(wb, seg->temporal_update); |
| if (seg->temporal_update) { |
| for (i = 0; i < PREDICTION_PROBS; i++) { |
| const int prob = seg->pred_probs[i]; |
| const int update = prob != MAX_PROB; |
| vp9_wb_write_bit(wb, update); |
| if (update) |
| vp9_wb_write_literal(wb, prob, 8); |
| } |
| } |
| } |
| |
| // Segmentation data |
| vp9_wb_write_bit(wb, seg->update_data); |
| if (seg->update_data) { |
| vp9_wb_write_bit(wb, seg->abs_delta); |
| |
| for (i = 0; i < MAX_SEGMENTS; i++) { |
| for (j = 0; j < SEG_LVL_MAX; j++) { |
| const int active = vp9_segfeature_active(seg, i, j); |
| vp9_wb_write_bit(wb, active); |
| if (active) { |
| const int data = vp9_get_segdata(seg, i, j); |
| const int data_max = vp9_seg_feature_data_max(j); |
| |
| if (vp9_is_segfeature_signed(j)) { |
| vp9_encode_unsigned_max(wb, abs(data), data_max); |
| vp9_wb_write_bit(wb, data < 0); |
| } else { |
| vp9_encode_unsigned_max(wb, data, data_max); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| |
| static void encode_txfm_probs(VP9_COMP *cpi, vp9_writer *w) { |
| VP9_COMMON *const cm = &cpi->common; |
| |
| // Mode |
| vp9_write_literal(w, MIN(cm->tx_mode, ALLOW_32X32), 2); |
| if (cm->tx_mode >= ALLOW_32X32) |
| vp9_write_bit(w, cm->tx_mode == TX_MODE_SELECT); |
| |
| // Probabilities |
| if (cm->tx_mode == TX_MODE_SELECT) { |
| int i, j; |
| unsigned int ct_8x8p[TX_SIZES - 3][2]; |
| unsigned int ct_16x16p[TX_SIZES - 2][2]; |
| unsigned int ct_32x32p[TX_SIZES - 1][2]; |
| |
| |
| for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
| tx_counts_to_branch_counts_8x8(cm->counts.tx.p8x8[i], |
| ct_8x8p); |
| for (j = 0; j < TX_SIZES - 3; j++) |
| vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p8x8[i][j], |
| MODE_UPDATE_PROB, ct_8x8p[j]); |
| } |
| |
| for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
| tx_counts_to_branch_counts_16x16(cm->counts.tx.p16x16[i], |
| ct_16x16p); |
| for (j = 0; j < TX_SIZES - 2; j++) |
| vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p16x16[i][j], |
| MODE_UPDATE_PROB, ct_16x16p[j]); |
| } |
| |
| for (i = 0; i < TX_SIZE_CONTEXTS; i++) { |
| tx_counts_to_branch_counts_32x32(cm->counts.tx.p32x32[i], ct_32x32p); |
| for (j = 0; j < TX_SIZES - 1; j++) |
| vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p32x32[i][j], |
| MODE_UPDATE_PROB, ct_32x32p[j]); |
| } |
| #ifdef MODE_STATS |
| if (!cpi->dummy_packing) |
| update_tx_count_stats(cm); |
| #endif |
| } |
| } |
| |
| static void write_interp_filter_type(INTERPOLATIONFILTERTYPE type, |
| struct vp9_write_bit_buffer *wb) { |
| const int type_to_literal[] = { 1, 0, 2 }; |
| |
| vp9_wb_write_bit(wb, type == SWITCHABLE); |
| if (type != SWITCHABLE) |
| vp9_wb_write_literal(wb, type_to_literal[type], 2); |
| } |
| |
| static void fix_mcomp_filter_type(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| |
| if (cm->mcomp_filter_type == SWITCHABLE) { |
| // Check to see if only one of the filters is actually used |
| int count[SWITCHABLE_FILTERS]; |
| int i, j, c = 0; |
| for (i = 0; i < SWITCHABLE_FILTERS; ++i) { |
| count[i] = 0; |
| for (j = 0; j <= SWITCHABLE_FILTERS; ++j) |
| count[i] += cm->counts.switchable_interp[j][i]; |
| c += (count[i] > 0); |
| } |
| if (c == 1) { |
| // Only one filter is used. So set the filter at frame level |
| for (i = 0; i < SWITCHABLE_FILTERS; ++i) { |
| if (count[i]) { |
| cm->mcomp_filter_type = i; |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| static void write_tile_info(VP9_COMMON *cm, struct vp9_write_bit_buffer *wb) { |
| int min_log2_tile_cols, max_log2_tile_cols, ones; |
| vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); |
| |
| // columns |
| ones = cm->log2_tile_cols - min_log2_tile_cols; |
| while (ones--) |
| vp9_wb_write_bit(wb, 1); |
| |
| if (cm->log2_tile_cols < max_log2_tile_cols) |
| vp9_wb_write_bit(wb, 0); |
| |
| // rows |
| vp9_wb_write_bit(wb, cm->log2_tile_rows != 0); |
| if (cm->log2_tile_rows != 0) |
| vp9_wb_write_bit(wb, cm->log2_tile_rows != 1); |
| } |
| |
| static int get_refresh_mask(VP9_COMP *cpi) { |
| // Should the GF or ARF be updated using the transmitted frame or buffer |
| #if CONFIG_MULTIPLE_ARF |
| if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame && |
| !cpi->refresh_alt_ref_frame) { |
| #else |
| if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) { |
| #endif |
| // Preserve the previously existing golden frame and update the frame in |
| // the alt ref slot instead. This is highly specific to the use of |
| // alt-ref as a forward reference, and this needs to be generalized as |
| // other uses are implemented (like RTC/temporal scaling) |
| // |
| // gld_fb_idx and alt_fb_idx need to be swapped for future frames, but |
| // that happens in vp9_onyx_if.c:update_reference_frames() so that it can |
| // be done outside of the recode loop. |
| return (cpi->refresh_last_frame << cpi->lst_fb_idx) | |
| (cpi->refresh_golden_frame << cpi->alt_fb_idx); |
| } else { |
| int arf_idx = cpi->alt_fb_idx; |
| #if CONFIG_MULTIPLE_ARF |
| // Determine which ARF buffer to use to encode this ARF frame. |
| if (cpi->multi_arf_enabled) { |
| int sn = cpi->sequence_number; |
| arf_idx = (cpi->frame_coding_order[sn] < 0) ? |
| cpi->arf_buffer_idx[sn + 1] : |
| cpi->arf_buffer_idx[sn]; |
| } |
| #endif |
| return (cpi->refresh_last_frame << cpi->lst_fb_idx) | |
| (cpi->refresh_golden_frame << cpi->gld_fb_idx) | |
| (cpi->refresh_alt_ref_frame << arf_idx); |
| } |
| } |
| |
| static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) { |
| VP9_COMMON *const cm = &cpi->common; |
| vp9_writer residual_bc; |
| |
| int tile_row, tile_col; |
| TOKENEXTRA *tok[4][1 << 6], *tok_end; |
| size_t total_size = 0; |
| const int tile_cols = 1 << cm->log2_tile_cols; |
| const int tile_rows = 1 << cm->log2_tile_rows; |
| |
| vpx_memset(cm->above_seg_context, 0, sizeof(PARTITION_CONTEXT) * |
| mi_cols_aligned_to_sb(cm->mi_cols)); |
| |
| tok[0][0] = cpi->tok; |
| for (tile_row = 0; tile_row < tile_rows; tile_row++) { |
| if (tile_row) |
| tok[tile_row][0] = tok[tile_row - 1][tile_cols - 1] + |
| cpi->tok_count[tile_row - 1][tile_cols - 1]; |
| |
| for (tile_col = 1; tile_col < tile_cols; tile_col++) |
| tok[tile_row][tile_col] = tok[tile_row][tile_col - 1] + |
| cpi->tok_count[tile_row][tile_col - 1]; |
| } |
| |
| for (tile_row = 0; tile_row < tile_rows; tile_row++) { |
| vp9_get_tile_row_offsets(cm, tile_row); |
| for (tile_col = 0; tile_col < tile_cols; tile_col++) { |
| vp9_get_tile_col_offsets(cm, tile_col); |
| tok_end = tok[tile_row][tile_col] + cpi->tok_count[tile_row][tile_col]; |
| |
| if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) |
| vp9_start_encode(&residual_bc, data_ptr + total_size + 4); |
| else |
| vp9_start_encode(&residual_bc, data_ptr + total_size); |
| |
| write_modes(cpi, &residual_bc, &tok[tile_row][tile_col], tok_end); |
| assert(tok[tile_row][tile_col] == tok_end); |
| vp9_stop_encode(&residual_bc); |
| if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) { |
| // size of this tile |
| write_be32(data_ptr + total_size, residual_bc.pos); |
| total_size += 4; |
| } |
| |
| total_size += residual_bc.pos; |
| } |
| } |
| |
| return total_size; |
| } |
| |
| static void write_display_size(VP9_COMP *cpi, struct vp9_write_bit_buffer *wb) { |
| VP9_COMMON *const cm = &cpi->common; |
| |
| const int scaling_active = cm->width != cm->display_width || |
| cm->height != cm->display_height; |
| vp9_wb_write_bit(wb, scaling_active); |
| if (scaling_active) { |
| vp9_wb_write_literal(wb, cm->display_width - 1, 16); |
| vp9_wb_write_literal(wb, cm->display_height - 1, 16); |
| } |
| } |
| |
| static void write_frame_size(VP9_COMP *cpi, |
| struct vp9_write_bit_buffer *wb) { |
| VP9_COMMON *const cm = &cpi->common; |
| vp9_wb_write_literal(wb, cm->width - 1, 16); |
| vp9_wb_write_literal(wb, cm->height - 1, 16); |
| |
| write_display_size(cpi, wb); |
| } |
| |
| static void write_frame_size_with_refs(VP9_COMP *cpi, |
| struct vp9_write_bit_buffer *wb) { |
| VP9_COMMON *const cm = &cpi->common; |
| int refs[ALLOWED_REFS_PER_FRAME] = {cpi->lst_fb_idx, cpi->gld_fb_idx, |
| cpi->alt_fb_idx}; |
| int i, found = 0; |
| |
| for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) { |
| YV12_BUFFER_CONFIG *cfg = &cm->yv12_fb[cm->ref_frame_map[refs[i]]]; |
| found = cm->width == cfg->y_crop_width && |
| cm->height == cfg->y_crop_height; |
| vp9_wb_write_bit(wb, found); |
| if (found) |
| break; |
| } |
| |
| if (!found) { |
| vp9_wb_write_literal(wb, cm->width - 1, 16); |
| vp9_wb_write_literal(wb, cm->height - 1, 16); |
| } |
| |
| write_display_size(cpi, wb); |
| } |
| |
| static void write_sync_code(struct vp9_write_bit_buffer *wb) { |
| vp9_wb_write_literal(wb, SYNC_CODE_0, 8); |
| vp9_wb_write_literal(wb, SYNC_CODE_1, 8); |
| vp9_wb_write_literal(wb, SYNC_CODE_2, 8); |
| } |
| |
| static void write_uncompressed_header(VP9_COMP *cpi, |
| struct vp9_write_bit_buffer *wb) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
| |
| // frame marker bits |
| vp9_wb_write_literal(wb, 0x2, 2); |
| |
| // bitstream version. |
| // 00 - profile 0. 4:2:0 only |
| // 10 - profile 1. adds 4:4:4, 4:2:2, alpha |
| vp9_wb_write_bit(wb, cm->version); |
| vp9_wb_write_bit(wb, 0); |
| |
| vp9_wb_write_bit(wb, 0); |
| vp9_wb_write_bit(wb, cm->frame_type); |
| vp9_wb_write_bit(wb, cm->show_frame); |
| vp9_wb_write_bit(wb, cm->error_resilient_mode); |
| |
| if (cm->frame_type == KEY_FRAME) { |
| write_sync_code(wb); |
| // colorspaces |
| // 000 - Unknown |
| // 001 - BT.601 |
| // 010 - BT.709 |
| // 011 - SMPTE-170 |
| // 100 - SMPTE-240 |
| // 101 - Reserved |
| // 110 - Reserved |
| // 111 - sRGB (RGB) |
| vp9_wb_write_literal(wb, 0, 3); |
| if (1 /* colorspace != sRGB */) { |
| vp9_wb_write_bit(wb, 0); // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] |
| if (cm->version == 1) { |
| vp9_wb_write_bit(wb, cm->subsampling_x); |
| vp9_wb_write_bit(wb, cm->subsampling_y); |
| vp9_wb_write_bit(wb, 0); // has extra plane |
| } |
| } else { |
| assert(cm->version == 1); |
| vp9_wb_write_bit(wb, 0); // has extra plane |
| } |
| |
| write_frame_size(cpi, wb); |
| } else { |
| const int refs[ALLOWED_REFS_PER_FRAME] = {cpi->lst_fb_idx, cpi->gld_fb_idx, |
| cpi->alt_fb_idx}; |
| if (!cm->show_frame) |
| vp9_wb_write_bit(wb, cm->intra_only); |
| |
| if (!cm->error_resilient_mode) |
| vp9_wb_write_literal(wb, cm->reset_frame_context, 2); |
| |
| if (cm->intra_only) { |
| write_sync_code(wb); |
| |
| vp9_wb_write_literal(wb, get_refresh_mask(cpi), NUM_REF_FRAMES); |
| write_frame_size(cpi, wb); |
| } else { |
| int i; |
| vp9_wb_write_literal(wb, get_refresh_mask(cpi), NUM_REF_FRAMES); |
| for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) { |
| vp9_wb_write_literal(wb, refs[i], NUM_REF_FRAMES_LOG2); |
| vp9_wb_write_bit(wb, cm->ref_frame_sign_bias[LAST_FRAME + i]); |
| } |
| |
| write_frame_size_with_refs(cpi, wb); |
| |
| vp9_wb_write_bit(wb, xd->allow_high_precision_mv); |
| |
| fix_mcomp_filter_type(cpi); |
| write_interp_filter_type(cm->mcomp_filter_type, wb); |
| } |
| } |
| |
| if (!cm->error_resilient_mode) { |
| vp9_wb_write_bit(wb, cm->refresh_frame_context); |
| vp9_wb_write_bit(wb, cm->frame_parallel_decoding_mode); |
| } |
| |
| vp9_wb_write_literal(wb, cm->frame_context_idx, NUM_FRAME_CONTEXTS_LOG2); |
| |
| encode_loopfilter(&cm->lf, wb); |
| encode_quantization(cm, wb); |
| encode_segmentation(cpi, wb); |
| |
| write_tile_info(cm, wb); |
| } |
| |
| static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
| FRAME_CONTEXT *const fc = &cm->fc; |
| vp9_writer header_bc; |
| |
| vp9_start_encode(&header_bc, data); |
| |
| if (xd->lossless) |
| cm->tx_mode = ONLY_4X4; |
| else |
| encode_txfm_probs(cpi, &header_bc); |
| |
| update_coef_probs(cpi, &header_bc); |
| |
| #ifdef ENTROPY_STATS |
| active_section = 2; |
| #endif |
| |
| vp9_update_skip_probs(cpi, &header_bc); |
| |
| if (cm->frame_type != KEY_FRAME) { |
| int i; |
| #ifdef ENTROPY_STATS |
| active_section = 1; |
| #endif |
| |
| update_inter_mode_probs(cm, &header_bc); |
| vp9_zero(cm->counts.inter_mode); |
| |
| if (cm->mcomp_filter_type == SWITCHABLE) |
| update_switchable_interp_probs(cpi, &header_bc); |
| |
| for (i = 0; i < INTRA_INTER_CONTEXTS; i++) |
| vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i], |
| MODE_UPDATE_PROB, |
| cpi->intra_inter_count[i]); |
| |
| if (cm->allow_comp_inter_inter) { |
| const int comp_pred_mode = cpi->common.comp_pred_mode; |
| const int use_compound_pred = comp_pred_mode != SINGLE_PREDICTION_ONLY; |
| const int use_hybrid_pred = comp_pred_mode == HYBRID_PREDICTION; |
| |
| vp9_write_bit(&header_bc, use_compound_pred); |
| if (use_compound_pred) { |
| vp9_write_bit(&header_bc, use_hybrid_pred); |
| if (use_hybrid_pred) |
| for (i = 0; i < COMP_INTER_CONTEXTS; i++) |
| vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i], |
| MODE_UPDATE_PROB, |
| cpi->comp_inter_count[i]); |
| } |
| } |
| |
| if (cm->comp_pred_mode != COMP_PREDICTION_ONLY) { |
| for (i = 0; i < REF_CONTEXTS; i++) { |
| vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0], |
| MODE_UPDATE_PROB, |
| cpi->single_ref_count[i][0]); |
| vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1], |
| MODE_UPDATE_PROB, |
| cpi->single_ref_count[i][1]); |
| } |
| } |
| |
| if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY) |
| for (i = 0; i < REF_CONTEXTS; i++) |
| vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i], |
| MODE_UPDATE_PROB, |
| cpi->comp_ref_count[i]); |
| |
| update_mbintra_mode_probs(cpi, &header_bc); |
| |
| for (i = 0; i < NUM_PARTITION_CONTEXTS; ++i) { |
| vp9_prob pnew[PARTITION_TYPES - 1]; |
| unsigned int bct[PARTITION_TYPES - 1][2]; |
| update_mode(&header_bc, PARTITION_TYPES, |
| vp9_partition_tree, pnew, |
| fc->partition_prob[cm->frame_type][i], bct, |
| (unsigned int *)cpi->partition_count[i]); |
| } |
| |
| vp9_write_nmv_probs(cpi, xd->allow_high_precision_mv, &header_bc); |
| } |
| |
| vp9_stop_encode(&header_bc); |
| assert(header_bc.pos <= 0xffff); |
| |
| return header_bc.pos; |
| } |
| |
| void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, unsigned long *size) { |
| uint8_t *data = dest; |
| size_t first_part_size; |
| struct vp9_write_bit_buffer wb = {data, 0}; |
| struct vp9_write_bit_buffer saved_wb; |
| |
| write_uncompressed_header(cpi, &wb); |
| saved_wb = wb; |
| vp9_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size |
| |
| data += vp9_rb_bytes_written(&wb); |
| |
| vp9_compute_update_table(); |
| |
| #ifdef ENTROPY_STATS |
| if (cm->frame_type == INTER_FRAME) |
| active_section = 0; |
| else |
| active_section = 7; |
| #endif |
| |
| vp9_clear_system_state(); // __asm emms; |
| |
| first_part_size = write_compressed_header(cpi, data); |
| data += first_part_size; |
| vp9_wb_write_literal(&saved_wb, first_part_size, 16); |
| |
| data += encode_tiles(cpi, data); |
| |
| *size = data - dest; |
| } |
| |
| #ifdef ENTROPY_STATS |
| static void print_tree_update_for_type(FILE *f, |
| vp9_coeff_stats *tree_update_hist, |
| int block_types, const char *header) { |
| int i, j, k, l, m; |
| |
| fprintf(f, "const vp9_coeff_prob %s = {\n", header); |
| for (i = 0; i < block_types; i++) { |
| fprintf(f, " { \n"); |
| for (j = 0; j < REF_TYPES; j++) { |
| fprintf(f, " { \n"); |
| for (k = 0; k < COEF_BANDS; k++) { |
| fprintf(f, " {\n"); |
| for (l = 0; l < PREV_COEF_CONTEXTS; l++) { |
| fprintf(f, " {"); |
| for (m = 0; m < ENTROPY_NODES; m++) { |
| fprintf(f, "%3d, ", |
| get_binary_prob(tree_update_hist[i][j][k][l][m][0], |
| tree_update_hist[i][j][k][l][m][1])); |
| } |
| fprintf(f, "},\n"); |
| } |
| fprintf(f, "},\n"); |
| } |
| fprintf(f, " },\n"); |
| } |
| fprintf(f, " },\n"); |
| } |
| fprintf(f, "};\n"); |
| } |
| |
| void print_tree_update_probs() { |
| FILE *f = fopen("coefupdprob.h", "w"); |
| fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n"); |
| |
| print_tree_update_for_type(f, tree_update_hist[TX_4X4], BLOCK_TYPES, |
| "vp9_coef_update_probs_4x4[BLOCK_TYPES]"); |
| print_tree_update_for_type(f, tree_update_hist[TX_8X8], BLOCK_TYPES, |
| "vp9_coef_update_probs_8x8[BLOCK_TYPES]"); |
| print_tree_update_for_type(f, tree_update_hist[TX_16X16], BLOCK_TYPES, |
| "vp9_coef_update_probs_16x16[BLOCK_TYPES]"); |
| print_tree_update_for_type(f, tree_update_hist[TX_32X32], BLOCK_TYPES, |
| "vp9_coef_update_probs_32x32[BLOCK_TYPES]"); |
| |
| fclose(f); |
| f = fopen("treeupdate.bin", "wb"); |
| fwrite(tree_update_hist, sizeof(tree_update_hist), 1, f); |
| fclose(f); |
| } |
| #endif |